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a b s t r a c t 

We analyze an unbalanced panel of monthly predictions of nonfarm payroll (NFP) changes

between January 2008 and December 2020 sourced from Bloomberg. Unsurprisingly, we

find that prediction quality varies across economists and we reject the hypothesis of

equal predictive ability. In an error decomposition, we find evidence of significantly bi- 

ased forecasts. Participation rate in the survey is affecting this bias. We find that sur- 

vey participants under-predict job losses in times of market turmoil while also under- 

predicting the recovery thereafter, especially during the COVID19 labor shock. For pre- 

diction of NFP changes, autoregressive models are outperformed by a deep learning long

short-term memory network. However, the consensus forecast yields better forecasts than

model-based approaches and are further improved by combining the forecasts of the best

performing economists. The COVID19 labor shock is shown to have adverse effects on the

prediction performance of economists. However, not all economists are affected equally.
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1. Introduction

Nonfarm payroll (NFP) figures and monthly changes thereof are important and immediate indicators of the development 

of the economy in the U.S., particularly the labor market itself. Published by the Bureau of Labor Statistics (BLS) on a monthly

basis, nonfarm payroll represents the number of payroll jobs and its month-to-month changes. The NFP covers most of the 

non-agricultural industry contributing roughly 80% of the GDP. As such, the monthly development in the labor market is 

an important precursor to the development and publication of other macroeconomic variables. Monthly NFP releases cause 

short- and medium term reactions to stock, bond, and FX markets which is documented in literature ( Fleming and Remolona,

1999; Dungey et al., 2009; Dungey and Hvozdyk, 2012 ). The released numbers are perceived with a signaling effect, in

particular when released numbers exceed or fall short of (market) expectations. Measuring and correctly quantifying these 

expectations—as for any micro- or macroeconomic variable—are of relevance in view of their impact and more importantly, 

their economic implications. 

However, research and literature on NFP forecasts, their quality, sampling, and sample composition of forecasters are 

scarce in general. Forecasts of macroeconomic variables such as GDP growth and inflation—in particular those of the Sur- 

vey of Professional Forecasters (SPF)—attract much more academic attention. For NFP forecasts, there exists no established 
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nor agreed-on forecast format or expectation measure. Different data providers offer proprietary—and varying—data sets on 

forecasts and expectations derived from questionnaires of (academic) experts, economists, and other participants of financial 

markets. 

The measure of these expected NFP changes—or a consensus thereof—is of utmost importance to determine surprises by 

over- or undershooting expectations. We make use of raw data of Bloomberg’s qualified economists survey, which collects 

NFP change predictions in advance of their official publication from 70 to 100 mainly U.S. and EU/UK based economists and

academics. This paper is one of the first studies that utilizes this set of NFP forecasts by a heterogeneous set of economists,

in particular in terms of forecaster bias and shocks within the Davies and Lahiri (1995) framework. The collated individ-

ual forecasts of NFP changes are dissected as unbalanced panel of forecasters. Focusing on the anatomy of forecast errors, 

we isolate temporal shocks which affect all forecasters equally. These shocks generally translate to the difference of ex- 

pected nonfarm payroll figures to actual published ones. This quantification of over- and underestimation of expectations 

is analyzed in detail. In addition, the utilized framework also offers a measure for a systematic idiosyncratic error of each

forecaster which is used to address the question of forecasting quality of new-joiners and leavers in some relation to the

findings of Clements (2021) . Further, we directly address the question of equal predicting ability of this group of predictors

with the relative measures of D’Agostino et al. (2012) and find that some individual forecasters outperform while others sys- 

tematically underperform. As all forecasters are financial professionals, academics, and market participants from institutions 

worldwide, the obtained data offers a viable and informed cross section of expectations for the macroeconomic variable at 

question—nonfarm payroll changes. 

NFP figures are published on a monthly basis on the first Friday of each month. These figures include the numbers for the

current period as well as revisions on previously published NFP figures. NFP publications for the most recent month base on

an incomplete survey as not all businesses have yet reported their employment numbers. Roughly 70% to 75% of responses 

are available for the first release, while the two months later, the collection rate is between 90% and 95%. Hence, these pub-

lication numbers are regularly revised in subsequent monthly publications to account for additional responses pertaining to 

an earlier period and to overcome nonsampling bias. This poses some challenge to analyzing the quality of forecasts as the

target variable might change in subsequent months. We provide evidence that economists in the Bloomberg survey tend to 

systematically under-predict these more precise and updated NFP figures compared to its first release. Arguably, measures 

of surprise should be based on the first (but likely incomplete) release given that these numbers are new information antic-

ipated by market participants, causing an immediate reaction due to a possible mismatch of expected and realized value. As 

such, the first release might be the most important one in terms of impact on financial markets. However, as almost all NFP

publications are prone to changes based on updated surveys, we also consider the NFP figure based on the most complete

survey which is usually the third release. All those figures are seasonally un-adjusted. Accounting for seasonality, we further 

include the most recent release which is seasonally adjusted as an additional benchmark for prediction quality. 

As our observation sample spans the worldwide spread of COVID19, we also examine its impact on the U.S. labor market 

with particular focus on the error decomposition and effect on prediction quality. This helps quantifying the uncertainty and 

inconclusiveness of economists around this labor event and its adverse effects on financial markets. We find that economists 

fail to predict the true dimension of these job losses and additionally, the rapid recovery. Ultimately, this yields shock 

or surprise measures several magnitudes larger than historic values, which aligns with the extreme market swings and 

volatility in equity and fixed income markets observed during this first COVID wave. 

The remainder of this paper is structured as follows. Section 2 summarizes and systematizes existing literature on fore- 

casts of macroeconomic variables and concepts relevant to this work. Section 3 introduces nonfarm payroll data in more 

detail, while we distinguish between the Establishment Survey Data in Section 3.1.1 and the Qualified Economist Survey 

outlined in Section 3.3 . The applied methodology of error decomposition and prediction quality is detailed in Section 4 .

Findings are presented in discussed in Section 5 while the impact of COVID19 is analyzed in detail in its last subsection.

Section 6 concludes this work. 

2. Literature review

Nonfarm payroll publications are an important indicator of the employment situation in the U.S. and affect equity, fixed- 

income, and FX markets not only locally but also in global financial markets. Edison (1997) provides early evidence on the

effect of nonfarm payroll surprises on exchange rates where positive surprises yield an appreciation of the U.S. Dollar. These 

findings are further extended in Fleming and Remolona (1999) who describe the relationship between U.S. bond prices and 

employment data. Bond price shocks are linked to publications of employment data that are shown to be the strongest 

contributor to shocks. Ramchander et al. (2003) describe the significant relationship between surprises in several macroe- 

conomic indicators, including NFP changes, on the volatility of money market instruments. The fact that these monthly 

changes in NFP numbers do not only affect the short end of the yield curve is further explored in Dungey et al. (2009) . It is

shown that movements across maturities of the U.S. term structure can be traced directly to the difference in expected and

published NFP numbers, which trigger a jump in bond prices. Dungey and Hvozdyk (2012) extend these findings to jumps in

high frequency data of other asset classes which are triggered by surprises in the NFP releases. Gregory and Zhu (2014) ad-

dress the predictive quality of the Bloomberg consensus forecast for private sector NFP predictions in comparison to the 

informational content of the Automatic Data Processing (ADP) report, as an additional data provider, but do not focus on in-

dividual contributions nor on overall NPF changes due to the nature of the private sector ADP data published two days prior
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to the official publication of NFP figures. It is found that the Bloomberg consensus forecast carries as much informational 

content as the ADP data and both are useful in predicting NFP changes. 

Overall, there is clear evidence that NFP releases cause intraday reactions as well as short- to medium-term movements 

of financial markets. The magnitude and direction of these reactions is directly related with the surprise caused by the 

mismatch of expected and published numbers. The framework of Davies and Lahiri (1995) in which we dissect this forecast

error distinguishes between temporal shock, bias, and idiosyncratic error. This offers an additional view on rationality of 

forecasters as shown in Isiklar et al. (2006) , Lahiri and Sheng (2010) , and Dovern and Weisser (2011) . 

When it comes to the analysis of macroeconomic forecasts with regard to prediction quality, it is usually the Survey 

of Professional Forecasters that is put in focus of academic discussion. Montgomery et al. (1998) analyze the quarterly SPF

predictions for unemployment rate and identify an asymmetric behavior of unemployment rate itself which also has an 

effect on forecasters. Prediction quality and forecasting model performance differs in economic expansions and contractions. 

Similar results are found by Koop and Potter (1999) , who document sudden negative shocks to U.S. unemployment rates 

that are followed by gradual increases featuring a strong asymmetry. This will be of particular interest to the discussion of

forecaster performance during and after the COVID19 shock to the labor market. 

Capistrán and Timmermann (2009a) address the rationality of forecasters and identify biased forecasters in inflation fore- 

casts of the SPF. A positive serial correlation in forecast errors is found. In addition to the presence of bias, Capistrán and

Timmermann (2009b) further ascertain the frequent entry and exit of experts as a complicating factor while this fluctuation 

of participants requires attention in combination forecasts. In a recent study, Clements (2021) renews this evidence by show- 

ing that joiners of the SPF inflation seem to be less accurate, attributed to individual effects. However, there seems to be no

difference for GDP predictions across joiners and leavers. We make use of these findings and focus on a possibly differing

forecasting ability across participation rates in the Bloomberg survey. For SPF inflation data, Rich and Tracy (2010) find a

positive association of disagreement in forecasts and the level of inflation. We confirm these findings for NFP numbers, in 

particular during the COVID19 labor shock. 

D’Agostino et al. (2012) propose a normalized error statistic which accounts for the unbalanced nature of some panels 

that source from individual predictors and varying response numbers. Further, a bootstrapping approach to determine er- 

ror percentiles is suggested to address the hypothesis of equal predicting ability across forecasters. We make use of this 

approach in a two-fold manner. Firstly, we determine if all forecasters have similar ability to forecasting NFP changes; if a

certain percentile of forecasters shows lower (higher) prediction errors outside of the confidence interval of bootstrapped 

values, it is assumed that the hypothesis of equal forecasting ability is rejected if these percentiles pertain to the best

(worst) performing forecasters. Secondly, we make use of the findings of Brown et al. (2008) that are of high relevance to

this paper. Brown et al. (2008) find that prediction quality of economists in Bloomberg surveys are usually persistent and 

that some conditional consensus forecasts are better than the mean survey prediction. Hence, we construct NFP predictions 

conditional on previously best performing subsets of forecasters based on percentiles constructed with the methodology of 

D’Agostino et al. (2012) . Clements (2020) applies D’Agostino et al. (2012) methodology on SPF histogram and point fore-

casts of GDP growth rates and the deflator and finds differences in forecasting ability of the SPF participants. However, 

Demetrescu et al. (2021) raise the issue of a time-varying effect in forecasting ability and by not accounting for this phe-

nomenon, tests for forecasting ability might be biased. 

A relatively recent strand of literature focuses on the prediction quality of exogenous factors, in particular those linked 

to an individuals’ employment and economic situation. Vosen and Schmidt (2011) use different approaches to forecasting 

private consumption and finds that models including categorized Google search volume outperform survey forecasts. In 

D’Amuri and Marcucci (2017) , it is shown that monthly U.S. employment rate forecasts are dominated by models based 

on Google search indices, which outperform conventional models. This is confirmed in Maas (2020) who presents evidence 

on the short-term usefulness of Google search data for job market growth, however, this usefulness decreases with longer 

forecasting horizons. Similar findings are presented in Borup and Schütte (2020) where Google search activity outperforms 

macroeconomic forecasts for future employment growth. In a more general setting, Kotchoni et al. (2019) show for employ- 

ment growth among other macroeconomic variables, data-rich models help forecasting in the long-run but in the short run, 

simple univariate models perform reasonably well. 

