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Abstract—Bipolar disorder is a mental health disorder that
causes mood swings that range from depression to mania. Clinical
diagnosis of bipolar disorder is based on patient interviews and
reports obtained from the relatives of the patients. Subsequently,
the diagnosis depends on the experience of the expert, and
there is co-morbidity with other mental disorders. Automated
processing in the diagnosis of bipolar disorder can help providing
quantitative indicators, and allow easier observations of the
patients for longer periods. In this paper, we create a multimodal
decision system for three level mania classification based on
recordings of the patients in acoustic, linguistic, and visual
modalities. The system is evaluated on the Turkish Bipolar
Disorder corpus we have recently introduced to the scientific
community. Comprehensive analysis of unimodal and multimodal
systems, as well as fusion techniques, are performed. Using
acoustic, linguistic, and visual features in a multimodal fusion
system, we achieved a 64.8% unweighted average recall score,
which advances the state-of-the-art performance on this dataset.

Index Terms—Affective disorders, bipolar disorder, multi-
modal fusion, mania level prediction

I. INTRODUCTION

ASSESSMENT of mental health disorders from behavioral
data using machine learning methods is a recently grow-

ing research area, with focused work including depression [1],
anxiety disorders [2] and bipolar disorder [3]. Unobtrusive
affective assessment makes it possible to observe multimodal
responses during structured or semi-structured observation
sessions, to derive indicators and deviations from behavior, or
to observe subtle changes over time [3], [4]. While, fully au-
tomated diagnosis requires the integration of a comprehensive
set of indicators and detailed patient history, automatic analysis
of behavior can provide clinicians with useful quantitative
measurement and monitoring tools [5].

Bipolar disorder (BD) is a mental health condition that
causes extreme mood swings from elevated (mania, hypo-
mania) to diminished state (depression), as well as mixed
episodes, where depression and manic symptoms occur to-
gether. Its diagnosis is performed through a set of medical
examinations administered by the psychiatrist, but may require
lengthy observations of the patient as there is no comprehen-
sive test [6]. There is a lot of co-morbidity with other mental
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disorders including, but not limited to, any anxiety disorder,
conduct disorder, and substance use disorder [6]. The disease
affects 2% of the population, sub-threshold forms (recurrent
hypomania episodes without major depressive episodes) af-
fect an additional 2%, and together, the lifetime prevalence
estimates are 4.4% [7]. It is ranked as one of the top ten
diseases of disability-adjusted life year indicator among young
adults [8], and as the 17th leading source of disability among
all diseases worldwide [9].

Diagnosis of mental health disorders rely on medical ex-
aminations administered by psychiatrists and reports from
patients and their relatives or friends. But there is a need
for more systematic and objective diagnosis methods, for
remote treatment and diagnosis approaches assisted using
automated methods. It is possible to collect behavioral data
from people during their everyday lives [10], which creates
an opportunity to create tools to monitor the symptoms of
the patients for longer periods, screen patients before they see
the psychiatrists, assist clinicians in the diagnosis, and capture
patient behaviors in situations where they cannot act or hide
the symptoms.

Different types of bipolar disorder are characterized by
changes in the patient’s mood, energy, and activity levels.
The patient experiences periods of intense emotion and un-
characteristic behaviors, called mood episodes, which can be
manic (high arousal and valence) or depressive (low arousal
and valence). Manic episodes, the focus of this paper, include
elated, erratic, charged behaviors. While a loss of appetite or
decreased need of sleep is difficult to judge automatically from
multimedia recordings, traces of elation and irritability, fast
and incoherent thought, feelings of grandeur and recklessness
can be gleaned from affective language and behavioral cues.
Hypomania is a less severe form of mania, and remission is
the period when the behavior is returning to normal. Patients
admitted to the hospital with manic episodes are medicated,
closely followed, and discharged only after entering the remis-
sion stage. In this paper, we work with data collected from
such patients encompassing manic, hypomanic, and remission
stages.

A gold standard tool used to rate the severity of the
manic episodes of a patient is the Young Mania Rating Scale
(YMRS) [11] (see Section. IV-D2). During the interviews,
psychiatrists observe and rate the patient’s symptoms via
eleven indicators. Using a structured interview, it is possible
to observe some of these from speech patterns, body or facial
movements, and from the content of what was spoken during
the interview.

In this work, we propose a multimodal machine learning
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system that uses information from acoustic, linguistic, and
visual modalities to classify the bipolar patients into remission,
mania and hypomania classes. Our aim is to investigate
to what extent automatic analysis approaches can provide
the psychiatrists with quantitative indicators to help in their
diagnosis. Despite recently increasing interest [12], [13], there
are very limited publicly available resources in this area. We
evaluate our proposed multimodal approach using the Turkish
Audio-Visual Bipolar Disorder corpus that we have recently
collected and made available to the research community [14],
[3], and push the state-of-the-art performance achieved on the
corpus so far. We discuss our results extensively in the light
of our quantitative findings, provide insights and point out to
challenges in this problem.

The rest of the paper is organized as follows. Section II dis-
cusses the previous work on bipolar disorder and related men-
tal conditions, including Section II-B on the Turkish Audio-
Visual Bipolar Disorder corpus used in our study. Section III
explains the features used for each modality, the preprocessing
methods, classification algorithms, and the modality fusion
approach used in our study. Section IV presents the results
for uni- and multimodal experiments. We discuss our findings
in Section V and provide some final remarks.

II. RELATED WORK

In this section, we first briefly summarize the main findings
in the related area of multimodal depression analysis. Then
we describe our dataset, before moving to a more technical
exposition of specific works on BD estimation.

A. Depression analysis

Research on depression analysis has shown that multimodal
fusion of features in various levels increase the performance
of single modalities [4], [15]. Fusion of textual, acoustic and
visual features extracted from the clinical patient interviews
outperforms unimodal models [15], [16], [17]. Recently, using
a feature selection framework, F0, HNR, formants, and MFCC
for the speech, and left-right eye movement, gaze direction
and yaw head movement for visual modality are shown to be
the most distinctive features for depression analysis [1]. These
are in line with the former research showing that stillness of
eyes [18] and low acoustic variability are important indicators
of depression [4]. Additionally, lexical content of what people
say during interviews is also useful in the detection of depres-
sion [19], [20]. Using only audio and textual information in
a multimodal system is useful when there is no visual data,
such as during phone call conversations [21], [15].

