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A B S T R A C T   

Recent advances in communication technologies with the emergence of connected objects have changed the 
agricultural area. In this new digital age, the development of artificial intelligence, particularly deep learning, 
has allowed for acceleration and improvement in the processing of collected data. To highlight the evolution and 
advances observed in deep learning in agriculture, we conducted a bibliometric study on more than 400 recent 
research studies. The analyses carried out on recent research works suggest that deep learning is widely involved 
in the digitization of agriculture areas with high accuracy exceeding the standard image processing techniques. 
Most of the works focus on crop classification problems, weed, and pest identification. Their methods are mainly 
based on convolutional neural network architecture. From the cases study, we have identified three key chal-
lenges that are essential in the deep learning methods applied in agriculture: (i) the need to consider the 
perception of the domain actors, their appropriation or interaction with the existing tools; (ii) the requirement to 
perform statistical tests to analyze the performance of the classifiers resulting from the learning process; and (iii) 
the need to perform statistical cross-validations with the training data. In the end, we summarized the agri-
cultural data processing process consisting of several parts, for a better consideration of the expectations 
resulting from the challenges addressed. We consider that this study can serve as a guideline of research for the 
scientist and practician in the application of deep learning methodology in agriculture.   

1. Introduction 

Agriculture is the practice of growing food. Given the increase in 
population, this sector must meet many requests for food while 
considering societal (such as labor), environmental (water scarcity, loss 
of biodiversity, land degradation, etc.), and economic issues. The con-
straints of its development have become numerous given the seasonal 
variability and extreme climate. It is more necessary than ever to find 
innovative practices for the development of the agricultural sector. 

Digital integration has significantly changed farmers’ knowledge of 
field management with innovative technologies like intelligent 
computing, robotics, drones, or sensors onboard farm machinery. Using 
these technologies is encouraging data scientists and agronomists to 
design analytical tools and techniques to accurately organize field 
management and address the new challenges at hand (fungal attack 

detection, crop yield prediction, advanced spraying, etc.). These novel 
practices require farmers’ technical assistance to support their needs and 
help them maximize their crop yields based on data and task 
automation. 

Recent advances in artificial intelligence (AI) based applications 
have had a strong impact in this area. They have contributed to a sig-
nificant advancement of computer vision, machine learning, and deep 
learning solutions in the development of automated and robust systems. 
According to Research and Markets (2017), the AI market in agriculture 
was valued at US$ 518.7 million in 2017. With a growth rate of 32.7%, it 
will reach US$ 312.4 billion by 2027. With the increasing use of com-
puter vision, agricultural applications have transformed traditional 
farming practices into something amazingly more productive. Their uses 
have been successful in having an impact on the production and eco-
nomics of the sector. These benefits in agriculture include optimized and 
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accurate use of chemicals (pesticides, insecticides, and fertilizers), 
planning of farmers’ work, recognition of plant images, online moni-
toring and analysis of crop health, and reduction of environmental 
degradation. Thus, agriculture can cope with new constraints, encour-
aging agronomists (or experts) to find new tools within the agricultural 
value chain that offer better prospects. 

Visual observation of plants by experts was usually conducted 
through diagnosis when needed. Nevertheless, this unprofitable method 
takes mostly time (R. Li et al., 2019) while affecting the precision of the 
task executed. To address these issues, technologies like image pro-
cessing, the internet of things, machine learning, and deep learning can 
be used to get data and process it. Classical algorithms (support vector 
machine, random drill, k-nearest neighbor) of machine learning have 
been applied in many studies to extract image features such as color, 
shape, or texture (Liakos, Busato, Moshou, Pearson & Bochtis, 2018). 
These algorithms require designing features of objects manually and are 
highly dependent on the data acquisition methods, preprocessing, and 
feature extraction performance. 

With the upgrading of computational performance and large volume 
datasets, the algorithms of deep learning have been effective in many 
areas. Due to their expressive capabilities on the data, they have been 
able to avoid the disadvantages of traditional extraction methods. This 
allows the machine to perform complex processing on big data, 
providing predictions with promising results. In recent years, thanks to 
the deep neural network approach (LeCun, Kavukcuoglu & Farabet, 
2010, 2015; Szegedy et al., 2014; Zeiler & Fergus, 2013), many appli-
cations of computer vision (Mavridou et al., 2019; Tian et al., 2020) are 
being employed in many tasks in agriculture to achieve this aim. 
Therefore, they have received more attention from researchers and ex-
perts in the agricultural field (Affouard, Lombardo, Goëau, Bonnet & 
Joly, 2019; Liakos et al., 2018; N.  Zhu, Song, Jiang & Song, 2018). 
However, this precision agriculture also raises many issues and chal-
lenges related to the ecological transition of the agricultural system, 
such as reducing energy consumption, achieving higher quality pro-
duction by minimizing the use of intrants, and the place of humans in 
decision-making systems. 

Deep learning has made many technical advances today. Neverthe-
less, the interpretation of the results of the training models on the data 
has generated long debates in the scientific and end-user communities. 
With these new trends, the future of digital agriculture was discussed 
through the main challenges and opportunities to overcome the major 
shortcomings of deep learning in the face of sustainable and explainable 
agriculture. We conducted a literature review based on bibliometrics 
that summarizes, evaluate different publications, and then revealed the 
trends and hotspots of the current research. Indeed, we have defined 
keywords or search terms and variants related to precision agriculture 
with deep learning. Two main research questions have been selected: (a) 
what are the strategic themes related to digital agriculture? (b) what are 
the main challenges and opportunities of digital agriculture? The an-
swers to these questions are analyzed and discussed with bibliometric 
tools. This work, therefore, provides a basis for further research with the 
following contributions:  

1 Analysis of the most influential publications and the contributions 
that stand out in precision agriculture.  

2 Analyzing co-citations and citations to identify potential research 
directions.  

3 Identification of hot topics in agriculture and deep learning for future 
research. 

The rest of the paper is structured as follows: Section 2 introduces 
precision agriculture. Section 3 contains the bibliometric methodology 
used. Analysis and results presented in Section 4, while Section 5 focuses 
on the discussion of the main challenges related to using deep learning in 
agriculture. Finally, Section 6 concludes this paper. 

2. Precision agriculture 

Agriculture, which appeared thousands of years ago, consists of 
making use of an environment to produce food. In most countries, it is 
considered the main source of employment. Lack of knowledge about 
soil types, yields, crops, and weather conditions, inappropriate use of 
intrants, irrigation problems, and crop failures led farmers to make 
intuitive farm adjustments. However, this was possible because the 
parcels were small and there were technical and economic shortages. 
Now, a failure to monitor this information could well cause new prob-
lems and additional costs for production. This state needs to be changed 
when the farms were extended and divided into several units of hectares. 
The opportunities offered by the latest digital technologies have strongly 
boosted agriculture’s progress towards industrialization. The mechani-
zation has turned agriculture into a new era, Agriculture 4.0, where 
intensive agriculture is now a major contributor to the efficiency of 
agricultural production processes. This includes the global positioning 
system, big data, the internet of things, cloud computing, and image 
feature extraction. For example, based on geographic coordinates, we 
can conduct modular interventions on farms. From image features, it is 
possible to determine the crop disease. This kind of thinking is at the 
origin of the precision agriculture concept, which translates into the 
right intervention at the right place and at the right time (Zimmerman, 
2008; Zwaenepoel & Le Bars, 1997). 

In practice, precision agriculture is based on the integration of in-
formation and communication technologies in a parcel’s management. It 
aims to modulate the farming practices according to the intra-parcel 
variability (soil texture, slope value, vegetation cover, etc.) to 
correctly control the agricultural production process and optimize the 
farming interventions. As the world’s population grows, the current 
challenge is to improve the quality and quantity of agri-food products 
while respecting human health and the environment. Precision agri-
culture, therefore, addresses the needs of farmers as an integrated 
agricultural system focused on information and production. Precision 
agriculture addresses the needs of farmers as an integrated agricultural 
system built on information and production. Its aims to increase the 
efficiency, productivity, and profitability of production in the long term, 
both on a site-specific and farm-wide basis, while minimizing unin-
tended impacts on wildlife and the environment (Tran & Nguyen, 2007). 
According to Gandonou, (2005), precision agriculture is a set of tech-
nologies that have contributed to launching agriculture into the 
information-driven world, and which is designed to help farmers gain 
more control in managing agricultural operations. In effect, precision 
agriculture is an upgrade to the conventional decision support system 
for crop production. 

In addition, precision agriculture is characterized by several agro-
nomic, technological, and economic challenges to respond appropriately 
to agribusiness needs.  The technological challenge is characterized by 
using embedded tools (biomass or chlorophyll sensors), airborne sys-
tems (drones or satellites), and mapping systems. The agronomic chal-
lenge is to improve the input-yield ratio and the selection of crop 
varieties adapted to phytosanitary contexts. The environmental issue is 
related to the limitation of soil erosion and nitric nitrogen losses through 
leaching. Therefore, the aim is to encourage optimal fertilization while 
preserving human health and the environment. The economic aspect 
contributes to securing the farm’s business profits by reducing the cost of 
production and limiting the excessive use of intrants while safeguarding 
the quality and yield of the crops. 