Reactions to macroeconomic shocks of survey participants is an important issue when examining forecasting quality and 

analyzing the dissection of error and bias. Coibion and Gorodnichenko (2012) show that mean forecasts of SPF data fail

to completely adjust on impact to shocks. There is a significantly delayed response of economists to including shocks in 

their expectation formation process. This is caused by information rigidities, which for a broader setting is shown again in 

Coibion and Gorodnichenko (2015) . In relation to this reaction to shocks and information rigidities, the revisions of macroe- 

conomic variables might also play a role in the expectation formation process. Beckmann and Czudaj (2020) further demon- 

strate that the expectation formation process features spillovers across variables. Clements and Galvão (2021) show, based 

on SPF data, that data revisions affect and contaminate expectation shock estimations. This is relevant to this paper as NFP

numbers are usually revised three times, including a seasonal adjustment. This certainly affects how expectation shocks are 

quantified and processed by participants in terms of the available and individual information set. 

In addition to the error decomposition analysis, we compare the predictive quality of the Bloomberg survey and its 

individual economists with time-series models as well as a deep-learning based network. For the network approach, we 

utilize a Long Short-Term Memory (LSTM) network of Hochreiter and Schmidhuber (1997) to reveal dependencies within 

the NFP data structure. Krauss et al. (2017) , for example, show that deep learning applications are effective in times of
266
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market turmoil. Overall, we find the LSTM network to provide superior in-sample fit on the data and to outperform the

autoregressive models and even the consensus forecasts. However, the out-of-sample prediction quality of the LSTM does 

not benefit from this application. 

3. Data

3.1. Nonfarm payroll data sources and revisions 

3.1.1. The establishment survey data 

Nonfarm payroll data are obtained from the Employment Situation Summaries (ESS) of the U.S. Bureau of Labor Statistics 

(BLS). We focus on these monthly reports published between January 2008 and December 2020. The ESS consists of two 

separate survey parts. The first section bases on Household Survey Data which is not addressed in detail in this research.

The second section of the ESS reports on the Establishment Survey Data which sources its data from private, local, state,

and federal businesses. This monthly survey spans roughly 70 0 0 0 0 worksites from 145 0 0 0 businesses and government

agencies across the USA. 1 The survey reports how many employees are on payroll based on responses from each work 

site for the pay period including the 12th of each month. The ESS is made public every first Friday of the month at 8:30

AM (EST). 2 The release is highly anticipated as the report serves as a regular indicator for the state of the U.S. economy,

pooling information on employment and unemployment numbers. However, as with most surveys, the provided information 

is prone to several sources of bias ( Bureau of Labor Statistics, 2020 ), most importantly the nonsampling bias. Following

corrections of the nonfarm payroll numbers in the subsequent months are revisions which correct preliminary values. In 

the next subsection, we address these systematic revisions in detail and highlight their importance to the economist surveys 

sourced from Bloomberg. 

3.1.2. Nonfarm payroll revisions 

As previously outlined, the deadline for reporting payroll information to the BLS is the 12th of each month and refers

to the payroll period including the deadline date. After approximately three weeks, the BLS then reports the so-called first 

preliminary estimate for this month. This relatively short window to report is a contributing factor to the nonsampling bias. 

Respondents might fail to report numbers in time. Other causes for this bias are incorrect reporting by respondents, errors 

during collection and processing of the data, or sectoral clustering of non-responses. In order to overcome this bias, respon- 

dents are asked to report corrections to preliminary responses in the next survey. Each EES contains the first estimate or

release for the current month, a revision for the previous month—the so-called second release—and a revision of the pay- 

roll information two months ago—the so-called third release. Hence, each month is revised twice resulting in three possibly 

different estimates in three consecutive reports. After these two revisions, the survey of this month is considered final. 

For example, the December 2019 nonfarm payroll is published on January 10, 2020 and reports the first estimate for 

December 2019 (NFP +145 0 0 0 ). In the January 2020 ESS released on February 7, 2020, the December 2019 NFP is revised

by +2 0 0 0 to +147 0 0 0 , which is the second release for this month. The third revision is published in the February 2020 ESS

on March 6, 2020, and revises the NFP by +37 0 0 0 to +184 0 0 0 which is now the third—and final—release for NFP changes

in December 2019. 

Lastly, all labor data is benchmarked annually and realigned with unemployment data as well as seasonally adjusted. 

This yields a final NFP change figure which is referred to as most recent in the available data set. 3 This further extends the

available data structure as two preliminary and seasonally unadjusted figures (first and second release), a final yet seasonally 

unadjusted third release, and finally a seasonally adjusted and benchmarked most recent release. 

3.2. Nonfarm payroll data 

We obtain raw data on monthly vintages for nonfarm employee numbers from the Federal Reserve Bank Philadelphia 

from November 2007 published the following December to December 2020. 4 From this matrix, we extract the first, second, 

third, and most recent changes to NFP. 5 For our data set, the first observation refers to first release of NFP changes for De-

cember 2007 published on January 4, 2008. This starting date is chosen as a compromise between availability of individual 

predictions with a certain degree of coverage in the unbalanced panel of survey participants (see Section 3.3 ) and features

of the series itself. 

Figure 1 visualizes the response rate (or completion rate) averaged for the January to December survey each year for the

first release and the subsequent two revisions. It is apparent why the first and second release of NFP data are considered
1 Noteworthy, roughly 40% of businesses have fewer than 20 employees. More information on industries and areas included in the Current Employment

Statistics—and their rotation—are found on https://www.bls.gov/ces/ .
2 If Friday is a bank holiday, the report is usually published on Thursday.
3 For further details, we refer to the benchmark documentation of the BLS found at https://www.bls.gov/web/empsit/cestn.htm#section7 .

4 This raw data is shaped as a (158 × 158) upper triangular matrix A = 

(
a i, j

)158

i, j=1
with the first releases on its main diagonal ( { a i,i } 158 

i =1 
), the second releases

on the minor diagonal to the right of the main diagonal ( { a i,i +1 } 158 
i =1 

) and so forth. This matrix is then used to calculate changes in the NFP resulting in a

(157 × 157) -dimensional diagonal matrix of month-to-month changes ˜ A . 
5 This data is publicly available at https://www.philadelphiafed.org/surveys- and- data/real- time- data- research/employ . We note that the data on the first,

second, third, and most recent release of NFP changes is readily available from the same source.
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Fig. 1. Averages over all months per sample year of the BLS collection rates across first, second, and third release.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

preliminary by the BLS. For the first release, average completion rates range between 66% and 78%, while we observe the

highest rates in the years 2013–2015. In recent years, completion rates are below 75%. This translates to the released NFP

numbers being based on incomplete first surveys as only roughly 3 out of 4 employers reported numbers thus far. Hence,

released numbers are prone to different biases as discussed before. The second release in the subsequent ESS appears to be

much more reliable as completion rates range between 85% (2007) and 95% (2014). Recently, second release completion rates 

are around 90%. The third release—considered final before the regular updates such as seasonal adjustments—incorporates 

responses of 90–97% of businesses in the poll. These differences in response rates are the main contributing factor to the

variation in NFP numbers across their releases. 6 

Figure 2 visualizes the first, second, and third release in our data set. 7 Evidently, almost all first releases (yellow) are

revised in the second (orange) and third (blue) release. In 61.8% of releases, the absolute value of changes is corrected

upwards from first to second release. From second to third release, the correction is observed in 62.4% of releases. More

important to our analysis of the surveys is the difference of the final estimate—before seasonal corrections—to the first 

preliminary release as we compare the performance of Bloomberg’s qualified economists to the preliminary NFP as well as 

final numbers. This upward correction of absolute values between first and final release happens in 61.8% (97 out of 157) of

all observed monthly NFP releases in our sample. 

In five instances, the sign of the NFP change is revised from either increase to decrease or vice versa from the first to

the third release. A recent example of such a significant revision is September 2017 with the first NFP change release of

−33 0 0 0 , the revised second release corrected to +18 0 0 0 , and the third final release of +38 0 0 0 , yielding a total correction

from first to third release of +71 0 0 0 . 

3.3. Nonfarm payroll survey data (QES) 

We source monthly survey data on month-to-month changes of the nonfarm payroll from Bloomberg—which we refer 

to as qualified economist survey (QES). We note that the SPF also offers predictions of nonfarm payroll employment on a

quarterly resolution. 8 Due to the nature of the applied framework here, we opt for a larger set of predicting economists

on a monthly publication schedule of the Bloomberg survey. In what follows, we address the one-period ahead forecasts in 

nonfarm payroll changes simply as NFP data predictions. We process the responses of k ∗ = 239 individual economists who

predict these changes roughly five to seven trading days ahead of the official first release of the BLS. 9 Usually, there is one

submitting individual per institution per period. However, this submitter might change throughout the sampling period. 

Ultimately, the cleaned data set consists of k = 181 submitting accounts. Details on additional cleaning of the raw data set

is found in Appendix A.1 . 

The cleaned QES data is visualized in Fig. 3 . From the left-hand side plot in this figure it becomes apparent that not all

economists enter a prediction for all months or stop doing so completely while for others, responses begin later as they are

rotated into the qualified economists group by Bloomberg. The plot on the right-hand side of Fig. 3 visualizes the sorted

number of responses. Evidently, we face a heavily unbalanced panel of response data prone to participation or non-response 

bias. 

Figure 4 visualizes a histogram of responses (NFP predictions) per economist/submitter (left-hand side plot) and the 

total number of responses for each NFP change survey month (right-hand side plot). Note that the maximum number of 
6 Data for response rates is available at https://www.bls.gov/web/empsit/cesregrec.htm .
7 We note that a similar figure published by the BLS compares first to third to newest estimate here: https://www.bls.gov/web/empsit/cesvininfo.htm .

However, given the nature of the predictive survey data described in the next section, we make use of the closest available data for each prediction survey.
8 The SPF processes quarterly NPF predictions of around 30 professional forecasters and offers average monthly changes only.
9 The raw data set consists of a unique identifier, the full name, the institution, the response date, and the response value for each economist.
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Fig. 2. Nonfarm payroll changes in thousands as published by the BLS in the first release (yellow), second release (orange), and third release (blue) for

December 2017 to December 2020 for differing scaling of the ordinate. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

 

 

 

 

 

 

possible responses is 157. Fewer than 50 responses are recorded for 78 economists. Thirty-seven economists predict 50 to 

100 surveys while 66 economists participate in more than 100 monthly surveys. In relative terms, 89 economists predict 

more than 50% of the sampled months. 

We further deepen the analysis by implementing an exclusion threshold of the number of predictions made by an 

economist and compare the prediction performance across subgroups of economists with more than 50 as well as more 

than 100 predictions. By comparing these groups, we address the question if regular participants perform differently from 

new joiners and leavers. We discuss the effect of this exclusion on the error decomposition outlined in Section 4.1 in detail.

3.4. COVID19 and NFP data 

From Fig. 2 , it becomes apparent how extreme the job loss in March and April 2020 is. The dimension of job losses

and subsequent recovery in in the following months is unprecedented in the history of the U.S. labor situation. Due to this

black swan -like labor event, we split the sample and separate the analysis of the impact of COVID19 on NFP prediction error

decomposition, the QES, and model- and network-based predictions. The split is introduced after the publication of the 

February 2020 figures, which coincides with the time the COVID19 pandemic started spreading and impacting economies 

world-wide. Hence, the non-COVID19 sample set ends with February 2020 NFP changes, effectively reducing the number of 

monthly NFP changes to 147. We later make use of the full sample of 157 monthly NFP observations and discuss implications

of such extreme events on the frameworks outlined in this work, in particular in view of calculation of idiosyncratic bias

and shocks across predictions made by economists for these months. 
269
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Fig. 3. Left: Raw data of responses of Bloomberg’s Qualified Economists ( k = 181 ) with numerical identifiers to predict monthly changes ( n = 157 ) in nonfarm 

payroll employment for the ESS releases of January 2008 to December 2020. Each blue square is a response for the respective survey month. Right:

Economists sorted from minimum to maximum number of total responses. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Fig. 4. Left: Histogram of survey responses per economist, corresponding to the cardinality of T ∗
i 

. Right: Number of responses from Bloomberg’s qualified

economists recorded for each NFP release from January 2008 to January 2021, which corresponds to the cardinality of the index sets I ∗t .