While low energy and acoustic / visual variability are
indicators of a higher level of depression, BD patients show
an inverse pattern during mania episodes. Higher bodily and
acoustic energy, higher variability and lack of focus in the
spoken content are correlated with mania levels [6].

B. The Turkish Audio-Visual Bipolar Disorder (BD) Corpus

In this paper, we use the Turkish Audio-Visual Bipolar
Disorder Corpus [14] to report experimental results. Before

discussing the related work performed on this corpus, we
provide some details about the data. In our experiments,
we have adhered to the 2018 AVEC Bipolar Disorder and
Cross-cultural Affect Recognition Competition [3] protocol to
ensure comparability of results with the literature. The aim
of the AVEC competition series is developing and comparing
machine learning models using audio and visual components
on various affective computing problems. Participants were
encouraged to achieve the highest performance, considering
the baseline performance provided by the organizers. The BD
corpus was used in the 2018 AVEC challenge for the first time,
and only a part of it was opened for the challenge.

The original BD corpus contains video clips of 46 bipolar
disorder patients and 49 healthy controls collected at the
Istanbul Health Sciences University, Erenkoy Mental Health
Research and Training Hospital1. Mania level of the patients
is evaluated on 0th, 3rd, 7th and 28th days of the hospi-
talization and after discharge on the 3rd month. On those
days, psychiatrists performed an interview with the patients,
asking the same questions each time, and taking audiovisual
recordings of the sessions. Annotation was done based on the
Young Mania Rating Scale (YMRS) score [11], which is a
continuous clinical interview assessment scale used for rating
the severity of manic episodes of a patient. Scores range from
0 to 60, where higher scores represent severe mania. In the BD
corpus, bipolar patients are grouped into three ordinal classes
(remission, hypomania, and mania, respectively) based on their
session-wise YMRS score, as described in [14].

During recordings, patients were asked to perform seven
tasks, designed to arouse different emotions in the patients.
The first three tasks can be considered as negative emotion
eliciting tasks, the subsequent two tasks are neutral, and
the two final tasks are positive emotion eliciting tasks. The
performed tasks are 1) explaining the reason for coming to
the hospital, 2) describing van Gogh’s Depression painting,
3) describing a sad memory, 4) counting from one to thirty,
5) counting from one to thirty faster, 6) describing Dengel’s
Home Sweet Home painting and 7) describing a happy mem-
ory. The paintings used in the study are shown in Figure 1.

Fig. 1. Van Gogh’s Depression (left), Dengel’s Home Sweet Home (right)

Clips were recorded in a room where only the partici-
pant and the psychiatrist were present. The participants were
recorded with a camera while performing tasks. They read
the descriptions of the tasks they were asked to perform from

1Please see [14] for patient sociodemographics, clinical characteristics, and
exclusion criteria.
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the computer screen. After completing a task, the participants
pushed a button and a description of the next task appeared
on the screen, while a ‘knock’ sound was played to mark the
beginning of a new task. This sound helps to split tasks if
one wants to use the tasks separately for classification. Our
preliminary experiments have shown that task-based analysis
results in too small data partitions for training, and does not
result in higher overall accuracy [22], since some negative-
emotion eliciting tasks are skipped by a number of patients.

In the AVEC 2018 Challenge, only data from the bipolar
patients are used for a three-class (R: remission, H: hypoma-
nia, M: mania) classification. The healthy controls have visual
properties that may help in their identification (e.g. clothing
colors for doctors), and subsequently, they are not used in the
AVEC Challenge or in this paper. In the competition, there
were 104 (R: 25, H: 38, M:41), 60 (R: 18, H: 21, M:21), and
54 (18 each) clips in the training, development, and test sets,
respectively. As it is the case with other mental-healthcare
datasets, the number of session-wise annotated samples is
small, which may lead to overfitting, and here is a mild data
imbalance that can cause bias in favor of the majority class.

C. Multimodal supervised learning for mania estimation

The first comprehensive set of investigations into the exten-
sion of multimodal methods to the analysis of BD started with
the 2018 Audio/Visual Emotion Challenge (AVEC) [3], which
introduced the Turkish BD corpus described in the previous
section to the larger affective computing community in form
of a challenge. Several groups have worked on this corpus
within the AVEC Challenge [23], [24], [25], [26], [27], [28],
[31]. Table I summarizes the major works reporting results
on the BD corpus to date. In this section, we summarize the
feature extraction and machine learning approaches that were
used for the mania level estimation problem. We caution the
reader that the reported accuracies in these works (including
the present paper) are not clinical results, but a good indication
of the possibilities of automatic analysis approaches.

As the classification of manic episodes is correlated with
increased arousal levels, audio-visual detection of arousal is a
good place to start. In [23] arousal-related features extracted
from speech and from visual upper body motion of patients
were fused. Another important source of information is the
dynamics of affective cues. Syed et al. [25] proposed to
use turbulence features that represent the sudden changes
in feature contours of both audio and visual modalities. In
the extraction of audio features, they used a Fisher vector
encoding with a feature set extracted via the openSMILE
tool [32]. They have used a standard feature set introduced
for the Interspeech Computational Paralinguistics Challenge
(ComParE). Other groups (e.g. [24]) have used the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) for
acoustic feature extraction [33].

In [25], the classification is performed using the Greedy
Ensemble of Weighted ELMs model [34]. Because of the small
number of samples, deep learning is not suitable for end-to-end
classification, but transfer learning can be adopted for feature
extraction. Using highly complex classifiers results in poor

generalization due to the limits of the training set. In [24],
Xing et al. used linguistic features in addition to visual and
audio based features, and created 5,395 dimensional features
by the early fusion of these three modalities. Using eGeMAPS
features, Mel frequency cepstrum coefficients (MFCC), facial
action units, and gaze features, they achieved the highest
Unweighted Average Recall (UAR) on the validation set
among the AVEC Challenge participants. However, the great
difference between the UAR scores on the development and
test sets (i.e. 86.7% vs 57.4%) shows that the proposed
model cannot generalize well to the sequestered test set data.
In [31], an Inception module was combined with an LSTM
network, and L1 regularization to deal with overlearning. 16-
dimensional MFCC features are extracted from the speech
files. Using only audio features, 65.1% UAR is achieved on
the validation set. However, no score was reported for the test
set. In [26], LSTM and Bi-LSTM models were trained on
the challenge baseline features including MFCCs, eGeMAPS,
Bag-of-Acoustic-Words [35], DeepSpectrum2, Facial Action
Units (FAU) and Bag-of-Visual-Words (BoVW). Their best
result on the test set was achieved with the Bi-LSTM network
trained on the concatenation of all the features.

