
Future Generation Computer Systems 139 (2023) 38–52

I

a
Q
t
l
p
n
i
o
a
n

l
w
c
T
C
p
p
t

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A federated cloud architecture for processing of cancer images on a
distributed storage
J. Damián Segrelles Quilis ∗, Sergio López-Huguet, Pau Lozano, Ignacio Blanquer
nstituto de Instrumentación para Imagen Molecular (I3M), Universitat Politècnica de València (UPV), Camino de Vera S/N, 46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 15 June 2022
Received in revised form 7 September 2022
Accepted 19 September 2022
Available online 22 September 2022

MSC:
00-01
99-00

Keywords:
Medical imaging
Biomarkers
Storage and computing backends

a b s t r a c t

The increased accuracy and exhaustivity of modern Artificial Intelligence techniques in supporting
the analysis of complex data, such as medical images, have exponentially increased real-world data
collection for research purposes. This fact has led to the development of international repositories and
high-performance computing solutions to deal with the computational demand for training models.
However, other stages in the development of medical imaging biomarkers do not require such intensive
computing resources, which has led to the convenience of integrating different computing backends
tailored for the processing demands of the various stages of processing workflows. We present in
this article a distributed and federated repository architecture for the development and application
of medical image biomarkers that combines multiple cloud storages with cloud and HPC processing
backends. The architecture has been deployed to serve the PRIMAGE (H2020 826494) project, aiming
to collect and manage data from paediatric cancer. The repository seamlessly integrates distributed
storage backends, an elastic Kubernetes cluster on a cloud on-premises and a supercomputer. Pro-
cessing jobs are handled through a single control platform, synchronising data on demand. The article
shows the specification of the different types of applications and a validation through a use case that
make use of most of the features of the platform.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
f

1. Introduction and background

Increasingly, radiology is based on objective and quantifi-
ble data extracted from Quantitative Imaging Biomarkers (QIBs).
IBs are quantitative indicators generated from structural, func-
ional, physiological or biological characteristics of pathological
esions [1]. In the workflow development of QIBs, complex com-
utational functions and models automatically extract attributes,
amely radiomics features, from different types of radiological
mages to correlate them to the phenotype or genetic signatures
f the lesions. These analyses aim to early detect and classify
nomalies to predict prognostics, define follow-up results, or
on-invasively assess the treatment response.
In the last years, developers have analysed the images by

earning from retrospective data, enriching radiomics features
ith demographic, clinical, liquid biopsies and genomic data be-
ause they improve the clinical value of the biomarkers [2].
hus, gathering data processes are crucial to developing useful
linical Decision support Systems (CDSS) based on QIBs in clinical
ractice, requiring a massive storage and high-performance com-
uting capacity [3] for managing data on image biobanks. Fur-
hermore, the huge amount of data makes traditional statistical

∗ Corresponding author.
E-mail address: dquilis@dsic.upv.es (J. Damián Segrelles Quilis).
ttps://doi.org/10.1016/j.future.2022.09.019
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
analyses impractical, leading to a transition to novel textitArtifi-
cial Intelligence (AI) solutions such as Deep Learning [4]. Running
AI algorithms efficiently requires high-computing performance
resources [5] connected to the data storage backends.

The Quantitative Imaging Biomarker Alliance (QIBA) from the
Radiological Society of North America (RSNA) and the European
Imaging Biomarker Alliance (EIBALL) of the European Society of
Radiology (ESR) highly support the adoption of this new paradigm
based on QIBs. In addition, the ESR has defined guidelines and
best practices [1,6] to develop and validate QIBs, which are used
as a baseline in this work to design a federated architecture
that allows processing images and associated data in distributed
repositories of cancer imaging, with the goal of supporting the
implementation of the whole QIB development workflow.

In this context, PRIMAGE [7] and CHAIMELEON [8] projects
are working to accelerate the development process and build
novel QIBs based on AI solutions following the ESR guidelines.
On the one hand, the PRIMAGE Project aims at providing an open
cloud-based platform to support decision making in the clinical
management of two rare paediatric cancers, Neuroblastoma (NB),
the most frequent solid cancer of early childhood, and the Dif-
use Intrinsic Pontine Glioma (DIPG), the leading cause of brain
tumour-related death in children. The platform offers CDSS tools
to assist on diagnosis, prediction, prognosis, therapy choice and
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.09.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.09.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:dquilis@dsic.upv.es
https://doi.org/10.1016/j.future.2022.09.019
http://creativecommons.org/licenses/by/4.0/


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

o
t
p
R
r
r
b
a
o
C
t
c

P
a
c
i
r

h
l
T
t
m
c
b
(
s
T
b
P
b

s
t
T
s
n
t
o
t
p
w
a

2

p
A
s
f

2

E
c
h
T
i
e

treatment follow-up. PRIMAGE CDSS tools are built on top of AI-
based QIBs and translate this knowledge into predictors for the
most relevant, disease-specific, Clinical End Points (CEPs). On the
ther hand, the CHAIMELEON project aims at setting up a reposi-
ory of health imaging data, processing tools and methodologies,
roviding datasets as FAIR (Findable, Accessible, Interoperable, and
eusable) research objects, along with storage and computing
esources for AI experimentation for cancer management. The
epository aims to accelerate the development of CDSS tools
ased on AI-based QIB solutions providing datasets, computing
nd processing backends to data scientists and developers and
ffering clinical staff the developed tools through a marketplace.
HAIMELEON focuses on four types of cancer that currently have
he highest prevalence worldwide: lung, breast, prostate and
olorectal.
The work presented in this paper is mainly framed on the

RIMAGE project. The main objective is to design a federated
rchitecture for processing data in a distributed repository of can-
er images providing storage and processing resources (includ-
ng both infrastructure and software tools) for covering all the
equirements identified in the QIB ESR development guidelines.

The main contribution of the architecture is the integration of
eterogeneous computing backends tailored for different work-
oads on a federated and synchronised distributed data storage.
he article focuses on the deployment of the proposed archi-
ecture for the development of QIBs related to the two above
entioned paediatric cancers. The distributed storage of the ar-
hitecture transfers and caches on-demand the data required
y the Processing Backends. The three application abstractions
batch, HTC batch and interactive) provided by the architecture
upport the implementation of the QIB development cycle’s life.
he innovative approach of the architecture consists of the com-
ination and integration of multiple cloud Storage Backends with
rocessing Backends for containers (Kubernetes cluster) and HPC
atch jobs (supercomputers).
The paper has the following structure. First, Section 2 de-

cribes the ESR development guidelines for QIBs as a baseline
o extract the requirements to design the proposed architecture.
hen, in Section 3 describes the requirements identified. Next
ection presents the proposed architecture, outlining the compo-
ents that address the requirements and the work carried out for
heir integration. Next, as result, the deployment and validation
f the federated architecture to support the QIB Community of
he PRIMAGE project are described. Besides, this section also
resents some scientific results from PRIMAGE developers that
ere accomplished through the use of the deployed federated
rchitecture. Finally, the last section exposes the conclusions.

. QIB ESR guideline

The QIB ESR guideline comprises four main phases [1,6]: Hy-
othesis; Image Acquisition and preparation for Analysis; Image
nalysis and Feature Extraction; and Biomarker Validation. Fig. 1
hows an overview of the stepwise of this methodology that the
ollowing subsections briefly describe.

.1. Hypothesis

The work should start with the definition of the hypothesis.
xpert clinicians on a given disease (NB or DIPG tumours in the
ase of PRIMAGE) define the target facts whose knowledge could
elp improving early diagnosis, or more adequate treatment.
hese facts should correlate with the biological and physiolog-
cal changes, expressed as radiomics features, that need to be
xtracted from medical images.
39
Fig. 1. Stepwise development of QIBs.
Source: Extracted from [1].

As the first step to formulate a hypothesis, a Clinician proposes
a Proof of Concept (e.g. tumour aggressiveness is higher when
the blood affluence to their tissues increases). Next, Theoret-
ical Researchers and Engineers specialised in medical imaging
(e.g. physicists, mathematicians, etc.) perform a Proof of Mecha-
nism (e.g. the bloodstream on a tissue can be measured through
Radiomics features extracted from b-value Diffusion Weighted
Imaging (DWI) models applied on MRI [9]). The testing of the hy-
pothesis requires choosing the Reference Methods, which are the
widely recognised reference approaches or procedures that deter-
mine the actual state of the disease under evaluation (e.g. biopsy).

2.2. Image Acquisition and preparation for analysis

The appropriate acquisition of source images is essential for
developing a QIB. Technicians carry out the Image Acquisition
by collecting reproducible and standardised images. Acquired
data must provide sufficient data coverage and maximise qual-
ity regarding noise ratios, spatial and temporal resolution, and
artefacts. Technicians need data processing and image preparation
tools (such as noise filtering and segmentation) to improve source
image quality.

The acquisition should include additional data that reflect
different aspects of pathological and physiological processes such
as clinical [10] or genomic [11] data. These data complements and
improves the clinical value of the biomarkers [2].

Technicians must anonymise the data collected, including both
the images and the associated data, and code the information
using standard terminologies (e.g. SNOMED-CT, RADLEX) before
uploading them into the Storage Backends. Storage backends en-
able processing the data by specific computing infrastructures
(Processing Backends) and are normally located beyond the hospi-
tal network borders. Anonymisation is a legal obligation to fulfil
GDPR 679/2016 and other European-country regulations.