Precision agriculture generates a lot of information from data 
collected on plots by land, by connected objects, or by satellite tools. 
There is therefore a real need to develop tools and methods to store, 
analyze, interpret, visualize, and disseminate the data collected to 
derive new value from it (Fig. 1). These agricultural applications 
represent the means of producing knowledge pertinent to decision 
support systems (Wolfert, Ge, Verdouw & Bogaardt, 2017) that can 
accompany farmers and public or private decision makers. In the 
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industrial revolution era, artificial intelligence, machine learning, and 
deep learning have become very popular in scientific research with 
many applications in natural language processing, image classification, 
disease diagnosis, text mining, etc. Today, deep learning has many 
example cases applied to crop and soil management (Liakos et al., 2018). 
For these reasons, deep learning becomes a relevant answer that extends 
the traditional agronomic models to better help farmers in their position 
in the agricultural value chain. 

The digital transformation of agriculture supported by deep learning 
is a new card of scientific and technical progress. It is starting to change 
the vision of farmers by providing many benefits to manage frequent 
changes in external conditions. The solutions developed have com-
plemented the technologies (agronomic and computers) already in play 
to increase production and modernize certain stages of precision agri-
culture. However, their use requires technical assistance for farmers to 
achieve sustainable agriculture. Thus, deep learning has become a 
driving force for the transformation and development of agriculture. 

The benefits of digital agriculture are very strong. The applications of 
artificial intelligence and deep learning offer many opportunities to 
reinforce the various stages of agriculture to face the different diffi-
culties and achieve the goals (Gupta, 2019; N.  Zhu et al., 2018):  

1 Agricultural information processing: Monitoring the condition of 
plants and animals is vital for agricultural production.  

2 Models make disease detection a feasible process, increasing the 
production potential of healthy crops. 

3 Optimal control of agricultural production systems: Control strate-
gies for agricultural production systems are often dependent on the 
farmer’s experience or expert knowledge, which does not consider 
the physiological condition of the plants.  

4 Crop management practices have reached new heights, and it has 
become quite practical for farmers to manage crops with minimal 
effort. 

5 Intelligent farm machinery equipment: agricultural production in-
volves many types of tasks.  

6 Deep learning models to make accurate predictions efficiently 
analyze agricultural data.  

7 Management of the agricultural economic system: Agricultural 
output alone is not enough. Many other factors must be included, 

such as prices and the quality of agricultural products. It is very 
important to forecast the prices of agricultural products.  

8 AI has significantly revolutionized the weather forecasting system, 
which plays a key role in agriculture. 

The agricultural sector has been reshaped by deep learning tech-
niques. Many agricultural practices have been impacted by technolog-
ical developments. However, humans must be the main actor in this 
change to control the risks emitted by the various technological in-
tegrations and information interpretation. 

3. Methodology 

3.1. Bibliometric analysis: overview 

Literature analysis or bibliometrics is the quantitative analysis of 
scientific production and the analysis of the networks of this production 
(Aria & Cuccurullo, 2017; G. Chen & Xiao, 2016; De Bellis, 2009, 2009; 
Koskinen et al., 2008). Based on a query related to a given subject or 
field, it makes it possible to identify studies, authors as well as their 
relations concerning the various citations and publications. Numerous 
factors are considered, such as the number of citations, the number of 
publications per author, the keyword frequency, author, institution 
(affiliations), and country relationships. It mainly involves the following 
steps: (a) the collection of related works or bibliographic data (b) the 
review and detailed analysis of these works and (c) a graphical or 
tabular visualization of the collected results (Fig. 2). 

The first step is a keyword search of conference papers or journal 
articles, book chapters, and other media to obtain bibliographic data. 
This step was performed in the IEEE Xplore digital library and the As-
sociation for Computing Machinery (ACM) digital library, as well as in 
scientific indexing services such as Web of Science (WoS), Elsevier 
Scopus, or Google Scholar. WoS seems to be widely used because of its 
multidisciplinary nature. Indeed, databases can be very generalist like 
Google Scholar or very specialized like IEEE Xplorer. On the other hand, 
Scopus, developed by Elsevier, clearly does not meet the criteria of open 
access. 

Hence, in this work, we focus on WoS, which also offers advanced 
search features useful for selecting significant sets of articles that can be 
considered as an interesting basis for building our bibliometric analysis. 

Fig. 1. Agricultural data processing.  
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It should be noted that the data collected was processed to eliminate 
spuriously (such as abbreviations) information that would have hin-
dered the subsequent stages of our study. 

The analysis and visualization phase of the search queries were 
carried out using the Bibliometrix tool (Aria & Cuccurullo, 2017) which 
is easy to use with intuitive web interfaces. Bibliometrix is an R package 
for conducting quantitative research in scientometrics (e.g., the science 
of measuring and analyzing science) and bibliometrics. It permits to 
import of bibliographic data from several sources such as Scopus or 
WoS. At the same time, it offers an evaluation system based on 
co-citation as well as the measurement of scientific collaboration. 

3.2. Citation analysis 

Bibliometrics is a popular approach to identifying key research 
trends (Mas-Tur et al., 2021).  It relies on various calculations, such as 
the number of citations, the number of keywords, the number of pub-
lications per author, the institution (affiliations), or country. 

Citation analysis is one of the main classical techniques of biblio-
metrics. It shows the structure of a specific field through the different 
types of networks such as co-citation, direct citations, and bibliographic 
coupling (Aria & Cuccurullo, 2017). 

The total of citations for a scientific journal indicates its importance 
in that field of research (Garfield, 1972). For an author, the total number 
of citations is a reliable measure of the attention the author receives 
from the scientific community i.e. the author’s scientific impact (Krell, 
2009). 

Thus, citation analysis describes the citation frequency of articles. It 
helps to show the most influential authors and publications in a field 
that are significantly impacting (Gundolf & Filser, 2013; Vokurka, 
1996). The citation analysis of publications also helps to identify rele-
vant work on a specific topic (Rejeb et al., 2021; Sharma, Shishodia, 
Gunasekaran, Min & Munim, 2022). 

The co-citations analysis explores the relationships between the 
publications that are the network (C. Chen, Paul & O’Keefe, 2001; 
Small, 1973). It uses journals and cited authors as the unit of analysis. It 
is a valuable method, which shows the intellectual structure of a field 
(citation). The co-citation network becomes possible to detect publica-
tions that belong to the same group because of the similarity of the 
topics. 

Despite the critique of citation analysis (M. H. MacRoberts & Mac-
Roberts, 2018; Ou & Kim, 2019), it is considered one of the techniques 
often used to analyze the literature, and identify the most influential 
authors, journals, or articles in a research field (M. h. MacRoberts & 
MacRoberts, 2010). 

3.3. Data collection 

The objective of this study is to map the scientific structure of deep 
learning research in the agriculture sector through bibliometric analysis, 

visualization, and network analysis. For this purpose, as the query 
keywords, we used the following query on 1 June 2022 in the WoS 
database (Web of Science Group, 2022): 

("deep learning”) AND ("agriculture*” OR "farming”) 

The question was intentionally formulated in a large way to cover 
more research topics. It considers the years of publication, title, abstract, 
and author/indexed keywords of the articles. The bibliographic data was 
downloaded as a BibTeX file. In a filtering process, we selected English- 
language documents up to 2022. As a result, 1406 documents are 
identified and analyzed by Biliometrix tool. 

Through citation analysis, we explored the relationship between 
authors and papers to provide an understanding of the underlying issues 
in precision agriculture. We identified the most influential keywords, 
authors, and publications with significant contributions. An analysis of 
the papers on agricultural topics is performed considering certain 
research questions such as the deep learning models and architectures 
put forward, the data sources used the classes and labels of the data, and 
the overall performance obtained according to the adopted metrics. 
Finally, we analyzed the connections between countries, institutions, 
and journals to describe the collaborative network. 

4. Analysis and result 

In this section, we perform a bibliometric analysis to explore the 
applications of deep learning in agriculture. This quantitative approach 
reveals the intellectual structure of the field, frequency of citations, hot 
topics, or future research directions. 

4.1. Distribution of papers and their sources 

To start with, we analyzed the evolution of scientific productions. 
The number of publications and their distribution over time-related to 
the deep learning application in agriculture is shown in Fig. 3. We 
observe that the number of publications started to increase significantly 
from the year 2018 (with 74 publications). Specifically, the number of 
publications keeps up. It went from 74 in 2018 to 337 in 2020 and a peak 
of 495 in 2021. 

The significant development of technologies in the last decades 
contributed to this increase in publications. The use of computers, 
computer vision, IoT manufacturing, and funding of agricultural pro-
jects have prompted the scientific and agro-industrial communities. 

In addition, our selection contained a wide variety of journals.  As 
shown in Table 1, we present the journals that published the most 
studies in precision agriculture indexed in the Web of Sciences from 
2015 to 2022. The specialized journals in agronomic studies or remote 
sensing are the most active in terms of publications of scientific articles. 
For example, Elsevier’s “Computers and Electronics in Agriculture”, 
covering the development and application of computer science, soft-
ware, electronics, and monitoring systems to solve agricultural 

Fig. 2. Bibliometric analysis process.  
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problems, is the most widely used source or journal for publications with 
142 publications. It is succeeded by remote sensing journals such as 
"Remote Sensing" with 95 publications in total that also focus on ap-
plications with IoT.  Among the most cited sources, we have "IEEE Ac-
cess" from the Institute of Electrical and Electronics Engineers with 34 
publications in total. 

The top 10 sources contributed to the literature with 490 documents, 
or about 33.61% of the total publications. 