AbaeiKoupei and Al Osman reach the test set baseline by
only using visual features extracted from a pre-trained and
fine-tuned deep neural network model [29], achieving 60.6%
and 57.4% UAR on development and test sets, respectively,
which shows that the model does not overfit. Capsule Neural
Networks (CapsNet) [36] were used in [27], on Mel-frequency
spectrograms extracted from small segments of raw audio files.
In [28], audio clips were segmented into chunks to increase
the dataset size. However, each clip has only one label and
after segmenting the clip, each chunk becomes weakly labeled.
This problem was solved using multi-instance learning, where
training was performed with a bag of instances, instead of
one single feature vector. Using ensembles of DNNs, 61.6%
UAR on the development, and 57.4% UAR on the test set was
achieved using the audio modality.

The works mentioned so far used audio and video features,
but the text transcriptions of the speech of the patients during
the tasks are also informative, particularly in a multimodal
context. For instance, when a patient describes a sad memory,
e.g. the death of a loved one, in a cheerful voice, this presents
a strong case for elevated mania levels. Zhang et al. proposed
fixed length, session-level paragraph-vector representations for
the text modality [37]. They showed that early fusion on audio-
visual and textual representation vectors was beneficial.

The highest test set score achieved on the BD corpus
so far was 59.3% UAR [30], using eGeMAPS and MFCC
acoustic features, as well as linguistic features, such as the
number of words, number of types, letters per word, number
of paragraphs, number of sentences, and number of words per
sentence. Additionally, sentiment information was extracted
using the SEANCE tool [38]. In the next section, we present
a tri-modal system that advances the state of the art in this
problem.

2https://github.com/DeepSpectrum/DeepSpectrum
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TABLE I
SUMMARY OF THE WORKS THAT USE BD DATASET. (A: AUDIO, V:VISUAL, T:TEXTUAL). PLEASE SEE THE TEXT FOR THE USED ABBREVIATIONS.

Paper Modalities Features Classifier

Ringeval et al. [3] (baseline) A,V eGeMAPS+FAUs SVMs
Yang et al. [23] A,V Arousal and upper body posture features Multistream
Xing et al. [24] A,V,T eGeMAPS+MFCC+Timing+FAUs+Emotion+Eyesight+Body movement Hierarchical recall model

+features from various NLP tools including SiNLP
Syed et al. [25] A,V FAUs+gaze+pose GEWELMs
Ebrahim et al. [26] A,V MFCC+eGeMAPS+BoAW+DeepSpectrum+FAUs+BoVW Bi-LSTM
Amiriparian et al. [27] A Mel-Spectogram CapsNet
Ren et al. [28] A MFCC Multi-instance learning
AbaeiKoupaei, Al Osman [29] V Facial Features LSTM
AbaeiKoupaei, Al Osman [30] A,T MFCC+eGeMAPS+SiNLP+SEANCE Stacked Ensemble Model

III. METHODOLOGY

Figure 2 illustrates the proposed multimodal framework for
the classification of the patients into one of remission, hypo-
mania, and mania classes, based on a short video interview
where the patient performs several tasks, as described in Sec-
tion II-B. The components of the pipeline are summarized in
the following subsections. Besides leveraging multimodality,
our goal was to reach a minimal set of modalities and features
that provide the highest predictive performance. Thus, we
conducted comparative unimodal experiments to choose the
optimal sets of features in each modality.

A. Feature Extraction

1) Acoustic Feature Extraction: Acoustic cues are used
for the diagnosis of bipolar disorder by psychiatrists. Rapid,
pressured speech and speaking too much (amount of speech)
are common indicators of manic episodes. Subsequently, we
perform acoustic analysis of the patient interviews.

For acoustic feature extraction, we use the openSMILE
feature extraction toolkit [32], which provides many built-in
configuration files that extract the baseline audio features from
INTERSPEECH and AVEC challenges, and some parameter
sets proposed for voice research and affective computing
studies on audio. In our experiments, we use eGeMAPS [33]
(Extended Geneva Minimalistic Acoustic Parameters Set),
which is a parsimonious set of audio features, chosen for their
ability to represent affective physiological changes in voice
production. 23 eGeMAPS low level descriptors (LLD) are
summarized using the functionals from the original eGeMAPS
configuration [33], and this set is enriched by 10 functionals
we have added [14] (see Table II for the entire set). Addition-
ally, the baseline acoustic feature set from INTERSPEECH
2010 Paralinguistic Challenge (IS10) [39] is used, with 38
low-level descriptors and their temporal derivatives, indicating
paralinguistic activity.

2) Linguistic Feature Extraction: Clinicians assess the
presence of risk of suicide, risk of violence to persons or
property, risk-taking behavior, sexually inappropriate behavior,
substance abuse, patient’s ability to care for himself/herself,
etc., using the patient interview contents [40].

TABLE II
LIST OF STATISTICAL FUNCTIONALS APPLIED TO LLDS.

Functional Description

Mean Arithmetic mean
Std Standard deviation
Curvature Leading coefficient of the 2nd order polynomial fit to

LLD contour
Slope + offset Coeff. of the 1st order polynomial fit to LLD contour
Min Minimum value
Relative Min
Location

Location index of min value divided by the length of
LLD contour

Max Maximum value
Relative Max
Location

Location index of max value divided by the length of
LLD contour

ZCR Zero crossing rate of LLD contour normalized to [-1,1]

We use the Google Automatic Speech Recognition (ASR)
tool 3 to convert the interviews to text, and obtain one text
segment per task for each interview.

Transformer language embeddings (GPT-2 [41], BERT [42],
GPT-3 [43]) are the state-of-the-art natural language process-
ing (NLP) models in representing language features. How-
ever, these complex models show unreliable results on small
datasets. Consequently, we use three alternative feature sets
for the linguistic experiments, which are linguistic inquiry and
word count (LIWC) [44], term frequency-inverse document
frequency (TF-IDF), and polarity features.

LIWC is a text analysis tool that calculates the linguistic
or psychological categories of words where the categories
indicate social, cognitive, and affective processes. It extracts 93
features for an input text file. Before using LIWC, the Turkish
transcripts extracted from the patient clips are translated into
English via Google Translation engine4.

