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ABSTRACT
The mission of the Institute of Industrial and Systems Engineers (IISE) is to serve those who solve
complex and critical problems of the world. Notably, the research–practice gap in Operations
Management (OM) marginalizes the value and relevance of the IISE. To maintain and enhance the
impact of the IISE, we identify major bottlenecks that limit the industrial installation of OM
research outcomes. Ranked by the relative importance, the three bottlenecks are verifying the per-
formance improvement, building trust with practitioners, and balancing model accuracy and sim-
plicity, respectively, in the stages of value verification, implementation and development. We
propose potential research opportunities and illustrate the challenges and opportunities using real
case studies from three Fortune Global 500 companies. In particular, we emphasize the role of
data-driven decision methods in dealing with the three bottlenecks.
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1. Introduction

It is crucial for the Institute of Industrial and Systems
Engineers (IISE) to guide Operations Management (OM)
practitioners toward achieving OM practice excellence. The
mission of the IISE is to serve OM practitioners who solve
complex and critical problems encountered in the world,
and often need to deal with complicated and integrated sys-
tems that suffer from customer dissatisfaction, excess inven-
tory costs, and low product quality. Therefore, it is
imperative for the IISE to capture the full potential of suc-
cessful OM practice.

However, the academia that studies OM has generally
been following, rather than leading, business practices
(Simchi-Levi, 2014). The inability to lead OM practices is
often due to numerous failed implementations of OM mod-
els. After many years of OM projects with industry collabo-
rators, we cannot emphasize enough how important a
successful implementation is for a research project. Further,
we are astonished by the difficulties associated with ensuring
an OM implementation with precise and unified standards
across different departments. Companies have been appro-
priately cautious about new OM models because they cannot
fully reap its benefits (Ibanez et al., 2018; Sun et al., 2021).

Why is it so challenging to ensure precise and unified
implementations of OM research outcomes? A modern sys-
tem integrates geographically dispersed firms whose deci-
sions and performances are not directly observable and
verifiable. In addition, intra-firm coordination is challenging
because divergent responsibilities are assigned to various
departments. Nonetheless, it is impossible to list all the

reasons for failed OM implementations. Instead of answer-
ing “why”, we focus on answering “how” to increase the
likelihood of a successful OM implementation.

The primary goal of this article is to identify the major
characteristics of OM research that can lead to more rapid
and effective implementation. Three bottlenecks are dis-
cussed in the order of their importance to successful imple-
mentation. In particular, we start with how to verify the
benefits in Section 2. Next, in Section 3, we proceed to dis-
cuss how to build trust between models and their users.
Finally, we propose the trade-off between model simplicity
and accuracy in Section 4. We emphasize that these three
bottlenecks are interrelated. As illustrated in Figure 1, failure
to verify performance improvement leads to lack of user
trust. Using overcomplicated models and goals may increase
the difficulty level of performance verification.

The impacts of data-driven decision methods on bridging
the research–practice gap are discussed in Section 2 to
Section 4. While traditional Industrial and Systems
Engineering (ISE) research hits a plateau, the opportunities
brought by big data are leading OM scholars to explore new
sources of value. Meanwhile, there are more and more voi-
ces calling for strengthening the multidisciplinary team
working between researchers from traditional ISE and other
fields, e.g., statistics, computer science (Royston, 2013;
Ranyard et al., 2015; Johnson et al., 2018), who have much
to offer when it comes to leveraging data to improve busi-
ness operations. As argued in Qi et al. (2020) and Wang
et al. (2022), it is critical for future OM research to integrate
data-driven decision methods, along with our own advan-
tages in OM domain knowledge and optimization
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techniques, so that the methods can showcase higher levels
of performance in domain-specific problems and the impact
of ISE research in practice can be further enhanced.

2. Verifying the performance improvement

Implementing the results of OM research requires the
approval of top-level managers who can take full responsi-
bility for the associated costs and risks. Scientific and solid
evidence must be presented to demonstrate the potential
performance improvement. Unfortunately, verifying the out-
comes of OM research (e.g., substantiating that the model
has a satisfactory performance that is consistent with the
expectations within its scope of application (Sargent, 2013))
is particularly challenging, which may lead to failed OM
implementations.

