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A B S T R A C T

Concrete is one of the most widely used materials in various civil engineering applications. Its 
global production rate is increasing to meet demand. Mechanical properties of concrete are 
among important parameters in designing and evaluating its performance. Over the past few 
decades, machine learning has been used to model real-world problems. Machine learning, as a 
branch of artificial intelligence, is gaining popularity in many scientific fields such as robotics, 
statistics, bioinformatics, computer science, and construction materials. Machine learning has 
many advantages over statistical and experimental models, such as optimal accuracy, high- 
performance speed, responsiveness in complex environments, and economic cost-effectiveness. 
Recently, more researchers are looking into deep learning, which is a group of machine 
learning algorithms, as a powerful method in matters of diagnosis and classification. Hence, this 
paper provides a review of successful ML and DL model applications to predict concrete me
chanical properties. Several modeling algorithms were reviewed highlighting their applications, 
performance, current knowledge gaps, and suggestions for future research. This paper will assist 
construction material engineers and researchers in selecting suitable and accurate techniques that 
fit their applications.   

1. Introduction

Concrete is the most widely used building material worldwide. With population growth and urbanization, the demand for concrete
is expected to reach 18 billion by 2050 [1–3]. In order to improve the design of concrete structures, it is necessary to gain a better 
understanding of concrete performance, relying on accurate evaluation of its mechanical properties. Among the various properties of 
concrete, compressive strength has been considered a direct indicator of performance. It is directly related to the safety and 
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performance of the structure throughout its life cycle [1,4,5]. 
Concrete is a complex system of combinations of different components (coarse and fine aggregates, water, cement, and additional 

mixtures) that are randomly distributed throughout the concrete matrix [6–9]. This heterogeneous feature makes it difficult to 
accurately predict certain mechanical properties, especially compressive strength [10–12]. The most direct way to evaluate the 
compressive strength of concrete is through physical tests performed on specimens cured to the desired age [13,14]. Such a method for 
evaluating the compressive strength needs time while being affected by other factors related to specimen fabrications and test op
erators. Moreover, the test tends to damage the specimens. Empirical regression methods were therefore proposed to predict 
compressive strength [15–17], but the disadvantage of this method is the non-linear relationship between the concrete mixture and the 
concrete’s compressive strength. This prevents an accurate regression expression. Numerical simulation is another method that can 
predict the behavior of concrete. However, a good prediction of concrete behavior is not easy to achieve due to the non-linearity and 
randomness [18–20]. 

In recent years, with the advances in the field of artificial intelligence, the trend of using machine learning methods, as well as deep 
learning (a branch of machine learning), to predict the mechanical properties of concrete has received much attention. Compared to 
traditional regression methods, it has special algorithms that can learn from data and display more accurate results as output data 
[21–23]. Machine learning is used in structural engineering in various fields seismic performance evaluation [24], tensile strength 
modeling [25] and compressive strength [26], structural system identification [27], and vibration control [28], to name a few. 

This article reviews the successful application of the machine and deep learning methods to predict the mechanical properties of 
concrete. We investigate the prediction accuracy of different algorithms used in the field of civil engineering on concrete properties 
was investigated and compared them to evaluate the performance of each algorithm. 

2. Artificial intelligence, machine learning, and deep learning

2.1. Artificial intelligence 

Nowadays, artificial intelligence, defined as the “study and design of intelligent agents,” significantly influences the world. These 
intelligent agents are systems that have the ability to understand the environment and take steps to maximize their chances of 
achieving success [29,30]. For example, smartphones and self-driving cars are among the advancements that have arisen due to 
upgrades in artificial intelligence [31]. 

With the advent of computers in the 50’s, huge changes took place in this field. Although it is difficult to pinpoint the origin of 
artificial intelligence, a turing point in this field can be attributed to Alan Turing’s paper entitled, “Computing Machinery and In
telligence” [32,33]. Today, due to the upgrade and improvement of computing power and the dramatic increase of Big Data, this field 
has expanded substantially [33]. 

Early artificial intelligence applications targeted problems based on rules that are intellectually simple for the computer but 
challenging for humans. In order to solve such problems, a list of encrypted expressions “if and else” was introduced to the computer 
[34]. Many machines equipped with artificial intelligence have used this knowledge-based approach to go beyond human ability in 
abstract fields [35]. AI-based systems, however, were not without flaws and, in many cases, did not perform well. They struggled to 
perform everyday tasks, such as recognizing objects or understanding speech, that seem simple to a normal human [36]. As a result, 
modern artificial intelligence systems have struggled to find alternative ways of teaching intuition to computers [37]. Machine 
learning was brought to artificial intelligence systems to overcome the aforementioned challenges [36,38]. 

Machine learning began to flourish as a branch of artificial intelligence in the 1990s (Fig. 1). Instead of using symbolic approaches, 
it utilizes methods and models derived from statistics and probability theory [39,40]. In fact, machine learning algorithms allow 
machines to acquire the knowledge they need to perform a particular task by analyzing a sufficient number of data samples [38,41]. 
Before using the algorithm, it is necessary to perform a step called feature extraction, in which the attributes that represent the most 
specific information are extracted. The next step of the process, the sample data, is based on a specific ML training method to train the 
system to communicate the features and separate the patterns [33,36,42]. 

Deep Learning methods were introduced to solve the problems of the hand-crafted features in complex ML programs [36]. In-depth 
learning is inspired by advances in neuroscience and is consistent with interpretation information processing and communication 
patterns in the nervous system. Layers used in deep learning include the hidden layers of an artificial neural network and a set of 

Fig. 1. Knowledge-based relationship between AI, ML, DL.  
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complex formulas [43,44]. Fig. 2 compares system performance in three fields: AI, ML, and DL. 

2.2. Machine learning 

The use of computer-aided modeling to predict the mechanical properties of building materials is growing [45]. Machine learning is 
a major branch of artificial intelligence that deals with the design and development of algorithms capable of identifying complex 
patterns of experimental data without considering a predetermined equation as a model and making intelligent decisions [46,47]. In 
general, the goal of machine learning is to build computer systems that learn from experience and can adapt to their environments. 
Important examples of machine learning include data mining (such as searching for information on the web) and implementing 
difficult software systems, such as automatic driving. Machine learning-based models can make predictions and describe knowledge 
acquisition from data [48,49]. Machine learning’s scope and potential are much broader than AI and encompass many disciplines, 
including information theory, probability, statistics, psychology and neurobiology, computational control complexity, theory, and 
philosophy [50]. Researchers evaluate machine learning algorithms by solution accuracy, solution quality, and performance speed 
[51]. 

Generally, the development of an ML model involves a small number of design choices: (i) the type of learning experience, (ii) 
learning goal performance, (iii) displaying target performance; and (iv) an algorithm for learning the objective performance of 
instructional examples. Moreover, ML is divided into supervised learning, unsupervised, semi-supervised, and reinforced depending on 
the training resources [52,53]. Supervised and unsupervised learning are the most common types of machine learning in several 
applications, including engineering [51]. In supervised learning, there is a set of learning examples, which for each input, output value, 
or function is also specified. The learning system aims to obtain a hypothesis that guesses the function or relationship between input 
and output. But in unsupervised learning, there is a set of learning examples in which only the amount of inputs is known, and no 
information about the correct output is available. Unsupervised learning is used to group inputs or predict the next value based on the 
current situation [46,51,54,55]. The common types of supervised and unsupervised algorithms used in machine learning are shown in 
Fig. 3. 