TF-IDF is a statistical measure that shows how much a
word is important in a document. They are used commonly
in NLP, information retrieval, and text mining tasks. As a
preprocessing step, stop words are removed using the NLTK
library [45], and stemming is applied using the Porter algo-
rithm [46]. After these steps, TF-IDF features are computed
over the set of uni-grams and bi-grams.

3https://cloud.google.com/speech-to-text
4https://cloud.google.com/translate
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Fig. 2. Pipeline of the multimodal system. For each unimodal system, different feature sets are used. The best performing feature sets are combined.

As polarity features, we use the outputs of three sentiment
analysis tools together, which are Natural Language Toolkit
Valence Aware Dictionary for sEntiment Reasoning (NLTK
Vader) [47], TextBlob [48] and Flair [49] due to their com-
plementary information and generalization performance on a
recent mood recognition challenge [50]. NLTK Vader uses a
sentiment lexicon together with grammatical rules for express-
ing polarity, but performs weakly on unseen words. Flair uses
a character-level LSTM network for sentiment analysis, with
good generalization to unseen words. The TextBlob library
returns a sentiment with polarity and subjectivity scores, where
subjectivity represents the amount of personal and factual
information in the sentence, which is a good feature for the
valence dimension. However, it does not consider negation in
sentences for the polarity score, which can be misleading.

Sentiment and subjectivity features obtained from these
three libraries are combined into a feature vector. Then each
feature is summarized with mean, standard deviation, max,
min, and sum functions.

3) Visual Feature Extraction: Clinicians gain significant
insight from visual cues and some items of YMRS can
be obtained from visual cues like increased motor activity-
energy, irritability, elevated mood, appearance, and disruptive-
aggressive behavior. Besides, the speech rate and the amount
can also be observed in the facial actions.

For the visual experiments, we use facial action units
(FAUs), as well as geometric features extracted from each face,
provided as baseline features in the AVEC challenge [3]. The
FAUs are based on the Facial Action Coding System (FACS),
which describes the movements of specific facial muscles [51].
Emotional expressions typically correspond to combinations of
various action units. In [3], intensities of 16 FAUs along with a
confidence score are extracted using the OpenFace toolkit [52].

The set of 23 geometric features we use are based on
our early work for video-based emotion recognition in un-
controlled conditions. They are extracted from detected and
aligned faces of the BD corpus and represent different geo-
metric aspects like distance, angle, and aspect ratio based on
facial landmarks (see [53] for a full list).

B. Preprocessing

The feature vectors extracted for each clip contain represen-
tations of auditory, visual, and textual signals with different
ranges and scales. Subsequently, feature standardization or
normalization needs to be performed before model training.

The features we used for the classification of the clips are
represented as two-dimensional matrices, where columns are
the functionals of the low level descriptors and each row
contains the feature vector of a clip. We experiment with both
row-level and column-level normalization. For the column-
level, standardization (z-normalization) brings each feature to
the same scale. For the row-level, we apply L2 normalization,
which effectively transforms a linear kernel into a cosine
similarity kernel.

C. Feature Selection

We use high-dimensional feature sets in our experiments.
Considering the sample size of the BD dataset, we considered
reducing the feature dimensionality with feature selection. We
tested the tree feature selection method [54], which is expected
to be robust against overfitting. In this approach, a random
forest [55] is trained, and features are ranked based on the
information gain for each feature. We report experimental
results with this approach, even though ultimately, it did not
yield improved test set results.

D. Classification using Extreme Learning Machines

Due to the difficulty of collecting data from bipolar patients,
the BD dataset has only 164 data points in total, and it is
crucial to pay attention to getting accurate predictions while
avoiding overfitting. The performance measure used here is
Unweighted Average Recall (UAR), which is the average of
recall performances across the classes (the same measure as
in the AVEC 2018 challenge [3]). This measure has a chance
level performance of 1/K for K-class classification.

In our experiments, we employ a Kernel Extreme Learning
Machine (Kernel ELM) classifer [56]. The initially introduced
Basic ELM is a simple and robust machine learning method
that contains a single hidden layer. Input weights are randomly
generated and they are not tuned. The weights between the
hidden layer and the output layer are analytically calculated by
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a pseudo inverse operation. While multi-layered deep learning
approaches are used in many problems, on such a small
dataset they will easily overfit, and simpler models should be
preferred.

In a single hidden layer ELM, the hidden layer output matrix
is H ∈ RN×h, the weight matrix between the hidden layer and
the output layer is β ∈ Rh×1 and the output layer matrix is
T ∈ RN×1, where N is the number of training samples and
h is the number of hidden layer nodes. The output weight
matrix β is calculated using least squares solution of Hβ = T
as β = H†T. H† represents the Moore-Penrose generalized
inverse [57], which minimizes L2 norms of both ‖Hβ−T‖ and
‖β‖. For increased generalization and robustness, the kernel
trick and a regularization coefficient C is used. The set of
weights is calculated as:

β =

(
I

C
+K

)−1
T, (1)

where I is an identity matrix, and K is a kernel (i.e. similarity
matrix) obtained from the training dataset. We use a radial
basis function (RBF) kernel K, as suggested in [58].

In weighted ELM [34], which is a variant that is used with
class imbalanced problems, we define a N × N diagonal
weight matrix W. Each diagonal element stores the multi-
plicative inverse of the number of training samples Ni of the
corresponding class i. Integrating W into the formula, β is
calculated as:

β =

(
I

C
+WK

)−1
WT. (2)

There is a trade-off between weighted and unweighted models,
where the former favors minority classes (better UAR), while
the latter favors majority classes (better accuracy). To reach
the best performance, we investigate a weighted decision level
fusion approach:

Pfusion = αPunweighted + (1− α)Pweighted, (3)

where P is an N×t matrix that contains the class probabilities
of each sample. α is a coefficient in [0, 1] range. The best
α is chosen according to the UAR score of Pfusion on the
development set.

E. Modality Fusion

The expert assesses patient’s speech patterns (e.g. rate,
amount of speech), visual appearance, gestures, motor activity,
as well as expressed sentiments and ideas, and the content
of speech during the interviews. All of these indicators are
informative, and instrumental in deciding the patient’s YMRS
score and to diagnose BD episodes. We investigate how
an automatic system can best extract indicators from each
modality, and how they complement each other by providing
context or including more discriminative information.