2.1. Challenges

In a survey of supply chain simulation research, Oliveira
et al. (2016) analyze 189 papers published over the last 25
years and find that only 29.5% of papers test and evaluate
the performance of models using real case studies.
Evidently, a large number of verification results cannot be
easily accepted by managers. There are two main reasons for
situation. First, numerous studies have tested the validity of
models based on statistical methods in the verification stage.
However, managers undoubtedly expect to see the perform-
ance of decisions from an operational perspective compared
with statistical results (Besbes et al., 2010). Second, the veri-
fication processes of many studies do not involve models’
users, which means users’ possible deviation behaviors are
not incorporated. For these reasons, the percentage of
research with valid performance verifications may be lower
than anticipated.

In addition, verifying the revenue increment or cost sav-
ings is particularly challenging for brick-and-mortar stores
and traditional manufacturers. Unlike online platforms, e.g.,
Alibaba, JD.com, and Airbnb that can carry out online
experiments to test the performance of optimization models,
it is considerably more expensive to conduct verification
experiments for brick-and-mortar stores and traditional
manufacturers. For instance, the prices of products sold in a
brick-and-mortar store are relatively fixed and cannot be
adjusted frequently. In Section 2.3, we further illustrate the

challenges of verifying performance with a traditional
manufacturer.

2.2. Research opportunities

A field experiment is a method for testing causality under
real scenarios by randomly assigning subjects to treatment
or control groups. By conducting field experiments,
researchers can obtain previously implicit or unobservable
information to make unbiased estimates. For instance, a
field experiment conducted by Gaur and Fisher (2005) in
toy stores yields an unexpected result that sales sometimes
increase with a price increase. They find that two factors
can explain this observation. One is that price is regarded as
an indicator of quality in some cases, and the other is that
consumers treat some products as gifts, so the sweet spots
of pricing are more popular. Fisher et al. (2018) explore
demand signals that cannot be observed by researchers
based on a field experiment with randomized prices. We
refer readers to the following studies that use field experi-
ments to investigate the effects of inventory levels on
demands (Craig et al., 2016), information disclosure (Allcott
and Sweeney, 2017), incentive design (Brahm and Poblete,
2018), fit information in online retail (Gallino and Morenob,
2018), etc.

There is growing literature that incorporates the effects of
real operations and users’ behaviors into performance verifi-
cations by conducting field experiments in governmental or
industrial partners. Based on a field experiment in an online
retailer, Ferreira et al. (2016) demonstrate that the price
increase suggested by the proposed algorithm will increase
revenue without causing a significant decrease in sales, thus
alleviating managers concerns. Levi et al. (2020) design a
new two-stage auction for online agri-platforms and conduct
a field implementation in Karnataka, India, to examine the
effects of bidders’ behavioral factors on their bid-
ding strategies.

We broadly classify the OM literature that uses field
experiments in performance verifications into two categories:
online platform and offline platform experiments.

2.2.1. Field experiments in offline platforms
Mukhopadhyay and Kekre (2002) conduct a field experi-
ment in a large industrial supplier to examine the strategic
and operational benefits of electronic integration in procure-
ment processes. Caro and Gallien (2012) work on the
design, implementation, and evaluation of a new system for
clearance pricing in Zara. Through a field pilot experiment,
they demonstrate that the decisions from the new system
yield significant revenue growth and have a cultural impact
on the operations of Zara. In collaboration with a beverage
vending retailer, Kawaguchia (2021) finds that the perform-
ance of the proposed assortment algorithm in a field experi-
ment is not as good as that in a simulation, due to workers
noncompliance with the algorithm. Other interesting topics
studied by offline field experiments include initial shipments
(Gallien et al., 2015), the effects of stockout-based

Figure 1. Bottlenecks in the successful implementation of OM research.
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substitution on demand estimation and inventory planning
(Lee et al., 2016), etc.