The tasks of machine learning systems can be summarized as follows [46,51,54–56]: 1) Classification: the goal of this step is to 
identify the category to which the input belongs, 2) Regression: The output format at this stage is considered as the difference with the 
classification stage. This step aims to model the relationships between the inputs and numerical outputs, 3) Prediction: The goal is to 
predict future values over a determined period of time. This step is a special type of regression, 4) Clustering: to extract similar points 
between two or more data sets. Clustering is performed according to an unsupervised method, instead of the tasks defined for the three 
previous steps (classification, regression, and prediction), which are performed based on supervised methods. Before starting data 
analysis by machine learning algorithms, one of the most important things is data normalization. Data normalization is one of the most 
common activities in machine learning. Among the advantages of data normalization, we can mention the improvement of gradient 
descent performance on normalized data compared to non-normalized data [57–61]. 

2.3. Deep learning 

Deep Learning (Deep Neural Learning or Deep Neural Network) methods were introduced to solve the problems of hand-crafted 
features in complex ML programs [33,36]. DL is a subset of ML artificial intelligence, which operates with networks that can learn 
unsupervised, unstructured data. DL is a special type of ML method that can extract the optimal input directly from raw data without 
user intervention. Thus, DL algorithms can support both the relationships of features to the desired output and the feature extraction 
process [36,62–64]. Finally, the DL system, with proper training, can find the direct mapping from primary or raw inputs to the target 
outputs without extracting features. It can also find the abstract (i.e., high level) features as a hierarchy that explains simple (i.e., low 
level) learned features. This capability allows DL algorithms to break complex tasks into simple problems and solve them [33,36,41, 

Fig. 2. Comparison of performance between AI, ML, DL.  
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65]. 

2.4. ML/Support vector machine (SVM) 

A support vector machine (SVM) is one of the supervised learning methods used for both classification and information regression 
[66]. Fig. 4 shows the network structure of the SVM. 

The SVM is a two-class classifier that separates classes by a linear boundary. The samples closest to the decision boundary are called 
support vectors. These vectors determine the equation of the decision boundary. This method is applied due to the structural risk 
minimization principle, which is applied by maximizing the distance between two transient hyperplanes from the support vectors of 
both classes. In order to be easy to understand and to express the theory of support vector, the simplest possible case for the classi
fication of two classes of inseparable mode is started linearly [67,68]. Based on this principle, SVM has two salient features that lead to 
fruitful predictions a) excellent generalizability and b) compatibility with scattered and low data [69]. SVMs have been successfully 
implemented for a variety of purposes, such as error detection [70], image retrieval [71], and text recognition [72]. 

2.4.1. SVM development process (linear and non-linear) 
Fig. 5 shows the segmentation of data by the SVM. This method aims to maximize the margin, which indicates the distance from the 

hyperplane to the nearest point of each class to achieve better classification performance in the test data [73]. 
The original SVM algorithm was invented by Vepnik in 1963 and was generalized to a nonlinear model in 1995 by Vepnik and Kurtz 

[73]. This method is one of the relatively newer methods that, in recent years, has shown good efficiency in predicting the mechanical 
properties of concrete. Fig. 6 shows the transfer of data from two-dimensional to three-dimensional space. In most cases, the data 
presented to the model for classification are not linearly separable. In such cases, the backup vector machine uses a nonlinear imager to 
transfer the data to a higher-dimensional space. With this new dimension, this method searches for a hyperplane that separates data. 
With a nonlinear viewfinder suitable for transferring data to a high-dimensional space, the backup vector machine can always separate 
two data groups. 

Different kernel functions can be used to determine the output of nonlinear space. The most commonly used kernel functions are 
polynomial, sigmoid, radial, exponential, and linear functions. Table 1 shows a summary of kernels and their equations [67,74]. 

In general, the SVM method [67,74]: 1) 1) significantly more accurate and stronger, 2) less prone to overfitting compared to other 
models, 3) ability to model complex nonlinear decision boundaries, 4) implementation capacity in pattern recognition, classification, 
and regression. 

Fig. 3. Variety of commonly used machine learning algorithms.  

Fig. 4. Network of support vector machine [67].  
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In recent years, SVM modeling approaches have been widely considered in various fields when studying the mechanical properties 
of concrete. Therefore, researchers have used independent, hybrid, and complex models to achieve their goals. For instance, utilizing 
SVM for regression analysis, the model is generally called support vector regression (SVR) [75]. LSSVM was introduced as the least 
square support vector machine by Suykens and Vandewalle [76], which shows an extension of the standard SVM. On the other hand, 
the researchers examined a combination of SVM methods with unique optimization methods such as firefly algorithm (FFA), genetic 
algorithm (GA), network search, cuckoo optimization algorithm (COA), and particle swarm optimization (PSO). Combined methods 
increase efficiency, accuracy, and computational speed in machine learning technologies [67,75]. 

2.4.2. Studies based on SVM 
In recent years, SVM whom to express the mechanical properties of concrete. Table 2 shows the studies performed on the stand

alone and hybrid SVM models. Jalal et al. [77] investigated the mechanical properties of concrete containing recycled rubber and 
predicted the compressive strength of concrete through SVM. Their study used three different kernels (linear, polynomial, and 
gaussian), optimization hyperparameters, and optimization algorithms. They concluded that SVM, with standardized data and 
Gaussian kernel function and L1QP optimization algorithm, produced more accurate predictions than other SVM and regression 
models. Deng et al. [44] considered recycled aggregates and replacement percentages as input. The model predicted the compressive 

Fig. 5. Support vector machine classifier.  

Fig. .6. Transfer data to a higher space on the support vector machine.  

Table 1 
Types of kernels for support vector machines.  

Kernel Equation 

Linear K(x,y) = x.y 
Sigmoid K(x.y) = tanh(ax.y + b)
Polynomial K(x,y) = (1 + x.y)d 

KMOD 
K(x,y) = a

[
exp

(
y/
‖x − y‖2

+ σ2

)

− 1
]

RBF K(x,y) = exp( − a‖x − y‖2
)

Exponential RBF K(x,y) = exp( − a‖x − y‖)
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Table 2 
A summary of studies based on SVM.  

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Waste tire 
rubberized 
concrete 

SMO; L1QP; 
ISDA 

Cement; silica fume; 
zeolitel; rubber 

Compressive 
strength 

R2 159 78 – 22 [77] 

Recycled 
aggregate 
concrete 

SVM Recycled coarse 
aggregate; aggregate 
replacement ratio; 
recycled fine 

Compressive 
strength 

RE 74 68 – 32 [44] 

Recycled 
aggregate 
concrete 

LSSVM Recycled clay 
masonry; stress state 
(θ/Pa, τ/Pa) 

Resilient 
modulus 

R2; RMSE; 
MAE; E 

128 75 – 15 [78] 

Concrete 
containing 
coarse 
recycled 
concrete 
aggregates 

LSSVR Recycled aggregate 
replacement ratio; 
aggregate to cement 
ratio; bulk density and 
water absorption of 
recycled concrete 
aggregate; water-to- 
cement ratio 

Compressive 
strength 

RMSE; 
MAE; 
MAPE 

650 80 20 [87] 

Elastic 
modulus 

421 

Tensile 
strength 

346 

Reinforced 
concrete 

A combination 
of SFA and LS- 
SVR algorithms 
(SFA-LS-SVR) 

Ratio of effective 
depth to breadth of 
beam; concrete 
compressive strength; 
yield strength of 
horizontal 
reinforcement; yield 
strength of vertical 
web reinforcement; 
ratio of shear span to 
effective depth; ratio 
of effective span to 
effective depth; main 
reinforcement ratio; 
horizontal shear 
reinforcement ratio; 
vertical shear 
reinforcement ratio; 
shear strength of RC 
deep beam 

Shear strength R; RMSE; 
MAE; 
MAPE 

214 10-fold cross validation [79] 

Steel fiber- 
reinforced 
concrete 

A combination 
of FFA and SVR 
algorithms 
(SVR-FFA) 