 

 

 

 

 

4. Methodology

4.1. Average predictions and error decomposition 

We adapt identical nomenclature as in Davies and Lahiri (1999) and denote the actual published nonfarm payroll figure 

in month t with A t for t = 1 , . . . , T . The prediction made by economist i for time t , with i = 1 , . . . , k , is referred by F i,t . In

what follows, we adapt the framework of Davies and Lahiri (1995) , subsequently extended in Davies and Lahiri (1999) and

Davies (2006) , among others. Note that our data structure implies h = 1 without adjunct or overlapping prediction hori-

zons. Hence, the present model framework is a special and less complex case of the original framework of Davies and

Lahiri (1995) . 

The number of predictions for each month varies as shown before. We define an index set I ∗t := { i = 1 , . . . , k | F i,t ∈ R }
which contains the indices (identifiers of the economist in the QES) of all numerical predictions that were made for month

t . Hence, the average prediction F t for month t is defined as

F t = 

∑ 

i ∈ I ∗t F i,t 
| I ∗| , (1) 
t 
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where the cardinality | I ∗t | translates to the total number of predictions made for month t . Analogously, we define the set

T ∗
i 

:= { t = 1 , . . . , T | F i,t ∈ R } , which contains the indices of all predictions made by economist i in the QES. Its cardinality then

refers to the total number of predictions for forecaster i . 

Davies and Lahiri (1995) formulate a decomposition of the individual forecasting error at time t , A t − F i,t , into three

components. These components refer to a temporal shock affecting all forecasters with the same magnitude, a forecaster- 

specific bias which might vary across forecasters but remains constant for the observed period, and an idiosyncratic error 

for a specific point in time for each forecaster. This decomposition is formalized as 

A t − F i,t = λt − φi − ε i,t (2) 

for forecaster i = 1 , . . . , k and time t = 1 , . . . , T . The idiosyncratic forecaster bias over all predictions is referred to by φi .

If φi > 0 , then the predictor systematically over-predicts NFP changes and vice versa. This bias varies across predicting

economists. Cumulative shocks are modeled by including λt which affect all predicting economists. Cumulative shocks de- 

scribe the divergence of the information set at the prediction time and the actual NFP figures published at a later date,

translating to an unforcastable component. If λt > 0 , then a positive shock occurred in t translating to actual NFP figures

being higher then predictions adjusted for idiosyncratic bias. In our data setting, this cumulative shock might be affected by 

nonsampling bias and revisions made across monthly publication. The idiosyncratic error of economist i at time t is denoted 

ε i,t . 
Following Davies and Lahiri (1995) , the expected values of the prediction error components can be estimated by calcu- 

lating 

− ˆ φi = 

1

| T ∗
i 
| 

∑ 

t∈ T ∗
i 

A t − F i,t , (3) 

ˆ λt = 

1

| I ∗t | 
∑ 

i ∈ I ∗t
A t − F i,t + 

ˆ φi , and (4) 

ˆ ε i,t = −A t + F i,t,h − ˆ λt + 

ˆ φi , (5) 

for all i ∈ { I ∗t } and all t ∈ T ∗
i 

, which translates to all prediction made by economists. Note that our notation slightly varies

from Davies and Lahiri (1995) as we work on a strictly unbalanced panel, where not all economists make a prediction for

every month, yielding 
∑ k 

i =1 | T ∗i | = 

∑ k 
t= T | I ∗t | =: M < kT . In fact, we have M = 13 241 predictions of kT = 28 417 total possible

economist-month predictions. 

Similar to Davies and Lahiri (1999) , we have to compress the error variance-covariance matrix � which reads in its 

original form without compression induced by missing data 

� = 

⎛
⎜ ⎜⎝ 

A 1 B B . . . B B 

B A 2 B . . . B B 

.. . 
B B B . . . B A k 

⎞
⎟⎟⎠

kT ×kT 

,

where A i = σ 2 
ε i 

I T + B . The variance of the idiosyncratic error for economist i is denoted by ε t and I T refers to the identity

matrix of dimension T × T . The matrix B then comprises of submatrices b to g that describe covariances across targets and

horizons. 10 Given the simple structure of our data without any overlapping prediction/publication windows and a forecast 

that only predicts one period ahead, b degenerates to a scalar while matrices c to g become zero. The compressed variance-

covariance matrix � is then used in a generalized method of moments estimation to determine the standard errors of 

the error components, in particular the idiosyncratic bias φi . 
11 We apply the framework of Davies and Lahiri (1995) of

Eq. (2) with the error component estimators in Eqs. (3) –(5) on the full sample with and without the inclusion of the

COVID19 labor shock. 

It is noteworthy that the prediction horizon of the economists is not exactly one-period ahead. The prediction is made at

a time between the months t and t + 1 for the publication in t + 1 , and the submission time varies across economists. This

implies that the information sets vary across economists given the difference in time of the survey entry. It also implies

that the economists have a larger information set than the following model approaches that strictly base their predictions 

on the information set at time t , �t . It is not within the scope of this work to determine the value of this informational

advantage of the survey, in particular in view of individual information rigidities. 12 
10 An overview is found in Davies (2006) , p. 385.
11 For reasons of brevity, no further details on the methodology are included as Davies and Lahiri (1999) , Section 6 , describes all necessary steps for a

similar missing-data and compression problem.
12 I thank an anonymous reviewer for raising this.
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4.2. Model-based predictions 

Time series models, in particular of autoregressive structure are widely applied to model and predict macro-economic 

variables, if stationarity has been confirmed. For example, Ang et al. (2007) include Autoregressive Moving Average (ARMA) 

models in their prediction analysis of inflation rate surveys. In the vein of the usual notation in time series analysis, we set

y t := A t . 

The Autoregressive Moving Average model—in general ARMA( p, q ) notation ( Box and Jenkins, 1976 )—is defined as 

φ(L ) y t = μ + θ (L ) u t , (6) 

where φ(L ) describes the autoregressive lag polynomial and θ (L ) the moving average lag polynomial. The disturbance u t 
has zero mean. We test different combination of p and q following the Box-Jenkins approach and find p = q = 1 to feature

the lowest BIC. 13 Hence, we subsequently set p = q = 1 , such that Eq. (6) reads 

y t = μ + φ1 y t−1 + θ1 u t−1 + u t . 

The ARMA model is compared to the mean forecasts in terms of in-sample fit and out-of-sample prediction performance 

given a loss function, outlined in subsequent sections. For the out-of-sample prediction, the model is trained on an extending 

training window used to produce one period-ahead forecasts, y t+1 , of NFP changes. That is, we make use of all available data

of NFP changes to predict the next NFP change figure for every time period in the out-of-sample period. 14 

4.3. Predictions based on deep learning 

We use the long short-term memory (LSTM) network as an example of applied deep learning. As RNNs suffer from some

degree of memory loss across longer dependency structures ( Bengio et al., 1994; Hochreiter, 1998 ), their application seems

unfruitful for data sets in which long-memory or elevated persistence—either in levels, differences, or variances—is expected. 

Long short-term memory networks, first introduced in Hochreiter and Schmidhuber (1997) , solve common issues of RNNs 

by allowing for longer dependencies across sequences of information by incorporating long-term memory channels. LSTMs 

are commonly applied in speech and handwriting recognition where longer sequences are a common feature. LSTMs are 

also applied in Finance to uncover patterns stock performance, see for example Fischer and Krauss (2018) . While portfolio

selection based on other machine learning techniques, such as deep neural networks, is already shown to outperform the 

market portfolio for larger indices ( Moritz and Zimmermann, 2016; Krauss et al., 2017 ), LSTMs might be capable of further

improving prediction accuracy as suggested in Fischer and Krauss (2018) . 

Here, we apply a simple sequence-to-sequence regression LSTM; that is, we train the network to predict one-step ahead 

NFP changes. This is achieved by shifting the standardized NFP observation vector (sequence input, (y t ) 
T −1 
t=1 

) forward by one

period to represent the response ( (y t ) 
T 
i =2 

) onto which the model is trained. The LSTM then learns to predict the value at

the next time step of the input sequence (regression output layer). The number of features and responses is one in this

case. We compare the in-sample performance as well as the out-of-sample performance of one-period ahead predictions. 

For the latter, we update the network on an expanding observation window that aligns with the expanding information set 

available to the other model-based approaches. 

4.4. Loss function and prediction quality 

For each individual forecaster i , we calculate the root mean squared error (RMSE) as loss functions, which are defined as

RMSE i = 

√
1 

| T ∗
i 
| 

∑ 

t∈ T ∗
i 

( A t − F i,t ) 
2 
, (7) 

The loss function for the average or consensus prediction defined in Eq. (1) reads 

RMSE avg = 

√
1 

T 

T ∑ 

t=1

(
A t − F t 

)2
.

Loss functions for times series models and the deep learning LSTM model are defined accordingly, where F i,t is replaced

with the fitted value for the in-sample analysis. For the out-of-sample analysis, the one period-ahead prediction is used in 

these loss functions, in which the summation of RMSE summands is only carried out across the out-of-sample period. 
13 Additionally, we compared ARIMA( 1 , d, 1 ) and seasonal ARIMA (sARIMA) models, which all showed a lower quality of fit for the job market figures, be

it First of Most Recent release.
14 An alternative to this expanding window is a rolling window estimation of model parameters, in which the size of the training window is held

constant across all prediction periods. All forecasts were additionally carried out with a rolling of 48 months for the ARMA. The loss functions only

differed mar ginally. These results are available upon reasonable request.
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As the model-individual and economist-individual RMSE are sensitive to outliers, e.g. very large prediction- 

realization differences, forecasting performance can be sufficiently evaluated with the model confidence set (MCS) of 

Hansen et al. (2011) incorporating bootstrapped re-sampling that reduces the impact of bias induced by loss function out- 

liers. The MCS then yields a set of models or combinations of forecasters that significantly outperform—with respect to the 

chosen loss function—those that are not an element of this model confidence set. 

However, since our data is an unbalanced panel as not all economists predict for each month, the number of observations

the RMSE is calculated on varies, rendering a bootstrapped re-sampling of losses infeasible on an individual basis. We apply 

the MCS on the mean, the mean of the best economists, and model-based monthly predictions for the in-sample and out- 

of-sample exercises. 

As an individual-level alternative, we sort the prediction performance of each economist into clusters or in our case—

intervals—which are produced by a simple one-dimensional k -means algorithm which belongs to the category of unsu- 

pervised learning. 15 This unsupervised learning technique now allocates economists in groups of similar prediction perfor- 

mance. The above problem of bias caused by outliers still persists but we aim to gain better understanding of performance

groups by compression and comparing centroid values (cluster or interval means) across the produced intervals. The value 

of k = 5 is chosen to obtain a cluster separation between lowest loss values (cluster 1), medium (cluster 3), and highest loss

values (cluster 5). 

Given that the panel is unbalanced, we additionally make use of the test statistic outlined in D’Agostino et al. (2012) who

define a normalized squared error statistic as 

E i,t = 

( A t − F i,t ) 
2 

| I ∗t | −1 
∑ I ∗t

i =1 ( A t − F i,t ) 
2 
, (8) 

with the average defined as 

S i = 

1

| T ∗
i 
| 

∑ 

t∈ T ∗
i 

E i,t . (9) 

Following the bootstrapping approach of D’Agostino et al. (2012) , we then randomly reassign each individual normalized 

squared error E i,t to a set of | I ∗t | simulated forecasters at time t . This step is repeated for all t . This way, we end up with

a simulated panel of forecast errors, that are randomly allocated, with an identical number of forecasts per period and 

number of predicted periods per economist. Note that forecast errors are not reshuffled across periods. We also follow 

D’Agostino et al. (2012) by sampling with replacement. We generate N = 10 0 0 0 simulations of this panel and for each

simulation, we calculate the average normalized score S 
j 
i

according to Eq. (9) for all forecasters for a random panel j, with

j = 1 , . . . , 10 0 0 0 , yielding 10 0 0 0 distributions of these scores. These simulations are then used to calculate percentiles and

their confidence intervals that allow to answer the question if some forecasters are truly better than others. 