Another important question is how to determine the
appropriate number of experiments so that the results are
valid without causing excessive costs. This question is par-
ticularly relevant for offline field experiments that are rela-
tively expensive to conduct. Li et al. (2015) demonstrate that
the number of required experiments can be reduced when
the problems being studied have favorable structures. It is
worth noting that there is growing literature verifying the
performance of models by statistically analyzing data from
direct observations rather than designed experiments, e.g.,
Shin et al. (2018) develop a covariate matching method to
quantify the performance improvement of wind turbine
updates. Studying how to make better use of naturally
observed data can be a promising research direction.

2.2.2. Field experiments in online platforms
Schwartz et al. (2017) conduct an online field experiment to
verify the performance of an advertising policy in collabor-
ation with a large retail bank, demonstrating that the policy
yields an 8% increase in customer acquisition rate. We refer
readers to the following latest studies that verify model per-
formance by online field experiments, including partnering
with Airbnb (Cui et al., 2020), Alibaba (Zhang et al., 2019;
Feldman et al., 2021; Sun et al., 2021), Amazon (Cui et al.,
2019), and JD.com (Qi et al., 2021).

In particular, recent studies have noticed the violations of
the Stable Unit Treatment Value Assumption (SUTVA) that
occur in common experimental designs for two-sided mar-
kets, such as demand-side randomization and supply-side
randomization. For instance, Johari et al. (2022) show that
single-sided randomization will cause estimation biases for
two-sided markets such as Airbnb. To address this issue,
Ha-Thuc et al. (2020) propose a counterfactual framework
for seller-side A/B testing on Facebook Marketplace, demon-
strating that the framework satisfies SUTVA. Johari et al.
(2022) introduce a two-sided randomization that is unbiased
when there is an extreme imbalance between supply and
demand. In the experimental design for verifications, a two-
sided field experiment is used by Ye et al. (2020) to ensure
SUTVA when they verify the performance of a data-driven
optimization algorithm for cold start in online advertising
platforms. Future research can explore other experimental
design methods that guarantee SUTVA or quantify the
biases introduced by the violations of SUTVA.

2.2.3. Data-driven decision methods
The difficulty in verification is largely caused by the lack of
information of the indirect benefits, e.g., reduced lost sales
and diminished brand value. We illustrate this point using a
case study in Section 2.3. There is growing literature leverag-
ing data-driven decision methods to tackle this issue. For
example, Derhami and Montreuil (2021) develop a data-
driven algorithm to estimate the potential lost sales in a dis-
tribution network.

2.3. An industry case with a manufacturing company

Based on our joint project with a manufacturing company,
we illustrate the challenges of verifying performance
improvement. The collaboration is dedicated to promoting
the digital transformation of OM in the company, including
demand forecasting, production scheduling, and marketing
resources allocation. We encountered the following
major challenges.

First, some critical data at the stage of performance veri-
fication were not available and hard to obtain. When calcu-
lating the production scheduling algorithm, an important
criterion is the number of production line changeovers
reduced. Nonetheless, the energy consumption caused by
each production line changeover can not be precisely deter-
mined. To quantify the energy consumption, we needed to
compute the total energy consumption per day, the average
working time per production line per day, and the average
time of each production line changeover. The amount of
effort to accurately calculate these data was exhausting. The
lesson from this challenge is that we could have collected
the energy data at the beginning, instead of acquiring these
data at the end. Put differently, the criterion of the perform-
ance verification should better be clarified at the beginning
of the project.

Second, industry practitioners may be hypercritical of
model assumptions in the verification stage. In our joint
research with the manufacturer on marketing resources allo-
cation, we proposed that the base level and potential of a
market are influenced by eight factors, which was acceptable
to our collaborative researchers from the company.
However, when it came to the performance verification
stage, practitioners outside our joint research team began to
challenge us by listing the various factors that should be
considered. This is reasonable because the practitioners who
carry the burden of risk from a failed implementation are
cautious when it comes to implementing new approaches
recommended by people who do not have the same depth
of knowledge about the industry. Therefore, we recommend
that researchers allow extra time in the verification phase to
respond to potential new requirements.