Concrete strength; 
longitudinal steel 
strength; shear span to 
depth ratio; the 
effective depth of the 
beam; beam width; 
maximum aggregate 
size; longitudinal steel 
ratio; steel fiber; 
volume fraction; fiber 
length; the equivalent 
fiber diameter 

Shear strength SI; RMSE 
MAE; 
MAPE; 
RMSRE; 
MRE; BIAS 

139 70 – 30 [80] 

Steel Fiber- 
Unconfined 
Reinforced 
Concrete 

RSM-SVR Concrete strength; 
longitudinal steel 
strength; shear span to 
depth ratio; the 
effective depth of the 
beam; beam width; 
maximum aggregate 
size; longitudinal steel 
ratio; steel fiber 
volume fraction; fiber 
length; equivalent 
fiber diameter 

Shear strength MAE; 
RMSE 

139 75 – 25 [88] 

Fiber reinforced 
polymer 
confined 
concrete 

SVR Diameter of concrete 
cylinder; height-to- 
diameter ratio of 
concrete cylinder; 
unconfined 

Strength 
prediction of 
FRP confined 
concrete 

R; RMSE; 
MAPE 

238 70 – 30 [89] 

(continued on next page) 
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Table 2 (continued ) 

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

compressive strength 
of concrete cylinder; 
thickness of FRP 
jacket; ultimate tensile 
strength of FRP in 
hoop direction 

FRP reinforced 
concrete 
slabs 

A combination 
of FFA and LS- 
SVR algorithms 

Types of column 
section; section area of 
column; effective 
flexural depth of slab; 
compressive strength 
of concrete; young’s 
modulus of the FRP 
slab; reinforcement 
ratio 

Shear strength R2; MAPE; 
RMSE 

82 88 – 12 [90] 

Carbon Fiber- 
Reinforced 
Lightweight 
Concrete 

SVM The amount of cement; 
the amount of silica 
fumes; the amount of 
carbon fiber; the 
amount of aggregates; 
temperature 

Compressive 
strength 

R2 144 72 – 28 [91] 

Flexural 
strength 

Structural 
Lightweight 
Aggregate 
Concrete 

SVM Water/Cement ratio; 
quantity of cement; 
volume of aggregate; 
density of aggregate 

Compressive 
strength 

RMSE; 
MAPE 

180 10-fold cross validation [92] 

Elastic 
modulus 

Concrete 
containing 
three 
alternative 
materials 
such as fly 
ash, Haydite 
lightweight 
aggregate, 
and portland 
limestone 
cement 

SVM Cement type; curing 
age; water; 
cementitious material; 
fly ash; Sand; pea 
gravel; haydite 
lightweight aggregate; 
micro-Air 

Compressive 
strength 

R; RMSE; 
MAE 

144 10-fold cross validation [93] 

Lightweight 
foamed 
concrete 

LSSVR Cement; oven-dry 
density; water/binder 
ratio; foamed volume 
water 

Compressive 
strength 

R; RMSE 
MAE; 
RRMSE; 
RMAE 

91 – – – [94] 

Geopolymer 
concrete 

GA- SVM; 
PSOA- SVM; 
ACOA- SVM; 
ABCOA- SVM; 
ICOA- SVM 

Fly ash; slag; coarse 
aggregate; fine 
aggregate; water; 
superplasticizer; 
sodium silicate; 
sodium hydroxide 
(NaOH); potassium 
hydroxide (KOH); 
oven curing 
temperature; oven 
curing time; age of 
ambient temperature 
curing 

Compressive 
strength 

R2; MAE; 
RMSE; 
RRSE; RAE; 
MAPE 

1347 – – – [81] 

Geopolymer 
concrete 

SVR; RVM; KRR 
– SVM; GPR- 
SVM 

Two different 
distribution of RHBA 
and FA; curing time; 
temperature 

Compressive 
strength 

R; ME; 
MAE; 
RMSE 

– 70 – 30 [82] 

High- 
performance 
concrete 

SVM Cement; BFS; fly ash; 
water; 
superplasticizer; 
coarse aggregate; fine 
aggregate; age of 
testing 

Compressive 
strength 

R2; RMSE; 
MAPE 

1030 10-fold cross validation [74] 

High- 
performance 
concrete 

Evolutionary 
Fuzzy SVM 
Inference 
Model for Time 

Cement; BFS; fly ash; 
water; superplasticizer 

Compressive 
strength 

R; R2; 
RMSE; 
MAE 

1030 90 – 10 [83] 

(continued on next page) 
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strength of concrete containing recycled aggregates through the SVM with high accuracy and efficiency. Also, Kaloop et al. [78] used 
LSSVM to predict the resilient modulus of concrete containing two types of recycled aggregates (combined and separate) and 
concluded the optimal capability of LSSVM. Chou et al. [79] used the combined model to predict the shear strength of deep reinforced 
concrete beams. They reported the significant generalizability of the SFA LS-SVR model to predict shear strength. Al Musawi et al. [80] 
investigated the shear strength prediction of SFRC beams using the SVR-FFA algorithm. Parameters that include the geometric 
characteristics of the beam and the mechanical properties of the reinforcing components. The results showed that SVR-FFA accurately 
predicts the shear strength of concrete structures. Recent studies have also investigated the prediction of compressive strength of 
geopolymer concrete. Hence, Nazari and Sanjayan [81], using optimized SVM algorithms, reported that the imperialist competitive 
algorithm and genetic algorithm show high predictive power, as indicated by statistical criteria. On the other hand, Prem et al. [82] 
reported satisfactory results from kernel-based algorithms. Chou et al. [74] investigated the compressive strength of high-performance 
concrete (HPC) using SVM and considered the main concrete components and sample age as inputs. The resulting MAPE value in
dicates that the SVM has a high prediction accuracy. Cheng et al. [83] also concluded in their study on HPC that EFSIMT performed 
well in predicting compressive strength. In another study. In another study, Yan and Shi [84] investigated high-strength concrete 
(HSC) elastic modulus using SVM, and its satisfactory results were reported. Also, acceptable results were obtained from SVR to predict 
the fracture characteristics and failure load of ultra-high-strength concrete UHSC [85]. Aiyer et al. [86] predicted the compressive 
strength of self-compacting concrete (SCC) by LSSVM and Relevance Vector Machine (RVM) and reported the power of RVM to predict 
compressive strength. 

2.5. ML/decision tree 

Decision trees are one of the data mining methods that have been widely developed in the last two decades. These methods can be 
used to discover and extract knowledge from a database and to create predictive models [98–100]. Hence, it is a popular machine 
learning method that can be used to solve many real-world problems, such as sudden flood prediction [101], short-term photovoltaic 
power prediction [102] and spatial earthquake prediction [103]. Decision trees can generate human-understandable descriptions from 
relationships in a data set and can be used for categorization and prediction tasks. This decision structure can also be introduced in 
mathematical and computational methods that help to describe, categorize and generalize a set of data [104,105]. The strengths of 
decision trees are [104,106]: 1) 1) Though the algorithms that create the tree may not be simple, the results are easy to understand; 2) 
it has the ability to present their predictions in the form of a series of rules; 3) it does not require very complex calculations to 
categorize data, and 4) it indicates which context or variable has significant effects on prediction and categorization. The decision tree 

Table 2 (continued ) 

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Series Data 
(EFSIMT) 

; coarse aggregate; fine 
aggregate; age of 
testing 

High- 
performance 
concrete 

SVM 
FA-LSSVR 

Cement; fine 
aggregate; small 
coarse aggregate; 
medium coarse 
aggregate; water; 
superplasticizer; 
concrete age 

Compressive 
strength 

R2; RMSE; 
MAPE 

239 10-fold cross validation [95] 

High- 
performance 
concrete 

ECSO-SVM Water; cement; BFS; 
fly ash; 
superplasticizer; 
coarse; aggregate; fine 
aggregate; curing age 