4.2. Corresponding author’s country and academic publications 

This stage of our study focuses on the country and academic affili-
ations of the authors. This analysis allows us, to better understand the 
geographic distribution of researchers contributing to agriculture. From 
an academic perspective (as showed in Table 2), the China Agricultural 
University tops list followed by the University of Sydney in terms of 
publication. From the USA, universities like “IOWA State University” 
and “University of Florida” are reported. 

Additionally, the Fig. 4 gives a graphical representation of the 
countries and publications of the corresponding authors. Along with 
Table 3, they list their number of publications and the analysis of the 
number of publications in a single country (SCP), multiple countries 
(MCP), and the ratio of publications in multiple countries. China, India, 

and the United States are the most important country with a total of 320; 
219 and 53 publications. 

China at the top of the list has 242 single-country publications (SCP) 
and 78 multi-country publications (MCP), with an MCP ratio of 0.29. It 
is followed by India with 148 for MS and 35 for PCM.  The United States 
has 109 (SCP) and 39 MCP. 

4.3. Top manuscripts by citations 

Document citation analysis studies the influence of articles in the 
literature. In doing so, we performed a citation analysis to identify the 
most influential studies on the application of deep learning in agricul-
ture and recapitulated the content. The Table 4 list the top ten most 
influential documents in terms of the total number of citations (TC) or 
average citations per year (ACY). The publications by Kamilaris and 
Prenafeta-Boldú, (2018); Kussul, Lavreniuk, Skakun and Shelestov, 
(2017) lead the list with 1016 and 657 total citations respectively, fol-
lowed by Fuentes, Yoon, Kim and Park, (2017); Weiss, Jacob and 
Duveiller, (2020) with 657 and 342 total citations. 

The authors (Kamilaris & Prenafeta-Boldú, 2018; Weiss et al., 2020) 
present summaries of deep learning in agriculture in general and the use 
of remote sensing in agriculture in particular.  Kamilaris et al. (Kamilaris 
& Prenafeta-Boldú, 2018) conducted a survey on research based on deep 
learning applied to the agricultural domain. A total of 40 relevant papers 
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Fig. 3. Annual scientific publications.  

Table 1 
Top-10 relevant sources.  

Rank Sources Count 

1 Computers and Electronics in Agriculture 142 
2 Remote Sensing 95 
3 Sensors 58 
4 IEEE Access 53 
5 Applied Sciences-Basel 33 
6 Agronomy-Basel 26 
7 Frontiers In Plant Science 26 
8 Agriculture-Basel 22 
9 CMC–Computers Materials & Continua 21 
10 International Journal of Advanced Computer Science and 

Applications 
14  

Table 2 
Most Relevant Affiliations.  

Rank Affiliations 

1 China Agricultural University 
2 University of Sydney 
3 Zhejiang University 
4 Wageningen University Research 
5 Northwest A&F University China 
6 University of Florida 
7 IOWA State University 
8 Beijing Technology Business University 
9 King Saud University 
10 Jeonbuk National University  
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were identified, including the domain and problem they address, the 
models used, the data sources, etc. Additionally, they compared the 
performance of deep learning with other existing methods. Several 
emerging opportunities exist for strengthening the role of remote 
sensing in agricultural applications,  according to Weiss et al., (2020). As 
a complement to these previous efforts, this current work aims to help 
agriculture users interested in deep learning applications. We will pro-
vide an overview of what deep learning has to offer agriculture based on 
literature review tools. It represents the most cited journals, articles, or 
keywords. 

In the agriculture sector, accurate and earlier detection of fungal 
attacks in crops could help to develop an effective treatment technique 
while substantially reducing economic losses. Developments in deep 
neural networks have allowed researchers to improve the accuracy of 
object detection and recognition models by iterating over a training 
dataset. The authors (Fuentes et al., 2017) present a solution to this 
problem. They proposed a deep learning-based approach to detect plant 
diseases and pests in tomato crops (Fuentes et al., 2017). They combined 
meta-architectures such as Convolutional Neural Network (Faster 
R-CNN), Region-based Fully Convolutional Network (R-FCN), and Sin-
gle Shot Multibox Detector (SSD) with other architectures based on 
feature extractors, such as VGGNet from the Visual Geometry Group 
(VGG) at Oxford University or Residual Neural Network (ResNet) from 
Microsoft Research. To increase the performance of their approach, the 
authors used the data augmentation technique during the training. The 
comparative results proved the performance of their approach on stan-
dard architectures with a mean Average Precision of 83% for Faster 
R-CNN with VGG-16 or 82.53% for SSD with ResNet-50. The authors 
(Maryam Rahnemoonfar & Clay Sheppard, 2017) have built a method-
ology based on convolutional neural networks for crop yield estimation. 

Their objective is to reduce the cost of labeling (tagging) training data 
for the object-counting problem by creating a set of secondary datasets 
for training. Using a modified version of the GoogleNet or Inception and 
ResNet model coupling architecture, their algorithm counts the exact 
number of fruits or flowers. Experimental results trained on simulated 
data returned an average accuracy of 91% on a set of real images. 

To support agriculture, (Khan, Khan, Yousaf, Khurshid & Abbas, 
2018; Kussul et al., 2017; Zhong, Hu & Zhou, 2019) illustrate the 
development of techniques based on remote sensing. The authors 
(Kussul et al., 2017; Zhong et al., 2019) compare machine learning 
models to CNN for crop classification, used to delimit crop areas. Kussul 
et al. compare the models as Multi-Layer Perceptron (MLP) or Random 
Forest with CNN for crops (wheat, corn, soybeans, etc.) classification 
(Kussul et al., 2017). Landsat-8 and Sentinel-1A satellites for this clas-
sification acquire multi-temporal data. Experiments have shown that 
CNNs achieve better performance with an average accuracy of 88%. 
Zhong et al. proposed the crop classification based on deep learning 
from remote sensing time series (Zhong et al., 2019). In this study, deep 
learning models based on LSTM and one-dimensional convolutional 
layers (Conv1D) are compared with models such as XGBoost, Random 
Forest, and Support Vector Machine (SVM). The experimental results 
showed that Conv1D is effective and efficient for representing the time 
series in multi-temporal classification tasks with an accuracy of 85.54%. 
In summary, thirteen (13) categories (such as rice, corn, tomatoes, 
vineyards, etc.) of summer crops in Yolo County, California, USA, were 
selected for the classification task. 

According to Khan et al., (2018) hyperspectral imagery has a great 
potential in the analysis of plant diseases or crop yield estimation. 
Indeed, advances in the ground or airborne IoT based on hyperspectral 
imagery have refined the evaluation of crop stresses or vegetation 
characterization by traditional techniques. Today, existing connected 
object technologies (Internet of Things or IoT) need to add intelligent 
elements and pass from “perception” to “cognition” by combining IoT 
and cognitive methods (Foukalas, 2020). In the cognitive IoT (CIoT), the 
self-organizing networking technology can use group collaboration 
among the nodes to accomplish the common mission, which reflects the 
reasoning, distribution, and robustness of the IoT. Cognitive IoT enables 
organizations to learn from data from connected devices, sensors, ma-
chines, and other sources and infuses intelligence into industrial oper-
ations and the experiences of products and machines stakeholders. 
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Fig. 4. Corresponding author’s country and publications.  

Table 3 
Corresponding author’s country and publications.  

Country Articles SCP MCP 

CHINA 320 242 78 
INDIA 219 184 35 
USA 148 109 39 
KOREA 62 44 18 
AUSTRALIA 48 30 18  
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Indeed, they constitute a development lever for future agriculture by 
increasing the capacity to learn, think, and understand problems in 
complex situations. In this digitalization of the agricultural system, the 
users have a high need to automate the collection and analysis of data on 
the production sites and improve the failures of the productive system 
(weeding, harvesting, treatment, etc.).  Zhu et al. implement a novel 
mechanism for scheduling information transmission between connected 
objects using a deep reinforcement learning (Deep Q-Learning) tech-
nique (J. Zhu et al., 2018).  The Q-Learning method learns a policy, 
which indicates which action to perform in each state of the system. This 
facilitates the comparison of the probable recompense for taking the 
available actions to be optimized without having the initial knowledge 
of the states of the environment. The learning of the Q-Learning algo-
rithm is a gradual optimization process until convergence is achieved by 
selecting the optimal actions. Therefore, Deep Q-Learning plays an 
important role in the transmission and reception of data packets in 
wireless networks to maximize the system traffic flow between the nodes 
of the system. 

4.4. Keyword analysis 

4.4.1. Most relevant keywords 
The keywords chosen by the authors were words that describe the 

limits and impact of their article in the scientific community. The 
keyword analysis is the compilation of keywords from related works in a 

field. It identifies the keywords and reveals their trends and the di-
rections taken by the research (Dixit & Jakhar, 2021; Uddin, Singh, 
Pinto & Olmos, 2015). By doing, the top-22 keywords are presented in 
Table 5. We eliminated some inconsistencies by merging semantically 
identical or similar keywords "CNN" and "convolutional neural 
network". 

Fig. 5 shows a chart of the most popular author keywords in the data 
collected using a word cloud visualization in this work. The size of a 
chart element is proportional to the number of documents where the 
keyword appears. These keywords correspond to the main topics of 
research interest in agriculture for which researchers have provided 
resolutions based on deep learning. 

On the one hand, the Table 5 shows the keywords refer to specific 
agricultural challenges: crop “segmentation, “image recognition” with 
backend image processing and feature extraction, "plant diseases”, 
“weed identification” or “insect pest” recognition. On the other hand, 
they present research covering more technical topics on deep learning, 
like “image processing”, “transfer learning”, “convolutional neural net-
works”, “computer vision”, “feature extraction”, and “image 
classification”. 