Third, indirect and long-term benefits were difficult to
compute. In the performance verification of the production
scheduling algorithm, direct costs such as energy consump-
tion decrements due to the reduction in working time and
production line changeovers, along with the reduced labor
cost, were easier to compute than the indirect economic fac-
tors, such as reduced out-of-stocks. Although the indirect
benefits were difficult to verify, they were often
more important.

The same challenge arose in the performance verification
of our joint research with the manufacturer on demand
forecasting. Figure 2 displays both the short-term and long-
term effects of demand forecasting. The short-term impact
of demand forecasting was relatively straightforward to cali-
brate. Nonetheless, the effects of the forecasting model for
the medium- and long-term decisions, such as optimizing
competitive strategies and strategic planning, were extremely
hard to measure.

34 X. CHEN ET AL.



Last but not the least, it is critical to establish direct com-
munication with managers at the “right” level. One import-
ant criterion for judging whether it is “right” is that the
managers should not only be familiar with the daily opera-
tions, but also have strategic and systematic thinking.

3. Building trust between algorithms and
practitioners

If we expect OM practitioners to implement an idea recom-
mended by academics, the idea must be properly grounded
in the practitioners’ minds. Unfortunately, some of the most
obvious ideas in OM academia take years to work their way
into practitioners’ minds. Thus, it often happens that practi-
tioners’ decisions deviate from algorithms’ recommenda-
tions, causing significant costs (Ibanez et al., 2018; Sun
et al., 2021). On the other hand, we must acknowledge that
the lack of user trust in OM models is sometimes due to
model developers’ lack of understanding of practical issues
from business and user perspectives. Facing these trust
issues, redesigning algorithms by analyzing the behavioral
factors and improving the ease of interpretation of algo-
rithms’ results are two promising directions.

3.1. Challenges

Trust issues mainly stem from the information mismatch
between algorithms and users, the complexity of algorithms’
results which makes it difficult for practitioners to use, and
the lack of explainability.

3.1.1. Information mismatch
This mismatch is mostly reflected in the user’s knowledge of
information unobserved by algorithms. For example, in bin
packing problems, Sun et al. (2021) demonstrate that devia-
tions partly stem from the fact that workers possess more
information about the items to be packed, e.g., some items
can be folded or compressed, and some items are fragile.
This information mismatch is common in a variety of opti-
mization problems, e.g., in inventory control (Van
Donselaar et al., 2010), task scheduling (Ibanez et al.,
2018), etc.

3.1.2. Complexity of results
“People tend to reject what they do not understand.” (Little,
1970). According to Rossit et al. (2019), users may prefer a
suboptimal policy over an optimal policy in vehicle routing
problems if the optimal policy is too complicated and the
suboptimal policy is simple to use. In warehouse manage-
ment, packing workers sometimes choose larger boxes rather
than following the instructions from the bin packing algo-
rithms. This result is due to the complexity of the algorithm,
due to workers being unable pack items in the manner pre-
scribed by the algorithm (Sun et al., 2021).

3.1.3. Lack of explainability
Practitioners seek more transparency in their algorithms.
For example, there are more than 20 petroleum refining fac-
tories owned by the China National Petroleum Corporation.
The company’s headquarters issues monthly production
plans to each factory based on the total crude oil resources.
Nonetheless, due to the lack of explainability, central plan-
ners often need to spend a considerable amount of time
explaining to each factory why the allocation is preferred.
The lack of succinct and understandable explanations from
a user perspective hinders the trust-building process and
leads to the limited usage (Shin, 2021).

3.2. Research opportunities

According to Dietvorst et al. (2018), people are more willing
to use algorithms that allow users to make appropriate mod-
ifications. To build trust and reduce the deviations between
users’ actual decisions and algorithm results, model develop-
ers should be user-centric and provide users with easy-to-
execute and explainable instructions.