We firstly experiment with audio, speech, and text modali-
ties separately. Our experiments show that the audio modality
gives a better score overall, while the hypomania class is
not classified well. The linguistic modality generally gives
lower UAR than audio modality, but all three levels of mania

are classified with similar performance. For the multimodal
systems, we use the best performing unimodal models and
features.

First, we consider two late fusion methods, namely, majority
voting and weighted sum. Majority voting outputs the mostly
seen label (mode) for a sample, and uses the audio modality for
tie breaking. Weighted sum combines two or three modalities.
When fusing two modalities, the probability vectors from
each model are given as input and the final probabilities are
obtained as:

Pfusion = αPmodel1 + (1− α)Pmodel2 , (4)

where P is an N×t matrix that contains the class probabilities
of each sample, N is the number of samples and t is the
number of classes. α is a coefficient in the [0, 1] range,
optimized according to the UAR score obtained from Pfusion.
For the fusion of three modalities, we apply a variant of
Equation 4.

Pfusion =
K∑
k=1

αkPmodelk (5)

In Equation 5, the alpha values are the elements of the
vector drawn from a Dirichlet distribution. We sample 500
times randomly and find the values that maximize the UAR
of the final fusion model. A probability density function of
a Dirichlet distribution of order N > 2 with parameters
α1, ..., αn > 0 is

1

B(α)

N∏
i=1

x
(αi−1)
i , (6)

where B(α) is a normalizing factor given in terms of multi-
variate beta function, and xi ∈ (0, 1) and

∑N
i=1 xi = 1.

We also experiment with early (feature level) fusion meth-
ods. In our approach, the features from different modalities
are summarized via LLDs, concatenated and normalized into
a single feature vector before the classification.

We evaluated only a small number of models on the test
set to prevent overfitting. While selecting the fusion models
to test, we considered the Multimodal 1 (MM1) metric [59],
which measures the improvement in the final fusion model:

MM1 =
UARfusion −max(UAR1, UAR2, UAR3)

max(UAR1, UAR2, UAR3)
, (7)

where UARfusion is the UAR score of the fusion model,
UARi are the UAR scores of the unimodal models. While
calculating the MM1 score, we use 4-fold cross-validation
scores, since it gives more robust results. After getting the
test set results for the selected fusion models, we calculate
MM1 scores using test set UARs.

F. Shapley Additive Explanations

To further investigate the contribution of features for classi-
fication, we use the SHAP method [60], which aims to provide
an explanation to a particular prediction by means of additive
feature attributions based on cooperative game theory [61].
Given a model f and input feature vector x with D features,
SHAP assigns each feature i an importance weight φi(f, x)
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measuring its marginal contribution to the model output, where
marginal contribution is calculated as a (weighted) average
over a range of ‘observed’ feature subsets:

φi(f, x) =
∑
z′⊆x′

|z′|(D − |z′| − 1)!

D!
(fx(z

′)− fx(z′ \ i)), (8)

where x′ ∈ {0, 1}D is the simplified feature representation,
|z′| is the number of non-zero entries in z′ and z′ ⊆ x′

represents all z′ vectors where the non-zero entries are a
subset of the non-zero entries in x′ [60]. Observing means
that a subset of features are seen by the model with their
original values, while others are missing (represented with
a 0 in z′). Since not all models are inherently capable of
handling missing values, the authors propose an approxima-
tion to missing values, assuming model linearity and feature
independence [60].

IV. EXPERIMENTS AND RESULTS

We report both unimodal and multimodal experimental
results in this section. In all tables, we denote tree-based
feature selection with a star.

A. Unimodal Experiments

1) Audio Classification: For the clip level audio classifi-
cation, we used eGeMAPS and IS10 feature sets, which are
extracted using the openSMILE feature extraction toolkit [32].
The LLD features are summarized using 10 functionals pro-
posed in [14]. We also used original eGeMAPS feature
set [33]. Z-normalization is applied to each feature separately.
After that, L2 normalization is applied to the feature vector
of each clip. The decision level fusion of weighted and
unweighted RBF Kernel ELMs is used for the classification. In
this setup, the best result is achieved on eGeMAPS10 features
with 63.7% UAR on the development set (see Table III).

TABLE III
UAR SCORES FOR SINGLE MODALITY EXPERIMENTS.

Modality Features Dimension Dev. 4F-CV

IS10 760 55.2% 56.8%
Audio eGeMAPS10 230 63.7% 53.1%

eGeMAPS10* 98 60.8% 52.2%
eGeMAPS 88 52.9% 53.8%

LIWC 93 53.7% 57.3%
Text TF-IDF 500 Bigram 500 49.4% 57.3%

Polarity 35 48.9% 42.5%

GEO - Mean 23 57.1% 59.2%
Visual GEO - Mean, Std. 46 55.8% 60.7%

FAU - Mean, Std. 32 55.8% 56.0%
VGG - Mean, Std. 49 41.2% 52.2%

2) Text Classification: Text level BD classification is per-
formed with the same configuration used in the audio ex-
periments. Since better feature extraction tools are available
for the English language compared Turkish [50], we use
Google Translation engine to process the text in English. We
experiment with LIWC, TF-IDF and polarity features (see
Section III-A2) for the text classification.

Table III shows the results on the text features obtained from
the entire clip, with late fusion of weighted and unweighted
Kernel ELMs. LIWC features give the best results for both
development set and the cross-validation experiment, with
53.7% and 57.7% UAR, respectively.

3) Video Classification: For the visual experiments, FAUs,
geometric features, and appearance descriptors, obtained from
the pre-classification layer of a convolutional neural network
(VGG), are used (see Section III-A3). Table III shows the
best results achieved on the visual modality. All feature sets
are normalized using Z- and L2 normalization, as explained
in Section III-B. The 4,096-dimensional VGG features are
extracted from the pre-trained network, then summarised with
mean and standard deviation functionals, which creates an
8,192-dimensional feature vector for each clip. We then reduce
the dimensionality using PCA (retaining 99% variance) to
49 dimensions, and apply tree-based feature selection. The
ExtraTreeClassifier method from the scikit-learn library [62]
is used for feature selection. For the VGG feature set, using
only PCA gives the best result. The fourth row in the Visual
part of Table III shows the results obtained with a 49-
dimensional feature vector after applying PCA to the VGG
feature vector. On the development set, the best result (57.1%
UAR) is achieved using geometric features summarized using
the mean functional. Using 4-fold cross-validation (4F-CV),
60.7% UAR is achieved on geometric features summarized
with mean and standard deviation.