Compressive 
strength 

IA; MAE 1761 70 – 30 [96] 
MAPE; SRL; 
ESR 

High strength 
concrete 

SVM Compressive strength 
of concrete 

Elastic 
modulus 

RMSE; 
MAPE 

159 78 – 22 [84] 

High strength 
concrete; 
Ultra-high 
strength 
concrete 

SVR Area; notch depth; 
water–cement ratio; 
compressive strength; 
split tensile strength; 
modulus of elasticity 

Fracture 
characteristics 

R 87 70 – 30 [85] 

Failure load 

Self-Compacting 
Concrete 

LSSVM; RVM Cement; fly ash; 
water/powder 

Compressive 
strength 

RMSE; 
MAE 

80 70 – 30 [86] 

superplasticizer 
dosage; sand; coarse 
aggregate 

Alkali-activated 
slag-fly Ash 
concrete 

SVM Water/solid ratio; 
Alkaline activator/ 
binder ratio; Na- 
Silicate/NaOH ratio; 
Fly ash/slag ratio; 
NaOH molarity 

Compressive 
strength 

RMSE; 
MAE; R2 

1030 70 – 30 [97]  
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generally consists of root nodes, interior nodes, and terminal nodes. The root node contains all the data, and is divided into two 
sub-nodes on the right and left, where, in fact, each node represents an independent variable. Branches represent a specific range of 
variables. The set of each node, root, branch, and the inner node is called a leaf (Fig. 7) [104,107]. 

2.5.1. Decision tree models process 
Among the types of decision tree-based models, M5P-tree, Multiple Additive Regression Trees, and Random Forests are the most 

widely used to predict the mechanical properties of concrete [75]. M5P is a genetic algorithm learner that is an upgraded version of the 
Quinlan M5 algorithm [107,108]. The M5 is a hierarchical model based on a binary decision framework [94,109]. Creating an M5 tree 
involves two processes. Input data is first subdivided to create a decision tree for attributes in the input-output data set. Then a model 
tree is created [94,110]. Fig. 8 shows a schematic view of an M5 tree. 

The M5P tree model can predict numerically continuous variables from numerical trails, and the predicted results appear as 
multivariate linear regression models on tree leaves. The division criterion is based on selecting the standard deviation of the output 
values that reach the node as a measure of error. The expected reduction in standard deviation is calculated by testing each attribute 
(parameter) in the node using the following equation [75,108]: 

SDR=
m
|T|

× β(i) ×

[

sd(T) −
∑

J∈(L,R)

⃒
⃒Tj

⃒
⃒

|T|
× sd

(
Tj
)
]

(1)  

where SDR stands for standard deviation reduction, T stands for the series of instances that reach the node, m stands for the number of 
instances without missing values for this attribute, ß stands for a correction factor, and TL and TR stand for the sets that result from the 
division on this attribute. 

The Multiple Additive Regression Trees (MART) proposed by Friedman is a powerful meta-classifier and a breakthrough in data 
mining [111,112]. MART is the successor of regression tree-based modeling that inherits its benefits and improves prediction by 
eliminating drawbacks [74]. Therefore, MART increases the predictive power by using the boosting method, which uses the tree 
pruning tool. The mentioned process is repeated under supervised learning [112,113]. 

Random Forest (RF) was introduced by Bryman [114] in 2001 to develop new decision trees. Random Forest is a collective learning 
algorithm that uses different subsets of educational data (bagging and boosting) and has the benefits of binary splitting to predict target 
variables. Random Forest makes decisions from several trees and merges them to make more accurate and stable predictions [42,115, 
116]. Forest construction using trees is often done by bagging. The main idea of the bagging method is that a combination of learning 
models enhances the model’s overall results. One of the advantages of random forest is that it can be used for both classification and 
regression problems, which make up the majority of current machine learning systems. Instead of searching for the most important 
properties when splitting a node, the algorithm looks for the best properties among a random set. This leads to a lot of variety and, 
ultimately, a better model. Thus, in a random forest, the algorithm considers only one subset of features to split a node [42,75,113,115, 
117]. Fig. 9 shows a picture of a random forest model structure. 

2.5.2. Studies based on decision tree 
Decision tree based methods have been considered a fast and efficient way to predict concrete’s mechanical properties. Table 3 

shows the studies performed on different models based on the decision tree. 
The study of Behnood et al. [118] used the M5P algorithm to investigate the elastic modulus of concrete containing recycled 

aggregate. They report that the tree model developed by M5P provides an acceptable predictor. In another study, Gholampour et al. 
[87] evaluated the compressive strength, tensile strength, and elastic modulus of concrete containing recycled aggregate concrete 
(RAC) by the M5 model and compared it with other methods. Results indicate that the M5 can predict the mechanical properties of the 
RAC if accurately corrected for the impacts of critical parameters (i.e., weff/c, RCA%, a/c, ρRCA, and WARCA). Behnood and Golafshani 
[119] investigated concrete containing waste foundry sand and concluded it was a successful use of the M5P algorithm to produce 
reasonable models. In another study, Mangalathu and Jeon [120] investigated the shear strength of reinforced concrete beam-column 

Fig. 7. Decision tree components include root node, leaf node, end node and how to interpret each tree branch.  
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joints using a Random Forest algorithm. Yaseen et al. [94] evaluated the compressive strength of lightweight foamed concrete by the 
M5 algorithm and reported acceptable results. Several studies have also examined high-performance concrete using the M5P algo
rithm. Hence, Deepa et al. [121], Behnood et al. [122], Ayaz et al. [123] used concrete constituents and curing age as input, and finally 
reported acceptable results using M5P to predict compressive strength. In this regard, Chou et al. [74] used another decision tree-based 
algorithm (MART) to investigate compressive strength and reported its effective ability to predict compressive strength with different 
ages of HPC. Han et al. [124] also used the RF algorithm to predict HPC concrete’s compressive strength, reporting that expressing the 
input variables in absolute mass will enhance the model prediction performance. In another study, Zhang et al. [125] used a com
bination of RF algorithm and beetle antennae search (BAS) to investigate the compressive strength of lightweight self-compacting 
concrete and reported a high correlation coefficient of the BAS-RF model for prediction. 

2.6. DL/artificial neural network 

Computers have made it possible to implement computational algorithms to simulate the human brain’s computational behavior in 
the last few decades. Many research works have been started by computer scientists, engineers, and mathematicians have contributed 
to the field of artificial intelligence. Artificial Neural Network is a subject in the subcategory of computational intelligence. 

An artificial neural network is an idea inspired by the biological nervous system to process information and, like the brain, pro
cesses information [128]. The critical element of this idea is the new structure of the information processing system, which consists of 
many highly interconnected processing elements working together to solve a problem. Each neuron’s output is multiplied by weight 
coefficients and given to the input power as a nonlinear excitation function [129,130]. Fig. 10 shows an example of a neural network. 

The structure of ANNs consists of three main parts, which are [128,129,131]: 1) Input layer: which contains input parameters and 

Fig. 8. A schematic view of an M5 tree.  

Fig. .9. Schematic view of a Random Forest model for target prediction.  
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Table 3 
A summary of studies based on Decision Tree.  