3.2.1. User-centric algorithms
Traditional OM models usually regard users’ deviating
responses as randomness or an error (Boudreau et al.,
2003). In fact, these deviations appear in many OM con-
texts, including the Newsvendor problem (Schweitzer and
Cachon, 2000), forecasting (Lawrence et al., 2006; Kremer
et al., 2011), inventory risk allocation (Davis et al., 2014),
and information sharing (Cui et al., 2015).

Figure 2. Benefits from the demand forecasting model.
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There are some pioneering OM studies that focus on ana-
lyzing and capturing behavioral deviations to improve mod-
els and algorithms. Little (1970) emphasizes that managers
prefer models that are concise, robust, controllable, and
adaptive. Based on this preference, he proposes a set of
model-based procedures called decision calculus. Van
Donselaar et al. (2010) modify replenishment algorithms by
incorporating previously ignored factors, which come from
the learning of retailers’ ordering deviations. Based on cap-
turing drivers’ routing behaviors and travel time predictions,
Liu et al. (2020) improve order assignment algorithms in
the last-mile delivery. Sun et al. (2021) predict users’ devia-
tions by using machine learning techniques and then
redesign traditional bin packing algorithms to avoid complex
and incomprehensible instructions, thereby improving the
user experience and operating efficiency. It would be inter-
esting to investigate how user-centric algorithm design may
help improve performance in other problem settings.

3.2.2. Explainability
There are two streams of literature on explainability. The
first stream is to explore explanation techniques. For
instance, Ribeiro et al. (2016) propose an algorithm to
explain the predictions of models and show that the explan-
ations are important for increasing users’ trust. Further, a
framework for the explanations of predictions is presented
by Lundberg and Lee (2017), where six existing explanation
techniques are unified. The second stream of literature sug-
gests using explainable models directly, such as decision
trees (Bertsimas and Stellato, 2021). According to Bertsimas
and Dunn (2017), decision trees are often preferred over
other models that may have higher accuracy but are rela-
tively unexplainable in practice. In fact, there is a trade-off
between explainability, and accuracy (Arrieta et al., 2020).
Although there have been plenty of studies on explainability,
few papers consider users’ cognitive biases and social expect-
ations in the explanation process, except for Miller (2019),
Poursabzi-Sangdeh et al. (2021), etc.

3.2.3. Data-driven decision methods
Facing the challenge of information mismatch, some
researchers try to use data-driven decision methods to
acquire previously unknown information. Van Donselaar
et al. (2010) find that store managers have more information
than inventory models by learning retailers’ behavior data,
which explains why they often disagree with the recom-
mended ordering policies. By analyzing the data from
2,400,000 radiological diagnoses, Ibanez et al. (2018) find
that doctors tend to deviate from the prescriptions given by
task scheduling algorithms because they prioritize similar
tasks and those tasks they expect to complete faster. These
previously hidden messages can be used to redesign algo-
rithms, making them more user-centric and trustworthy.

Another highly related research stream is user trust stud-
ies on human factors. Hoff and Bashir (2015) systematically
review empirical evidence on factors that influence trust in
automation and propose a three-tier trust model. Recently,

Lee and Kolodge (2020) study trust in self-driving vehicles
by text analysis.

3.3. An industry case with an automobile manufacturer

In this subsection, we recommend an explainable modeling
framework proposed by Wang et al. (2021). Based on three
types of user needs, the explainable modeling is aimed at
building trust between modelers and stakeholders and then
supporting successful Digital Twin implementations. In our
joint production scheduling project with an automobile
manufacturer, we applied the framework to answer the fol-
lowing three questions that practitioners are most con-
cerned about:

� Q1: What is the impact of different constraints on
objective values?

� Q2: Does the model perform well in all produc-
tion scenarios?

� Q3: If the company decides to focus more on a certain
performance measure, how should the model
be adjusted?

The framework of explainable modeling in Wang et al.
(2021) is summarized in Figure 3. Each option represents a
set of constraints that can be incorporated in the scheduling
model, e.g., the total production quantity limit, the batch
volume limit, etc. We considered two production scenarios:
(i) low product variety and high demand and (ii) high prod-
uct variety and low demand. Performance measures include
the on-time delivery rate, the total number of changeovers,
model complexity in terms of running time, data integration
cost (a large part of data require manual input and mainten-
ance), etc.