2.3. Image analysis and feature extraction

This stage covers the application of methods and procedures to
extract radiomics features and signatures (e.g. anatomic, biologi-
cal, biochemical, physiological). This stage is typically performed
by Specialised Engineers and Researchers that apply those meth-
ods to either a Region Of Interest (ROI) (such as a lesion or an
organ) or specific subvolumes. Next, they perform correlation



J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

i
s
h
t
p
S

t
r
i

t
t
p

2

c
p
t
t
t

a
A

i
o
m
b

o
g

studies to generate multivariate analysis or data mining proce-
dures among all gathered data (radiomics features, clinical and
genomics data, reference methods, etc.).

The usage of AI methods based on Machine (Deep) Learn-
ng have become widely used to extract radiomics features and
ignatures [12] and to carry out correlation analysis [4]. The
uge amount of data available have made conventional statis-
ical analyses impractical. However, AI methods require high-
erformance computing resources that must be connected to the
torage Backends for efficiently processing the data.
After correlation analysis, the results are measured and quan-

ified, assigning a number or rank to the extracted features. These
esults should be adequately visualised for direct and objective
nterpretation to assess for target-related confounders.

In addition, researchers must identify biases and consider
hem before the validation of a biomarker. Bias estimation quan-
ify the systematic errors that affect and distort the measurement
rocess, generating wrong values and misinterpreting results.

.4. Biomarker validation

Specialised Clinicians carry out the validation and qualifi-
ation of biomarkers before incorporating them in the clinical
ractice. The validation implies measuring the effectiveness of
he biomarker and the qualification assesses the acceptability in
he clinical practice. As the first step, this process usually goes
hrough a single-centre analysis (proof of principle) on a small
sample of well-controlled and defined cases. It aims to verify
that the developed biomarker can be used in clinical practice
to evaluate the accuracy and potential confounding variables.
Next, if the proof of principle is successful, clinicians carry out
more extensive multicenter analysis to validate the biomarkers in
clinical practice routine (proof of effectiveness). Finally, the results
of a biomarker must be presented in an intuitively manner to fully
qualify for clinical practice. The disease-driven structured reports
are appropriate for transmitting these results [13].

3. Requirement analysis

This section includes a requirement identification process for
a platform to carry out the previous stages efficiently and collab-
oratively among the different actors involved. The section ends
up with the design of the proposed architecture, which will be
fully described in the next Section 4.

The following subsections introduce five areas, each one pre-
senting the list of functional and non-functional requirements
identified for enabling the development stages of quantitative
image biomarkers according to the ESR guidelines.

3.1. Federated authentication and authorisation

ESR life cycle involves different user profiles (Clinicians, Physi-
cians, Engineers, Radiologists, AI Developers, etc.). In each stage,
the users have to access the Backends (both processing and stor-
ge) to carry out processing actions through the User Applications.
User Application is a software application which runs on top

of the Backend Resources and provides the users with interfaces
(such as Command Line Interfaces — CLIs or user-friendly web
nterfaces) implementing different functionalities (e.g. ingestion
f data, executing data quality processes, filtering noises, seg-
entation processes, training AI models, validation of AI models,
iomarker tools).
Thus, the proposed architecture must enable a procedure to

rganise QIB communities as organisations (e.g. the Virtual Or-
anisations - VO). A QIB community is a set of heterogeneous
40
users (e.g. clinicians, physicists, Engineers, Radiologist, Metrolo-
gist, Mathematicians, AI Developers) from different knowledge
areas that share their resources, experiences and knowledge for
developing a QIB. The belonging to a VO entitle the user to access
to the distributed Backends and the specific User Applications.

Table 1 shows the main functional requirements (from F.01
to F.03) for the federated users and their ESR guidelines related
stages, and Table 2 shows the main non-functional requirements
(NF.1 and NF.2).

3.2. Backend deployment

Users perform actions to collect, manage, and compute med-
ical data during the whole ESR workflow through the User Ap-
plications running on the Backend. Backends should be deployed
on-demand to deal with the requirements of the ESR stages. De-
ployment in the Backend will provide the hardware and software
resources and will configure them to support the required User
Applications.

The Hypothesis stage initiates the workflow, and users formu-
late a Proof of Concept and Mechanism. They must deploy a Storage
Backend to store the data required (images and data associated,
Reference Methods Data) to contrast the hypothesis in the next
stages.

Next, data is prepared and ingested into the Storage Backend
(Image Acquisition and preparation for Analysis stage). In this
stage, users improve data quality (e.g. noise filtering, segmen-
tation, registration, normalisation) through specific Users Appli-
cations that require specific hardware requirements (e.g. GPU,
MPI Cluster) that are provided by Processing Backends. Therefore,
Processing Backends are deployed first and User Applications are
instantiated on top of them.

When the data collection and the ingestion into the Storage
Backends is completed, users can start building Biomarker Tools
(Image Analysis and Feature Extraction stage). First, users must
deploy User Applications (e.g. AI frameworks) to extract radiomics
features and signatures, and perform correlation studies to gen-
erate multivariate analysis or data mining procedures employing
the data collected or generated (radiomics features, clinical and
genomic data, reference methods, etc.).

Finally, in the Biomarker Validation stage, users deploy
Biomarkers Tools as User Applications to run the proof of principle
and effectiveness stage. This can be done using the Processing Back-
ends, or deploy a new Backends if the Biomarker Tools have differ-
ent software, hardware or execution environment configuration
requirements.

A Backend can give support to several VOs and must be config-
ured for allowing access to authorised users (users which belong
to a certain VO) only. Thus, each VO has a member with the De-
ploy Manager user role who is capable of deploying and releasing
Backends the services on the Backend.

Table 1 shows the main functional requirements (from F.O4 to
F.07) for the Backend deployments and the ESR guidelines related
stages, and Table 2 shows the main non-functional requirements
(from NF.4 to NF.07).

3.3. Storage Backends

Storage Backends are a crucial asset in the ESR life cycle. When
users carry out the Image Acquisition and Preparation for Analysis
stage, they ingest images, associated data and Reference Methods
data to the storage where authorised users will access it in further
stages. In the ingestion process, users employ (User Applications)
to ingest, curate, and anonymise the data and improve its quality
before uploading them. Data is cast to an agreed e-form fol-
lowing a common data model. Thus, depending on the cancer,



J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

s
(
s

a
s
o
P
s
p
t
a
s
a
r
T
B
t

t
r
(

3

A
a

Table 1
List of main functional requirements and related ESR guidelines stages (S1 — Hypothesis, S2 — Image Acquisition and preparation
for Analysis, S3 — Image Analysis and Feature Extraction, S4 — Biomarker Validation.
COD Description Stages Components

F.01 Users must manage their identity (create/delete identity,
update data identity) to authentication processes.

All stages IdPs supported by
EGI-check-in

F.02 QIB Communities must organise users into VOs (enrol/leave). All stages EGI Community

F.03 QIB Community must manage user roles (e.g. clinician,
physicians, engineers, radiologists, AI developers) in the VO
where they belong (assign/revoke role). The role determines
the actions allowed for the VO in the associated Backends (e.g.
execute applications, ingest data).

All stages EGI Community,
Kubeauthoriser, EGI Data
Hub

F.04 It (the platform) must deploy/release Storage Backends on
resources on public or on-premise cloud providers

S1 Infrastructure Manager

F.05 It must deploy/release Processing Backends on resources on top
of public or on-premise cloud providers.

S2, S3, S4 Infrastructure Manager

F.06 It must deploy/release User Applications on Processing Backends. S2, S3 Kubernetes

F.07 It must deploy/release Biomarker Tools on Processing Backends. S4 Kubernetes

F.08 Storage Backends must provide disease-specific e-forms to
collect data (images and associated data).

S2 QUIBIM Precision
(Front-End), DCM4CHEE

F.09 Storage Backends must offer tools for browsing data. S2 QUIBIM Precision
(Front-End), EGI Datahub

F.10 Storage Backends must offer tools for creating datasets. S2 QUIBIM Precision
(Front-End)

F.11 Storage Backends must provide spaces to share data among
users.

S3 EGI Datahub

F.12 Storage Backends must provide private spaces for personal data
users.

S3 EGI Datahub

F.13 Processing Backends must offer tools to launch User
Applications.

S2, S3 Kubernetes (Dashboard)

F.14 Processing Backends must offer to access running User
Applications.

S2, S3 Guacamole, Kubernetes
(Dashboard)

F.15 User Applications must offer tools to access Images from
Storage Backends efficiently.

S2, S3 EGI Datahub (OneClient)

F.16 User Applications must offer tools to manage Clinical Data
from Storage Backends efficiently.