According to D’Agostino et al. (2012) , the intuition behind this shuffling of errors is as follows. If there are forecasters that

are truly superior to others—that is, we reject the null hypothesis of equal predicting ability—their historical performance 

measured by S i , defined in Eq. (9) , should be significantly different from those obtained by the random reshuffling. We

calculate confidence intervals for the average normalized squared error for the bootstrapped 5%, 25%, 50%, 75%, and 95% 

percentile and additionally, for the single best and worst forecaster. 16 We reject the null hypothesis of equal predicting 

ability if average realized error measures are found to be outside of the 10% confidence interval of the bootstrap percentiles.

5. Findings

5.1. Survey error decomposition of the QES 

5.1.1. The role of shocks 

Following the framework of Davies and Lahiri (1999) , in which we allow for predictor-individual bias in addition to 

a general shock that affects all predictions made in t − 1 for NFP changes in month t , we focus firstly on the temporal

shocks λt . Estimates are calculated according to Eq. (4) for the sample that ends before the impact of COVID19, yielding a

sample size of 147 monthly observations. In some contrast to the original framework of Davies and Lahiri (1995) , extended

in Davies and Lahiri (1999) , shocks do not affect prediction as they do not overlay with prediction horizons. Predictions are

made between t − 1 and t for t , translating to a simple one-period ahead prediction. Hence, shocks do not affect predictions

for future periods, such as for t + 1 , as the predicting individual incorporates the shock in the available information set. This

only holds for our data set; for multi-period prediction, for example inflation rates ( Davies, 2006; Ang et al., 2007; Boero

et al., 2008 ), shocks affect several forecasts at differing horizons yielding an accumulative effect of shocks. 
15 The k -means algorithm partitions data—here the individual loss function performance—into k clusters where each in-cluster variance across cluster

elements is minimized. We use this clustering to induce a grouping of the prediction performance of economists.
16 While D’Agostino et al. (2012) describe a simple bootstrap percentile method that might be prone to bias, this paper calculates the confidence interval

based on the Bias Corrected and accelerated percentile method (BCa) of DiCiccio and Efron (1996) .
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Fig. 5. Temporal shocks ˆ λt (orange line) estimated as defined in Eq. (4) , NFP changes of the first publication (yellow bars), and QES mean (black dashed 

line) for NFP changes published from December 2017 to February 2020. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

We focus on the predominant shock in our data structure that is observable to predicting economists, the shock calcu- 

lated based on the first publication of NFP figures. We put focus on this measure as this shock affects not only predicting

entities directly but is also observed as most recent news impacting equity and fixed income markets around the publication 

date. Shocks based on the second or third revised NFP figure would be available only with the next publication dates with

a diminishing surprise or news affect as these figures would not refer to the most recent publication. Hence, we attribute 

the highest relevance to the figures of the first publication. 

Given its construction, the estimate for the temporal shock λt , affecting all predicting economists at time t , is the average

forecasting error across all (participating) economists adjusted for the individual bias estimate ˆ φt . As such, it is directly 

related with the mean prediction made by economists. This is visualized in Fig. 5 . Shocks are presented as orange line in

comparison to the first release of NFP figures (yellow bars) and the QES mean (black, dashed line). The sign of the shocks
ˆ λt correspond directly to the direction of the news or surprise. If a job market figure is lower than expected, translating to

bad news or a negative, unexpected effect, the sign of ˆ λt is negative. If published numbers are exceeding the expectations 

of forecasters and market participants, the sign is positive as we face good news . In Fig. 5 , we observe an alternating pattern

of estimated shocks ˆ λt . During the financial crisis in the U.S., it becomes evident that predictors have underestimated the 

effects on the labor situation in the beginning of a prolonged phase of negative developments, yielding negative shocks. 

However, during the recovery phase, predicting economists also underestimate the decline in job losses, which is picked up 

as good news as fewer than anticipated jobs were lost. 

Additionally, Fig. 5 shows that average predictions, which are a main contributor to the shock estimation, vary only little 

and show high autocorrelation and a lagged reaction to shocks. Several examples exist in the present sample. The survey 

mean does not predict larger deviations from a trend, which yields several positive and negative spikes in temporal shocks 
ˆ λt , while individually, some economists have strong fluctuations in their predictions. 

Most importantly, we find that shocks show some degree of seasonality in its pattern in which winter figures are usually 

over-estimated yielding negative shocks. For the majority of years, we also observe positive shocks in summer and fall. This 

might indicate that economists do not incorporate seasonal patterns in their predictions on average. 17 In order to control for

seasonality, we estimate temporal shocks with respect to the most recent, seasonally adjusted job market figures. We find 

differences in these estimates, in particular for peak values of shocks which seem to be higher for the seasonally adjusted

figures in absolute terms. However, we also find that the alternating pattern remains mainly intact. This is visualized in the

Appendix in Fig. B.9 . We detect statistically significant autocorrelation in the first difference of the shock series’ for the first

lag, both for shocks based on the seasonally unadjusted first release and the most recent, seasonally adjusted release. This 

might be an indicator for the effect of large errors on the forecasters. However, as this effect is also present in the most

recent releases, 18 it is more likely that this is a residual of the significant autocorrelation of the mean forecast across the

panel. 
17 We find elevated autocorrelations for lag 11 and 12, albeit of no statistical significance. For reasons of brevity, these results are not reported in detail.
18 These most recent releases are not available to the economists at the lag of the detected autocorrelation.
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Fig. 6. Idiosyncratic bias ˆ φi across economists with at least 50 predictions based on the first publication of NFP numbers. Red squares indicate a statistically 

significant bias at the 10% significance level.

Fig. 7. Idiosyncratic bias ˆ φi across all economists (left) , economists with at least 50 predictions (middle) , and economists with at least 100 predictions 

(right) , sorted from low to high for each subplot. Yellow lines refer to the bias based on the first publication of NFP changes. Blue lines refer to bias based

on the third and final publication of NFP figures, published in t + 2 for period t . 

 

 

 

 

 

 

 

 

5.1.2. Individual bias of economists 

We estimate the individual bias of each economist according to Eq. (3) . A forecaster systematically over-predicts with 

a significant ˆ φi > 0 . In our sample, we find several economists who show a statistically significant bias, either positive or

negative. Figure 6 visualizes the bias estimates ˆ φi for all economists with more than 50 survey entries. Red squares are

marking bias that is statistically significantly different from zero. Evidently, most of the elevated biases in absolute terms 

are significant and indicate some dissociation from a rational forecast. Notably, the number of predictions made varies and 

as such, there is no universal threshold bias to determine significance jointly for all economists. 

For the bias estimation, we find that the choice of publication figure plays a major role. This is in some contrast to

the shock measure in the previous subsection. In what follows, we discuss this bias for all economists and for groups of

economists with at least 50 or 100 predictions, respectively. We compare the bias across the first and the final figure of NFP

changes. 

The estimated bias is visualized in Fig. 7 . We sort the bias estimates from lowest to highest, as the order of economist

identifiers is of no interest for this analysis. The three subplots refer to three nested groups of economists. The left-hand plot

visualizes ˆ φi for all economists. If the number of predictions is low, the estimate might be prone to small sample bias. The

remaining two figures calculate the bias for economists with a reasonable number of predictions which ultimately reduces 

the number of economists to 103 and 66, respectively. 
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Several important observations are drawn from Fig. 7 . Firstly, we find that with a higher participation rate, that is with

a higher number of predictions made, the individual bias seems to be decreasing. By removing economists with predictions 

below the threshold of 50 or 100, we remove some of the extreme values of positive and negative bias as well. This is of

interest as it shows that we find a reduction in systematic over- or under-prediction the more predictions an economist 

enters into the survey. These findings suggest that the more regularly an economist enters survey responses in the QES, the

lower the systematic error. This could indicate differing information sets to other economists based on learning effects from 

past prediction differences or differing information rigidities. 

As a second important observation, we find the individual bias to differ significantly if we base the calculation on the

third and final publication of NFP figures. Bias calculated based on the third publication are plotted in blue in Fig. 7 . We

observe a downward shift and a generally negative bias. The NFP figures are more precise as the response rates of businesses

reported job numbers are much higher than for the first publication. This underlines a tendency to under-predict true or 

more precise values of NFP changes. The magnitude of this effect can only be partially explained by the observed upward

correction in absolute terms from first to third revision in roughly 60% of the observations, which would causes the bias

to decrease as A t increases for some t . Of course, some of this increase would also be offset by a downward correction of

releases. Hence, it is suggested that the role of the final figures for NFP changes play a less important role for the prediction

of economists and the focus remains on the first release. Additionally, we find that the impact of these revisions affects the

temporal shock ˆ λ to a lesser extent than the bias component ˆ φ. 

5.2. Prediction performance 

5.2.1. In-sample analysis 

We now turn to the individual prediction quality and firstly, focus on an in-sample view covering all observations from 

December 2007 to February 2020 and in a second in-sample analysis, to December 2020 to analyze the impact of COVID19.

Based on the individual predictions of economists, loss functions are calculated and results based on the first release are 

presented. As outlined previously, the number of predictions made by each forecaster varies which proves challenging for 

an evaluation of outperformance. To separate prediction quality implied from RMSE, a k -means clustering is applied on (1) 

all economists with at least 50 observations ( | T i | ∗ ≥ 50 ), which yields 101 economists remaining in the sample and (2) all

economists with at least 100 observations ( | T i | ∗ ≥ 100 ), which further reduces the sample to 63 economists. The number of

clusters or in this specific data set—intervals—is chosen to be k = 5 as motivated in Section 4.4 . 

For RMSE figures for economists with at least 50 predictions, we find the majority of economists in the second and third

cluster. The best performing economists are grouped in the first cluster, whose RMSE ranges from 57.5 to 64.3 while for the

worst performing cluster, RMSE ranges from 91.7 to 99.2. Centroid values and cluster boundaries vary only marginally for the 

first three groups of economists with at least 100 observations. We cannot directly infer on outperformance of economists in 

the first cluster compared to all others but we can certainly say that they predict better, on average, than those in the fifth

cluster. Interestingly, we find that if we only focus on economists with a higher number of predictions, this homogeneity of

loss functions increases with the intercluster distance decreasing, which can be partly attributed to a smaller sample and 

the exclusion from economists with fewer predictions. This, in turn, indicates that economists with fewer predictions might 

produce higher losses. Detailed results are found in the appendix in Table C.10 . These findings further motivate an analysis

of equal predicting ability across economists and also justify filtering economists by participation. 

The in-sample fits of the QES means, the QES means based on the selection of best performing economists following

D’Agostino et al. (2012) , the ARMA( p, q ) model, and the deep learning network as introduced in Section 4.2 and 4.3 for both

in-sample periods are presented in the in-sample columns of Table 1 . 

For both in-sample periods, the QES mean of all economists and their reduction to only include those with 50 or 100

predictions performs similar with respect to the RMSE. The no-change forecast, the prevailing mean over three, six, and 

twelve months, and the ARMA(1,1) perform much worse. We find the LSTM network to show superior data fit which is due

to the nature of training of the model itself. The LSTM is the only model included in the MCS, and as such, significantly

outperforms all others. If we exclude the LSTM from the model selection, all QES mean forecasts that are produced from the

selection of the best, the best 5%, and the best 25%—based on the relative error and selection of D’Agostino et al. (2012) —are

included in the MCS. This indicates that these forecasts provide a better prediction quality than standard QES means, which 

extends the findings of Brown et al. (2008) based on the measure of D’Agostino et al. (2012) . In the subsequent section, we

address this evident rejection of the equal predictive ability hypothesis. However, this outperformance only holds for the 

pre-COVID19 sample. For the sample which includes COVID19, we find no model to perform statistically better than others 

since errors are exceptionally high, with the exception of the LSTM network approach. 