To answer Q1, we defined model-based explanation as the
comparative analysis of optimal objective values with differ-
ent constraint sets in a given production scenario. To
answer Q2, we defined scenario-based explanation as the
comparison of the optimal objective values of a model in
different production scenarios. Finally, to answer Q3, we
defined goal-oriented explanation as the improvement of
performance measures of users’ interests, e.g., users may be
interested in increasing the on-time delivery rate by 10%
and reducing the number of total changeovers by 5% in a
production scenario. Automatically and systematically gener-
ated explanations can speed up the implementation process.

4. Balancing model accuracy and simplicity

The contradicting goals of OM practitioners and academic
researchers call for the need to balance model accuracy and
simplicity. Practitioners expect the model to be as close to
the practical problem as possible, so that they can directly
use the solutions without additional adjustments. In aca-
demia, a concise and general theory that is only approxi-
mately accurate is usually more useful than a theory that is
completely accurate, but involves many details and excep-
tions (Bohanec and Bratko, 1994).
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4.1. Challenges

In complex systems, a practically challenging and time-
consuming task is to clarify each of the elements, their
boundaries and importance to each other, how they change
over time, and interact as a system to accomplish a specific
purpose. Without simplifying real-world systems, the ele-
ments and the complex interactions may make it difficult to
analyze the issue about which we are most concerned
(Oliveira et al., 2016). First, building a complex model that
closely reflects real-world supply chains takes an extraordin-
ary amount of effort and time. By the time the modeling is
complete, the environment in which supply chains exist may
have totally changed. Second, it is computationally challeng-
ing to solve a complex model.

Meanwhile, oversimplified models are not suitable for
real-life problems. There has always been an adherence to
theoretical puzzles without ascertaining how close a theory
is to the truth (Reisman and Kirschnick, 1994; Ormerod and
Kiossis, 1997; Ormerod, 2002). Consequently, an oversimpli-
fied model may suggest a production or transportation plan
that is impossible to execute. The inaccuracy in a model
may also hurt the validity of the claimed performance
improvement.

4.2. Research opportunities

Where balance can be found is mainly based on the cost of
computing resource usage and computational time and the
requirements of acceptable accuracy (Hunt, 1965). Bohanec
and Bratko (1994) use decision trees to represent the defini-
tions of concepts and translate the simplification of a

concept into finding the smallest pruned tree that satisfies
the accuracy requirements. According to Min and Zhou
(2002), a model builder should define the scope of a supply
chain model based on the key dimensions of practical prob-
lems while ensuring that the solution is not excessively com-
plicated so as to compromise the trade-off between model
simplicity and accuracy. They also summarize two guidelines
for defining the scope of a supply chain model: one is based
on three levels of decision hierarchy, and the other is deter-
mined by the structure of a supply chain network. Fotouhi
et al. (2016) propose a framework where users are allowed
to select an appropriate compromise between model accur-
acy and simplicity, here by using Pareto optimal sets.

4.2.1. Data-driven decision methods
In the field of OM, researchers usually simplify models by
assuming distributions for uncertain parameters.
Nonetheless, there may be significant differences between
the assumed and actual distributions, thereby weakening the
accuracy of models. To tackle this issue, Levi et al. (2007)
study the sample average approximation approach for data-
driven Newsvendor problems. Chen and Chao (2019)
develop parametric data-driven learning algorithms for
demand functions in a joint pricing and inventory control
problem. Garcia et al. (2020) introduce a data-driven sto-
chastic optimization framework to avoid the need to make
distributional assumptions for uncertainty in risk estimates.
Recently, machine learning methods have been applied to
uncertainty modeling, e.g., KM estimator (Huh et al., 2011)
and neural networks (Cao and Shen, 2019; OroojlooyJadid
et al., 2020; Qi et al., 2021). To sum up, a more practice-

Figure 3. A framework of explainable modeling.
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oriented and accurate model can be built using data-driven
uncertainty modeling without increasing excessive computa-
tional complexity.