B. Fusion of Modalities

After investigating unimodal performances, we perform
multimodal fusion experiments using weighted sum, majority
voting, and feature fusion methods as explained in Sec-
tion III-E. Mainly, we select the feature sets that performed
well in the unimodal experiments and use them in multimodal
fusion. For the acoustic modality, we select eGeMAPS10 and
eGeMAPS feature sets, since the eGeMAPS feature set is
created specifically for the affective paralinguistic tasks, and
may provide better intelligibility compared to the IS10 feature
set. For the linguistic modality, LIWC features and for the
visual modality, FAU and geometric features are used for the
fusion experiments.

Many previous works on this dataset used a validation
set to optimize their models, but such optimization did not
correlate well with the results obtained on the test set, and
often, these models did not perform better than the baseline
test set performance. We use 4F-CV and MM1 scores to select
the fusion systems that will be used for the limited test set
probes.

TABLE IV
THE BEST MAJORITY VOTING FUSION RESULTS.

Acoustic Visual Linguistic UAR MM1 UAR MM1
4F-CV 4F-CV Test Test

eGeMAPS10* FAU LIWC 65.8% 0.15 61.1% 0.10
eGeMAPS FAU LIWC 65.1% 0.14 57.4% 0.0
eGeMAPS10 FAU LIWC 64.9% 0.13 64.8% 0.09
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Ranking the fusion systems with respect to 4F-CV UAR
performance, the top systems are observed to use majority
voting, which shows the effectiveness of this approach. Feature
fusion method is not as successful as majority voting in im-
proving the unimodal performances, since after concatenating
the feature sets, the newly generated feature vector has a higher
dimension, which requires more data for a robust training [63].
Regarding the visual modality, the FAU features are observed
to contribute more in the multimodal setup, but the geometric
features perform better in the unimodal system.

The best 4F-CV UAR score (65.8%) is achieved using
eGeMAPS10 with tree feature selection, LIWC, and FAU fea-
tures fused with the majority voting method. The MM1 score
shows that fusion of the modalities increases the maximum
unimodal performance by 15%, which is the highest MM1
score achieved on the 4F-CV results as well.

The final test set experiments are done using the top per-
forming three multimodal fusion systems for a fair comparison
with the literature. We also limit the test set probes to 10,
including the unimodal constituents. We also obtain the test set
results of the constituent unimodal models (i.e. eGeMAPS10,
eGeMAPS10 with tree feature selection, eGeMAPS, LIWC,
and FAU) in order to report their MM1 scores on the test set.

Table IV shows the test set results for the top three multi-
modal systems. The best test set result is achieved using the
eGeMAPS10, LIWC and FAU feature sets with the majority
voting method. With this setup, we achieve 64.8% UAR score,
which is 5.5% (absolute) higher than the best result published
on this challenging corpus (see Table VI).

We further analyzed the contributions of each modal-
ity/feature set on the fusion performance of the top three
systems in the 4F-CV setting with a randomization test. For
this, we randomly generated predictions for each modality and
combined them with the true predictions of from the other
modalities via majority voting. This was repeated a hundred
times and an average UAR was calculated. The drops in
UAR performance with respect to the original systems are
shown in Figure 3. We observe that within each system, the
contributions of the modalities are similar, however the ranking
changes per system. In two systems (Systems 1 and 3), the
contribution of the visual (FAU) model is the highest and
the linguistic modality ranks the second. In System 2, the
linguistic modality has the highest contribution.

Fig. 3. Impact of each modality on the fusion UAR in the 4F-CV setting
in terms of performance drop due to randomization of the corresponding
predictions.

C. Choice of classifier
In earlier sections, we have compared the unimodal per-

formances of the acoustic, linguistic and visual features used

TABLE V
UNIMODAL UAR (%) PERFORMANCES OF THE FEATURES FOUND IN THE

BEST PERFORMING FUSION SYSTEMS.

Modality Feature Set 4F-CV Test

Acoustic eGeMAPS10* 52.2 55.5

Acoustic eGeMAPS 53.8 57.4

Acoustic eGeMAPS10 53.1 59.2

Linguistic LIWC 57.3 51.8

Visual FAU 56.0 51.8

in the proposed pipeline. In order to motivate the choice of
Kernel ELM in the proposed system, we compare it with
Ordinal Multi-Class SVM (OMSVM) [64] classifier with the
same set of features and optimization procedure as in the
Kernel ELM. The choice of OMSVM is motivated by the
ordinal nature of the mania levels under investigation and
recent trends to use ordinal machine learning methods, as
opposed to classification and regression in ordinal affective
computing [65], [66]. We report the results with OMSVM at
the end of Table VI. Unlike Kernel ELM, OMSVM does not
model FAU and LIWC features well for mania level prediction,
and the development and test set UAR performances remain
below 40%. Subsequently, the majority voting of the three
modalities fall below the performance of eGEMAPS features
alone, which gives consistent performance across the develop-
ment and test sets, but with dramatically lower performance
compared to the proposed system.

Analyzing the confusion matrices of the best unimodal
and multimodal systems (see Figure 4), we observe that the
multimodal system improves the recall performance of the
hypomania class on both 4F-CV setting and the test set.
Furthermore, the recall of the mania class is dramatically
improved with multimodality on the test set, while the recall
of the remission class is markedly higher (0.89) with the
acoustics-based unimodal model, compared to the trimodal
fusion system (0.78).

Table V shows the test set results of the constituent uni-
modal systems obtained using the feature sets that perform the
best on the multimodal fusion experiments. The test set results
are obtained using the model trained on the combination of
the training and the development sets, with the parameters
optimized on the 4F-CV experiments. eGeMAPS10 gives the
highest unimodal UAR score (59.2%), which is on par with
the state-of-the-art multimodal test set performance reported
on this dataset (see Table VI).

D. Interpretability Analysis

In order to provide insights into the decision making
process of the multimodal system, we carried out two sets
of experiments. The first set of experiments are conducted
using a state-of-the-art explainable machine learning method,
Shapley Additive Explanations [60], to obtain feature impor-
tance attributions for each modality-specific model that are
fused via majority voting. The second set of experiments are
conducted to predict activity in each of the eleven items of
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(a) Audio 4F-CV (b) Audio Test set

(c) MM Fusion 4F-CV (d) MM Fusion Test set

Fig. 4. Confusion matrices of the best unimodal system using eGEMAPS10
features (a-b) and the top multimodal fusion system (c-d).