5.2.2. Equal predictive ability 

We address the hypothesis of equal predictive ability of the participants of the Bloomberg survey and follow the ap- 

proach of D’Agostino et al. (2012) . We compare the findings obtained from using the first publication of NFP changes with

the forecasting performance benchmarked against the most recent and seasonally-adjusted release. Table 2 shows the dis- 

tribution of the average normalized squared error across the best, 5%, 25%, 50%, 75%, 95%, and worst percentile including 

bootstrap 10% confidence intervals, based on the first publication of NFP changes. We reject the hypothesis of equal pre- 

dicting ability by finding statistically significant evidence of better-performing economists (bold figures). For example, the 
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Table 1

In-sample and out-of-sample RMSE for QES mean predictions and time-series models.

Loss Model In-sample 1 In-sample 2 Out-of-sample 1 Out-of-sample 2

RMSE QES mean all 64.26 808.0 65.52 1 683

QES mean 50 64.14 808.4 65.34 1 684

QES mean 100 63.98 799.8 65 . 08 1 666

QES best ∗ 62 . 12 / 61 . 87 / 61 . 23 698 . 8 / 731 . 4 / 786 . 9 66 . 39 / 66 . 90 / 65 . 55 1 697 / 1 687 / 1 676

QES best 50 ∗ 61 . 34 / 61 . 60 / 61 . 48 753 . 9 / 740 . 5 / 794 . 5 66 . 35 / 68 . 55 / 65 . 52 1 921 / 1 942 / 1 717

QES best 100 ∗ 63 . 31 / 61 . 79 / 61 . 45 734 . 8 / 708 . 6 / 807 . 5 72 . 00 / 64 . 80 / 64 . 44 1 506 / 1 564 / 1 510

No-change 108.7 2 446 119.89 5 105

mean (3/6/12) 108 . 4 / 122 . 9 / 141 . 7 2 097 / 1 934 / 1 861 87 . 71 / 81 . 15 / 77 . 80 4 333 / 3 955 / 3 726

LSTM 33 . 99 354 . 8 72.84 2 999

ARMA(1,1) 100.7 1687 103.0 7 208

Note: In-sample 1 refers to the data set that ends in February 2020 (pre-COVID) with n 1 = 147 and In-Sample 2 refers to the full data set covering the 

COVID19 crisis ending in December 2020 with n 2 = 157 . Underlined values refer to best in-sample fit while all bold numbers refer to elements in the MCS. 
∗For the QES best series’, the best, the best 5%, and the best 25% of economists based on the squared loss over the respective sample are used as predictor

for in-sample performance. For the out-of-sample exercise, the best series are updated monthly based on an expanding window, allowing for changes in

the set of forecasters across the out-of-sample period.

Table 2

Distribution of the forecasting performance relative to the first publication of NFP changes for the in-sample period from December 2007 to February 2020.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.1028 0.5994 0 . 7068 0 . 8139 0.9557 1.3813 3.5633

CI ( 0 . 0421 ; 0 . 4215 ) ( 0 . 5221 ; 0 . 6372 ) ( 0 . 7404 ; 0 . 7829 ) ( 0 . 8314 ; 0 . 8714 ) ( 0 . 9262 ; 0 . 9834 ) ( 1 . 1425 ; 1 . 3777 ) ( 1 . 5819 ; 4 . 5791 ) 

Panel B: Economists with more than 10 predictions

QES 0.5141 0.6246 0 . 7237 0 . 8139 0.9510 1.3670 3 . 5633

CI ( 0 . 3661 ; 0 . 5806 ) ( 0 . 6078 ; 0 . 6833 ) ( 0 . 7549 ; 0 . 7934 ) ( 0 . 8351 ; 0 . 8733 ) ( 0 . 9213 ; 0 . 9745 ) ( 1 . 0953 ; 1 . 2701 ) ( 1 . 3523 ; 2 . 3176 ) 

Panel C: Economists with more than 50 predictions

QES 0.5730 0 . 6310 0 . 7227 0 . 8095 0 . 8905 1 . 2655 3 . 5633

CI ( 0 . 5612 ; 0 . 6756 ) ( 0 . 6705 ; 0 . 7256 ) ( 0 . 7651 ; 0 . 8023 ) ( 0 . 8272 ; 0 . 8648 ) ( 0 . 8929 ; 0 . 9403 ) ( 0 . 9986 ; 1 . 0989 ) ( 1 . 0879 ; 1 . 3897 ) 

Panel D: Economists with more than 100 predictions

QES 0.6288 0 . 6450 0 . 7265 0 . 8118 0.8874 1 . 2643 1 . 3722

CI ( 0 . 6221 ; 0 . 7139 ) ( 0 . 6895 ; 0 . 7442 ) ( 0 . 7645 ; 0 . 8042 ) ( 0 . 814 8 ; 0 . 854 9 ) ( 0 . 8665 ; 0 . 9141 ) ( 0 . 9410 ; 1 . 0233 ) ( 0 . 9840 ; 1 . 1578 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

Table 3

Distribution of the forecasting performance relative to the seasonally-adjusted, most recent publication of NFP changes for the in-sample period from

December 2007 to February 2020.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.3442 0.5942 0.7352 0 . 8379 0.9495 1 . 4565 3.2762

CI ( 0 . 1564 ; 0 . 5162 ) ( 0 . 5755 ; 0 . 6646 ) ( 0 . 7587 ; 0 . 7932 ) ( 0 . 8390 ; 0 . 8729 ) ( 0 . 9256 ; 0 . 9763 ) ( 1 . 1110 ; 1 . 2914 ) ( 1 . 4462 ; 3 . 4634 ) 

Panel B: Economists with more than 10 predictions

QES 0.5002 0.6261 0 . 7383 0 . 8376 0.9446 1 . 4669 3 . 2762

CI ( 0 . 4079 ; 0 . 5848 ) ( 0 . 6245 ; 0 . 6934 ) ( 0 . 7664 ; 0 . 7998 ) ( 0 . 8396 ; 0 . 8725 ) ( 0 . 9181 ; 0 . 9654 ) ( 1 . 0722 ; 1 . 2159 ) ( 1 . 2789 ; 2 . 1816 ) 

Panel C: Economists with more than 50 predictions

QES 0 . 5548 0 . 6539 0 . 7394 0 . 8290 0.9057 1 . 1488 2 . 6415

CI ( 0 . 5789 ; 0 . 6863 ) ( 0 . 6831 ; 0 . 7345 ) ( 0 . 7733 ; 0 . 8064 ) ( 0 . 8312 ; 0 . 8645 ) ( 0 . 8914 ; 0 . 9335 ) ( 0 . 9894 ; 1 . 0833 ) ( 1 . 0759 ; 1 . 3437 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 6283 0 . 6799 0 . 7550 0.8206 0.8920 1 . 1061 1 . 2978

CI ( 0 . 6472 ; 0 . 7285 ) ( 0 . 7070 ; 0 . 7550 ) ( 0 . 7737 ; 0 . 8083 ) ( 0 . 8190 ; 0 . 8529 ) ( 0 . 8645 ; 0 . 9044 ) ( 0 . 9303 ; 1 . 0027 ) ( 0 . 9692 ; 1 . 1207 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

 

 

best 25% of economists, even when controlling for survey participation, is shown to perform better than the remainder. In 

addition, by only including economists that participate regularly, we even find the group of the best 5% to be statistically

significantly better than the remainder. Similar to D’Agostino et al. (2012) , we further identify groups of economists that 

perform significantly worse (underlined figures). 

Table 3 repeats this analysis but bases the error measure on the most recent, seasonally-adjusted publication. The re- 

sults of a rejection of the equal predictive ability of economists are confirmed. We even observe an even higher spread
277
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Table 4

Distribution of the forecasting performance relative to the first publication of NFP changes for the in-sample period from December 2007 to February 2020,

restricted to the best 80% of forecasters.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.1028 0.5884 0 . 6830 0.7864 0.8448 0 . 9665 1 . 0065

CI ( 0 . 0424 ; 0 . 4 4 46 ) ( 0 . 5090 ; 0 . 6175 ) ( 0 . 6900 ; 0 . 7240 ) ( 0 . 7576 ; 0 . 7872 ) ( 0 . 8235 ; 0 . 8659 ) ( 0 . 9724 ; 1 . 14 4 4 ) ( 1 . 2091 ; 3 . 2170 ) 

Panel A: Economists with more than 10 predictions

QES 0.5141 0.6176 0 . 6961 0.7928 0.8446 0.9537 0 . 9936

CI ( 0 . 3923 ; 0 . 5769 ) ( 0 . 5860 ; 0 . 6507 ) ( 0 . 6982 ; 0 . 7305 ) ( 0 . 7574 ; 0 . 7868 ) ( 0 . 8168 ; 0 . 8563 ) ( 0 . 9334 ; 1 . 0581 ) ( 1 . 0822 ; 1 . 6166 ) 

Panel A: Economists with more than 50 predictions

QES 0.5730 0.6267 0 . 6957 0.7781 0.8211 0.9052 0.9500

CI ( 0 . 5364 ; 0 . 6345 ) ( 0 . 6209 ; 0 . 6702 ) ( 0 . 6975 ; 0 . 7289 ) ( 0 . 7456 ; 0 . 7757 ) ( 0 . 7936 ; 0 . 8306 ) ( 0 . 8702 ; 0 . 9560 ) ( 0 . 9321 ; 1 . 1645 ) 

Panel A: Economists with more than 100 predictions

QES 0.6288 0 . 64 4 4 0 . 7115 0.7864 0.8211 0.9152 0.9508

CI ( 0 . 5995 ; 0 . 6797 ) ( 0 . 6504 ; 0 . 7021 ) ( 0 . 7134 ; 0 . 7487 ) ( 0 . 7542 ; 0 . 7889 ) ( 0 . 7946 ; 0 . 8342 ) ( 0 . 8493 ; 0 . 9189 ) ( 0 . 8779 ; 1 . 0064 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

Table 5

Distribution of the forecasting performance relative to the seasonally-adjusted, most recent publication of NFP changes for the in-sample period from

December 2007 to February 2020, restricted to the best 80% of forecasters.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.3442 0.5747 0 . 7032 0.7931 0.8690 0.9553 0 . 9954

CI ( 0 . 1892 ; 0 . 5229 ) ( 0 . 5566 ; 0 . 6408 ) ( 0 . 7157 ; 0 . 7462 ) ( 0 . 7806 ; 0 . 8084 ) ( 0 . 8467 ; 0 . 8880 ) ( 0 . 9949 ; 1 . 1414 ) ( 1 . 1963 ; 2 . 6436 ) 

Panel B: Economists with more than 10 predictions

QES 0.5002 0 . 5949 0 . 7133 0.7944 0.8689 0 . 9505 0 . 9942

CI ( 0 . 4339 ; 0 . 5780 ) ( 0 . 5971 ; 0 . 6616 ) ( 0 . 7211 ; 0 . 7507 ) ( 0 . 7802 ; 0 . 8071 ) ( 0 . 8397 ; 0 . 8768 ) ( 0 . 9559 ; 1 . 0716 ) ( 1 . 0879 ; 1 . 5848 ) 

Panel C: Economists with more than 50 predictions

QES 0 . 5548 0 . 6408 0 . 7185 0.7931 0 . 8588 0.9082 0 . 94 4 4

CI ( 0 . 5636 ; 0 . 6581 ) ( 0 . 6478 ; 0 . 6956 ) ( 0 . 7258 ; 0 . 7546 ) ( 0 . 7721 ; 0 . 7994 ) ( 0 . 8182 ; 0 . 8521 ) ( 0 . 8921 ; 0 . 9699 ) ( 0 . 9497 ; 1 . 1624 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 6283 0 . 6700 0 . 7274 0.7957 0 . 8564 0.8980 0.9105

CI ( 0 . 6312 ; 0 . 7055 ) ( 0 . 6788 ; 0 . 7256 ) ( 0 . 7371 ; 0 . 7691 ) ( 0 . 7752 ; 0 . 8062 ) ( 0 . 8128 ; 0 . 8482 ) ( 0 . 8629 ; 0 . 9274 ) ( 0 . 8899 ; 1 . 0060 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

 

 

 

 

 

 

between significantly better performing economists and the worst performing economists. By restricting the sample by the 

participation rate, we find the significance of over-performance to increase as well. 