S2, S3 EGI Datahub (OneClient)
the Backend will provide a user-friendly interface to input the
pecific e-form variables, collecting all interesting associated data
e.g. clinical) and linking them to the related images, as well as
toring them efficiently.
According to the QIB to be developed, developers may find

specific dataset relevant. Thus, Storage Backends must provide
ervices for browsing and selecting data that has been previ-
usly ingested, creating the aforementioned datasets. In addition,
rocessing Backends must be connected to the storage with the
elected data. Then, users can perform advanced computational
rocesses through User Applications (e.g. to execute AI algorithms
hrough specific platforms such as Tensorflow) for the image
nalysis and feature extraction. The Backends must provide a
pace to manage user private data (e.g. AI models to be trained)
nd another space to share data among other users (e.g. data
esults obtained in the image analysis and feature extraction).
able 5 lists the main functional requirements for the Storage
ackend, the related stages and the existing components to fit
hem.

Table 1 shows the main functional requirements (from F.08
o F.12) for the Storage Backends and the ESR guidelines stages
elated, and Table 2 shows the main non-functional requirements
from NF.08 to NF.11).

.4. Processing Backends

In the ESR life cycle (Image Acquisition and Preparation for
nalysis, and Image analysis and feature extraction stages), there
re processes that require Processing Backends. When users carry

out these processes, they must launch and run specific User
41
Applications (e.g. AI frameworks, Radiomic Python libraries, etc.)
to compute data hosted at Storage Backends. Depending on the
User Application, the Processing Backend will provide the required
computational infrastructure (e.g. GPUs, MPI Cluster) and other
capabilities to launch and access those applications. Also, it must
provide an efficient access for to the User Applications launched
to the data in the Storage Backends.

In addition, during the Biomarker Validation Stage Biomarker
tools will be deployed to carry out the proof of principle and
effectiveness evaluation stages.

Table 1 shows the main functional requirements (from F.13
and F.14) for the Processing Backends and the related ESR guide-
lines stages, and Table 2 shows the main non-functional require-
ments (from NF.12 to NF.14).

3.5. User Applications

As it has been described in previous subsections, actors in-
volved in the QIB development need to run User Applications
for preparing or carrying out the ingestion and data analysis
in different stages (e.g. noise filtering, segmentation, registra-
tion, normalisation, AI methods based on Machine/Deep Learning
algorithms, etc.). A User Application is an application and its as-
sociated software libraries and specific computing requirements
(e.g. GPUS, MPI CLuster) needed to run. User Applications provide
interfaces to the users for interacting with them.

Table 1 shows the main functional requirements (from F.15
and F.F17) for the User Applications and the related ESR guidelines
stages, and Table 2 shows the main non-functional requirements
(from NF.15 to NF.17).



J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

v

3

d
r
d
r
t
l
t

p
r

3

m
I
i
a

s

3

t
a
d

Table 2
List of main non-functional requirements.
COD Description Components

NF.01 User Identity must be unique. IdPs supported by EGI-check-In

NF.02 The credentials to access Storage and Processing Backends must
be unique. The users always use the same credentials to
perform the actions independently of the accessed Backend.

EGI-check-in, Kubeauthoriser, EGI Data Hub

NF.03 Backend deployment must be cloud-provider agnostic
regarding.

Infrastructure Manager

NF.04 Backend deployment must be reproducible. Infrastructure Manager

NF.05 Backend deployment must be scalable in terms of storage and
processing capacity.

CLUES, Infrastructure Manager

NF.06 Processing Backend Deployment must offer specific computing
(e.g. GPU) and storage infrastructure to execute User
Applications.

Infrastructure Manager, Cloud provider

NF.07 A Backend Deployment must support a minimum of one VO. Kubeauthoriser, EGI Data Hub

NF.08 Storage Backends must provide the capacity to manage all
necessary data (images and associated data).

MongoDB, POSIX File System (e.g. Ceph, Azure
File System)

NF.09 Storage Backends must provide efficient data access to
Processing Backends.

EGI Datahub (OneProviders)

NF.10 Storage Backends must restrict access only to VO users with
certain roles.

EGI Datahub

NF.11 Storage Backends must provide efficient access to Processing
Backends belonging to the same VO.

EGI Datahub

NF.12 Processing Backends must provide the computing infrastructure
to execute User Applications efficiently.

Infrastructure Manager, Cloud Providers,
HPC-Connector

NF.13 Processing Backends must access data efficiently from Storage
Backends.

EGI Datahub

NF.14 Processing Backends must provide access to Storage Backends
belonging to the same VO.

EGI Datahub, Kubeauthoriser

NF.15 User Applications must embed specific software and libraries. Docker Hub Registry, Docker Images

NF.16 User Applications must execute their processes in Processing
Backends which provide specific computing infrastructure.

Kubernetes

NF.17 User Applications must employ Storage and Processing
Backends belonging to the same user VO

Kube-authoriser, EGI Datahub (OneClient)
The most common User Application topologies in the ESR De-
elopment workflow are the following:

.5.1. Batch Job
This type of User Application is mainly used for processing

ata hosted in a Storage Backend. It runs unattended and typically
eads information from a set of files (e.g. DICOM images or clinical
ata) and produces files as output. Additionally, a Batch Job may
eceive other input parameters and even show some output in
he console for monitoring. It can be, among others, a Machine
earning training process, the co-registration of a set of files, or
he inference of a pre-trained AI model on a new data file.

This type of Applications requires a computing infrastructure
rovided by Processing Backends which could have additional
equirements (e.g. GPUs, MPI Cluster).

.5.2. HTC Batch Application
As batch Jobs, High-Throughput Computing (HTC) jobs are

ainly intended for processing data hosted in a Storage Backend.
t executes a set of jobs (using the same executable) with different
nput arguments from a defined set. A basic example could be the
pplication of a filter to all the files in a directory.
This type of application also requires specific computing re-

ources.

.5.3. Interactive
It exposes an access interface to enable users to interact with

he application. This interaction determines the behaviour of the
pplication. Therefore, Interactive Applications show three main

ifferences with respect to Batch Applications: (a) it will run

42
for an undetermined time and eventually longer than a batch
job; (b) It should start shortly, although it may trigger long-
lasting actions; (c) It must be accessible by the user. Therefore,
we consider web-based applications as a canonical example of an
interactive application (e.g. A Jupyter Notebook).

4. Architecture

The section presents the architecture of the platform, high-
lighting the main components and the integration work carried
out to cover the requirements mentioned above. Fig. 2 depicts
the federated and distributed architecture of the Storage and
Processing Backends for cancer images. It includes the five main
areas outlined in the following subsections. Tables 1 and 2 list
functional and non-functional requirements for these areas and
the components selected or implemented to match them.

4.1. Federated users (authentication and authorisation)

The architecture uses VOs to manage the authorisation of
users in QIBs development Communities. The authentication is
managed through a federation of Identity Providers (IdPs). A VO
is a collection of user identities authenticated from a collection
of trusted IdPs which is used to collectively manage access per-
missions to the resources (e.g. Processing and Storage Backends
that bind to this VO. The VO model, as used in business [14] or
other science disciplines [15] fits the QIB development. VOs allow
us to federate IdPs for both authentication and user authorisa-
tion conveniently, so users can access the Processing and Storage
Backends associated with the VO as a whole with minimal admin-
istration intervention. The architecture employs the EGI-Check-in



J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

S
o
S
f
t
(
t
(

D

Fig. 2. Overview of the federated and distributed backends to implement ESR Guidelines.
f
s
M
T

c
t
a
A
v
K
t
B
A
A
t
e
e
t
t
i

ervice1 to implement the authentication processes and relies
n the VOs for authorisation. EGI Check-in is a European Open
cience Cloud (EOSC)2 service provided by the EGI Community3
or user authentication. It allows sign-up and sign-in users in
he EGI community through the most common Identity Providers
IdPs) (e.g. Google, linked-in, EduGain, etc.) and manages VOs
o organise the users for enabling access to associated resources
e.g. Storage and Processing Backends).

Storage Backends implement the authorisation through EGI
ata Hub [16], QUIBIM Precision4 and DCM4CHEE5 (see

Section 4.1.2) depending on the execution functionalities. The
Processing Backends implement them through Kube-authorizer6
(see Section 4.1.3). The component gets unique user identities and
associated metadata (e.g. belonging to VOs, capabilities and/or
roles) from supported IdPs and restricts access based on metadata
gathered.

4.1.1. Backends deployment
The proposed architecture employs a Kubernetes (K8s)7 sys-

tem to: (a) run all User Applications required by both Storage and

1 EGI Check-in: https://www.egi.eu/services/check-in.
2 European Open Science Cloud:https://eosc-portal.eu.
3 EGI Community:https://www.egi.eu/tag/community.
4 QUIBIM Precision:https://quibim.com.
5 DICOM Archive:https://github.com/dcm4che.
6 https://gitlab.com/primageproject/kube-authorizer
7 Kubernetes:https://kubernetes.io.
43
Processing Backends that offer functionalities for performing user
actions; (b) execute User Applications in the Processing Backends
or preparing or carrying out data analysis (e.g. noise filtering,
egmentation, registration, normalisation, AI methods based on
achine/Deep Learning algorithms, etc.); (c) execute Biomarker
ools as User Applications in the Processing Backends for carrying

out biomarker validations.
Infrastructure Manager (IM) is used to deploy and manage the

loud infrastructure. IM allows to deploy computing infrastruc-
ures in public and on-premises cloud providers. IM is platform-
gnostic through deployment recipes written in Resource and
pplication Description Language (RADL).8IM relies in CLUES9 ser-
ice to automatically manage the horizontal elasticity of the
8s nodes. Therefore, we have built a set of RADL,10 recipes
o deploy on cloud infrastructures (private or public) required
ackends (software, hardware and configuration) for running User
pplications as Kubernetes processes. Also, depending on the User
pplication to run in the Processing Backends the recipes include
he required computational resources (e.g. MPI clusters, GPUs,
t.) and software (e.g. Tensorflow Framework, Pytorche, Python
tc.). These recipes reflect the integration works carried out in
he Backends because they define the required configuration of
he hardware infrastructure and software employed for their
mplementations.