TABLE VI
UAR (%) COMPARISON OF WORKS USING BD WITH AVEC 2018

CHALLENGE PROTOCOL. MV: MAJORITY VOTING OF UNIMODAL MODELS.

Paper Validation Test

Ringeval et al. [3] (AVEC challenge baseline) 55.0 57.4
Yang et al. [23] 78.3 40.7
Xing et al. [24] 86.7 57.4
Syed, Sidorov, Marshall [25] 55.0 48.2
Ebrahim, Al-Ayyoub, Alsmirat [26] 59.2 44.4
Amiriparian et al. [27] 46.2 45.5
Ren et al. [28] 61.6 57.4
AbaeiKoupaei, Al Osman [29] 60.6 57.4
AbaeiKoupaei, Al Osman [30] 64.0 59.3
eGEMAPS with OMSVM 54.8 53.7
MV(eGEMAPS, FAU, LIWC) with OMSVM 45.5 51.9
Proposed system with KELM 64.0 64.8

Young Mania Rating Scale (YMRS), which served as ground
truth annotations in the present study.

1) SHAP based interpretability analysis: Since the top
multimodal systems are based on decision fusion rather than
feature fusion, we analyse each modality-specific model sepa-
rately using Kernel SHAP [60], a model-agnostic explanation
method. The ELM models do not provide a straightforward
way to read the relative feature importances. SHAP gives an
‘explanation’ for each decision, and this amounts to the impact
of each feature on the output. For D features and t > 2 classes,
SHAP will output a D×t matrix of feature attributions for each
prediction. A common approach for explaining an instance is
to visualize the vector for the class having the highest posterior
probability. To provide insight into our trained models, we
averaged the absolute SHAP feature attributions corresponding
to the predicted class over the test set. The resulting feature

importances are sorted and the top 20 features for each feature
set are shown in Figure 5.

Analyzing the plots for eGEMAPS related acoustic features,
we observe a large difference in the top features, due to
the additional functionals used in the proposed eGEMAPS10
set over the set of LLDs (see Table II). However, in both
plots we observe the dominance of formant related supra-
segmental features among the most influential features. In the
affective computing literature, formats (resonant frequencies of
the vocal tract filter), specifically the first three, are known to
carry affect related information [67], [68]. Thus, this outcome
is very intuitive. The F2 descriptor appears at the top of both
rankings, albeit with different functionals; the curvature and
slope for eGEMAPS10, and the mean for eGEMAPS.

Another observation in the acoustic models is about prosody
and voice quality related features. High level of mania is
associated with high vocal and kinesthetic energy, thus it is
not surprising to see functionals of loudness among the most
influential features. In both plots, we observe Harmonics-
to-Noise Ratio (HNR), although summarized with different
functionals. Jitter and shimmer, two other voice quality fea-
tures, are also commonly associated with mood disorders,
mainly with depression [4], and we observe them among the
influential features.

When we look at the FAU features in Fig. 5, we see that
AU12 (lip corner puller) is the most prominent facial feature,
which is an important feature for capturing mirth, as it is
activated in smiling and laughter. The second important feature
is AU17 (the chin raiser), which could indicate rapid speech
and excitation.

For the LIWC features, we have an interesting pattern, with
the “Religion” category showing a large feature importance.
When we investigate the transcripts that show high value
for this category, we notice several manic patients producing
an incoherent discourse intermingled with heavy religious
terminology. In the literature, religious fervor is listed as a
possible indicator of the manic stage [69], and the 8th item of
the YMRS measures hyper-religiosity explicitly. Our patients
indeed were exhibiting this symptom. Significantly, our exper-
imental setting does not naturally lead to the recounting of a
religious experience; the two paintings shown to the patients
do not have religious overtones, and the happy/sad memories
also do not suggest anything in this direction. Our conclusion
is that LIWC-based automatic analysis is powerful enough to
spot these instances, and such a cue is not detectable via face
analysis, or voice paralinguistics. We note that such symptoms
are not seen in each patient, and must be treated cautiously.
By themselves, religious fervor or discourse obviously do not
immediately suggest mania; it is by the combination of several
symptoms that a clinical diagnosis can be made.

2) YMRS Item Activity Analysis: YRMS scores are com-
posed of eleven items that are summed up and thresholded for
mania level classification in the present study. These items
assess the elevated mood, increased motor activity-energy,
sexual interest, sleep, irritability, speech rate and amount,
language-thought disorder, content, disruptive-aggressive be-
havior, appearance, and insight.

A detailed description of the levels of each item can be
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Fig. 5. SHAP based feature importance plots for unimodal constituent models of the proposed mania level recognition system.

found online5. While some of these items are can be predicted
from acoustic, linguistic and visual features/correlates, some
involve evaluation of the clothing choice (YMRS10 - Appear-
ance) or medical expert’s insight (YMRS11 - Insight), which
we cannot model directly using the modalities and features
in question. Therefore, we set up the following experiment in
order to have an insight on the extent a modality / feature
set used in the proposed pipeline can predict activity in these
items. For the sake of uniformity of treatment and ease of
interpretation, we binarized each YMRS item score yi at a
threshold of 0 to indicate the existence of activity ai in the
respective item: ai = I(yi > 0), where I() is the indicator
function. We then trained models to predict these activities
using the constituent feature sets in our system.

The results of the YMRS item activity recognition exper-
iments are summarized in Table VII. All experiments are
conducted in the same manner as in the three level mania
classification.

Looking at the 4F-CV UAR performances, on the overall
we observe the dominance of acoustic models’ recognition of
item activity (seven out of 11 items). A similar observation is
that FAU and LIWC based models do not rank at the top in
any of the YMRS items, while their contribution is observed
in four YMRS items, where the multimodal fusion performs
the best. As observed before, FAU based visual model contains
cues for measuring the “Speech rate and amount” as scored in
YMRS6, and gives a higher UAR performance than LIWC.