An interesting element of this analysis is the exploitation of Internet 
of Things (IoT) technologies and remote sensing. The IoT (C.-J. Chen, 
Huang, Li, Chang & Huang, 2020; Y.-S. Chen et al., 2020) can simulta-
neously collect hyperspectral images in different wavelengths and RGB 
images in large quantities, or drones for surveillance, estimation, and 
detection purposes, but also precision irrigation (Bah, Hafiane & Canals, 
2018; Panday, Pratihast, Aryal & Kayastha, 2020). 

In doing so, the presence of machine learning in the top-10 of key-
words is not surprising. Indeed, several works have performed 
comparative tests between deep learning and machine learning models. 
Others use machine learning models as classifiers in neural networks 
during supervised and unsupervised learning. 

Through these keywords, we can see that agriculture is faced with 
many difficulties such as fungal attacks caused by diseases, insect pests, 
and weeds that can affect crop productivity. A traditional resolution of 
these difficulties can lead to farmers abusing agricultural intrants and 
degrading the quality of production with adverse effects and impacts on 
human health and the environment. To overcome these difficulties, one 
promising solution is the digitalization of agriculture, which offers op-
portunities for the automatization of collected data processing. They 

Table 4 
The most global cited documents in the WoS database.  

TC 
Rank 

Documents DOI Total 
Citations 

1 KAMILARIS A, 2018, 
COMPUT ELECTRON AGRIC 

10.1016/j. 
compag.2018.02.016 

1016 

2 KUSSUL N, 2017, IEEE 
GEOSCI REMOTE SENS LETT 

10.1109/ 
LGRS.2017.2681128 

657 

3 FUENTES A, 2017, SENSORS 10.3390/s17092022 342 
4 WEISS M, 2020, REMOTE 

SENS ENVIRON 
10.1016/j. 
rse.2019.111402 

304 

5 ZHONG L, 2019, REMOTE 
SENS ENVIRON 

10.1016/j. 
rse.2018.11.032 

263 

6 KHAN MJ, 2018, IEEE 
ACCESS 

10.1109/ 
ACCESS.2018.2812999 

226 

7 RAHNEMOONFAR M, 2017, 
SENSORS 

10.3390/s17040905 208 

8 GHOSAL S, 2018, PROC NATL 
ACAD SCI U S A 

10.1073/ 
pnas.1716999115 

170 

9 LATEEF F, 2019, 
NEUROCOMPUTING 

10.1016/j. 
neucom.2019.02.003 

161 

10 ZHU J, 2018, IEEE INTERNET 
THINGS J 

10.1109/ 
JIOT.2017.2759728 

157  

TC per 
Year 
Rank 

Publication (Authors, Year, 
Source, Ref) 

DOI TC per 
Year 

1 KAMILARIS A, 2018, 
COMPUT ELECTRON AGRIC 

10.1016/j. 
compag.2018.02.016 

203,2 

2 KUSSUL N, 2017, IEEE 
GEOSCI REMOTE SENS LETT 

10.1109/ 
LGRS.2017.2681128 

109,5 

3 WEISS M, 2020, REMOTE 
SENS ENVIRON 

10.1016/j. 
rse.2019.111402 

101,333 

4 ZHONG L, 2019, REMOTE 
SENS ENVIRON 

10.1016/j. 
rse.2018.11.032 

65,75 

5 FUENTES A, 2017, SENSORS 10.3390/s17092022 57 
6 KHAN MJ, 2018, IEEE 

ACCESS 
10.1109/ 
ACCESS.2018.2812999 

45,2 

7 LATEEF F, 2019, 
NEUROCOMPUTING 

10.1016/j. 
neucom.2019.02.003 

40,25 

8 RAHNEMOONFAR M, 2017, 
SENSORS 

10.3390/s17040905 34,667 

9 GHOSAL S, 2018, PROC 
NATL ACAD SCI U S A 

10.1073/ 
pnas.1716999115 

34 

10 ZHU J, 2018, IEEE 
INTERNET THINGS J 

10.1109/ 
JIOT.2017.2759728 

31  

Table 5 
Most relevant Keywords.  

Rank Terms Occurrences Rank Terms Occurrences 

1 deep learning 895 12 weed 
identification 

60 

2 precision 
agriculture 

493 13 image 
processing 

58 

3 CNN 
(convolutional 
neural 
network) 

345 14 artificial 
intelligence 

56 

4 plant disease 167 15 transfer 
learning 

56 

5 machine 
learning 

158 16 feature 
extraction 

53 

6 internet of 
things 

130 17 long short- 
term memory 

44 

7 object 
detection 

124 18 insect pest 39 

8 image 
classification 

119 19 segmentation 34 

9 computer 
vision 

104 20 hyperspectral 
data 

23 

10 remote sensing 84 21 data 
augmentation 

22 

11 image 
segmentation 

72 22 recurrent 
neural 
network 

21  
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consist in combining the potentialities of a set of technologies including 
IoT, and deep neural networks, which have shown encouraging results, 
particularly in the field of computer vision. In addition, the working 
principle of deep learning facilitates feature extraction, transfer 
learning, or remote sensing in farm monitoring and management. This 
encourages the early identification of problems in crops with levers for 
limiting the use of intrants (pesticides, chemical treatments, etc.), and 

for improving agricultural yields. 

4.4.2. Keyword, country, and source relationships 
The countries such as China, the United States, India, and Brazil have 

an active research community on these topics related to precision agri-
culture. As shown in Fig. 6, we have a visualization of three fields’ main 
elements (e.g., journals, keywords, countries), and their links using a 

Fig. 5. Most relevant Keywords.  

Fig. 6. Citation flow by Sankey diagram. SO: publication sources, DE_TM: author keywords, AU_CO: Countries.  
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Sankey diagram (e.g., type of flow diagram). In this Sankey diagram 
flow representation, the size of an element indicates its importance, 
which is proportional to the number of nodes it has.  The analysis shows 
the sources (journals most often) in which authors have published the 
most and the most discussed research topics identified through key-
words in the relevant countries. 

5. Discussion 

We will discuss the key result of the bibliometrics process research in 
this section. Among the agricultural challenges, crop health under the 
threat of fungal attacks will be addressed. Increasing the production of 
cultures requires research in this domain. 

5.1. Research distribution in precision agriculture 

The section summarizes the potential of deep learning in agriculture 
to prevent fungal attacks that reduce crop productivity. In other words, 
it highlights some works in the literature related to the identification of 
diseases, weeds, or insect pests in crops. 

In agriculture, the traditional recognition and identification (visual 
inspection by experts or biological examination) of problems and their 
risks on farms is time-consuming and becomes almost impossible when 
farms are large. Neural networks use computer vision whose main 
purpose is to allow a machine to analyze, process, and understand one or 
several images captured from a data acquisition system. Computer 
vision facilitates the automatic counting, localization, or recognition of 
objects and considerably improves the quality of agricultural activities. 
Table 6 to Table 8 provide a classification of some research works in 
deep learning applied to the agricultural sector according to their 
approach, the type of problems, experimental dataset, and the results 
obtained. It is common for studies to propose specific parameters and 
several models for the accuracy of the learning technique. The best 
parameters and the best result are selected from several experimental 
designs and presented in the tables. 

We observed from Table 6 to Table 8 that CNN is the most widely 
used deep learning algorithm for agricultural tasks. However, the CNNs 
do not consider the spatial relationships between features in an image. 
They are sensitive to variations in the images of a class to be predicted, 
hence the need for a large quantity of training dataset. In some studies, 
this problem is solved by data augmentation with the Generative 
Adversarial Networks organs technique, by a series of image trans-
formations through rotation, zooming, or other image processing 
methods. 

The architecture of a deep neural network is known to be useful for 
making learning more efficient. Most of the work uses standard archi-
tectures that have already proven to be the backbone for experimental 
evaluations. The architectures LeNet (Lecun, Bottou, Bengio & Haffner, 
1998)  and AlexNet (Krizhevsky, Sutskever & Hinton, 2012)  were 
introduced more than a decade ago. Both networks were relatively 
shallow and are composed of two (2) and five (5) convolution layers 
respectively. They employed large receptive field cores in the layers 
close to the input and smaller cores in the layers that are closer to the 
output. 

Since 2012, thanks to the ImageNet Large Scale Visual Recognition 
Competition (ILSRV), we have seen an explosion of new, deeper archi-
tectures with small kernels. More and more, these architectures can be 
deployed on embedded devices such as smartphones or drones. The first 
ones to explore deep layers to address this challenge took up work by 
(Russakovsky et al., 2014) by building the so-called VGGNet architec-
tures (Simonyan & Zisserman, 2014). Afterward, various other archi-
tectures emerged. They consist of multiple convolution blocks: 
GoogleNet (Szegedy et al., 2014), Inception (Szegedy, Ioffe, Vanhoucke 
& Alemi, 2016), ResNet (He, Zhang, Ren & Sun, 2015), DenseNet 
(Huang, Liu, van der Maaten & Weinberger, 2018), MobileNet (Howard 
et al., 2017). There are also other types of algorithms applied with CNN 

for identification that is more accurate or detection of crops. The Yolo or 
CNN models based on Region Proposal Network (RPN) allow for 
example a localization of diseases or insect pests by listing the co-
ordinates of rectangular regions containing the object. 