As those findings could be affected by exceptionally worse performing subgroups of economists, we drop the worst 

performing 20% of economists of each group and repeat the bootstrap. Results are shown in Table 4 for the first publication

and in Table 5 for the most recent revision. By removing the worst performing 20%, we reduce the average error and the

levels of confidence intervals as large errors are excluded from the bootstrap. We find our previous results to be robust.

The best performing economists are significantly better than others, in particular for the groups that only include those 

economists who participate more regularly. Results with respect to the third release are found in Tables C.11 and C.12 . 

Hence, we reject the hypothesis of equal predictive ability of economists of the QES, in line with what 

D’Agostino et al. (2012) found for the SPF. These findings also corroborate the impact of the significant bias of some fore-

casters, which are found within the Davies and Lahiri (1995) framework. We further show that these results hold across 

revisions of the NFP changes, while the for the most recent, seasonally-adjusted release we obtain the most compelling 

results. 

5.2.3. Out-of-sample analysis 

We now compare the one period-ahead prediction performance of the QES, individually and as mean, with the perfor- 

mance of time series model and deep learning. We run an out-of-sample analysis on two overlapping windows. The first 

window contains 36 predictions and runs from January 2017 to December 2019. The second out-of-sample window runs 

from January 2018 to December 2020 and includes the COVID19 shock. We separate these two prediction windows to dis- 

entangle the effect of the labor shock on the prediction quality. 

Overall, we find the prediction performance of the ARMA, the LSTM, the no-change forecast, and the prevailing mean 

to be insufficient as none of these models is included in the MCS, while the LSTM shows the relative best performance of

this group. Simple QES mean predictions and a selection of best economists produce much lower losses. The MCS reveals 

that the mean forecasts built on the best performing 5% and 25% of economists, that very regularly participate, yield su-
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Table 6

Nonfarm payroll changes from March to December 2020.

March April May June July August Sept. Oct. Nov. Dec.

Release first −701 −20 500 2 509 4 800 1 763 1 371 661 638 245 −140 

second −870 −20 687 2 699 4 791 1 734 1 489 672 610 336 −227 

third −1 373 −20 787 2 725 4 781 1 761 1 493 711 654 264 −306 

recent −1 683 −20 679 2 833 4 846 1 726 1 583 716 680 264 −306 

Obs. 148 149 150 151 152 153 154 155 156 157

Table 7

Nonfarm payroll changes from March 2020 to December 2020, during the first wave of COVID19 with the QES mean of all economists as well as those

with at least 50 predictions and temporal shock estimates ̂  λt of these economists. 

March April May June July August Sept. Oct. Nov. Dec.

NFP Change (first) −701 −20 500 2 509 4 800 1 763 1 371 661 638 245 −140 

QES mean −237 −21 944 −7 357 3 389 1 424 1 343 897 616 456 43

QES mean 50 −254 −22 132 −7 344 3 448 1 467 1 360 897 617 458 42

Shocks ˆ λall 
t −593 1 314 9 725 1 289 209 −98 −361 −100 −335 −307 

Shocks ˆ λ50 
t −538 1 540 9 753 1 261 205 −77 −322 −66 −299 −275 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perior forecasts. The simple QES mean of the same subgroup of economists is also included in the MCS. This expands the

findings of Brown et al. (2008) by showing that we are able to construct superior forecasts based on a selection of the best

performing economists. It further shows that the framework outlined in D’Agostino et al. (2012) offers a viable choice as a

survey combination method to improve prediction quality. Lastly, it complements Clements (2021) as we show that there is 

a difference between those economists that participate very regularly and those who drop in and out. 

The out-of-sample performance during the period of COVID19 is discussed separately in Section 5.3 . 

5.3. The impact of COVID19 

The impact of COVID19 on the U.S. job market is comparable with the characteristics of a black swan event; an unpre-

dictable incident with negative consequences for a majority of a population. COVID19 started its rapid and lethal spread 

throughout every state of the U.S. in February, if not earlier. Fatalities and infection rates increased in the beginning of

March 

19 to which drastic counter measures were rolled out ( Janiak et al., 2021 ). Closures of businesses, in particular in the

hospitality sector, as well as close-contact industries, shut-downs of plants, and a recession followed shortly after. How- 

ever, Albanesi and Kim (2021) highlight that this recession effect is unlike anything previously observed as close-contact 

businesses and in particular women are asymmetrically affected. In addition, this effect was nation-wide, causing a joint 

economic disruption across the U.S. ( Rojas et al., 2020 ). The impact on the U.S. job market is unprecedented as absolute job

losses of this magnitude have never been recorded before. In turn, the subsequent recovery due to re-opening of businesses 

( Bartik et al., 2020 ) and a generally different approach to dealing with the pandemic caused an increase in jobs of previously

unknown and unseen dimensions as well. 

Table 6 gives an overview of these numbers. In the first NFP publication for March 2020, a loss of 701 0 0 0 jobs is re-

ported. Underlining the abnormality of the situation, this number is later revised to roughly double that loss, at 1 373 0 0 0

jobs lost published in the third release and further corrected in the seasonally-adjusted recent release to 1 683 0 0 0 jobs

lost. The largest effect on the job market is recorded for April 2020, with a loss of 20 500 000 jobs which is corrected to

20 679 0 0 0 in the recent release. Job losses that large have never been recorded before. For comparison, job losses accumu-

lated from January 2008 to December 2009, the peak of the financial crisis in terms of job market impact, equal 6 887 0 0 0

over a period of two years, see Fig. 2 , panel (a). In May to August, some of these lost jobs are reclaimed and a recovery of

2 833 0 0 0 in May and 4 846 0 0 0 in June are observed. This strong recovery continues until November, albeit still in a net

loss due to April 2020. This job market recovery is of a previously unknown and abnormal magnitude as well, see Fig. 2 ,

panel (b). 

Naturally, these extreme events also impact the forecasting error decomposition. Due to the scaling of the data during 

the COVID19 sub-sample, a visual representation of the complete sample becomes unfeasible. As such, Fig. 8 limits the view

on 2020 and shows that the forecasting error follows suit in terms of magnitude. Table 7 shows the QES mean prediction for

each month and the temporal shocks during these months following the error decomposition of Davies and Lahiri (1995) . It

is evident that the survey participants, on average, underestimated the immediate impact of COVID on the U.S. job market in

March. The resulting temporal shock ˆ λMarch takes the highest negative value on record with 

ˆ λMarch = −593 0 0 0 , translating

to an extreme negative shock at that time of under-predicting job losses by half-a-million jobs. Surprisingly, the prediction 
19 See for example https://covid.cdc.gov/covid- data- tracker/ .
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Fig. 8. Temporal shocks ˆ λt (orange line) estimated as defined in Eq. (4) , NFP changes of the first publication (yellow bars), and QES mean (black dashed 

line) for NFP changes published from July 2019 to December 2020. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for April roughly aligns in terms of dimensions but this time, significantly over-predicts job losses. This in turn yields a

positive shock as not as many jobs are lost as anticipated. The largest deviation from prediction to realized value is recorded

for May 2020. The QES mean predicts a loss of approximately 7.3 million jobs while the actual number of jobs increased

by 2.5 million. This causes a positive shock of 9.7 million jobs. In June, the QES again under-predicts NFP changes incurring

a shock of 1.2 million jobs. With regard to individual forecaster bias φi , the estimates are now negatively biased due to

the large deviations in these four months. Additionally, we observe some evidence for information rigidities as forecasters 

first underestimate the situation in March but then repeatedly overestimate job losses or underestimate the recovery, in 

particular in May, yielding a repeated occurrence of positive shocks. This slow reaction of economists is also found for 

inflation predictions during this time as demonstrated in Armantier et al. (2021) . Forecasters, on average, produce more 

conservative predictions after April 2020. While the estimates for the shock variable λ in Table 7 are estimated across the

full sample, we note that by construction—particularly in view of the forecaster bias estimated in Eq. (3) and the shock itself

in Eq. (4) —the shock variable is now biased downwards due to the pivotal difference of expected labor development and

realized numbers in March, April, May, and to some extend in June. These few but large outliers in differences are affecting

the idiosyncratic bias with a negative shift. This also shifts the temporal shock variable downwards. When estimated across 

the whole sample including the COVID19 period, almost all temporal shocks are negative, underlining their biasedness due 

to these large outliers compared to those estimates obtained with the non-COVID19 sample. 

Turning to the prediction quality of the QES, its means, the best selection, and the model approaches, we revisit the

fourth column of Table 1 , and focus on the Out-of-sample 2 performance. We observe elevated RMSE figures and find

distinctive differences between the consensus forecast and the model based approaches. The QES mean forecast produces 

similar prediction quality while only the forecasts produced by a selection of the best economists are elements of the MCS,

translating to a statistically significant outperformance relative to all other predictions. In detail, predictions based on the 

best 25% of economists that regularly participate produce significantly lower losses and are superior to the other predictions. 

This again documents the existence of smart predictions as in Brown et al. (2008) , even in times of extreme differences of

expected and realized value. It further confirms that forecasters that regularly participate seem to have better predicting 

ability, in some relation to the findings of Capistrán and Timmermann (2009a) and Clements (2021) . 

The model-based predictions are unable to cope with the March loss and due to the stationarity restrictions, under- 

predict the April loss as they react too slow to these new values. These models also cannot predict the sudden change to

recovery. The LSTM network shows a lagged reaction and predicts positive NFP changes for March and April while prediction 

are negative for May and June. All model-based approaches are producing very large residuals for these months that drive 

the RMSE far beyond what is observed from the QES consensus figures. This is, however, expected behavior of model-based 

predictions as labor events surrounding COVID19 are unexpected shocks, in which the structure of data evolution changes 

completely. By its very nature, none of these models are included in the MCS. In light of the extreme magnitude of this

event, the prediction behavior is in line with past observations. Economists tend to under-predict losses, while the turn to 

a recovering job market is predicted with lagged periods as observed after the financial crisis—at lower levels. During the 

months of the labor shock, very high standard deviations across individual predictions are observed and very high prediction 

errors both on individual and on consensus level follow. This phenomenon is known from inflation predictions ( Rich and

Tracy, 2010 ) and shown to be present in these NFP predictions as well. 

In what follows, we briefly address the distribution of the forecasting performance across performance percentiles of 

forecasters with regard to the equal predictive ability hypothesis. Tables 8 and 9 show the percentiles and bootstrap con- 

fidence intervals, for all economists and a limited set by dropping the worst performing 20% as argued above. Including 
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Table 8

Distribution of the forecasting performance relative to the first publication of NFP changes for the in-sample period from December 2007 to December

2020.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.1028 0.6020 0 . 7197 0 . 8173 0.9606 1.3750 3.5633

CI ( 0 . 0440 ; 0 . 4357 ) ( 0 . 5298 ; 0 . 6457 ) ( 0 . 7449 ; 0 . 7869 ) ( 0 . 8353 ; 0 . 8748 ) ( 0 . 9308 ; 0 . 9883 ) ( 1 . 1476 ; 1 . 3886 ) ( 1 . 5907 ; 4 . 5369 ) 

Panel B: Economists with more than 10 predictions

QES 0.4794 0.6144 0.7293 0.8173 0.9514 1 . 3582 3 . 5633

CI ( 0 . 34 4 4 ; 0 . 5747 ) ( 0 . 6092 ; 0 . 6862 ) ( 0 . 7582 ; 0 . 7969 ) ( 0 . 8385 ; 0 . 8768 ) ( 0 . 9256 ; 0 . 9793 ) ( 1 . 1002 ; 1 . 2803 ) ( 1 . 3645 ; 2 . 5128 ) 

Panel C: Economists with more than 50 predictions

QES 0.5737 0 . 6303 0 . 7295 0 . 8059 0.8985 1 . 2953 3 . 5633

CI ( 0 . 5601 ; 0 . 6765 ) ( 0 . 6722 ; 0 . 7280 ) ( 0 . 7672 ; 0 . 8046 ) ( 0 . 8298 ; 0 . 8670 ) ( 0 . 8952 ; 0 . 9441 ) ( 1 . 0029 ; 1 . 1049 ) ( 1 . 0943 ; 1 . 3933 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 6095 0 . 6307 0 . 7299 0 . 8065 0.9123 1 . 2845 1 . 3590