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Recycled 
aggregate 
concrete 

M5P-tree Compressive strength; 
w/c ratio; coarse 
aggregate to cement 
ratio; fine aggregate to 
total aggregate ratio 

Elastic 
Modulus 

R; R2 454 80 – 20 [118] 

volume fraction of 
recycled aggregate in 
RAC; Saturated surface 
dry specific gravity; 
water absorption of the 
mixed coarse 
aggregates (natural 
aggregate + recycled 
aggregate) 

Concretes 
containing 
coarse 
recycled 
concrete 
aggregates 

M5 Coarse recycled 
concrete aggregate 
replacement ratio; 
aggregate to cement 
ratio; bulk density of 
recycled concrete 
aggregate; water 
absorption of coarse 
recycled concrete 
aggregate; water-to- 
cement ratio 

Compressive 
strength 

RMSE; 
MAE; 
MAPE 

650 80 20 [87] 

Elastic 
modulus 

421 

Tensile 
strength 

346 

Concretes 
containing 
waste foundry 
sand 

M5P-Tree Waste foundry sand to 
cement ratio; water to 
cement ratio; coarse 
aggregate to cement 
ratio; fine aggregate to 
total aggregate ratio; 
waste foundry sand to 
fine aggregate ratio; 
superplasticizer to 
cement ratio multiplied 
by 1000; age of 
concrete 

Compressive 
strength 

R; R2; 

RMSE; 
MAE; 
MAPE 

470 80 – 20 [119] 

Elastic 
modulus 
Tensile 
strength 

Pozzolan Concrete M5P-Tree Day; cement; silica 
fume; fly ash; blast 
furnace slag 

Compressive 
strength 
Ultrasonic 
pulse velocity 

MAE; RAE; 
RE 

40 30-fold cross validation [126] 

Concrete 
containing 
three 
alternative 
materials as 
fly ash, 
Haydite 
lightweight 
aggregate, 
and portland 
limestone 
cement 

M5P-tree; 
M5-rules; 
REPTree 

Cement type; curing 
age; water; 
cementitious material; 
fly ash; sand; pea 
gravel; haydite 
lightweight aggregate; 
micro air 

Compressive 
strength 

R; RMSE; 
MAE 

144 10-fold cross validation [93] 

Reinforced 
concrete 

Random 
Forest 

Concrete compressive 
strength; joint 
transverse 
reinforcement; joint 
shear stress; In-plane 
joint geometry; out-of- 
plane joint geometry; 
the ratio of beam depth 
to column depth; joint 
eccentricity parameter; 
the ratio of beam width 
to column width; 
column axial load ratio; 
beam bar bond 

Shear strength R2; ABS; 
std.RMSE; 
std.ABS 

536 70 – 30 [120] 

(continued on next page) 
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Table 3 (continued ) 

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

parameter; column to 
beam flexural moment 
strength ratio; column 
intermediate 
longitudinal 
reinforcement factor 

Lightweight 
foamed 
concrete 

M5-Tree Cement; oven-dry 
density; water/binder 
ratio; foamed volume 

Compressive 
strength 

R; RMSE; 
MAE; 
RRMSE; 
RMAE 

91 – – – [94] 

High-performance 
concrete 

M5P-tree Cement; BFS; fly ash; 
water; superplasticizer; 
coarse aggregate; fine 
aggregate; age 

Compressive 
strength 

R; RMSE; 
MAE 

300 – – – [121] 

High-performance 
concrete 

MART Cement; BFS; fly ash; 
water; superplasticizer; 
coarse aggregate; fine 
aggregate; age of testing 

Compressive 
strength 

R2; RMSE; 
MAPE 

1030 10-fold cross validation [74] 

High-performance 
concrete 

The Genetic 
Weighted 
Pyramid 
Operation 
Tree 
(GWPOT) 

Cement; fly ash; slag; 
water; superplasticizer; 
coarse aggregate; fine 
aggregate; age of testing 

Compressive 
strength 

RMSE; 
MAE; 
MAPE 

1030 5-fold cross validation [127] 

High-performance 
concrete 

M5P-tree Cement; water; fly ash; 
BFS; superplasticizer; 
coarse aggregate; fine 
aggregate; age of 
concrete 

Compressive 
strength 

RMSE; 
MAE; 
MAPE; SRL 

1912 85 – 15 [122] 

High-performance 
concrete 

Random 
Forest 

Water to binder ratio; 
BFS to water ratio; fly 
ash to water ratio; 
coarse aggregate to 
binder ratio; coarse 
aggregate to fine 
aggregate ratio 

Compressive 
strength 

R; RMSE; 
MAE; 
MAPE 

1030 90 – 10 [124] 

High-volume 
mineral- 
admixtures 
concrete 

M5 Age of testing; cement; 
fly ash; slag content 

Compressive 
strength 

R2; MAE 40 15-fold cross validation [123] 
M5P 20-fold cross validation 

Self-Compacting 
Concrete 

A beetle 
antennae 
search (BAS) 
algorithm 
based 
random 
forest (RF) 
model 

Water to binder ratio; 
macro-synthetic 
polypropylene fiber; 
steel fiber; scoria; 
crumb rubber; natural 
fine aggregate; natural 
coarse aggregate 

Compressive 
strength 

RMSE; R 131 10-fold cross validation [125]  

Fig. 10. The structure of the artificial neural network.  
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transmits them for model training and testing, 2) Hidden layer (middle): This layer is responsible for the connection between the input 
layer and the output layer and is the central part of the architecture of ANNs, and each hidden layer contains a set of neurons, 3) Output 
layer: a layer that is responsible for producing the result. 

In this process, in the training phase, training information is given to the network, the network weights are adjusted so that the 
error between the current output and the target is minimized or the number of training times reaches a predetermined value. In 
modeling neural networks, selecting the number of hidden layers and the number of neurons is a vital process; if the number of hidden 
layers is not enough, the model will lack learning resources to solve nonlinear and complex problems. On the other hand, the training 
time will increase if the number of hidden layers and neurons is high. The model may work poorly in solving problems by learning 
behaviors other than the relationship between the parameters in the network [132–135]. 

The most common use of neural networks is planning to determine the probability of occurrence [136]. Neural networks have two 
basic learning or mapping features based on the presentation of empirical data (power and ability to generalize) and parallel struc
turality. These networks for problems can be prioritized by using prediction, especially complex systems that are either not possible or 
difficult to model. The most critical applications of neural networks can be expressed in 9 categories [137]: 1) pattern classification, 
identification, and recognition, 2) signal processing, 3) time series forecasting, 4) modeling and control, 5) optimization, 6) expert and 
fuzzy systems, 7) financial issues, insurance, security, stock market and equipment fun, 8) making industrial and medical devices, and 
9) recognizing behavior in transportation models.

2.6.1. The artificial neural network process 
The basis of learning in neural networks is repetition. One of the most widely used replication methods in neural networks is the 

back-propagation method of error [138]. In this method, the gradient of the error function relative to the neural network weights is 
calculated [139]. The after-emission algorithm extends Delta’s law for perceptrons into multilayer feed neural networks [140,141]. 
The term backward, part of the term post-emission, is derived from the fact that the gradient is calculated backward in the lattice, with 
the weights’ output gradient at the beginning and the input layer gradient at the end. Thus, partial derivative calculations of a single 
layer gradient are used for the previous layer gradient. This backward movement of the error information leads to the efficient gradient 
calculation in each layer relative to the state in which the layers’ gradient is obtained separately [141–144]. Fig. 11 shows the structure 
of the back-propagation of the error algorithm. 

One of the neural network models that has received much attention in recent years is the Extreme Learning Machine (ELM) model 
presented by Huang [145–147]. Other neural networks produce lower speeds after propagation, and in recent decades, this weakness 
has become a bottleneck in practical applications. Two main reasons are responsible: first, learning algorithms based on gradients are 
slow in training the neural network, and second, all parameters must be adjusted repeatedly in this type of learning algorithm [148]. 
For this reason, in industrial and practical applications, linear models are often preferred to post-diffusion neural networks due to their 
higher learning speed. Hence, ELM was proposed to overcome the slow structure of post-diffusion networks [148]. This neural network 
is a generalization of single-layer post-diffusion networks. In the case of conventional learning methods, training data must be seen 
before generating hidden neuron parameters. Conversely, in the ELM neural network, the input weights (i.e., the weight of the 
connections between the input variables and the hidden layer neurons) and the bias of the hidden layer neurons are randomly selected. 
Moreover, the ELM can generate these parameters before seeing the learning data [94,147,149]. Fig. 12 shows an example of the 
structure of the extreme learning machine algorithm. 