Today, smartphones, cameras, robots, or autonomous vehicles are 
discovering the accuracy and efficiency of deep learning algorithms 
under real-ground conditions (Bah et al., 2018; Kerkech, Hafiane & 
Canals, 2020; Y. Li, Wang, Dang, Sadeghi-Niaraki & Moon, 2020; Rui-
grok, van Henten, Booij, van Boheemen & Kootstra, 2020; Tufail et al., 
2021). The development of automated and multitasking machinery 
saves labor and can help farmers to boost production. For example, 
drones can spray pesticides against weeds, pests, or diseases with ac-
curacy. To this end, it is necessary to find a trade-off between the 
research of precision of deep models and the reduction of training pa-
rameters, which is correlated to the computing time. This implies that it 
is possible to reduce the parameters of the initial model without 
degrading its performance by examining the contribution of layers when 
inferring the model (Chattopadhyay, Sarkar, Howlader & Balasu-
bramanian, 2017; Nagasubramanian et al., 2019; Zeiler & Fergus, 
2013). When the model is used in real situations such as plant diagnosis, 
the reduction of classifier parameters is important for memory and 
computational efficiency. 

It is therefore essential to select features and evaluate influence 
factors when developing these classifiers (Hariri, Bagheri & Davoodi, 
2022). Layer visualization during feature extraction or input prediction 
is a first step to building architectures with fewer learning parameters 
and weakly supervised object localization (Choe et al., 2020; Zhang, Cao 
& Wu, 2020). Furthermore, it was demonstrated that Visions Trans-
formers (ViT) achieve very competitive performances for vision appli-
cations like image classification, object detection, and semantic image 
segmentation (Steiner et al., 2022). Compared to convolutional neural 
networks, which can present inductive biases when trained on small 
datasets, the contributions of ViTs are interesting for researchers who 
wish to optimize the performance of their final model according to their 
computational resources. Recently, (Reedha, Dericquebourg, Canals & 
Hafiane, 2022) investigate visual transformers (ViT) and apply them to 
weed and crop classification in Unmanned Aerial Vehicles images. 

5.2. Dataset for agricultural field 

Many public image datasets like ImageNet (Krizhevsky et al., 2012), 
MS COCO (Lin et al., 2015), Pascal VOC (Everingham, Van Gool, Wil-
liams, Winn & Zisserman, 2007, 2012) are available to evaluate deep 
learning models. Using these datasets, it has been possible to evaluate 
the performance of the algorithms for classification, detection, locali-
zation, or object segmentation problems. Despite the sufficient size of 
these datasets, they are mainly composed of generic objects that cannot 
be directly applied to farms. To address the agricultural dataset limita-
tion, some investigators have proposed large-scale image datasets: 
projects like NBAIR (NBAIR, 2022), AgriPest (R. Wang et al., 2021), 
DeepWeeds (Olsen et al., 2019), PlantVillage (Arun & Gopal, 2019) 
IP102 (Wu, Zhan, Lai, Cheng & Yang, 2019), and web repositories as 
plant leaf disease (Munnangi, 2019/2022; Rai, 2021), cotton diseases 
(Naik, 2020/2022), Insect pests (Xie et al., 2018; Yue, 2018). They 
usually consist of color images in Red, Green, and Blue (RGB) format, 
taken under different environmental conditions but also files annotated 
for object detection. Table 9 lists several common datasets and their 
characteristics related to the agricultural field. The annotations are 
present in some of these datasets on some images. 

5.3. Evaluation metrics 

Deep learning requires a large quantity of training dataset to train 
neural networks. They are exploited by networks with complex archi-
tectures having a significant training parameter. Moreover, it is a very 
expensive task to train these networks from scratch for hardware re-
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Table 6 
Related work on weed identification.  

Paper Approach Problem definition Challenges Dataset Result 

(Razfar, True, 
Bassiouny, 
Venkatesh & 
Kashef, 2022) 

MobileNetV2, ResNet50, and three 
custom CNN Models. 
With 
epochs: 10, learning rate: 10− 5 
(reduced to 10− 6 on the plateau), 
batch size: 64, 
optimizer: Adam 

Weed detection 
system within a 
soybean plantation 
using deep learning 
models 

The Raspberry PI 
controller was used to 
deploy network 
architectures for edge 
computing. 

400 images for 4 classes 
include crop weeds. 
Acquisition: 
Use  (dos Santos 
Ferreira, Matte Freitas, 
Gonçalves da Silva, 
Pistori & Theophilo 
Folhes, 2017) which 
images are captured by 
the UAV 

Accuracy: 97.70% for custom CNN with 
4 layers. 

(Reedha et al., 
2022) 

ViT-B32 and ViT-B16 models 
based 
EfficientNet and ResNet models. 
With 
The initial learning rate was set to 
0.0001 with a reducing factor of 
0.2.  
The batch size was set to 8 and the 
models trained for 
100 epochs. 
Training use early stopping 

Self-attention 
paradigm via the 
ViT to address the 
weeds and crops 
classification 

While weeds and crops 
share many attributes 
similarity as color, 
texture, and shape, the 
attention-based deep 
network proposed to 
learn features faster, 
decreases the training 
cost 

4000 samples for each 
of 3 classes of crop and 
weed classes, only off- 
type beet class up to 
3265 samples. 
Acquisition: 
Data were collected 
using a high-resolution 
camera mounted on a 
UAV, which was 
deployed in beet, 
parsley, and spinach 
fields. 

F1-score with 5-folds cross validation: 
ViT B-16: 99.40%    
ViT B-32: 99.20% 

(Partel, Kakarla & 
Ampatzidis, 
2019) 

CNN-based tiny-YOLOV3( 
Redmon, 2014/2022) for object 
detector. 

Development and 
evaluation of a 
smart sprayer to 
differentiate 
between weeds and 
tomato plants on 
real and artificial 
data. 

A prototype for a smart 
sprayer using deep 
learning to detect 
specific target weeds 
was developed and 
evaluated. 

1000 weed images of 
targets and non-targets 
label 
Acquisition: 
Three cameras acquired 
images simultaneously 
on a resolution of 
640 × 480 pixels 

One of the experiments provided a 
precision of 90% and a recall of 89% 
with artificial plants, and 59% and 44% 
respectively with real plants. 

(Ruigrok et al., 
2020) 

CNN Darknet-53 based on YOLOv3 
for object detectors + data 
augmentation (translation, 
rotation, etc.). 

Plant weed 
detection system 
integrated into a 
spraying robot. 

Development of an 
automated spraying 
system for potatoes 

2260 images of the 
training dataset split 
into 6383 sugar beet 
and 1709 potato 
annotations 
Acquisition: 
The images acquired by 
the camera system with 
a resolution of 2048   
1538 pixels. 

Recall: 57%, Precision: 84% 

(Bah et al., 2018) CNN based ResNet18) + feature 
extraction and fine-tuning. 
With 
learning rate of 0.01 
epochs: 200 

Deep learning of 
unsupervised data 
labeling for crop 
weed detection in 
drone images from 
bean and spinach 
fields. 

Combine supervised 
and unsupervised 
training datasets. The 
developed method 
could be a key 
technique for online 
weed detection with 
UAV. 

Supervised data 
labeling: 
- 28,886 bean training 
dataset 
− 14,188 spinach 
training dataset 
Unsupervised data 
labeling: 
- 9616 bean training 
dataset 
- 8606 spinach training 
dataset 
Acquisition: 
A DJI Phantom 3 Pro- 
drone that embeds a 36- 
megapixel (MP) RGB 
camera acquired 
images. 

Spinach fields: 
Areas Under the Curve (AUC):  94.34% 
(unsupervised data labeling) and 95.70% 
(supervised data labeling). 
Beanfield: 
AUC: 88.73% (unsupervised data 
labeling) and 94.84% (supervised data 
labeling) 

(Lottes, Behley, 
Milioto & 
Stachniss, 
2018) 

A combination of CNN (Fully 
Convolutional 
DenseNet) + Autoencoder 
With 
Optimizer: rmsprop  
Batch size: 10 
initial learning rate: 0.01  
The training stops after 200 
epochs. 

Crop and weed 
classification 
system on sugar 
beets. 

An approach for 
agriculture robots 
providing semantic 
segmentation per pixel 
between crops and 
weeds.  
The spatial 
organization of plants 
in a row using 3D 
convolutions on a 
sequence of images. 

Subset training dataset 
image: 
- 10,036 for Bonn2016 
dataset - 864 for 
Bonn2017 dataset - 
2584 for Stuttgart 
dataset 
Acquisition: 
An agricultural field 
robot is sued to record 
the dataset on a sugar 
beet farm near Bonn in 
Germany for three 
months in the spring of 

F1-score: 92.4% for test n◦1 (training on 
Bonn2016 and testing on Stuttgart) and 
86.6% on test n◦2 (training on Bonn2016 
and testing on Bonn2017). 

(continued on next page) 
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sources (computational speed and storage). To address this challenge, 
some works consider transfer learning techniques, the combination of 
several training techniques to validate their approach (Arsenovic, Kar-
anovic, Sladojevic, Anderla & Stefanovic, 2019; C.-J. Chen et al., 2020; 
Kerkech et al., 2020). The experimental results obtained are measured 
using the common metrics such as Accuracy, F-score, Precision, Recall, 
and mean Average Precision (mAP) given by Eqs. (2)–8 respectively. 
They each indicate the percentage of misclassified instances compared 
to correctly classified instances. However, the F1-score or mAP measures 
seem to be good compromises when comparing multiple classifiers on 
different datasets. 