Some future research directions are promising. First, most
of the existing methods for the accuracy–simplicity trade-off
aim at problems and models with relatively low computational
complexity. For complex situations such as Markov Decision
Process models with high-dimensional states and actions, how
to find the simplest model within a target accuracy is a chal-
lenging question. Second, parsimonious predictive models
from the machine learning literature are widely used to seek a
solution that enforces some sparsity. For example, LASSO
helps improve model simplicity and interpretation as, it intui-
tively enforces a smaller number of features. It would be inter-
esting to investigate the accuracy–simplicity trade-off with the
help of these approaches.

4.3. An industry case with China National Petroleum
Corporation

To illustrate the trade-off between model accuracy and sim-
plicity, we describe an industrial project with the China
National Petroleum Corporation on natural gas pipeline
transmission. This project was one finalist of the 2018
INFORMS Franz Edelman prize (Xue et al., 2016; Han
et al., 2019). We show the accuracy and complexity of each
model employed in the literature or recommended by our
industry collaborators.

The main nonlinearity of the mathematical problem arises
from the relationship between the gas flow and gas pressure in
pipelines. For example, for a pipeline connecting locations i
and j, let fi, j be the amount of gas flow. Let pi and pj be the
locations i and j’s gas pressures, respectively. One common
modeling approach is to assume that gas pressures pi and pj
determine the gas flow fi, j in a nonconvex way:

bi, jf
2
i, j ¼ p2i � p2j , (F-P)

where bi, j is a constant and positive parameter.
One key underlying assumption behind (F-P) is that the

natural gas system is in a steady state. In transient systems,

three important partial differential equations are used
(Mahlke et al., 2010). We note that (F-P) is not the only way
to describe a steady system’s gas flow and pressure. For
instance, on the left-hand side of (F-P), the power of gas flow
is 2.0, whereas Zhang and Zhu (1996) use a power of 1.85.
This difference is minor and insensitive to the major solution
approaches. Other work delves deeper into the parameter bij.
Borraz-S�anchez and Haugland (2013) suggest that bij further
depends on the suction pressure of the pipeline in a nonlinear
way, making the relationship even messier.

At the beginning of the project, we found that the eleva-
tion difference in the pipeline network was not explicitly
considered. In China’s pipeline network, it is common to
have pipelines connecting nodes with elevation differences
of more than 200 meters. In Xue et al. (2016), we revise (F-
P) to (F-P-1) in order to consider the effects of nonuniform
network elevation. In (F-P-1), ai, j represents the effects of
the elevation differences between nodes i and j on the pipe-
line’s flow-pressure relationship:

bi, jf
2
i, j ¼ p2i � ai, jp

2
j , (F-P-1)

Furthermore, the effects of temperature on the relation-
ship between gas flow and gas pressure in pipelines and
compressors have been rarely considered. One exception is
Chaczykowski (2010), in which the author studies the effect
of different nonisothermal gas flow models on the simula-
tion results of fluid transients in natural gas transmission
pipelines. In practice, the values of ai, j and bi, j in (F-P-1)
change with the gas flow rates, gas pressures, and gas
temperature.

We collected real data for over 1000 Chinese pipelines
and performed numerical tests to analyze the variations in
the temperature. In the natural gas pipeline transmission
problems in China, the accuracy of a pipeline model is
determined by the relative difference between the discharge
pressure obtained by the pipeline model and that obtained
by a simulation method. In practice, simulation methods are
considered to yield the most accurate results, so they are
used as benchmarks.

Figures 4(a) and 4(b) show the relative error and absolute
error for each pipeline, where the X-axes represent the

Figure 4. Error of isothermal model.
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pipeline ID and the Y-axes denote the average error with
pipeline model. For each pipeline, we generated a set of 50
pairs for the suction pressure and gas flow rate. These pairs
comprised most of the pipeline’s working conditions. Next,
we computed the average relative and absolute error for
each pipeline in all 50 conditions. It is clear that the effects
of temperature should be considered if the requirement on
model accuracy is high.