8 RADL:https://imdocs.readthedocs.io/en/latest/radl.html.
9 Cluster Energy Saving:www.grycap.upv.es/clues.

10 https://gitlab.com/primageproject/deployment/-/tree/main/RADLs

https://www.egi.eu/services/check-in
https://eosc-portal.eu
https://www.egi.eu/tag/community
https://quibim.com
https://github.com/dcm4che
https://gitlab.com/primageproject/kube-authorizer
https://kubernetes.io
https://imdocs.readthedocs.io/en/latest/radl.html
http://www.grycap.upv.es/clues
https://gitlab.com/primageproject/deployment/-/tree/main/RADLs


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

4

i
P

t
u
s
v

Fig. 3. Storage Backend Big picture.
.1.2. Storage Backends
Fig. 3 shows the big picture and integrates all components

n Storage Backends. The proposed architecture uses QUIBIM
recision11 to implement the functionalities of ingesting, brows-

ing, selecting and managing data. It offers a user-friendly web
interface (front-end) to collect data via federated e-forms and
uploads the associated medical images through a PACS node
using the DICOM protocol. In the architecture, the PACS Node
is implemented with DCM4CHEE, an open-source Image Archive.
QUIBIM Precision organises the ingested data by patient cases and
stores them in two different data containers. One is a POSIX file
system that stores DICOM images. In on-premise deployments,
the architecture employs a Ceph Distributed Storage System [17],
an open-source distributed object storage for large amounts of
data designed to deal with Big Data processing. In public cloud
deployments, the architecture integrates the compatible POSIX
file systems offered by the Cloud Providers (e.g. Azure File Sys-
tems, Google Filestore, etc.). The second database is MongoDB,
which saves all clinical variables collected by the e-forms as JSON
Files linking to corresponding DICOM images stored in the POSIX
file system for each patient case.

In addition, QUIBIM Precision provides an interface to explore
all stored patient cases and choose the most interesting cases
(datasets) for developing purposes. The data selected (dataset)
is defined as a JSON file that contains all the identifiers of the
DICOM images and the selected e-forms (clinical variables and
references to images).

The architecture uses different components to efficiently con-
nect data among Storage and Processing Backends depending on
the type of data (images or associated data collected by e-forms).
Images are heavy to access or transfer efficiently, so the proposed
architecture must host only the data to be processed where the
process is carried out (Processing Backends). For that, images are
replicated and synchronised among Backends through EGI Data
Hub [16]. It is an EOSC service implemented through OneData12
echnology. This service allows the creation of isolated Data Vol-
mes associated with a VO whose content is replicated and
ynchronised through OneProvider services. Users access Data
olumes through Oneclient Services, which allows mounting the

11 QUIBIM Precision: https://quibim.com.
12 Global Data Access Solution for Science: https://onedata.org.
44
Data Volumes as local resources. Thus, each VO must create a vol-
ume named DATALAKE and install and configure a OneProvider
Service in all sites where images will be replicated and syn-
chronised (read-only). It is convenient to install the Oneprovider
close to the Processing Backends to speed-up the access from User
Applications, using the direct--io mode if possible. EGI Data
Hub supports EGI-Check-in Service for the authentication and
authorisation, restricting access to the Storage and Processing
Backends belonging to a given VO.

Data collected in e-forms (clinical data) are transferred through
JSON Files and do not require replication. They are exported
as compressed text files that which only require a few Kbytes
or Mbytes, which can transfer efficiently from the MongoDB
database through a REST API.

Besides, the architecture creates another Volume named HOME,
which provides the users with both a private and a folder shared
among the users.

4.1.3. Processing Backends
Fig. 4 shows the overview and integrates all components in

Processing Backends. The proposed architecture uses Kubernetes
Dashboard13 to implement the functionalities to launch User
Applications defined through YAML files and Docker Containers
(see Section 4.1.4).

Regarding accessing the data, Processing Backends use OneData
to replicate and synchronise images from distributed Storage
Backends. However, the data from e-forms is preserved on the
MongoDB database and it is automatically downloaded when
needed.

Interacting with Kubernetes through command line or REST
API can be cumbersome for inexperienced users, so the platform
includes a Kubernetes Dashboard to ease the deployment of User
Applications. As Kubernetes Dashboard does not integrate OIDC,
we implement it using EGI-Check-in. A proxy captures the re-
quests and if the user belongs to the VO it redirects the traffic
with the proper header to the Kubernetes Dashboard. To do this,
it is necessary that: (1) Kubernetes is configured to allow OIDC (2)
authorise the users through OIDC. We developed Kube-authoriser
to authorise by creating an isolated execution environment for
each user in K8s, called namespaces, and applying RBAC policies

13 Kubernetes Dashboard: https://kubernetes.io/docs/tasks/access-application-
cluster/web-ui-dashboard.

https://quibim.com
https://onedata.org
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

a
(
a
b
a

t
c
c

4

i
t

Fig. 4. Processing Backend Big picture.
nd other actions such as the creation of the personal directory
in the HOME volume). These actions are automatically triggered
t Kube-authoriser because the proxy of the Kubernetes Dash-
oard notifies Kube-authoriser every time a user is authenticated
nd belongs to the VO.
Users can access the User Applications deployed directly

hrough Kubernetes Dashboard or Apache Guacamole.14 It is a
lientless remote desktop gateway and supports standard proto-
ols like Remote Desktop (RDP) and SSH.

.1.4. User applications
In the context of this work, a User Application is a program that

s built following a specific design and implementation to run on
he Processing and Storage Backends described above.

A User Application is composed of the following elements:

• Application’s Executable. It will consist of an executable
(or bundle of them) implemented by user developers or an
existent component, it can be used through Command Line
Interface (CLI) or Graphical User Interface (this way it is
necessary to connect using Guacamole).

• Docker Container. Commonly the Application’s Executable
requires some dependencies, configuration files and tools
that define the execution environment of the User Applica-
tion.
The proposed architecture uses Docker15 and Docker Hub16
to implement and manage these execution environments.
Docker container images are a lightweight, standalone, exe-
cutable package of software that includes everything needed
to run an Application’s Executable. Docker Hub is a registry
of Docker images and allows organisations their manage-
ment.
To enable accessing the data all docker containers employed
to build User Applications have to embed OneClient and
MongoDB client libraries to allow efficient access to Storage
Backend that contains both the images and the associated

14 Apache Guacamole. https://guacamole.apache.org.
15 Docker: https://www.docker.com/.
16 Dockerhub: https://hub.docker.com/.
45
clinical data. OneClient allows mounting the DATLAKE and
HOME OneData volumes as a data local volume. Both volumes
were created through EGI data hub Service. By mounting
the DATALAKE and the HOME volumes, Application’s Exe-
cutable has direct access to the images directory and the
user’s shared directory, through a POSIX interface. Further-
more, REST/API MongoDB client allows downloading the
e-form data from the MongoDB database in the Storage
Backends. Besides, the containers for Application’s Executa-
bles requiring HPC resources include an instance of HPC-
Connector [18]. This component is an open-source tool that
manages the full life cycle of jobs in HPC infrastructures,
seamlessly from the cloud job scheduler interacting with the
workload manager of the HPC system.

• Application Template. In order to run a User Application
in the Processing and Storage Backends, developers need a
Kubernetes application template. Such templates can be
described using JSON or YAML. An Application Template
includes several Kubernetes objects such as jobs, pods, ser-
vices, statefulset, configmaps, to implement the application
topology. We distinguish three topologies (Batch jobs, HTC
Batch Applications and Interactive Applications). As a result
of this work, we provide a set of application templates
(YAML files17) to build and run applications in the Back-
ends based on these topologies. In the specific case of HTC
topology and despite Kubernetes provides a ‘‘job’’ object,
it does not fulfil the requirements of a batch queue jobs.
Indicating different arguments for different Kubernetes job
instances is not trivial and scheduling is performed within
the multiple instances of a specific job. We can easily limit
the number of concurrent instances of a job, but limit the
allocation of resources for several competing jobs in a multi-
tenant environment is not straightforward. However, this
feature is demanded and an incubator project has recently
been started.18 Therefore, we have developed an object to
support HTC batch job execution.

17 YAML templates: https://gitlab.com/primageproject/applications.
18 https://github.com/kubernetes-sigs/kueue

https://guacamole.apache.org
https://www.docker.com/
https://hub.docker.com/
https://gitlab.com/primageproject/applications
https://github.com/kubernetes-sigs/kueue


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

4

p

a

c
c
o
O
b
a
a

j
p

-

e
a
t

a
H
t

t
c

P
Y
t

Fig. 5. Big picture of the Bath Job Architecture.

Fig. 6. YAML Template to build Batch Jobs.