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

Accuracy =
TP + TN

TP + TN + FP + FN
(4)  

Accuracy(y, ŷ) =
1
n
∑n

i=1
1(ŷi = yi) (5)  

where ŷi is the predicted value of the i th observation (sample), yi its true 
value and n the number of observations (samples), and TP, TN, FP, FN 
are true positive, true negative, false positive, and false negative. 

The F − score is a harmonic mean of precision and recall. With the 
best score of 1 and the worst score of 0, it is calculated as follows: 

Fβ =
(
1+ β2) Precison ∗ Rappel

β2Precison + Rappel
(6)  

When β = 1, the formula becomes: 

F1 = 2
Precison ∗ Rappel
Precison + Rappel

(7)  

The AP is obtained by calculating the average precision (Pedregosa 
et al., 2011). We then simulated experiments based on average precision 
(AP). This metric will help us to compare the performance of different 
architectures by providing the prediction value for each label. AP is a 
summary of a precision-recall curve by varying a decision threshold and 
it is computed by the following formula: 

AP =
∑

n
(Rn − Rn− 1)Pn (8)  

where Pn and Rn are the precision and recall at the n-th threshold.  We 
add a micro average precision that measures the score of all classes 
together. 

5.4. Future of deep learning in agriculture 

Agriculture has undergone a remarkable development over the last 
decades thanks to new technologies. The resulting new practices offer 
farmers operational efficiency in their activities and better profitability. 
The computing power of machines, the use of computer vision in IoT, 
and deep neural networks have attracted both scientific and agribusiness 
communities’ attention. To discover the limitations of different works, 
we analyzed their experiments, the structure of their networks, or their 
results. Some studies are based on very few datasets, while others lack 
information about the experimental setup (hardware, time, memory). 
However, the analysis results present some limitations in terms of the 
visualization of the influential factors in the prediction and the use of 
multiple classifiers. 

Firstly, if multiple classifiers are included in the experiments, then it 
is necessary to conduct statistical tests to analyze the significance of the 
achieved results (Benavoli, Corani, Demšar & Zaffalon, 2017; Demšar, 
2006). Demšar et al. examined several statistical non-parametric tests, 
safety, and robustness and studied their suitability in machine learning 
to analyze significant differences in classification performance. The tests 
that have been recommended are the Wilcoxon signed ranks test for the 
comparison of two classifiers and the Friedman test with posthoc tests 
for the comparison of multiple classifiers on multiple datasets. The re-
sults of this test can be presented using Critical Difference (CD) plots for 
clarity. 

Secondly, when we want to estimate the robustness of a model 
centered on random sampling, the cross-validation technique on the 
training data is useful. In most research, the sampling of training data is 
random. We find generally the following splits: 80/20 (respectively 70/ 
30, 60/40) which represents 80% of the data set for training and vali-
dation (respectively 70%, 60%) and 20% is for the test set (respectively 
30%, 40%). Otherwise, the results of the learning process will depend on 
a particular random choice for the training and test sets. This cross- 
validation technique, which is very costly in terms of computation, 

Table 6 (continued ) 

Paper Approach Problem definition Challenges Dataset Result 

2016 (Chebrolu et al., 
2017). 

(Espejo-Garcia, 
Mylonas, 
Athanasakos, 
Fountas & 
Vasilakoglou, 
2020) 

Combining convolutional neural 
networks such as Xception, 
Inception-ResNet, VGGNet, 
MobileNet, and DenseNet for 
feature extraction with other 
machine learning classifiers like 
SVM, Gradient Boosting  
With 
Optimizer: Adam 
Batch size: 16, 32 
Epoch: 40, 80 
Data augmentation: rotation, 
zooming; Gaussian 

Transfer learning 
for crops and weed 
identification.  

Combines deep and 
machine learning 
models extract the 
features with a deep 
model and perform the 
weed classification 
with a machine 
learning model like 
SVM. 

504 image for training 
dataset(AUAgroup, 
2019/2021a). 
Acquisition: 
The pictures had been 
taken with a Nikon 
D700 camera that 
delivers 12-megapixel 
images. 

F1-score: 99.29% (Fine-tuned 
DenseNet + Support Vector Machine). 
F1-score: 98% (Feature 
extraction + DenseNet + Support Vector 
Machine) 

(Tufail et al., 
2021) 

Modification of ResNet18 and 
MobileNet-v2 pre-trained on 
ImageNet by replacing their last 
layers with an SVM classifier. 
With 
Optimizer: SGD with momentum. 

Tobacco weed and 
crop detection for a 
tractor-mounted 
boom sprayer 

The algorithms are 
deployed on a tractor- 
mounted boom sprayer 
in tobacco fields and 
autonomously perform 
spot spraying of the 
site. 

Tabacco: 412 images 
Weed: 403 images 
Acquisition: 
Images of weeds and 
tobacco plants are 
captured in Pakistan in 
the tobacco fields in 
Swabi, Khyber 
Pakhtunkhwa. 

Accuracy of: 
ResNet18:100% 
MobileNetV2: 81%  
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Table 7 
Related work on crop disease identification.  

Paper Approach Problem definition Challenges Dataset Result 

(Mostafa et al., 2022) AlexNet, SqueezeNet, 
GoogLeNet, ResNet-50, and 
ResNet-101 are + data 
augmentation. 

Guava Disease Detection. With the limited data 
available, they are pre- 
processed and enhanced 
using a color histogram and 
an unsharp masking 
technique. The enhanced 
data was then augmented 
using the affine 
transformation method. 

321 images for five classes 
(canker, dot, rust, 
mummification, healthy). 
Acquisition: 
A high display-quality camera 
collected guava disease-based 
RGB image dataset. 

Accuracy of ResNet-101: 
97.74% 
Accuracy of ReseNet-50: 
99.54% 

(Yang, Yang, He, 
Zhang & He, 2022) 

Proposed LFC–Net, a 
Location network, a Feedback 
network, and a Classification 
network of strawberry 
diseases in real planting 
environments 
With 
Optimizer: SGD, Epoch: 5 
000, Batch size: 32, and the 
initial learning: 1e-4  

Real-time strawberry disease 
classification and analysis 
systems in the cloud service. 
A self-supervision 
mechanism allows the model 
to identify diseased regions 
in strawberry images 
without annotations such as 
bounding boxes. 

2 400 of 14 classes of 
strawberry disease images. 
Acquisition: 
Images are collected by web 
scraping 

Accuracy:92.48% 
Precision: 90.68% 
Recall: 86.32% 
F1 score: 88.45% 

(Kerkech et al., 2020) SegNet (Badrinarayanan, 
Kendall & Cipolla, 2017) for 
Segmentation Network-based 
LeNet5 

Mildew disease detection 
in the vine field using a 
deep learning 
segmentation approach 

Combination/fusion of the 
visible and infrared UAV 
images to improve disease 
detection. 

4 classes (shadow, ground, 
healthy 
and symptoms) for 
70,560 patches images of size 
(17, 640 samples for each 
class 
Acquisition: 
The UAV Quadcopter drone 
was used in the data 
acquisition. 

Leaf-level eval average 
result 
Accuracy: 82.20% for 
fusion Visible range 
intersect infrared range 
90.23% for fusion Visible 
range union infrared. 
Grapevine-level average 
result 
Accuracy: 88.14% for 
fusion Visible range 
intersect infrared range 
95.02% for fusion Visible 
range union infrared. 

(Y. Guo et al., 2020) VGG16 and RPN algorithms 
are used 
With 
Optimizer: SGD 
Batch size 256 
Learning rate 0.001 
Epoch: 400 

Plant disease detection 
and recognition. 

CNN and RPN algorithms are 
used to recognize and locate 
disease leaves in real or 
complex environments. 

Training data includes Plant 
Photo Bank of China (PPBC) 
acquired by Crawler 
technology and plantVillage 
sub-dataset: 537 black rot, 
1032 bacterial plaque 
disease, 293 rust, and 2852 
healthy leaves. 

Accuracy: 83.75% 

(Verma, Chug & 
Singh, 2020) 

Proposed CNN named Capsule 
Networks1 (X. Guo, 
2017/2022; Sabour, Frosst & 
Hinton, 2017) (CapsNet) 
With 
Epochs: 100 
Batch size: 32 

Classification of potato 
diseases.  

3 classes (healthy, early 
blight, late blight) for 3000 
leaf images of diseases in 
potato plants. 
Acquisition: 
The images are from the 
plantVillage project. 

Accuracy: 91.83% 

(Arsenovic et al., 
2019) 

CNN (AlexNet, VGG19, 
InceptionV3, DenseNet201, 
ResNet152) + data 
augmentation with 
Generative Adversarial 
Networks (GANs) 
With 
Batch sizes: 32, 64 
Optimizer: SGD, Adam 
momentum: 0.9  
learning rate: 0.001 

Addressing the 
limitations of deep 
learning-based plant 
disease detection 
approaches. 

Several experiments were 
conducted to test the impact 
of their proposal in real 
environmental conditions. 

79,265 images for 42 
different classes (both 
healthy and diseased)( 
Mohanty, 2021). 

Mean Average      
Precision: 93.67% 

(Coulibaly, 
Kamsu-Foguem, 
Kamissoko & 
Traore, 2019) 

CNN (VGG16) + transfer 
learning + data augmentation 
Optimize: SGD 
Learning rate: 10− 4  
momentum of 0.9 

epoch:60 

Detection of mildew 
disease in millet-based on 
transfer learning 

Several experiments have 
highlighted the need for 
transfer learning and data 
augmentation on small 
amounts of data.  