Finally, we considered each node’s temperature as a deci-
sion variable and took the model:

bi, jðpi,TiÞ � f 2i, j ¼ pj � ai, jðpi,TiÞ � pi: (A-P-New)

The new model can achieve high model accuracy but
may be very difficult to solve. Figure 5 shows the solution
accuracy of isothermal and nonisothermal models in the
Chinese XN network. In Figure 5, we can see that for most
of the pipelines (149 of 151), the nonisothermal model gen-
erates more accurate solutions than the isothermal model.

One thing with which researchers can help industry prac-
titioners, is to scientifically measure each model’s accuracy

and complexity. When we signed the contract with China
National Petroleum Corporation, we thought (F-P) would be
enough. We spent 3 months designing and implementing
the code only to find its accuracy was not sufficient to meet
practical needs. Then, we further incorporated the effects of
elevation variation and temperature to obtain new models
(F-P-1) and (A-P-New). This change in the model required
a few more months of research and testing. In addition, the
availability of precise data is key to accurate models.
Without precise data, it is impossible to verify and improve
the model accuracy.

5. Conclusions

The future is promising as more OM research tends to bring
the theoretical studies close to practical issues. The authors
have extracted the data of all the 300 OM-related projects
funded by the National Natural Science Foundation of
China (NSFC) from 2016 to 2021. Table 1 categorizes the
subjects of all the projects by new business model, new tech-
nology & Supply Chain Management (SCM) finance, prod-
uct & behavior, green & health-care & agriculture, and
traditional SCM. It is surprising to see that almost all the
subjects are driven by real practices, and few project pro-
posals even involve preliminary plans for industrial
implementations.

The academic community has always emphasized novel
and mathematically provable methods and reproducible
results, yet none of which are required for complex real-
world issues (Sodhi and Tang, 2008). To thrive, the ISE
research community should focus on overcoming the chal-
lenges that hinder successful practical applications and
embrace cooperation with data-driven decision methods so
that our research community will stay relevant and impact-
ful. Combined with real case studies, we list and analyze theFigure 5. Solution accuracy of the isothermal and nonisothermal models.

Table 1. OM-related projects funded by NSFC.

New business New technology & Product & Green & health-care Traditional
model SCM finance behavior & agriculture SCM

Crowdfunding Data-driven Intelligent product Carbon emissions Network design
Presale IoT Production line design Carbon trading Inventory optimization
C2M Internet plus User experience Green innovation Pricing
O2O Robotics Social learning Green SC Bullwhip effect
Live streaming Block chain Product upgrade Green logistics Time-limited service
Sharing economy Drone Return Low carbon SC Order picking
E-commerce RFID Information disclosure Remanufacturing SC Rebate
Omnichannel 3D printing Overconfidence Circuit breaker Closed-loop SC
Emerging economy Digital media Dynamic fairness Contactless delivery Disruption risk
Fulfillment service Electric vehicle Repurchase Post-pandemic era Flexible procurement
Grey market Equity investment Social network Medicine e-commerce Emergency
Reverse liability Green finance Product externality Medical platform Route planning
Crowd innovation Trade financing Strategic consumer Healthcare reform Demand forecasting
Cloud service Inventory financing Individual learning Vaccination Negotiation
New retail Financing platform Product development Farmer default Intelligent warehouse

Rental arrangement Behavior recognition Poverty alleviation Risk control
Financial innovation Customization Community agriculture Port container
Dynamic hedging Cognitive bias Fresh agriculture Revenue management

Online review Rural logistics Perishables
Reference effect Farmers’ financing Information sharing
SC advertisement Precision agriculture
Hunger marketing
Price subsidy

Note. “IoT” stands for “Internet of Things”. “C2M” stands for “Customer-to-Manufacturer”. “O2O” stands for “Online-to-Offline”. “RFID” stands for
“Radio Frequency Identification”. “SC” stands for “Supply Chain”.
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key challenges. Ultimately, these challenges can stimulate
research opportunities such as user-centric algorithms and
explainability. We hope that this article will encourage more
ISE researchers to embark on research that can help close
the gap when it comes to implementing new OM research
ideas into practice.
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