.1.5. Batch Jobs
Fig. 5 shows the architecture of the Batch jobs which com-

rises the three core components described above.
As a result of this work, we have created a YAML template and

procedure to create customised Batch jobs from the template.
In the first step, a developer builds the Application’s Exe-

utable. Then, in the second step, the developer chooses a Docker
ontainer image to run the Application’s Executable. As a result
f this work we have created a set of Dockerfiles files19 with
neClient, MongoDB libraries and HPC-Connector embedded to
e used as a basis for customised Docker images. All new im-
ges generated from these Dockerfiles have to be registered in
Docker registry to be accessible by the nodes.
Next, in the third step, the YAML template is updated with the

ob-specific information by providing the information for the next
arameters (see left Fig. 6):

• #batch_job_name#. This is the name of the Batch Job in-
stance in Kubernetes.

• #namespace_name#. This is the name of the Kubernetes
namespace of the Processing Backend where the jobs will
run. The platform automatically creates a user-specific names
pace in the first access to the platform. The Batch job will
only be accessible from the owner of this namespace.

• #docker_image#. This is the name of the Docker image
from the Docker Registry.

19 https://gitlab.com/primageproject/containers/-/tree/master/ubuntu18
 t

46
Fig. 7. YAML file to configure HPC-Connector.

• #command_line_arguments#. These are the command line
arguments needed to run the Application’s Executable.

The YAML template includes a set of fixed and predefined
nvironment variables (see the right side of Fig. 6) that have been
utomatically created in the user registration process. These are
he following:

• ONECLIENT_ACCESS_TOKEN. This is the token to grant ac-
cess to the Storage Backend.

• ONECLIENT_PROVIDER_HOST. The Batch Job will connect
to the Storage Backend through this host using the cre-
dentials provided by the token. It is interesting to connect
to the geographically nearest Oneprovider to get the best
performance.

• MOUNT_POINT. This is the root folder of the Storage Backend
where the DATALAKE and HOME volumes are accessible.

In the case that the job requires an HPC infrastructure, an
dditional YAML file will contain the specific configuration for the
PC-Connector. The parameters to be configured (see Fig. 7) are
he following:

• #name#. The name of the HPC resource (e.g. Prometheus).
• #namespace_name#. This is the name of the Kubernetes

namespace in the Processing Backend. This configuration will
be accessible only to the owner of this namespace.

• #END_POINT#. The endpoint od the HPC resource. (e.g.
prometheus.cyfronet.pl)

• #CREDENTIALS#. These are the credentials needed to access
the HPC resource. (e.g. In the case of Prometheus a proxy file
is required).

After configuring HPC-Connector, the HPC job is created
hought another YAML file (see Fig. 8. The parameters to be
onfigured are the following:

• #name#. This is the name of the job.
• #namespace_name#. The name of the Kubernetes names-

pace in the Processing Backend.
• #Script#. A script that implements the HPC job with the

additional configuration required by the backend. (e.g. In the
case of Prometheus a SCRATCH file is required).

Then, the developer can run the customised Batch job on the
rocessing and Storage Backends, creating a new job with the
AML file through the Kubernetes Dashboard. Finally, in step 4,
he developer can monitor the Batch Job running process through

he Kubernetes Dashboard.

https://gitlab.com/primageproject/containers/-/tree/master/ubuntu18


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

p
r
a
S
B

a
i
o
T
C
Q
e
a
d
J
t
Q

t
t
f
E
b

Fig. 8. YAML file for configuring HPC Job.

Fig. 9. Big picture of the HTC Batch Application Architecture.

4.1.6. HTC Batch Applications
Fig. 9 shows the three main elements of an HTC Batch Ap-

lication. Its purpose is to execute an Application’s Executable
epeatedly, each execution with a different input argument from
defined set. The elements are one HTC Queue Service (Queue
ervice), one HTC Batch Producer (Producer Jobs) and a set of HTC
atch Consumer (Consumer Jobs).
The arguments of each Application’s Executable are generated

nd pushed to the Queue Service by the Producer Job. Typically,
t reads information from a set of files, although it may receive
ther types of input parameters, and generate the arguments.
hen, it pushes the argument through the Argument Pusher. The
onsumer Jobs retrieves iteratively a set of arguments from the
ueue Service through an Argument Puller and execute repeat-
dly an Application’s Executable (one execution per retrieved
rgument), which typically produces some kind of files or stan-
ard output. Both Producers and Consumers run as unattended
obs on the Processing Backend. The mechanism to communicate
hem is through a FIFO (First In, First Out) queue provided by the
ueue Service.
A basic example of a Producer Job could be a programme

hat reads all the files in a directory and puts their paths on
he Queue Service. A Consumer Job iteratively pulls a filename
rom the Queue Service and executes repeatedly an Application’s
xecutable as a Batch job that processes that file until the queue
ecomes empty.
47
Fig. 10. Procedure to create HTC Batch applications.

As a result of this work, we have created a set of YAML
templates and a procedure for the purpose to complete them and
creating customised HTC Batch Applications by developers. Fig. 10
shows three branches in the procedure.

Each HTC Batch Application has to deploy and run a separate
Service Queue (left branch in Fig. 10 - Step 1). This guarantees
that each application has the same Quality of Service (e.g. the
upper limit for the number of concurrent jobs running on the
Processing Backend). In step 1.1, developers have to customise
a YAML template indicating the name of the Queue Service (pa-
rameter #service name#) and then run the Queue Service on
the Processing Backend, creating a new service employing the
customised YAML file through the Kubernetes web interface.
Then, in step 1.2., developers can consult the status of the queue
(e.g. number of arguments in the queue). Then, developers create
and run a customised Producer Job (centre branch — Step 2,
in Fig. 10). Basically, the Producer Job is a Batch Job (see Sec-
tion 4.1.5) with the specific purpose of generating parameters and
pushing them to the Queue Service. For that, as a result of this
work, we have prepared a specific YAML template for developers
which is equal to the Batch Job Template (see Fig. 6), adding
the name of the Queue Service (parameter #Name of HTC Batch
Queue service#). Also, as a result of this work, we have created a
Docker image with the Argument Pusher Component embedded
to build new Docker images for Producer Jobs from it.

Next, developers create and run customised Consumer Jobs
(right branch — Step 3, in Fig. 10). A Consumer Job is a Batch
Job with the specific purpose of processing parameters pushed
from the Queue Service. For that, as a result of this work, we
have prepared a specific YAML template for developers which is
equal to the Batch Job Template (see Fig. 6), adding the name
of the Queue Service (parameter #Name of HTC Batch Queue
service#) and the number of Consumer Job that will be running
concurrently (parameter #parallelism#) which can be enlarged or
shrunk during the execution of the HTC Batch Application. Also,
as a result of this work, to build new docker images for Con-
sumer Jobs we have created a docker image with the Argument
Puller Component embedded to inherit in the docker containers
employed by developers to build the consumers.

When all the jobs (consumer and producers) are completed,
the whole HTC Batch Application can be terminated releasing the
jobs (Queue Service, Producer Job and Consumer Jobs).

4.1.7. Interactive Application
Basically, the architecture of the Interactive Application is

equal to the Batch application (see Section 4.1.5) but adds an
interactive interface which allows ending users to interact with
the application.

As a result of this work, we have created a YAML template
and a procedure for the purpose to complete them and creating



J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

w
v

5

a
t

t
c

(
c
t

Fig. 11. Procedure to create Interactive applications.

Fig. 12. Example YAML Template to build Interactive Applications.

customised Interactive Applications by developers. Fig. 11 shows
the phases of the procedure.

Steps 1 to 3 of Fig. 11 are the same as those described in batch
jobs.

In the second step, the developer chooses a Docker container
image to run the Application’s Executable. As a result of this
work, we have created two base containers to build new Docker
Images as execution environments: a Jupyter Notebook server
and an apache NGINX web server. In the case of the Apache
web server, developers can upload the full web application to
the Storage Backend and reuse the Apache webserver container.
Alternatively, developers can create a custom container with the
application installed on it, but this will reduce the flexibility of the
Docker Image. the two base containers have to embed Oneclient
and MongoDB libraries.

Next, in the third step, the YAML template is customised. In
this specification, there are three important details to consider
regarding Batch applications (see Fig. 12):

• #Targetport#. The value of the targetPort should match the
value of the port that the interactive application will use.

• #nodePort key#. The value of the port where the applica-
tion will be accessible from outside.

5. Results and discussion

This section describes the deployment in the PRIMAGE project,
here a QIB community uses the federated architecture for de-
eloping QIBs related to two paediatric cancers.

.1. PRIMAGE Project deployment

As a result of this work, we present the deployment of the
rchitecture (see Fig. 13) described above for giving support to
he QIB community involved in the PRIMAGE Project [7].
48
PRIMAGE Project has created a VO in the EGI Community
named vo.primage.eu. Furthermore, a Service Level Agree-
ment (SLA) has been is made between EGI Foundation (the
Service Provider) and vo.primage.eu (the Customer represented
by the Universitat Politècnica de València - UPV) to define the
provision and support of the services through the EGI federation.
This Agreement is valid to 31/06/2025 and guarantees the opera-
tion (twenty-four hours a day and seven days a week) of the main
services used, which are the EGI Check-In and the EGI Datahub.