126 images of diseased and 
healthy millet to identify 
mildew. 
Acquisition: 
The images are captured on 
the internet and in the field. 

Accuracy: 95% 
F1-score: 91.75% 
Precision: 90.50%,  
Recall: 94.50% 

(Picon et al., 2019) CNN (ResNet50) Plant disease 
classification 
incorporating contextual 
information (such as 
plant species and weather 
conditions) 

The application is 
encapsulated in a docker 
container with a REST 
service to allow the 
connection with the mobile 
application. 

121,955 images for eight 
diseases  

Acquisition: 
RGB images are taken by a 
smartphone. 

Accuracy: 98% 

(Nagasubramanian 
et al., 2019) 

CNN models join the spatial 
and spectral dimension. 
With 

Soybean plant disease 
identification in the 
hyperspectral image 

Deep learning with a 
saliency map based model 

1823 images include 940 
healthy images and 150 
infected (diseased) images.  

Accuracy: 95.7 3%. 
Recall: 92%;  

(continued on next page) 
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also avoids over-learning. It consists in splitting the dataset into k parts 
(folds) and each of the k parts is used in turn as a test set. The rest (of the 
k-1 other parts) is used for training and validation. The performance 
measure is the average of the calculated values obtained in each round. 

Thirdly, the accuracy of a model’s prediction is inversely propor-
tional to its explicability, i.e., deep learning models are opaque to 
humans. This concept of explainability or eXplainable AI (XAI) has been 
supported by the United States Department of Defense Agency (DARPA) 
generating a reorientation of the problems related to machine learning 
(Gunning, 2016). We note the missing items related to this new preoc-
cupation with an explainable artificial intelligence in most of the studied 
works. The objective of explainability is to provide users a warranty, a 
justification, confidence in the use of learning models and to propose 
recommendations for the improvement of their performance. For 
example, we can visualize the set of features (such as pixels in an image) 
that contributed to the model’s decision or provide insights into its 
working(Rauber, Fadel, Falcao & Telea, 2017; Simonyan, Vedaldi & 
Zisserman, 2014; Zeiler & Fergus, 2013). 

In addition, because deep neural networks have so many parameters, 
training them requires a lot of computation times, a large quantity of 
data, and significant energy consumption. 

To reduce the computational cost (Khodaverdian, Sadr & Edalatpa-
nah, 2021) and energy (Khodaverdian et al., 2021) and increase the 
accuracy of classification, propose a combination of convolutional layers 
with Gated Recurrent Unit or GRU layers. Researchers (Reedha et al., 
2022) use visual transformers (ViT) and attention maps to learn features 
faster, reducing training costs. 

There is a strong need to clarify the use of deep learning algorithms 
in sensitive areas of human health or nutrition. This is the perspective 
behind the potential contribution of explainability (Bach et al., 2015; 
Chattopadhyay et al., 2017; Ribeiro, Singh & Guestrin, 2016; Simonyan 
et al., 2014) in the agricultural field. This provides some opportunities to 
enroll farmers as actors in the training process from ground data for a 
smarter, more humane, and environmentally friendly agricultural 
practice. The participation of these actors can be realized on three levels:  

1 Acquisition and preparation of training data to be processed later  
2 Assistance in the analysis of partial results to guide the further 

learning process in a progressive manner 
3 Evaluation of the learning process by expressing the level of satis-

faction with interactions. 

Hence, the deployment of data analysis or processing solutions forces 
scientists to formulate new ways of perceiving and interpreting the 

world. This is particularly evident in the field of deep learning and 
computer vision, which rely on mathematical, electronic, and computer 
tools to enable progress in the extraction of knowledge from data sets. 
We, therefore, present an interactive optimization of the development of 
an intelligent agricultural system in Fig. 7. It allows the concatenation of 
all the information and results obtained during the training process with 
end-user (agricultural actors) participation. The deployment of a pre-
cision agriculture system incorporating explainable artificial intelli-
gence is possible in real-life situations. Indeed, there are currently some 
practical examples of agricultural applications trying to address this 
explicability requirement. For example, visualization maps have been 
used to identify stress levels and infection types at the plant level 
(Ghosal et al., 2018; Nagasubramanian et al., 2019). 

6. Conclusion 

Precision agriculture is a recent science that is certainly still in its 
young phase. Deep learning can make a decisive contribution to the 
analysis of agricultural data, in this case by using computer vision to 
enable a machine to automatically analyze and understand the visual 
world. This offers the opportunity to develop intelligent systems, which 
appear to be one of the many possible ways to tackle the economic, 
environmental, and social challenges in agriculture. This literature re-
view shows a richness of work in recent years that describe the devel-
opment of various systems using deep learning to solve various problems 
in precision agriculture. The problems addressed are mainly yielded 
losses caused by factors affecting crop growth. In bibliometric meth-
odology, we explored only documents from the Web of Science database. 
We analyzed the thematic structures and new directions of agricultural 
research based on deep neural networks were proposed. 

Bibliometric analyses show that the most active countries are China, 
the United States, India, and Brazil. The hot topics covered include plant 
disease, feature extraction, transfer learning, disease detection, weed 
detection, insect pests, convolutional neural networks, image process-
ing, remote sensing, and IoT. Convolutional neural networks (CNNs) are 
one of the most used architectures thanks to their successful application 
in deep learning. However, the use of deep learning algorithms in pre-
cision agriculture raises many challenges whose resolution is useful to 
enhance this field and facilitate its appropriation by the stakeholders:  

- The limited quantity and quality of training data are an important 
barrier to more accurate decisions suggested by intelligent systems 
(decision support systems or spatial analysis tools) in the agricultural 

Table 7 (continued ) 

Paper Approach Problem definition Challenges Dataset Result 

Optimizer: Adam  
Batch size: 32  
learning rate: 10− 6 
β1 = 0.9, β2 = 0.999, 
epsilon = 10− 8. 
Epochs: 126 

using deep learning with 
a saliency map based 
model explainability and 
visualization approach 

explainability and 
visualization approach. 

Acquisition: 
Hyperspectral camera 

Precision: 82%; 
F1-Score: 87% 

(Singh, Chouhan, 
Jain & Jain, 2019) 

CNN  
Optimizer: SGD learning rate: 
0.01 
Momentum: 0.9, Epoch: 100 

Classification of mango 
leaves infected. 

The work is validated on a 
real-time captured dataset 
consisting of 1070 images of 
mango leaves. 

Four classes of 1130 mango 
images from plantVillage 
dataset. 

Accuracy: 97.13% 

(Fuentes et al., 2017) Faster RCNN, R-FCN, 
combined SSD + VGGNet, 
ResNet 
With: 
Optimize: SGD 
Learning rate: 0.01 
Momentum: 0.09 
Weight decay:1e-6 
Batch size: 15  

Identification and 
recognition of diseases 
and pests that affect 
tomato plants. 

Validation of the model is 
performed on images 
acquired in the real world. 

Ten classes of 5000 
classification images and 
43,398 annotated after data 
augmentation. 
Acquisition: 
With camera devices, the 
images were collected under 
several conditions depending 
on the time. 

mean Average Precision: 
83.06%  

1 https://github.com/XifengGuo/CapsNet-Keras. 
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Table 8 
Related work on pest identification.  

Paper Approach Problem definition Challenges Dataset Result 

(Bereciartua-Pérez 
et al., 2022) 

Unet, FCRN (Fully 
Convolutional Regression 
Network) DenseNet model 
With 
Optimizer: RMSE 
Learning rate:0.01 
σ=9, l2=10–5 
Iteration: 2000  

Insect counting in leaves 
using density map estimation 
approach based on deep 
learning and image 
processing (segmentation 
and counting). 

The resulting application is 
accessible on a smartphone 
through the REST API for a 
real application. 

The available dataset is 731 
images. 
Acquisition: 
Images were acquired under 
different lighting conditions and 
at different seasons with 3 
different cameras: 24 M pixel 
Olympus camera, 20 Mpixel 
Nikon camera, and Samsung 
Galaxy A8 smartphone. 

The results on 
real field 
tests obtained 
MAE of 3.36, 
RMSE of 7.84, 
and R2 of 0.97 
values. 

(Wei, Chen, Luo, 
Long & Wang, 
2022) 

Proposed MFFNet based on 
encoder-decoder structure is 
compared ResNet-50 and 
VGG-16 
With 
Optimize: SGD learning 
scheduler is set to Poly,  
momentum: 0.9  
Weight decay: 1e-4 learning 
rate: 1e-3 
Number iteration: 80, 000  

As compared to standard 
models like ResNet or 
VGGNet, MFFNet "multi-scale 
feature fusion" provides a 
performance gain with fewer 
training parameters. 

12 common crop pests at the 
adult and larval stages for 67, 200 
images 
Acquisition: 
the experiment is downloaded 
from Baidu, Google, and Yahoo 
through a web crawler 

Accuracy of 
MFFNet: 98. 2% 

(Y.-S. Chen et al., 
2020) 

Pest detection-based YOLO 
model combined classification 
with SVM classifier and apply 
entire and partial transfer 
learning.  

Pest detection as counting Propose a framework that 
combines deep learning, edge 
computing, and cloud service 
for pest detection and 
localization in the image. 