The artificial neural network is considered as an efficient and powerful tool for solving complex problems related to engineering 
and science [150], but the long duration of the training, a large number of parameters, and unwanted convergence are some of its 
weaknesses [151,152]. Researchers have therefore resorted to combining artificial neural networks with other algorithms to overcome 
such problems. 

Fig. 11. A structure of the Back-propagation of errors algorithm.  
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2.6.2. Studies based on artificial neural networks 
Table 4 shows the studies performed by different ANN methods to predict the mechanical properties of concrete types. Khademi 

et al. [153] used ANN and ANFIS to predict the 28-day compressive strength of normal concrete. Both models showed the ability to 
evaluate the compressive strength of different concrete mixtures. Different researchers also investigated the strength of concrete 
containing recycled aggregates through different ANN methods. In this regard, Dantas et al. [154] investigated the compressive 
strength of concrete containing construction and demolition waste usage by the BPNN method. They reported that ANN has the po
tential to predict 3, 7, 28, and 91-day compressive strength in both training and testing. In another study, Duan et al. [155] evaluated 
the compressive strength of concrete containing recycled aggregate (coarse aggregate) by 14 different inputs using the BPNN method 
and concluded that this method could be a suitable tool for predicting RAC compressive strength. Also, Naderpour et al. [156] 
evaluated the compressive strength of concrete containing construction waste (coarse-grained alternative) by the BPNN method 
(including 6 inputs and 18 hidden nodes) and evaluated the effect of each input parameter on the compressive strength. Their results 
indicate that water absorption as one of the inputs of the BPNN model has the most significant effect on compressive strength compared 
to other inputs. In another study, Topçu et al. [157] used fuzzy logic and BPNN methods to predict the tensile and compressive strength 
at 3, 7, 14, 28, 56, and 90 days of concrete containing recycled aggregate. Therefore, the comparison of R2, RMS, and MAPE obtained 
for both models indicates better performance of BPNN. The study of Xu et al. [134] predicted the elastic model and the tensile strength 
of high-strength concrete containing recycled aggregates by the BPNN method. They concluded that BPNN could predict the me
chanical properties of RAC without considering the mechanism of concrete failure and also without determining the exact functional 
relationship between the independent variables and the dependent variables. In Golafshani and Behnood [158] study, they investi
gated the elastic modulus of RCA through BPNN and RBFNN methods, and noted better BPNN performance. In another study, the 
results of Ababneh et al. [128] on the prediction of shear strength of RAC beams through the BPNN method yielded acceptable results. 

In recent years, the use of the artificial neural networks in the case of reinforced concrete has also been considered. These include 
the Amani and Moeini [159] study on the shear capacity of reinforced concrete beams through ANN and ANFIS. They concluded that 
ANN performed better using the MLP/BP algorithm than the ANFIS model. In another study, Behnood et al. [25] considers 4 pa
rameters as the model (water to binder ratio, concrete compressive strength, age of the specimen, and fiber reinforcing index) to 
predict the tensile strength of concrete reinforced with steel fibers. They used the ANN method and reported better ANN performance 
compared to SVM. Kumar and Barai [160] also evaluated the shear strength of steel fibrous reinforced concrete corbels without shear 
reinforcement and tested them under vertical loading using BPNN and concluded the high accuracy of the model. On the other hand, 
the study of Altun et al. [161] examined the compressive strength of lightweight reinforced concrete with steel fibers by the ANN and 
MLR methods, reporting better performance of the ANN model. Perera et al. [162] and Tanarslan et al. [163] also studied the shear 
strength of FRP-reinforced reinforced concrete beams in their study using an artificial neural network. They reported better perfor
mance of BPNN compared to the experimental equations. 

Atici [164], in studying the compressive strength of concrete containing different amounts of blast furnace slag and fly ash, 
concluded the acceptable performance of BPNN compared with multiple regression. Nikoo et al. [165] also evaluated the compressive 
strength of concrete containing blast furnace slag and fly ash using a genetic algorithm to optimize the artificial neural network. 
Simulation results show that the ANN model has more flexibility, capability, and accuracy in predicting the compressive strength of 
concrete. Behnood and Golafshani [166] used a combination of artificial neural networks with multi-objective grey wolves to 
investigate the compressive strength of concrete containing smooth soot and concluded that the HANNMOGW model had good pre
dictability and high accuracy. The study by Özcan et al. [167] compared artificial neural networks and fuzzy logic to predict the 
compressive strength of concrete containing silica fume. They reported the effectiveness of both methods and also reported the su
periority of the ANN method over the FL method after comparing R2. Yaseen et al. [94] predicted the compressive strength of 
lightweight foamed concrete by the extreme learning machine model and three other models (MARS, M5, and SVR). In this regard, 
ELM is an accurate and reliable method with better performance than the other methods approved. Dao et al. [168] used artificial 

Fig. 12. A structure of the Extreme Learning Machine (ELM) algorithm.  
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Table 4 
A summary of studies based on Artificial neural network.  

Concrete Type Algorithm Input Output Statistical Index Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Normal concrete BPNN; ANFIS Cement; w/c ratio; maximum size of aggregate; 
gravel; sand 3/4; sand 3/8; fineness modulus of 
sand 

Compressive 
strength 

R2 173 70 15 15 [153] 

Concrete containing 
construction and 
demolition waste 

BPNN Cement, w/c ratio; mortar; aggregates; admixture; 
ratio of recycled materials; fineness modulus of 
fine and coarse aggregates; maximum aggregate 
size of fine and coarse aggregates; water 
absorption; age of testing 

Compressive 
strength 

R2; AE 1178 77.8 – 22.2 [154] 

Recycled aggregate concrete BPNN Water; cement; sand; natural coarse aggregate; 
recycled coarse aggregate; w/c ratio; fineness 
modulus of sand; water absorption of the 
aggregates; saturated surface-dried; density; 
maximum size of aggregates; impurity content 
and replacement ratio of recycled coarse 
aggregate; conversion coefficient of different 
concrete specimen 

Compressive 
strength 

R2; RMSE; MAPE 168 – – – [173] 

Recycled aggregate concrete BPNN Water absorption; w/c ratio; fine aggregate; 
natural coarse aggregate; recycled coarse 
aggregate; water to total material ratio 

Compressive 
strength 

R; MSE 139 – – – [174] 

Recycled aggregate concrete BPNN Age of the specimen; cement; water; sand; 
aggregate; recycled aggregate; superplasticizer; 
silica fume 

Compressive 
strength; Tensile 
strength 

R2; RMSE; MAPE 210 67 – 33 [157] 

Recycled aggregate concrete BPNN; ANFIS Cement; natural fine aggregate; recycled fine 
aggregate; natural coarse aggregates 10 mm; 
natural coarse aggregates 20 mm; recycled coarse 
aggregates 10 mm; recycled coarse aggregates 20 
mm; admixture; water; w/c ratio; sand to 
aggregate ratio; water to total materials ratio; 
replacement ratio of recycled aggregate to natural 
aggregate; aggregate/cement ratio 

Compressive 
strength 

R2; RMSE; SSE 257 70 15 15 [175] 

Recycled aggregate concrete BPNN; 
Convolutional 
Neural Network 

Recycled coarse aggregate replacement ratio; 
recycled fine aggregate replacement ratio; fly ash 
replacement ratio; w/c ratio 

Compressive 
strength 

RE 74 68 – 32 [44] 