The PRIMAGE VO involves more than 30 researchers from
more than 10 European research institutions belonging to the
PRIMAGE project Consortium.

Regarding the backend infrastructure, three storage backends
have been deployed. These three storage backends manage the
medical images and clinical data related to NB and DIPG tumours:
An Azure File Service, which is the data source running a two file
systems in UPV in Spain and Cyfronet in Poland). Medical images
are automatically replicated on-demand from three sites to bring
data closer to the computing resources. For that, a OneProvider
Service has been installed and configured in each site giving
support to a Volume of 3.6 TB for storing the medical images
and another limited volume of 50 GB for the personal data. The
volumes can be extended on demand up to 10 TB.

For the data ingestion process, QUIBIM Precision provides two
specific e-forms to gather the clinical data. Currently, the total
number of patient cases is 841 (783 of NB and 58 of DIPG) which
are stored in the storage volume (1.4 TB) and the MongoDB for
the clinical data.

In addition, a Processing Backend has been deployed on the
cloud resources provided by the UPV, featuring 32 CPUs, 2 GPUs,
512 RAM, and 512 GB SSD Hard Disk. It hosts an elastic Kuber-
netes cluster which manages the resources on demand.

The DATALAKE volume is replicated in this Processing
Backend through a OneProvider component. It is also repli-
cated in Cyfronet, which hosts the supercomputer Prometheus.
Prometheus is the 1st HPC system in Poland (475th on Top 500
in June 2022, 38th in June 2015). Furthermore, all Clinical Data
hosted at Storage Backend are accessible from the Processing
Backend through a REST API’’.

5.2. User Application validation

To validate the User Application typologies, a set of User ap-
plications has been implemented and executed employing the
PRIMAGE Backends. The validation consists in the implementation
of the whole workflow to train, validate and test a Convolutional
Neural Network (CNN) for to predicting breast cancer in breast
histology images employing the Keras deep learning library20 .

The User Applications implemented are a HTC Application and a
Interactive Application that use cloud resources provided by UPV,
and a Batch job that use GPUs of Prometheus Cluster provided by
Cyfronet. All these user Applications could be a typical applications
required to implement the ESR Cycle’s life to develop a QIB.

5.2.1. Dataset
The used dataset is related to Invasive Ductal Carcinoma (IDC),

he most common of all breast cancer. The dataset was originally
urated [19,20] and is available in public domain.21
It has a total of 277.524 patches of 50 × 50 pixels from images

see Fig. 14), including 198.738 negative examples (i.e., no breast
ancer) and 78.786 positive examples (i.e., breast cancer found in
he patch).

20 https://pyimagesearch.com/2019/02/18/breast-cancer-classification-with-
keras-and-deep-learning/
21 https://www.kaggle.com/datasets/paultimothymooney/breast-
histopathology-images

https://pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/
https://pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/
https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

p

Fig. 13. PRIMAGE Project Deployment for the QIB community.
A
a
c
t
Q
f
d
f
o

5

t
t

Fig. 14. Eight patches of 50 × 50 pixels extracted from Breast Histopathology.
The four images at the top of the figure are negative examples, and the four at
the bottom are positive.

All these images were available from DATALAKE Volume in the
deployed Storage Backend. Images were synchronised at the UPV
and Cyfronet by the Oneproviders so they are accessible to all User
Applications running in the cloud resources provided by the UPV
and the HPC resources provided by Cyfronet.

5.2.2. Training and validation
A User Application is required to execute the training and

validation of the AI Model. This is implemented thought a Keras
Deep Learning classification architecture employing Tensorflow
2.0 framework and a set of specific libraries such as matplotlib
(a scientific plotting package that is the de-facto standard for
Python), Keras or Numpy (a Python library for numerical process-
ing) to name a few. Thus, a new Batch Job22 has been built but in
this case we decide to execute the training process in Prometheus,
the HPC resource provided by Cyfronet.

22 Batch job used to run the validation and the logs: https://gitlab.com/
rimageproject/deployment/-/tree/main/Validation/1-batch-job--training.
49
To execute the training, the GPUs provided by Prometheus
cluster are used in this Batch job. It uses HPC-Connector (YAML
file23) to launch and monitoring the processes in the Prometheus
GPUs.

Fig. 15 shows the evolution by iteration of the loss and the
accuracy during the 5 epochs of the training. It shows a quick con-
vergence to the final values, which justifies the reduced number
of epochs used in the experiment.

5.2.3. Testing
When the training and validation is finished, a new User Ap-

plication24 is used to carry out the testing process of the trained
I-Model. This is a HTC Batch Application with a Producer Job
nd some Consumer Jobs. The Producer code (htc-producer.py)
reates partitions over the whole testing images, writes down
hat partitions in CSV files and puts the path of that files in the
ueue Service. Each Consumer (htc-consumer.py) gets a partition
ile path from the Queue Service and load the file as a pandas
ataframe which can be used as input source for the prediction
low over the previously trained model, writing finally the array
f predicted indexes in a file.

.2.4. Visualisation of results
In order to combine and visualise the results of the previous

esting process, finally another User Application25 was deployed,
his time an Interactive Application which is a Jupyter Notebook

23 https://gitlab.com/primageproject/deployment/-/blob/main/Validation/1-
batch-job--training/hpc-connector-job-breasttumour.yaml
24 HTC batch application used to do the testing process and the logs:
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/2-htc-
application--testing.
25 Interactive application used to show the results: https://gitlab.com/
primageproject/deployment/-/tree/main/Validation/3-interactive-application--
visualization-of-results

https://gitlab.com/primageproject/deployment/-/tree/main/Validation/1-batch-job--training
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/1-batch-job--training
https://gitlab.com/primageproject/deployment/-/blob/main/Validation/1-batch-job--training/hpc-connector-job-breasttumour.yaml
https://gitlab.com/primageproject/deployment/-/blob/main/Validation/1-batch-job--training/hpc-connector-job-breasttumour.yaml
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/2-htc-application--testing
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/2-htc-application--testing
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/3-interactive-application--visualization-of-results
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/3-interactive-application--visualization-of-results
https://gitlab.com/primageproject/deployment/-/tree/main/Validation/3-interactive-application--visualization-of-results


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

w
i
o
i

5

o
P
t
j
d
T
v
P
o
t
t

o
o
t
a
s
c

Fig. 15. Accuracy and Loss evolution by Iteration.

Fig. 16. Visualisation of results in a Jupyter Notebook.

eb service. Accessing to the URL of that service the user can
nteractively execute some python code in a web page to read the
utput files of the previous HTC process, combine the predicted
ndex arrays and present results as a plot or table (see Fig. 16).

.2.5. Performance evaluation with respect to local environments
This section compares in terms of performance the execution

f the test case in a local premises to the performance using the
RIMAGE Platform. The PRIMAGE platform eases the access to
he shared data and the management of a workload with several
obs. This comes with a cost, as data should be distributed on
emand and job orchestration will require managing the jobs.
he main goal of the three User applications implemented is to
alidate the usability of the application models running on the
RIMAGE backend, so the execution time is short. Therefore, the
verhead may seem quite high in comparison with the execution
ime. However, as it does not depend on the job execution time,
he results are acceptable for most of the cases.

We instrumented the HTC Batch application to measure the
verhead of the distributed storage for dealing with the input,
utput and executable files. We compared the execution of all
he jobs in a local environment, the execution of all the jobs as
single Batch job and the execution of an HTC Batch Application
plitting the jobs individually and distributing them across four
onsumers.
50
In the architecture, Onedata connects the storage and pro-
cessing backends and provides on-demand synchronisation of
the files. Onedata mounts remote volumes in the applications
(Batch and HTC) file systems as if they were local data. In the
first access to any remote file Onedata introduces an overhead
due to the data caching to the processing backend and it is
much more efficient to send one big file than many small files.
Thus, all the jobs (Batch and HTC Batch Application) include an
initial transference and extraction of the image package from the
Storage Backend to the application local folder through Oneclient,
avoiding transferring the files individually.

Table 3 shows the execution time for the different stages of
the three experiments. The execution time obtained gives us an
idea of the overhead of the creation of the container creation and
transfer of files. Local execution (first column of Table 3) corre-
sponds to a Kubernetes Pod deployed in the PRIMAGE processing
backend with all medical images and binary executables hosted
locally in a folder. In this case, the overhead introduced is only
due to the creation of the container in kubernetes (3 s) and all
data (images, executable files and results) are managed locally.
This overhead is the same in all the experiments as it uniquely
depends on Kubernetes.

Batch job time corresponds with the implementation of a
user application following Section 4.1.5. In this case, data are
managed by the PRIMAGE storage backend and synchronised
by Onedata, introducing mainly an overhead due to the data
transferred between backends (7 s). This overhead is produced
because the Oneclient transfers images and executables files from
the storage backend, and also copies from the processing backend
to store the results. The execution time has been the same in the
local case. Both cases use the same computational resources. HTC
Bath time corresponds to one producer, one queue service and
four consumers. We observe that the overhead introduced by file
transfer is higher than the Batch Job (16 s instead of 7 secs). In this
case there is an overhead introduced by the producer accessing
the image and executable files to create the input arguments and
put them into the queue. Also, consumers introduce overhead ac-
cessing images and executable files, and copying back the results.
In this case, the execution time is lower than Batch Job because
jobs are executed in parallel. It is foreseeable that longer jobs will
show a better relation between the overhead and the execution
time.