CI ( 0 . 6164 ; 0 . 7097 ) ( 0 . 6865 ; 0 . 7408 ) ( 0 . 7631 ; 0 . 8024 ) ( 0 . 8146 ; 0 . 8537 ) ( 0 . 8673 ; 0 . 9151 ) ( 0 . 9441 ; 1 . 0318 ) ( 0 . 9907 ; 1 . 1758 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

Table 9

Distribution of the forecasting performance relative to the first publication of NFP changes for the in-sample period from December 2007 to December

2020, restrcited to the best 80% of forecasters.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.1028 0.5884 0 . 6799 0.7774 0.8502 0 . 9737 1 . 0212

CI ( 0 . 0440 ; 0 . 4664 ) ( 0 . 5201 ; 0 . 6261 ) ( 0 . 6943 ; 0 . 7286 ) ( 0 . 7607 ; 0 . 7916 ) ( 0 . 8284 ; 0 . 8722 ) ( 0 . 9778 ; 1 . 1536 ) ( 1 . 2183 ; 2 . 9947 ) 

Panel A: Economists with more than 10 predictions

QES 0.4794 0.6106 0 . 6965 0.7901 0.8505 0.9554 1 . 0096

CI ( 0 . 3546 ; 0 . 5713 ) ( 0 . 5814 ; 0 . 6506 ) ( 0 . 70 0 0 ; 0 . 7321 ) ( 0 . 7603 ; 0 . 7903 ) ( 0 . 8222 ; 0 . 8638 ) ( 0 . 9473 ; 1 . 0862 ) ( 1 . 1044 ; 1 . 7648 ) 

Panel A: Economists with more than 50 predictions

QES 0.5737 0.6261 0 . 6972 0.7686 0 . 8390 0.9141 0.9419

CI ( 0 . 5392 ; 0 . 6360 ) ( 0 . 6246 ; 0 . 6730 ) ( 0 . 7002 ; 0 . 7315 ) ( 0 . 7478 ; 0 . 7778 ) ( 0 . 7956 ; 0 . 8327 ) ( 0 . 8730 ; 0 . 9546 ) ( 0 . 9336 ; 1 . 1582 ) 

Panel A: Economists with more than 100 predictions

QES 0.6095 0 . 6294 0 . 7043 0.7704 0.8296 0.9160 0.9419

CI ( 0 . 5904 ; 0 . 6717 ) ( 0 . 6445 ; 0 . 6947 ) ( 0 . 7083 ; 0 . 7428 ) ( 0 . 7490 ; 0 . 7837 ) ( 0 . 7901 ; 0 . 8299 ) ( 0 . 8468 ; 0 . 9178 ) ( 0 . 8774 ; 1 . 0099 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

 

 

 

 

the COVID19 labor shock until December 2020 does not change the qualitative result of rejecting the hypothesis of equal 

predictive ability. We still find that the best 5% and 25% of economists with more than 50 or 100 survey entries predict

better than the bootstrap distribution would suggest, even when controlling for negative outliers by removing the worst 

performing 20%. These findings are robust to the choice of release as shown in Tables C.13–C.16 in the Appendix. This is

evidence that not all economists are affected equally by the uncertainty surrounding the true impact of COVID19 on the 

labor market in March, April, and the following months. 

6. Concluding remarks

We analyze an unbalanced panel of nonfarm payroll predictions from January 2008 to December 2020 from 181 forecast- 

ers. Based on the framework of Davies and Lahiri (1995) , we decompose the forecasting error of each forecaster into three

components, of which two are further studied. Firstly, we focus on the temporal shock component that affects all forecast- 

ers equally per forecasting period. These shocks, a general over- or under-prediction of all forecasters for a particular month 

represents a news effect where an under-prediction of job increases is considered a positive shock and vice versa. From 

these estimated shocks, we find that the sample of predicting economists under-estimate job losses in times of prolonged 

market turmoil. In addition, recovery phases are under-predicted as well, leading to positive shocks. 

In general, we find that the mean predictions are rather stable, causing the shock estimate to alternate regularly. Sec- 

ondly, we focus on the individual bias, which describes a systematic over- or under-prediction of a particular forecaster. We 

find the bias of several forecasters to be statistically significant. More importantly, we find that with increasing participation 

rate, the individual bias is decreasing, yielding a lower prediction error. This indicates that economists that regularly make 

predictions are incorporating differing information sets than those with very few predictions. If we decompose the forecast 

errors based on a more precise measure for job market figures, the most recent publication, we observe a downward shift

and a generally negative bias, underlining a tendency to under-predict true or more precise values of NFP changes. This 

suggests that forecasters make limited use of subsequent revisions of NFP changes and their focus remains on the initial 
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and preliminary numbers. In view of the applied framework, we find that the impact of these revisions affects the temporal

shock to a lesser extent than the individual bias. 

We apply several model-based approaches and compare their in-sample fit and out-of-sample prediction quality with the 

predictions made in the survey. Additionally, we employ a deep learning LSTM network. The LSTM shows superior in-sample 

fit and outperforms the time series models in the out-of-sample forecasting. However, compared to the mean forecast of the 

qualified economists, the quality of these model-based predictions is lower. This implies that exogenous factors play a major 

role for nonfarm payroll forecasts. Additionally, we show that smart consensus forecasts that base on the selection of the 

best performing economists identified with the methodology of D’Agostino et al. (2012) outperform all other forecasts. This 

outperformance is statistically significant. These findings are in line with Brown et al. (2008) . This rejects the hypothesis of

equal predictive ability and we find stronger evidence against this hypothesis for economists with higher participation rates. 

This relates to Clements (2021) . 

We analyze the impact of COVID19 on the U.S. labor market and highlight the abnormal character of these job mar-

ket figures, which is shown for temporal shocks in the error decomposition. It is evident that the survey participants, on

average, underestimate the immediate impact of COVID but also under-predict the following recovery. However, this is a 

known prediction pattern; job losses are under-predicted at first while later on, the recovery is also predicted to be lower

than realized, which had been observed for earlier labor shocks already. Additionally, we find that extreme outliers in the 

difference between expected and realized NFP changes in April, May, and June have adverse effects on the estimation of 

idiosyncratic bias of economists and temporal shocks within the Davies and Lahiri (1995) framework. The shock estimates 

are negatively biased due to the impact of COVID19. Including COVID19 in addressing the hypothesis of equal predicting 

ability across different groups of economists further strengthens the evidence for rejecting this hypothesis, which is robust 

to the choice of release and seasonally-adjustment. To further study the effects of COVID19 on information rigidities and the 

behavior of survey participants, private nonfarm payroll changes could be focused on due to the asymmetrical impact on 

small-sized firms and the service industry. It is left for further research if the predictions made for the private NFP changes

draw a better picture of the actual decline and recovery. 

The findings presented herein are of relevance as it is suggested that NFP consensus or survey forecasts suffer in precision

when forecasters are participating less frequently. We further show that autoregressive models, unlike for other macroeco- 

nomic variables, show insufficient prediction quality. A deep learning network yields superior in-sample fit but does not 

outperform the consensus forecast in an out-of-sample exercise. Future research could address how a combination approach 

of time series models and consensus forecasts, as carried out in Ang et al. (2007) for example, benefits the prediction of

nonfarm payroll changes. Having shown that the LSTM network yields superior fit but lower prediction performance than 

the consensus forecast, the LSTM should be extended in the number of features aiming for an improvement of prediction 

quality. In view of the effects of nonfarm payroll announcements on financial markets, additional attention could be dedi- 

cated to the shocks identified in the Davies and Lahiri (1995) framework to further dissect nonfarm payroll news impact. 
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Appendix A 

A1. Data cleaning 

As mentioned above, the raw panel of monthly predictions contains k ∗ = 239 submitting accounts with a large number

of entries and exits of submitting economists. In some instances, these submitting economists change within a submitting 

entity such as a bank or financial firm or rotate out and back in at a later point. 

For example, the QES entries of Morgan Stanley originate from four individuals who report their estimates. The raw data 

set contains these submission as four separate, non-overlapping series. Hence, the raw data is processed to account for 

changes in the submitting account of an institution and merges these responses, if they are non-overlapping. This reduces 

spurious non-sampling bias due to differing economist identifiers of one submitting institution. However, this might also af- 

fect how individual bias is calculated as merging these non-overlapping predictions assumes that the forecasters are prone 

to the same forecasting bias within the Davies and Lahiri (1995) framework. On the other hand, we argue that the informa-

tion set available to the forecaster should be very similar, if not identical, as they stem from the same firm. Note that we

do not merge predictions if the affiliation is identical but the location or branch differs. This, for example, is the case with

some submission by economists of different branches of UBS or JPMorgan, among others. 

We further restrict the sample to submitting economists with at least three consecutive submissions to the survey. The 

merging as outlined above and this threshold reduces the panel to k = 181 participants in the QES. During the analysis, we

further restrict this sample to economists with at least 10, 50, and 100 survey submissions and compare the results across

these different groups. 
282



T. Klein Journal of Economic Behavior and Organization 194 (2022) 264–286

 

Appendix B 

B1. Additional figures 

Fig. B.1. Shock estimates λt based on the first release (orange line) and on the most recent, seasonally adjusted release (blue line). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Appendix C 

C1. Additional tables 

Table C.10

In-sample RMSE clusters of all economists with more than 50 or more than 100 predictions based on a k -means algorithm with k = 5 number of clusters.

The number of economists per cluster is denoted by n C(i ) . The cluster boundaries are given as interval [ C(i )] with cluster centroid C (i ) .

Cluster

Loss | T ∗
i 
| 1 2 3 4 5

∑ 

i n C(i )

RMSE ≥ 50 n C(i ) 18 37 32 12 2 101

[ C(i )] [57.5,64.3] [64.6,69.2] [69.4,74.4] [74.8,80.0] [91.7,99.2]

C (i ) 62.1 67.1 71.7 77.4 95.4

≥ 100 n C(i ) 10 14 17 17 5 63

[ C(i )] [61 . 7 , 64 . 6] [64 . 9 , 67 . 3] [67 . 7 , 70 . 4] [71 . 1 , 75 . 0] [76 . 3 , 79 . 2]

C (i ) 63.3 66.5 68.7 72.7 77.9

Table C.11

Distribution of the forecasting performance relative to the third publication of NFP changes for the in-sample period from December 2007 to February

2020.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.4583 0.5610 0 . 6678 0 . 7747 0.8942 1 . 3791 2.8301

CI ( 0 . 0849 ; 0 . 4261 ) ( 0 . 5043 ; 0 . 5947 ) ( 0 . 6946 ; 0 . 7337 ) ( 0 . 7865 ; 0 . 8224 ) ( 0 . 8849 ; 0 . 9428 ) ( 1 . 1162 ; 1 . 3475 ) ( 1 . 5471 ; 4 . 3220 ) 

Panel B: Economists with more than 10 predictions

QES 0.4583 0.5751 0 . 6819 0 . 7861 0.8930 1 . 3542 2 . 8301

CI ( 0 . 3945 ; 0 . 5425 ) ( 0 . 5681 ; 0 . 6299 ) ( 0 . 7081 ; 0 . 7438 ) ( 0 . 7895 ; 0 . 8252 ) ( 0 . 8790 ; 0 . 9311 ) ( 1 . 0684 ; 1 . 2423 ) ( 1 . 3230 ; 2 . 3658 ) 

Panel C: Economists with more than 50 predictions

QES 0.5693 0 . 5927 0 . 6779 0 . 7659 0.8732 1 . 1353 2 . 4819

CI ( 0 . 5061 ; 0 . 6128 ) ( 0 . 6115 ; 0 . 6680 ) ( 0 . 7163 ; 0 . 7523 ) ( 0 . 7815 ; 0 . 8171 ) ( 0 . 8495 ; 0 . 8957 ) ( 0 . 9638 ; 1 . 0739 ) ( 1 . 0661 ; 1 . 3973 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 5693 0 . 6104 0 . 6926 0 . 7659 0.8669 1 . 1217 1 . 3509