Recycled aggregate concrete BPNN Recycled aggregate replacement ratio; w/c ratio; 
aggregate to cement ratio; ratio of recycled 
aggregate maximum particle size to natural 
aggregate maximum particle size 

Elastic Modulus; 
Tensile strength 

Mean; SD; RMSE; 
MAPE 

421 – – – [134] 

Recycled aggregate concrete BPNN Cement; water to cement ratio; total aggregate to 
cement ratio; fine aggregate percentage; mass 
substitution rate of natural aggregate by recycled 
aggregate; characteristic of coarse aggregate; 
constituents of recycled coarse aggregate; type 
and preparation methods of coarse aggregate; 
cement type; specimen size 

Elastic Modulus R2; RMSE; MAPE 324 70 15 15 [155] 

Recycled aggregate concrete BPNN; RBFNN w/c ratio; volume replacement of natural 
aggregate by recycled aggregate; coarse aggregate 
to cement ratio; fine aggregate to total aggregate 
ratio; saturated surface dry specific gravity of the 

Elastic Modulus RMSE; MAE; MAPE 400 80 – 20 [158] 

(continued on next page) 
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Table 4 (continued ) 

Concrete Type Algorithm Input Output Statistical Index Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

mixed (i.e., natural and recycled) coarse 
aggregates; water absorption of the mixed coarse 
aggregates; 28-day cube compressive strength of 
the mixture 

Recycled aggregate concrete BPNN Width of beam; the effective depth of the beam; 
Shear span-depth ratio; replacement ratio of 
natural aggregate by recycled aggregate; 
longitudinal tension reinforcement ratio; specified 
concrete cylinder compressive strength 

Nominal shear 
strength 

MAE; MRE 231 – – – [128] 

Rubberized concrete BPNN Temperature; exposure duration; fiber content; w/ 
c ratio 

Compressive 
strength 

MSE; RMSE; R; AAD; 
COV; SSE 

324 70 15 15 [176] 

Rubberized Concrete BPNN W/C ratio; superplasticizer; coarse aggregates; 
fine aggregates; crumb rubber; tire chips 

Compressive 
strength 

R; MAE; MSE 112 70 15 15 [177] 

Reinforced concrete beams BPNN; ANFIS Concrete compressive strength; longitudinal 
reinforcement volume; shear span to depth ratio; 
transverse reinforcement; effective depth; beam 
width 

Shear strength R2; RMSE; MAE 123 81 – 19 [159] 

Reinforced concrete BPNN Cylinder concrete compressive strength; yield 
strength of the longitudinal and transverse 
reinforcing bars; shear span to effective depth 
ratio; cross-sectional dimensions of the beam; 
longitudinal and transverse reinforcement ratios 

Shear strength Mean; COV 176 80 – 20 [178] 

Steel fiber-reinforced concrete BPNN Water to binder ratio; concrete compressive 
strength; age of the specimen; fiber reinforcing 
index 

Tensile strength R; R2; MAPE; MAE; 
RMSE 

980 70 15 15 [25] 

Steel fibrous reinforced 
concrete 

BPNN Concrete cylinder compressive strength; effective 
depth; beam width; shear span to depth ratio; 
longitudinal steel ratio; fiber volume fraction; 
fiber aspect ratio 

Shear strength MAE; RMSE; P 730 90 – 10 [163] 

Steel fiber added lightweight 
concrete 

BPNN The amounts of steel fiber; water; w/c ratio; 
cement; pumice sand; pumice gravel; 
superplasticizer 

Compressive 
strength 

R; MSE; MARE 126 83 – 17 [161] 

Reinforced concrete beams 
FRP-strengthened 

BPNN Breadth of the beam; height of the beam section; 
ratio of the FRP transversal reinforcement; angle 
between the principal fiber orientation and the 
longitudinal axis of the member; elastic modulus 
of the FRP reinforcement; longitudinal steel 
reinforcement ratio; cross sectional area of 
transverse steel per length unit; yielding stress of 
the shear steel reinforcement; compressive 
strength of the concrete; shear span to depth ratio; 
strengthening configuration 

Shear strength Mean; Standard 
deviation; R; COV 

98 81 – 19 [162] 

RC beams strengthened in 
shear with FRP 

BPNN Beam width; effective height of the beam; 
concrete compressive strength; type of wrapping 
scheme; the angle between the principal fiber 
orientation and the longitudinal axis of the 
member; elastic modulus of the FRP 
reinforcement; rupture strain of FRP 

Shear strength R2; RMSE 84 61 – 39 [163] 

(continued on next page) 
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Table 4 (continued ) 

Concrete Type Algorithm Input Output Statistical Index Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

reinforcement; total fabric design thickness; shear 
span to depth ratio 

FRP-reinforced concrete BPNN Effective depth; width of web; shear span to depth 
ratio; modulus of elasticity and ratio of the FRP 
flexural reinforcement; compressive strength of 
concrete 

Shear strength Mean; Standard 
deviation; R2; RMSE; 
COV; 

106 73 – 27 [179] 

Concrete Beams Reinforced by 
FRP Bars 

BPNN Width of web; effective depth of tensile 
reinforcement; shear span to depth ratio; 
compressive strength of concrete; FRP 
reinforcement ratio; modulus of elasticity of FRP 

Shear strength R; COV; MAE; MSE 177 60 20 20 [156] 

Concrete members reinforced 
with FRP bars 

BPNN Effective depth; web width; compressive strength 
of concrete; shear span to depth ratio; modulus of 
elasticity of FRP; reinforcement ratio 

Shear strength Mean; Standard 
deviation; COV; MAE; 

87 80 – 20 [180] 

Concrete containing blast 
furnace slag and fly ash 

BPNN Cement; BFS; curing age; ultrasonic pulse velocity; 
rebound number; fly ash 

Compressive 
strength 

R; MSE 135 70 15 15 [164] 

Concrete containing blast 
furnace slag and fly ash 

A combination of 
ANN and GA 

Cement; BFS; coarse aggregate; fine aggregate; fly 
ash; water; superplasticizer 

Compressive 
strength 

R2; RMSE 180 83 – 17 [165] 

Concrete containing silica 
fume 

A combination of 
ANN and MOGWO 

Binder; water to binder ratio; silica fume to binder 
ratio; coarse aggregate to total aggregate ratio; 
coarse aggregate to binder ratio; superplasticizer 
to binder ratio; maximum aggregate size; concrete 
age 

Compressive 
strength 

RMSE; MAE; R 1030 70 15 15 [166] 

Concrete containing three 
alternative materials as 
fly ash, Haydite 
lightweight aggregate, 
and portland limestone 
cement 

ANN Cement type; curing age; water; cementitious 
material; fly ash; sand; pea gravel; haydite 
lightweight aggregate; micro air 

Compressive 
strength 

R; MSE; MAE 144 10-fold cross validation [93] 

Ground granulated blast 
furnace slag concrete 

BPNN Cement; blast furnace slag; superplasticizer; 
aggregates; water; age of samples 

Compressive 
strength 

R2 225 50 – 50 [181] 

Silica fume concrete BPNN Cement; amount of silica fume replacement; water 
content; amount of aggregate; plasticizer content; 
and age of samples 

Compressive 
strength 

MSE; MARE 240 56 21 23 [171] 

Lightweight foamed concrete ELM Cement; oven dry density; water/binder ratio; 
foamed volume 

Compressive 
strength 

R; RMSE; MAE; 
Relative RMSE; 
Relative MAE 

91 – – – [94] 

Lightweight basalt fiber 
reinforced concrete 

ANFIS Cement; silica fume; fly ash; and basalt fibers Compressive 
strength 

Regression coefficient – 70 15 15 [182] 

Geopolymer concrete ANFIS; BPNN Fly ash; sodium hydroxide; sodium silicate 
solution; water 

Compressive 
strength 

R2; RMSE; MAE 210 70 15 15 [168] 