As a summary, the execution time shows a reasonable over-
head with respect to the execution in a local environment, and
the advantages of using the platform (on-site processing, no
need to download data, synchronised heterogeneous computing
resources) constitute an important benefit for the analysis of the
data. Additionally, the use of virtual cloud backends facilitates
scaling up and down the resources to fit the workload require-
ments. This is implemented through the automatic scalability
offered by CLUES.

5.3. PRIMAGE User Applications

Supported by different PRIMAGE project partners, users have
developed using the approaches proposed in this work, a set
of User Applications to implement the ESR workflow stages for
biomarkers in NB and DIPG cancers. All these applications demon-
strate the feasibility of the method proposed in the article.

5.3.1. Interactive applications
University of Konstanz (UKON) has developed interactive ap-

plications [21–23] based on the large-scale multivariate database
hosted in the deployed Storage Backend and running on Process-
ing Backend. The applications provide an interactive, visual data

exploration interface that facilities experts to get an overview



J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

A
i
p
d
w
t
t
i
s
a

Table 3
Execution time (in seconds).

Local Batch job HTC Batch job

Container Creation 3 3 3 (each consumer in parallel)
File Transferences – 7 16
Queue Service Creation – – 5
Execution Time 140 140 43
Total 143 150 64
of the data. The proposed interface is designed to display large
amounts of data to enable clinical experts to make sense of
the displayed data at an overview level. This allows the med-
ical expert to integrate their domain-knowledge into a search
query, therefore achieving more accurate results. For example,
a pattern consists of a combination of biomarkers which re-
flects generic disease profiles, the similarity search facilitates
confirming or denying hypothesis by testing suitable patterns.
In addition, related patients are arranged using re-ordering and
clustering algorithms.

5.3.2. Batch jobs and HTC Batch Applications
HULAFE has developed a set of Batch Jobs and HTC Batch

pplications. All these applications have run on the Process-
ng Backend deployed. As a relevant result is novel registration
ipelines for NB tumours [24]. The study was carried out with a
ataset (patient cases) hosted at Storage Backend. Applications
ere developed to optimise and select the best generic regis-
ration parameters. Furthermore, the results of this study were
he baseline to develop a new registration pipeline for DIPG. To
mprove the accuracy of these registration pipelines, AI-based
olutions are being explored by using the VoxelMorph library
nd new User Applications in the Processing Backend will be

created. Furthermore, HULAFE used the Processing platform to
evaluate the performance of 5 denoising filters [25] anisotropic
diffusion filter (ADF), curvature flow filter (CFF), Gaussian fil-
ter (GF), non-local means filter (NLMF), and unbiased non-local
means (UNLMF) in T2-weighted MR images of paediatric patients
with NB.

In addition, Batch Jobs and HTC Batch Applications have been
developed by HULAFE, QUIBIM and UPV partners to explore a
novel methodology (Fit-Cluster-Fit) [26] based on confidence
habitats and voxel uncertainty to improve the power of the
apparent diffusion coefficient to discriminate between benign and
malignant neuroblastic tumour profiles in children. This method
improves the classification performance of imaging biomarkers
for paediatric solid tumour cancers and it can be adapted to
evaluate any dynamic tumour signal.

6. Conclusions

This work describes the design, implementation and valida-
tion of a software architecture to support the development and
application of Quantitative Image Biomarkers. It implement a
federated model to synchronise data among the different storage
backends linked to different processing environments, including
both Cloud and HPC resources. The architecture provides a fed-
erated Authentication and Authorisation Infrastructure based on
Virtual Organisations that provide coherent and scalable authori-
sation management across the different providers. The processing
backend is supported by a Kubernetes container management
platform that runs the platform services and customised applica-
tions. The architecture is the outcome of a requirement elicitation
process and uses mainstream, widely available components.

The architecture uses the abstraction of the batch,
High-Throughput-Compute, High-Performance computing and
Interactive jobs to provide a simplified framework to develop
51
applications with POSIX access to the distributed storage back-
ends. HPC Jobs are managed through a mirror Kubernetes job
that interacts with HPC batch queues to provide a seamless and
coherent environment.

The architecture has been instantiated for the case of the
PRIMAGE project, providing support for the storage and pro-
cessing of paediatric cancer data in Neuroblastoma and DPIG,
facilitating the development of applications on top of the plat-
form. The article includes a validation of the HPC and HTC cases
to show the customisation and instantiation of the jobs. The
components developed are mainly released under open-source
licences.

CRediT authorship contribution statement

J. Damián Segrelles Quilis: Conceptualization, Methodology,
Writing – original draft, Writing – review & editing, Project
administration. Sergio López-Huguet: Conceptualization, Inves-
tigation, Software, Resources, Writing – review & editing. Pau
Lozano: Conceptualization, Investigation, Validation, Software.
Ignacio Blanquer: Conceptualization, Writing – review & editing,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The data used is public and is referenced in the article.

Acknowledgements

The work presented in this paper has been partially funded by
the project PRIMAGE (PRedictive In-silico Multiscale Analytics to
support cancer persona-lised diaGnosis and prognosis, empow-
ered by imaging biomarkers) BusinessPlace is a Horizon 2020,
Research and Innovation Actions (RIA) (Topic SC1-DTH-07-2018)
with grant agreement no: 826494. This research was supported
in part by PLGrid Infrastructure.

References

[1] L. Martí-Bonmatí, A. Alberich-Bayarri, Imaging Biomarkers: Development
and Clinical Integration, Springer, 2016, http://dx.doi.org/10.1007/978-3-
319-43504-6.

[2] R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics: Images are more than
pictures, they are data, Radiology 278 (2) (2016) 563–577.

[3] A. Alberich-Bayarri, E. Neri, L. Martí-Bonmatí, Imaging biomarkers and
imaging biobanks, in: Artificial Intelligence in Medical Imaging, Springer,
2019, pp. 119–126, http://dx.doi.org/10.1007/978-3-319-94878-2.

[4] R. Forghani, P. Savadjiev, A. Chatterjee, N. Muthukrishnan, C. Reinhold, B.
Forghani, Radiomics and artificial intelligence for biomarker and prediction
model development in oncology, Comp. Struct. Biotech. J. 17 (2019) 995.

[5] M.A. Talib, S. Majzoub, Q. Nasir, D. Jamal, A systematic literature re-
view on hardware implementation of artificial intelligence algorithms, J.

Supercomput. 77 (2) (2021) 1897–1938.

http://dx.doi.org/10.1007/978-3-319-43504-6
http://dx.doi.org/10.1007/978-3-319-43504-6
http://dx.doi.org/10.1007/978-3-319-43504-6
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb2
http://dx.doi.org/10.1007/978-3-319-94878-2
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb5


J. Damián Segrelles Quilis, S. López-Huguet, P. Lozano et al. Future Generation Computer Systems 139 (2023) 38–52

h
w
i
t
i

[6] European Society of Radiology (ESR) communications@ myESR org, ESR
statement on the stepwise development of imaging biomarkers, Insights
Into Imaging 4 (2013) 147–152.

[7] L. Martí-Bonmatí, Á. Alberich-Bayarri, R. Ladenstein, I. Blanquer, J.D. Seg-
relles, L. Cerdá-Alberich, P. Gkontra, B. Hero, J. García-Aznar, D. Keim, et al.,
PRIMAGE project: Predictive in silico multiscale analytics to support child-
hood cancer personalised evaluation empowered by imaging biomarkers,
Eur. Radiol. Exp. 4 (1) (2020) 1–11.

[8] L.M. Bonmatí, A. Miguel, A. Suárez, M. Aznar, J.P. Beregi, L. Fournier,
E. Neri, A. Laghi, M. França, et al., CHAIMELEON project: Creation of a
pan-European repository of health imaging data for the development of
AI-powered cancer management tools, Front. Oncol. 12 (742701) (2022)
515.

[9] J. Zhang, Q. Qiu, J. Duan, G. Gong, Q. Jiang, G. Sun, Y. Yin, Variability of
radiomic features extracted from multi-b-value diffusion-weighted images
in hepatocellular carcinoma, Transl. Cancer Res. 8 (1) (2019) 130.

[10] H. Zhu, Y. Ai, J. Zhang, J. Zhang, J. Jin, C. Xie, X. Jin, Preoperative nomogram
for differentiation of histological subtypes in ovarian cancer based on
computed tomography radiomics, Front. Oncol. 11 (2021) 852.

[11] F. Valdora, N. Houssami, F. Rossi, M. Calabrese, A.S. Tagliafico, Rapid
review: Radiomics and breast cancer, Breast Cancer Res. Treat. 169 (2)
(2018) 217–229.

[12] P. Papadimitroulas, L. Brocki, N.C. Chung, W. Marchadour, F. Vermet,
L. Gaubert, et al., Artificial intelligence: Deep learning in oncological
radiomics and challenges of interpretability and data harmonization, Phys.
Med. 83 (1) (2021) 108–121.