1600 cotton images for fifteen 
pest classes and one no pest class. 
Acquisition: 
An insect is trapped on a sticky 
object and then photographed by 
a camera in real conditions. 

mean Average 
Precision: 90%, 
Accuracy: 
90.2%, 
Recall: 85% 

(Alves, Souza & 
Borges, 2020) 

CNN (fine-tuning the 
ResNet34 model) + transfer 
learning + data augmentation 
(rotation, zooming, intensity 
variation). 
With 
Learning rate: 0.1 for 1000 
iterations 

Classification of pests in 
cotton crops using deep 
residual neural networks. 

A classification system is 
proposed for the major cotton 
pests (primary and 
secondary). 
Changing the learning rate or 
batch normalizing ResNet 
improves its overall accuracy. 

Eleven pest insects  

Acquisition: 
Different researchers around the 
world acquire images, the authors 
themselves in the field acquire 
others, and others are available 
on the internet. 

Accuracy: 98.1% 

(F. Wang, Wang, 
Xie, Yang & Liu, 
2020) 

Deeppest: CNN (ResNet- 
50) + fusion contextual 
information were employed in 
pest detection and 
recognition. 
With 
Optimizer: rmsprop 
Learning rate: 0.001  
Momentum: 0.9 
Batch size: 2 

Detection of pests from 
images of rice or wheat crops 

An effective pest detection 
model considers contextual 
information (such as 
geographical location or 
ambient temperature). 

Wheat mite, Sticky worm, Rice 
planthopper 
17,192 pest images with 76,595 
pest annotations. 
Acquisition: 
Using a Sony CX-10 CCD camera, 
all images are captured by a 
research device. 

mean Average 
Precision: 74.3% 

(R. Li et al., 2019) CNN (ResNet-50) + Region 
Proposal Network (RPN) 
With 
Optimizer: SGD 
mini-batch size of 2.  
Momentum: 0.9 
learning rate: 0.02 

Pest localization and 
recognition in the wheat-field 
environment. 

Building a trained multi-scale 
model that separates the 
input image into different 
resolutions to improve test 
performance 

4400 images for four classes 
Acquisition: 
Cameras are used to capture the 
images 

mean Average 
Precision: 
83.23% 

(Dawei et al., 2019) CNN (AlexNet) 
With 
Epoch: 10 

Detection and recognition of 
pests using transfer learning 

Human experts check the 
classifier’s performance. 

484 images of ten types of pests 
Data acquisition: 
A digital camera is used for some 
samples, while an online resource 
is used for others. 

Accuracy: 
93.84% 

(Thenmozhi & 
Reddy, 2019) 

Proposed CNN (VGGNet) and 
transfer learning. 
With 
Optimizer: SGD 
Learning rate: 
5e-5, 1e-4, 5e-4 and 1e-3 
Batch size: 10–130. 

The classification and 
identification of crop (rice, 
wheat, maize, soybean, and 
sugarcane) insect pests. 

Uses multiple datasets to 
validate their methodology. 

Three datasets: 
40 classes of insects with NBAIR ( 
NBAIR, 2022), 24 classes of Xie1 ( 
Xie et al., 2015), and 40 classes of 
Xie2 (Xie et al., 2018). 

Accuracy: 
96.75%, 
97.47%, and 
95.97% 
for insect 
datasets of 
NBAIR, Xie1, 
and Xie2. 

(C.-J. Chen et al., 
2020) 

CNN (YOLOv3) and Long 
Short-Term Memory (LSTM) 
to pests predict. 
With 
Optimizer: SGD 
Learning rate: 1e-4 

An agricultural system that 
uses environmental 
information from weather 
stations and IoT sensors to 
detect pests. 

Sensors are used to analyze 
the life cycle of pests so that 
farmers can be notified 
quickly of pest appearances 
and damage. 

687 images of Tessaratoma 
papillosa. 
Acquisition: 
Mobile apps and drones are used 
to collect Tessaratoma papillosa 
images. 

Accuracy: 90%;  
mAP: 92%  

S. Coulibaly et al.                                                                                                                                                                                                                               



Intelligent Systems with Applications 16 (2022) 200102

15

domain, which is undergoing a digital evolution with new con-
straints to respect environmental standards. 

- The depth of neural network architectures, the large number of pa-
rameters, and the complexity of the algorithms do not simplify 
computation times and energy consumption. This may lead to 

additional procedures (e.g., additional constraints for embedded 
systems) for their appropriate deployment on connected objects in 
agriculture.  

- The understanding of the reasoning mechanisms underlying deep 
machine learning systems needs to be improved.  It is therefore 

Table 9 
Public datasets related to agriculture.  

Reference Purpose Classes Plant Features input image size, classes, samples 

DeepWeeds (Olsen et al., 
2019) 

Classification of multiple 
weed species based on deep 
learning 

17,509 images for eight (8) 
different weed species 

The acquisition instrument consists 
of Raspberry Pi3, Arduino Uno, and 
custom electronics shield 

Each class contains between 1009 and 
1125 images of the corresponding species 

AgriPest (R. Wang et al., 
2021) 

A benchmark dataset pest 
detection 

49,707 images and 264,728 
objects for 14 categories of 
pests 

The acquisition instrument consists 
of three components: mobile 
client, CCD camera, and 
temperature-humidity sensor 

AgriPest focuses on small pest detection to 
meet the requirements of practical 
applications 

PlantVillage (Hughes & 
Salathe, 2015) 

An open access repository of 
images on plant health and 
unhealthy leaf images. 

54,303 healthy and unhealthy 
leaf images were divided into 
38 categories by species and 
disease. 

Digital cameras (Sony DSC - Rx100/ 
13 20.2 megapixels). 

More than 50,000 leaf images of 14 crops 
and 26 diseases, labeled and categorized 
into 38 plant-disease pairs, are available in 
three versions: colored, grayscale and 
segmented 

IP102 (Wu et al., 2019) A large-scale benchmark 
Dataset for insect pests 

75, 222 images for 102 classes Internet as the primary source to 
collect images (Google, Flickr, Bing, 
etc.) and insect science websites 

Pests are often difficult to differentiate 
because the object colors and background 
are similar. 
The images contain throughout the life 
cycle of the pests, and they are difficult to 
classify, especially during the larval 
period. 
Pests are often similar to each other. 

Early crop dataset1( 
AUAgroup, 2019/2021b) 

Crop and weed 
identification 

> 200 images for four classes  This repository contains field images of 
early-stage tomatoes, cotton, velvetleaf, 
and black nightshade 

Plant Seedlings Dataset2 ( 
Giselsson, Dyrmann, 
Jørgensen, Jensen & 
Midtiby, 2017) 

Weeds and Crops 
classification 

5539 plant images (RGB, 
segmented) for 12 species 

Dataset is collected by the Aarhus 
University Signal Processing group 

Each class contains colorful images that 
show plants in different stages of growth. 

IP41(K. Wang et al., 2022) IP41, for crop pest 
recognition 

46,567 original images of crop 
pests from 41 classes 

The image data consist of pictures 
from search engines (Google, Baidu, 
360, Yahoo, and Bing), and pictures 
were taken by farmers in natural 
settings. 

Dataset has a low imbalance rate 

Sugarbeets2016(Chebrolu 
et al., 2017) 

Agricultural dataset for the 
plant classification, 
localization, and mapping 
on sugar beet fields 

> 10,000 images include RGB 
and NIR images for sugar beet 
plants and more than nine 
different types of weed species 

Robot of four-channel multi-spectral Collected data on a sugar beet field during 
a crop season, covering the various growth 
stages of the plants 

Insect pest Xie 2018 Insect pest classification 4500 insect images with 40 
types collected from a crop 
field. 

Images were captured by the use of 
digital cameras 

Most of these pest images were captured in 
real-life conditions 

Insect pest Xie 2015 Insect pest classification 613 insects images with 24 
insect species 

Images were captured by the use of 
digital cameras  

NBAIR(NBAIR, 2022) approximately 4500 pest 
images for 40 classes  

National Bureau of Agricultural 
Insect Resources 

Provides images of important insects in 
agriculture, mainly for identification 
purposes. 

Cassava disease ( 
Mwebaze, Gebru, Frome, 
Nsumba & Tusubira, 
2019) 

Cassava Disease 
Classification 

9436 labeled and 12,595 un- 
labeled image for 4 diseases 
and healthy plant leaves 

Images are collected by farmers 
through a smartphone application 

The number of images per class is 
unbalanced. The two disease classes CMD 
and CBSD have 72% of the images.  

1 https://github.com/AUAgroup/early-crop-weed. 
2 https://vision.eng.au.dk/plant-seedlings-dataset/. 

Fig. 7. Intelligent agricultural system pipeline (SSD: Solid-State Drive; UAV: Unmanned Aerial Vehicle).  
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useful to provide some explanations for a better comprehension of 
the predictions provided. 

In addition, collaborations between agricultural researchers and 
companies can further assist farmers with the development of vision- 
based vehicle guidance systems and autonomous mobile agricultural 
robots. Drones can fly agricultural areas that are hardly accessible to 
humans in a few minutes and the treatments can be applied with pre-
cision, near the plant, without the farmer having any contact or expo-
sure to the product. 

We consider the paper will open the way for further research on 
agricultural development. In our future work, we would like to build on 
the results of this study and focus on developing a predictive model 
based on the Vision Transformer (ViT) (Dosovitskiy et al., 2021) an 
alternative to the Convolutional Neural Network (CNN) which applied 
to sequences of image patches can perform very well in image classifi-
cation tasks. The Vision Transformer (ViT) achieves excellent results 
compared to convolutional networks with less computational resources 
for training. Future work will explore agricultural paradigms related to 
ecological collapse and climate change. 
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