CI ( 0 . 5919 ; 0 . 6755 ) ( 0 . 6537 ; 0 . 7034 ) ( 0 . 7243 ; 0 . 7615 ) ( 0 . 7730 ; 0 . 8104 ) ( 0 . 8237 ; 0 . 8699 ) ( 0 . 9005 ; 0 . 9875 ) ( 0 . 9463 ; 1 . 1397 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in

parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .
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Table C.12

Distribution of the forecasting performance relative to the third publication of NFP changes for the in-sample period from December 2007 to February

2020, restricted to the best 80% of forecasters.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0 . 4583 0.5505 0.6518 0.7433 0.8152 0 . 9007 0 . 9265

CI ( 0 . 0957 ; 0 . 4336 ) ( 0 . 4798 ; 0 . 5717 ) ( 0 . 6500 ; 0 . 6843 ) ( 0 . 7245 ; 0 . 7542 ) ( 0 . 7994 ; 0 . 8440 ) ( 0 . 9712 ; 1 . 1529 ) ( 1 . 2333 ; 2 . 9347 ) 

Panel A: Economists with more than 10 predictions

QES 0.4583 0 . 5724 0.6650 0.7509 0.8232 0 . 8990 0 . 9265

CI ( 0 . 4066 ; 0 . 5356 ) ( 0 . 5456 ; 0 . 6020 ) ( 0 . 6616 ; 0 . 6925 ) ( 0 . 7276 ; 0 . 7558 ) ( 0 . 7946 ; 0 . 8356 ) ( 0 . 9356 ; 1 . 0666 ) ( 1 . 0930 ; 1 . 6948 ) 

Panel A: Economists with more than 50 predictions

QES 0.5693 0.5833 0 . 6628 0.7494 0.8050 0.8787 0 . 8929

CI ( 0 . 4912 ; 0 . 5843 ) ( 0 . 5737 ; 0 . 6240 ) ( 0 . 6636 ; 0 . 6948 ) ( 0 . 7178 ; 0 . 7470 ) ( 0 . 7699 ; 0 . 8062 ) ( 0 . 8605 ; 0 . 9586 ) ( 0 . 9401 ; 1 . 2036 ) 

Panel A: Economists with more than 100 predictions

QES 0 . 5693 0 . 6081 0 . 6810 0.7510 0.7959 0 . 8723 0.8887

CI ( 0 . 5728 ; 0 . 6488 ) ( 0 . 6223 ; 0 . 6702 ) ( 0 . 6835 ; 0 . 7163 ) ( 0 . 7234 ; 0 . 7551 ) ( 0 . 7621 ; 0 . 8001 ) ( 0 . 8165 ; 0 . 8867 ) ( 0 . 8467 ; 0 . 9836 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

Table C.13

Distribution of the forecasting performance relative to the third publication of NFP changes for the in-sample period from December 2007 to December

2020.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.4583 0.5625 0 . 6855 0 . 7785 0.9049 1 . 4149 2.8301

CI ( 0 . 0961 ; 0 . 4476 ) ( 0 . 5237 ; 0 . 6142 ) ( 0 . 7074 ; 0 . 7451 ) ( 0 . 7953 ; 0 . 8308 ) ( 0 . 8916 ; 0 . 9483 ) ( 1 . 1193 ; 1 . 3570 ) ( 1 . 5480 ; 4 . 1882 ) 

Panel B: Economists with more than 10 predictions

QES 0.4583 0.6034 0 . 6933 0 . 7827 0.9075 1 . 3934 2 . 8301

CI ( 0 . 3910 ; 0 . 5600 ) ( 0 . 5850 ; 0 . 6465 ) ( 0 . 7183 ; 0 . 7541 ) ( 0 . 7973 ; 0 . 8330 ) ( 0 . 8856 ; 0 . 9395 ) ( 1 . 0734 ; 1 . 2502 ) ( 1 . 3376 ; 2 . 6176 ) 

Panel C: Economists with more than 50 predictions

QES 0.5626 0 . 6097 0 . 6902 0 . 7693 0.8681 1 . 1764 2 . 4561

CI ( 0 . 5112 ; 0 . 6241 ) ( 0 . 6218 ; 0 . 6786 ) ( 0 . 7243 ; 0 . 7600 ) ( 0 . 7882 ; 0 . 8232 ) ( 0 . 8546 ; 0 . 9014 ) ( 0 . 9684 ; 1 . 0781 ) ( 1 . 0695 ; 1 . 3987 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 5626 0 . 6080 0 . 6925 0 . 7693 0.8674 1 . 1467 1 . 4240

CI ( 0 . 5801 ; 0 . 6724 ) ( 0 . 6515 ; 0 . 7038 ) ( 0 . 7263 ; 0 . 7641 ) ( 0 . 7767 ; 0 . 8139 ) ( 0 . 8286 ; 0 . 8754 ) ( 0 . 9070 ; 0 . 9969 ) ( 0 . 9555 ; 1 . 1476 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

Table C.14

Distribution of the forecasting performance relative to the seasonally-adjusted, most recent publication of NFP changes for the in-sample period from

December 2007 to December 2020.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.3442 0.6140 0 . 7383 0 . 8366 0.9647 1 . 4565 3.2762

CI ( 0 . 2273 ; 0 . 5362 ) ( 0 . 5952 ; 0 . 6804 ) ( 0 . 7651 ; 0 . 80 0 0 ) ( 0 . 8439 ; 0 . 8776 ) ( 0 . 9295 ; 0 . 9801 ) ( 1 . 1162 ; 1 . 3024 ) ( 1 . 4467 ; 3 . 4516 ) 

Panel B: Economists with more than 10 predictions

QES 0.4904 0 . 6335 0.7408 0 . 8348 0.9541 1 . 4700 3 . 2762

CI ( 0 . 3961 ; 0 . 6040 ) ( 0 . 6380 ; 0 . 7048 ) ( 0 . 7723 ; 0 . 8059 ) ( 0 . 8445 ; 0 . 8778 ) ( 0 . 9232 ; 0 . 9707 ) ( 1 . 0788 ; 1 . 2228 ) ( 1 . 2993 ; 2 . 3497 ) 

Panel C: Economists with more than 50 predictions

QES 0.5938 0 . 6485 0 . 7478 0 . 8281 0.9137 1 . 1405 2 . 6088

CI ( 0 . 5710 ; 0 . 6892 ) ( 0 . 6874 ; 0 . 7390 ) ( 0 . 7778 ; 0 . 8106 ) ( 0 . 8347 ; 0 . 8682 ) ( 0 . 8949 ; 0 . 9376 ) ( 0 . 9913 ; 1 . 0851 ) ( 1 . 0781 ; 1 . 3496 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 5938 0 . 6532 0 . 7407 0.8205 0.9054 1 . 0838 1 . 3816

CI ( 0 . 6385 ; 0 . 7248 ) ( 0 . 7037 ; 0 . 7531 ) ( 0 . 7729 ; 0 . 8074 ) ( 0 . 8188 ; 0 . 8536 ) ( 0 . 8652 ; 0 . 9070 ) ( 0 . 9344 ; 1 . 0126 ) ( 0 . 9771 ; 1 . 1365 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .
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Table C.15

Distribution of the forecasting performance relative to the seasonally-adjusted, most recent publication of NFP changes for the in-sample period from

December 2007 to December 2020, restricted to the best 80% of forecasters.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0.3442 0.5944 0 . 7220 0.7936 0.8654 0 . 9731 1 . 0020

CI ( 0 . 2833 ; 0 . 5498 ) ( 0 . 5813 ; 0 . 6613 ) ( 0 . 7249 ; 0 . 7550 ) ( 0 . 7869 ; 0 . 8153 ) ( 0 . 8527 ; 0 . 8945 ) ( 0 . 9993 ; 1 . 1488 ) ( 1 . 2060 ; 2 . 6355 ) 

Panel B: Economists with more than 10 predictions

QES 0.4904 0.6265 0 . 7252 0.7945 0.8658 0.9728 0 . 9954

CI ( 0 . 4284 ; 0 . 60 0 0 ) ( 0 . 6151 ; 0 . 6761 ) ( 0 . 7278 ; 0 . 7564 ) ( 0 . 7849 ; 0 . 8124 ) ( 0 . 8450 ; 0 . 8829 ) ( 0 . 9659 ; 1 . 0847 ) ( 1 . 1070 ; 1 . 7066 ) 

Panel C: Economists with more than 50 predictions

QES 0.5938 0 . 6455 0 . 7252 0.7934 0.8475 0.9236 0.9572

CI ( 0 . 5529 ; 0 . 6579 ) ( 0 . 6479 ; 0 . 6971 ) ( 0 . 7276 ; 0 . 7569 ) ( 0 . 7741 ; 0 . 8015 ) ( 0 . 8201 ; 0 . 8541 ) ( 0 . 8931 ; 0 . 9689 ) ( 0 . 9505 ; 1 . 1540 ) 

Panel D: Economists with more than 100 predictions

QES 0 . 5938 0 . 6387 0 . 7250 0.7885 0 . 8447 0.9124 0.9340

CI ( 0 . 6207 ; 0 . 6976 ) ( 0 . 6723 ; 0 . 7188 ) ( 0 . 7322 ; 0 . 7629 ) ( 0 . 7696 ; 0 . 8001 ) ( 0 . 8071 ; 0 . 8426 ) ( 0 . 8594 ; 0 . 9241 ) ( 0 . 8875 ; 1 . 0086 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .

Table C.16

Distribution of the forecasting performance relative to the third publication of NFP changes for the in-sample period from December 2007 to December

2020, restricted to the best 80% of forecasters.

Best 5% 25% 50% 75% 95% Worst

Panel A: All Economists

QES 0 . 4583 0.5577 0 . 6606 0.7433 0.8283 0 . 9164 0 . 9487

CI ( 0 . 1081 ; 0 . 4508 ) ( 0 . 5001 ; 0 . 5904 ) ( 0 . 6621 ; 0 . 6955 ) ( 0 . 7329 ; 0 . 7626 ) ( 0 . 8061 ; 0 . 8539 ) ( 0 . 9833 ; 1 . 1746 ) ( 1 . 2618 ; 2 . 9553 ) 

Panel B: Economists with more than 10 predictions

QES 0.4583 0.5803 0.6745 0.7572 0.8334 0 . 9227 0 . 9570

CI ( 0 . 4004 ; 0 . 5520 ) ( 0 . 5614 ; 0 . 6185 ) ( 0 . 6731 ; 0 . 7036 ) ( 0 . 7359 ; 0 . 7645 ) ( 0 . 8028 ; 0 . 84 4 4 ) ( 0 . 9455 ; 1 . 0858 ) ( 1 . 1116 ; 1 . 7774 ) 

Panel C: Economists with more than 50 predictions

QES 0.5626 0.6080 0.6727 0.7408 0.8058 0.8735 0 . 8966

CI ( 0 . 4942 ; 0 . 5933 ) ( 0 . 5821 ; 0 . 6329 ) ( 0 . 6702 ; 0 . 7010 ) ( 0 . 7231 ; 0 . 7521 ) ( 0 . 7747 ; 0 . 8114 ) ( 0 . 8677 ; 0 . 9641 ) ( 0 . 9473 ; 1 . 2023 ) 

Panel D: Economists with more than 100 predictions

QES 0.5626 0 . 6080 0 . 6711 0.7426 0.7960 0.8678 0.8749

CI ( 0 . 5597 ; 0 . 6418 ) ( 0 . 6169 ; 0 . 6653 ) ( 0 . 6811 ; 0 . 7137 ) ( 0 . 7216 ; 0 . 7535 ) ( 0 . 7610 ; 0 . 7990 ) ( 0 . 8176 ; 0 . 8884 ) ( 0 . 8486 ; 0 . 9884 ) 

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012) . Numbers in paren- 

theses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio and Efron (1996) .
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