5https://dcf.psychiatry.ufl.edu/files/2011/05/
Young-Mania-Rating-Scale-Measure-with-background.pdf

Observing the held-out test set performances, it is not
surprising to see that the best model setting on 4F-CV per-
forms worse than chance level on YMRS10 (Appearance)
and YMRS11 (Insight). We also see that YMRS5 (Irritability)
activity is also a difficult task to generalize, where the multi-
modal system performs at chance level on the test set. From
the remaining eight items, seven of them have higher than
60% UAR, of which four could reach higher than 68% UAR,
motivating a further study in this direction for interpretable
modeling based on symptoms. While the test set performance
of YMRS2 (Increased motor activity-energy, 68.6% UAR)
correlates with our expectations, observing the best overall
test set performance (74.3%) on YMRS3 (Sexual interest)
is positively surprising and motivating. We attribute this to
the acoustic features that capture arousal that also correlate
with sexual arousal. We note that this aspect addresses a
long standing source of violence on psychiatry nurses [70].
Considering the potential for preventing violence on nurses
alone, this item deserves further study for accurate automatic
prediction.

When we use the ground truth binarized YMRS item
activity labels to predict mania levels, we obtain a 4F-CV
UAR performance of 83.5% and a corresponding test set UAR
performance of 72.2%. The test set performance is dramati-
cally higher compared to the state-of-the-art reported here and
has room for improvement, since a simple discretization to
two levels with thresholding at zero causes loss of valuable
intensity information. To the best of our knowledge, this is
the first study to conduct item-wise YMRS activity prediction.
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TABLE VII
4F-CV AND TEST SET (LAST ROW) UAR (%) SCORES OF YMRS ITEM ACTIVITY PREDICTION MODELS. MV: THREE MODAL MAJORITY VOTING.

Feature/System YMRS1 YMRS2 YMRS3 YMRS4 YMRS5 YMRS6 YMRS7 YMRS8 YMRS9 YMRS10 YMRS11

eGEMAPS10 66.3 65.4 63.4 56.9 65.6 76.4 72.5 63.5 67.4 68.2 63.6
eGEMAPS 74.1 66.2 69.5 55.0 68.4 76.4 69.5 67.9 61.6 62.3 64.9
FAU 68.6 67.4 56.8 56.1 64.8 73.5 60.6 61.6 58.0 69.4 56.6
LIWC 65.7 63.1 61.0 53.3 62.3 69.8 64.8 63.8 56.1 62.5 57.9
MV (eGEMAPS10) 68.5 69.2 61.9 56.2 68.3 78.1 70.2 65.8 64.4 73.8 61.8
MV (eGEMAPS) 70.1 69.2 65.2 55.0 70.7 77.8 64.6 66.6 60.6 66.9 59.8

Test Set Performance 64.1 68.6 74.3 62.6 51.7 69.0 67.0 72.0 57.4 46.5 46.5

However, we are cautious not to over-interpret the results, due
to the low number of samples, which limits the successful
application of regression on original YMRS item scores.

V. DISCUSSION AND CONCLUSIONS

In this paper, we investigated mania-level classification (ma-
nia, hypomania, remission) of bipolar disorder (BD) patients
using the Turkish Audio-Visual BD dataset, and proposed
a trimodal architecture. We have performed a comprehen-
sive analysis of fusion of modalities for predicting mania
levels. The results showed that multimodality improves the
classification of bipolar disorder. The acoustic, textual, and
visual modalities complement each other and using all three
modalities gives the best performance. A fusion model of just
the linguistic and acoustic modalities still performs well, while
requiring less information. This may be important, in case a
camera is considered to be intrusive in the assessment sessions.

The best performing system combines audio, video and
linguistic modalities using modality-specific weighted score
fusion of weighted and unweighted Kernel ELMs, decisions
of which are finally fused using majority voting. We achieve
64.8% test set UAR on this configuration, which advances the
state-of-the-art on the BD dataset. The unimodal test perfor-
mance breakdown of the top multimodal systems confirm the
robustness of acoustic eGeMAPS descriptors, which deserves
further research in depression studies.

The accuracy results we have obtained are not high enough
to use the proposed system in a real-world clinical application
as a decision support system for the clinician. But this may
partly be due to the small size of the training corpus. There
are 25, 38, and 41 clips in the training set for the remission,
hypomania, and mania classes, respectively, which is not
enough to generalize with a high certainty. On the positive
side, the dataset is collected in a real-life scenario, and has a
high level of ecological validity. It contains background noise,
and in some cases, the voice of the clinician to explain points
related to the questions. These issues are expected to be present
if a real-life application is created, and the natural recording
setup makes this database valuable. Another difficulty stems
from missing information in some clips, where patients do
not answer some of the questions. In one of the test case
clips, the patient does not answer any questions at all. For the
clinician, this may inform the diagnosis, but for an automatic
system, it is difficult to take such features into account, and
for the standard assessment methodology we use in this paper
to ensure comparability, these cases cause issues.

Experimental results have shown that the linguistic modality
contributes to the performance. We note two limitations related
to this modality, which can be tackled in future studies. First,
we use automatic transcription, which is prone to errors, as
Turkish is not a well-studied language for automated speech
recognition. Note that a fully automated recognition system
was a requirement in the AVEC Challenge. For a fair and
direct comparison with the works presented in the challenge,
we have strictly adhered to the challenge protocol in this work,
and did not use manual translation. We have, in a preliminary
experiment, manually transcribed one task to assess the per-
formance of the automatic translation, and verified that it was
producing comparable results with the manual translation.

Our final model contains information from three different
modalities, and each modality is represented using feature
vectors with various sizes. It is especially important to cre-
ate explainable [71], and more preferably, interpretable [72]
models in the medical domain, but model complexity poses
challenges from this perspective. In this study, we opted for
a compact set of interpretable features in each modality and
we analyzed the models to gain insights into the influential
features in the decision-making process. The most important
features in each modality correlate well with the domain
knowledge and have complementary information. While the
top ranking features in each modality are not individually
sufficient for diagnosis, collectively they contain information
that correlates with observable symptoms and have a high
potential to be used in a clinical decision support system. To
provide further insights into the capability of the used feature
sets in symptomatic mania classification, we conducted item-
wise YMRS activity modeling. In line with our expectations,
this analysis showed which YMRS items cannot be accurately
modeled with the used feature sets, while some items, such
as ‘Sexual interest’, ‘Speech rate and amount’ as well as
‘Content’, provided promising results for future studies.

It is crucial to note that AI systems similar to the one
we have proposed in this paper use a very limited set of
sources in their assessment compared to the clinician, and
are primarily statistical (as opposed to causal) in their nature.
These limitations should be very clear in the reporting of the
results, and the support offered by automatic tools should not
be over-estimated. The Turkish Audio-Visual BD dataset we
have opened to the research community is the first dataset
including audio, visual, and text modalities in this area, and
we hope it will foster the development of richer analysis tools
for helping clinicians.
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