[13] A. Pomar-Nadal, C. Pérez-Castillo, A. Alberich-Bayarri, G. García-Martí, L.
Martí-Bonmatí, et al., Integrating information about imaging biomarkers
into structured radiology reports, Radiologia 55 (3) (2013) 188–194.

[14] D. Dziembek, P. Bajdor, Concept of information strategy of virtual orga-
nization with using the cloud computing solutions, in: IT Systems and
Decisions in Business and Industry Practice, in: Applied Mechanics and
Materials, vol. 795, Trans Tech Publications Ltd, 2015, pp. 61–68, http:
//dx.doi.org/10.4028/www.scientific.net/AMM.795.61.

[15] A. Wiggins, K. Crowston, Developing a conceptual model of virtual or-
ganisations for citizen science, Intl. J. Org. Des. Eng. 1 (1–2) (2010)
148–162.

[16] M. Viljoen, Ł. Dutka, B. Kryza, Y. Chen, Towards European open science
commons: The EGI open data platform and the EGI datahub, Procedia
Comput. Sci. 97 (2016) 148–152.

[17] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G.R. Ganger, G. Amvrosiadis,
File systems unfit as distributed storage backends: Lessons from 10 years
of Ceph evolution, in: Proc. of the 27th ACM Symp. on Operating Systems
Principles, 2019, pp. 353–369, http://dx.doi.org/10.1145/3341301.3359656.

[18] S. López-Huguet, J.D. Segrelles, M. Kasztelnik, M. Bubak, I. Blanquer,
Seamlessly managing HPC workloads through kubernetes, in: International
Conference on High Performance Computing, Springer, 2020, pp. 310–320,
http://dx.doi.org/10.1007/978-3-030-59851-8.

[19] A. Janowczyk, A. Madabhushi, Deep learning for digital pathology image
analysis: A comprehensive tutorial with selected use cases, J. Pathol.
Inform. 7 (2016) http://dx.doi.org/10.4103/2153-3539.186902.

[20] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S.
Ganesan, N. Shih, J. Tomaszewski, A. Madabhushi, Automatic detection of
invasive ductal carcinoma in whole slide images with convolutional neural
networks, in: Medical Imaging 2014: Digital Pathology, vol. 9041, SPIE,
2014, 904103, http://dx.doi.org/10.1117/12.2043872.

[21] T. Spinner, U. Schlegel, H. Schäfer, M. El-Assady, ExplAIner: A visual
analytics framework for interactive and explainable machine learning, IEEE
Trans. Vis. Comput. Graph. 26 (1) (2019) 1064–1074.

[22] J.F. Buchmüller, U. Schlegel, E. Cakmak, et al., SpatialRugs: A compact
visualization of space and time for analyzing collective movement data,
Comput. Graphics 101 (2021) 23–34, http://dx.doi.org/10.1016/j.cag.2021.
08.003.

[23] U. Schlegel, D.A. Keim, Time series model attribution visualizations as
explanations, in: 2021 IEEE Workshop on TRust and EXpertise in Visual An-
alytics, TREX, IEEE, 2021, pp. 27–31, http://dx.doi.org/10.1109/TREX53765.
2021.00010.

[24] L. Cerdá Alberich, V. Canuto, Fully automated segmentation of neuroblastic
tumours on multisequence MRI using convolutional neural networks, in:
EMJ, Vol. 2, no. 1, 2021, pp. 24–26.

[25] M. Fernández Patón, L. Cerdá Alberich, C. Sangüesa Nebot, B. Martinez de
Las Heras, D. Veiga Canuto, A. Cañete Nieto, L. Martí-Bonmatí, MR denois-
ing increases radiomic biomarker precision and reproducibility in oncologic
imaging, J. Digit. Imaging 34 (5) (2021) 1134–1145.

[26] L. Cerdá Alberich, C. Sangüesa Nebot, A. Alberich-Bayarri, J.M. Carot Sierra,
B. Martínez de las Heras, D. Veiga Canuto, A. Cañete, L. Martí-Bonmatí,
A confidence habitats methodology in MR quantitative diffusion for the
classification of neuroblastic tumors, Cancers 12 (12) (2020) 3858.
52
J. Damian Segrelles Quilis received the B.Sc. and
Ph.D. degrees in computer science from the Universitat
Politècnica de València(UPV) in 2000 and 2008. He is a
member of the Grid and High Performance Computing
research group (GRyCAP) at the Institute for Molecular
Imaging (I3M) since 2001. He is also associate professor
at the Department of Computer Systems and Compu-
tation (DSIC) at UPV. He has been involved in Grid
and Cloud Technologies and Medical Image process-
ing since 8 years ago and participated more than 20
Regional, National and European Research Projects. He

as co-authored more than 40 papers in international, national conferences and
orkshops, as well as more than 15 papers in high-impact journals referenced

n the Journal Citation Reports (JCR) / Science Citation Index (SCI). He belongs
o the ICAPA education research team. He has co-authored more than 15 papers
n international, national conferences and workshops related to education.

Sergio López Huguet received his Ph.D. in Computer
Science and his M.Sc. in Computer Engineering from
Universitat Politècnica de València (UPV) in 2021 and
2017, and his B.Sc. in Computational Mathematics
from Universitat Jaume I (UJI) in 2015. In 2016,
he joined the Grid and High-Performance Computing
Group (GRyCAP) in the Institute of Instrumentation
for Molecular Imaging (I3M) at the UPV. Nowadays,
he is a postdoc researcher in the mentioned Research
Group. Besides, he has participated in various interna-
tional projects, such as PRIMAGE or CHAIMELEON. His

broad research interests are Cloud Computing, container management, scientific
computing and Medical Image processing.

Pau Lozano received his B.Sc. in Computer Science
from Universitat Politèccnica de València (UPV) in 2010
and joined the Grid and High Performance Computing
research group (GRyCAP) at the Institute of Instru-
mentation for Molecular Imaging (I3M). He started in
the scope of high performance computing for struc-
tural analysis and simulation, and latter migrating that
computing to the cloud in a European project (VENUS-
C). Since then, he has participated in National and
European Research Projects related to cloud computing
for science, analysis of big data from IoT devices,

medical databases and medical image processing in cloud. In the last year also
joined the Biomedical Imaging Research Group (GIBI230) at La Fe hospital in
Valencia for a short project in this last scope applied to COVID-19 (AVI-COVID).

Ignacio Blanquer is professor of the Computer System
Department at UPV since 1999, has been a member of
Research Group on Grid and High-Performance Com-
puting of the Institute of Instrumentation for Molecular
Imaging (I3M) since 1993 and becoming the leader of
this group in 2015 and the vice-director of the I3M
in 2019. He is currently a member of the Board of
Directors of the European Open Science Cloud (EOSC)
Association, the coordinator of the Spanish Network of
e-Science and serves as an expert to the Spanish Min-
istry of Science in the areas of e-Science. He is also the

Spanish delegate of e-IRG. He has coordinated three European projects on cloud
applied to science and serves as work package coordinator in European projects
related to scientific data such as EOSC-SYNERGY, PRIMAGE and CHAIMELEON.
He is also a senior researcher in the Biomedical Imaging Research group at La Fe
hospital in Valencia. He has been involved in Parallel Computation and Medical
Image processing, participating in more than 60 national and European Research
Projects, has authored and co-authored 50 articles in indexed journals, as well as
more than 100 publications as book chapters, non-indexed journals and national
and international conference proceedings.

http://refhub.elsevier.com/S0167-739X(22)00303-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb13
http://dx.doi.org/10.4028/www.scientific.net/AMM.795.61
http://dx.doi.org/10.4028/www.scientific.net/AMM.795.61
http://dx.doi.org/10.4028/www.scientific.net/AMM.795.61
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb16
http://dx.doi.org/10.1145/3341301.3359656
http://dx.doi.org/10.1007/978-3-030-59851-8
http://dx.doi.org/10.4103/2153-3539.186902
http://dx.doi.org/10.1117/12.2043872
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb21
http://dx.doi.org/10.1016/j.cag.2021.08.003
http://dx.doi.org/10.1016/j.cag.2021.08.003
http://dx.doi.org/10.1016/j.cag.2021.08.003
http://dx.doi.org/10.1109/TREX53765.2021.00010
http://dx.doi.org/10.1109/TREX53765.2021.00010
http://dx.doi.org/10.1109/TREX53765.2021.00010
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00303-X/sb26

	A federated cloud architecture for processing of cancer images on a distributed storage
	Introduction and Background
	QIB ESR Guideline
	Hypothesis
	Image Acquisition and preparation for Analysis
	Image Analysis and Feature Extraction
	Biomarker Validation

	Requirement Analysis
	Federated Authentication and Authorisation
	Backend Deployment
	Storage Backends
	Processing Backends
	User Applications
	Batch Job
	HTC Batch Application
	Interactive


	Architecture
	Federated Users (Authentication and Authorisation)
	Backends Deployment
	Storage Backends
	Processing Backends
	User Applications
	Batch Jobs
	HTC Batch Applications
	Interactive Application


	Results and Discussion
	PRIMAGE Project Deployment
	User Application Validation
	Dataset
	Training and Validation
	Testing
	Visualisation of results
	Performance Evaluation with respect to Local Environments

	PRIMAGE User Applications
	Interactive Applications
	Batch jobs and HTC Batch Applications


	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