Eco-friendly geopolymer 
concrete 

ANN Age of specimen; NaOH concentration; NZ 
content; SF content; GGBS content 

Compressive 
strength 

R; MSE – 70 15 15 [169] 

High-performance concrete BPNN Cement; blast furnace slag; fly ash; water; 
superplasticizer; coarse aggregate; fine 
aggregates; curing age 

Compressive 
strength 

R2; RMSE; MAPE 300 – – – [121] 

High-performance concrete BPNN Cement; nano-silica; fine aggregate; copper slag; 
age of specimen; superplasticizer 

Compressive 
strength 

R; R2; RMSE; MAPE 270 70 15 15 [132] 

High-performance concrete MFA-BPNN Compressive 
strength 

R; RMSE; MAE; MAPE 1133 10-fold cross validation [170] 

(continued on next page) 
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Table 4 (continued ) 

Concrete Type Algorithm Input Output Statistical Index Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Water; cement; blast furnace slag; fly ash; 
superplasticizer; coarse aggregate; fine aggregate; 
age of testing 

High-performance concrete MFA-BPNN Curing age; cubic compressive strength Tensile strength R; RMSE; MAE; MAPE 1133 10-fold cross validation [170] 
High-performance concrete RELM; ELM Cement; blast furnace slag; fly ash; water; 

superplasticizer; coarse aggregate; fine aggregate; 
age of specimens 

Compressive 
strength 

R; RMSE; MAE; MAPE 1133 10-fold cross validation [183] 

High-performance concrete ANN; BANN; 
GBANN; WBANN; 
WGBANN 

Cement; blast-furnace slag; fly ash; water; 
superplasticizer; coarse aggregate; fine aggregate; 
age of testing 

Compressive 
strength 

R2; RMSE; MAE 1030 90,80 – 10,20 [184] 

High-performance concrete BPNN Cement; blast-furnace slag; fly ash; water; 
Superplasticizer; coarse aggregate; fine aggregate; 
age of testing 

Compressive 
strength 

R2; RMSE; MAPE 1030 10-fold cross validation [74] 

High strength concrete ELM; BPANN Water; cement; fine aggregate; coarse aggregate; 
superplasticizer 

Compressive 
strength 

R; RMSE; MAE; 
MAPE; NSE 

324 75 – 25 [147] 

High strength concrete; 
Normal concrete 

ANFIS Compressive strength of concrete Elastic Modulus RMSE; MAPE 145 78,83 – 28,17 [185] 

High strength concrete; 
Normal concrete 

Grey wolf optimized 
ANN; Grey wolf 
optimized ANFIS 

Coarse aggregate; sand; water; cement; BFS; fly 
ash; superplasticizer; age of specimens 

Compressive 
strength 

RMSE; MAE; R2; MBE; 
scatter index; 
uncertainty with 95% 
confidence level 

2817 70 15 15 [171] 

High strength concrete ANFIS Tensile reinforcement ratio; concrete compressive 
strength; shear span to depth ratio 

Shear strength COV; R; MSE 122 80 – 20 [186] 

High strength concrete BPNN Water to binder ratio; water content; fine 
aggregate ratio; fly ash replacement ratio; air- 
entraining agent; ratio silica fume replacement 
ratio and superplasticizer content 

Compressive 
strength 

R2; RMSE; MAPE; SSE 187 90 – 10 [187] 

Cellular concrete BPNN Cement, w/c ratio; sand to cement ratio; foam 
volume to cement ratio 

Compressive 
strength 

Absolute average 
error; Average 
algebraic error 

99 24 23 34 [188] 

Self-Compacting Concrete BPNN Binder; fly ash replacement percentage; water/ 
binder ratio; fine aggregate; coarse aggregate; 
superplasticizer 

Compressive 
strength 

R; RE 114 80 – 20 [189] 

Self-Compacting Concrete BPNN Cement; coarse aggregate; fine aggregate; water; 
limestone powder; fly ash; ground granulated BFS; 
silica fume; rice husk ash; superplasticizer; 
viscosity modifying admixtures 

Compressive 
strength 

R 169 67 16.5 16.5 [138] 

Self-Compacting Concrete BPNN Cement; coarse aggregate; fine aggregate; water; 
limestone powder; fly ash; ground granulated BFS; 
silica fume; rice husk ash; superplasticizers; 
viscosity modifying admixtures 

Compressive 
strength 

R; MSE 205 67 16.5 16.5 [172] 

Alkali-activated slag-fly Ash 
concrete 

BPNN Water/solid ratio; Alkaline activator/binder ratio; 
Na-Silicate/NaOH ratio; Fly ash/slag ratio; NaOH 
molarity 

Compressive 
strength 

RMSE; MAE; R2 1030 70 – 30 [97]  
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neural networks and fuzzy logic to predict the compressive strength of geopolymer concrete containing fly ash and slag. They reported 
better values of MAE, RMSE, and R2 for the fuzzy logic model compared to the artificial neural network. In addition, in another study, 
Shahmansouri et al. [169] predicted the compressive strength (7, 28, and 90 days) of eco-friendly geopolymer concrete by an artificial 
neural network. Finally, they reported the satisfactory results of the model. 

The use of artificial neural networks to predict HPC and HSC resistance is another area researchers have considered. For example, 
Chithra et al. [132] used multiple regression analysis and artificial neural networks to predict compressive strength (1, 3, 7, 28, 56, and 
90 days) high performance concrete containing nano-silica (0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3%) and copper slag. The results show 
that the artificial network model has a lower Root Mean Squared Error and Mean Absolute Percentage Error than the regression model 
and R-squared closer to one. In addition, Bui et al. [170] used a combination of an artificial neural network and a modified firefly 
algorithm to predict high-performance concrete tensile and compressive strength. The results showed that the MFA-ANN hybrid 
system has a small error in predicting the resistance and significantly reduces the computation time. Al-Shamiri et al. [147] predicted 
the compressive strength of high-strength concrete using the ELM model, BPNN, and considering concrete components as model in
puts. They concluded the higher capacity of the ELM model to predict concrete strength. Golafshani et al. [171] used the GWO al
gorithm in the artificial neural network training phase and the Adaptive Neuro-Fuzzy Inference System to predict the compressive 
strength of normal and high-performance concrete. The results show that the combined application of GWO with both ANN and ANFIS 
models improves their training and generalization ability. Asteris and Kolovos [172], in their study on the compressive strength of 
self-compacting concrete by the BPNN model, used the Levenberg-Marquardt method to teach data and finally reported satisfactory 
results of BPNN use. Asteris et al. [138], in another study on self-compacting concrete by BPNN, concluded by comparing the results 
with experimental findings the BPNN model was capable to reliably predict. 

2.7. ML/Evolutionary algorithms 

One of the most cost-effective and simplest problem-solving techniques (in terms of computational load and time required to 
implement the algorithm) in the field of artificial intelligence is evolutionary computational methods [61,190–192]. In Computer 
Science and Artificial Intelligence, evolutionary computing is known as a family of algorithms for General Optimization that is inspired 
by biological evolution processes [190,193,194]. A subfield of artificial intelligence and soft computing that studies and implements 
algorithms inspired by biological evolution processes are called evolutionary computational algorithms [59,195]. Fig. 13 shows the 
evolutionary computing classification. 

One of the important goals of evolutionary computational methods and evolutionary algorithms, in particular, is to improve the 
quality of poorly generated solutions to a problem. Evolutionary computing algorithms make use of evolutionary processes like 
mutation and others; in other words, employing operations like the mutation process, and evolutionary computing algorithms in 
anIterative process manipulate a large number of badly created answers until the system can solve the problem with the necessary 
precision [60,192,195,196]. From a technical point of view, evolutionary computational algorithms are family-based problem-solving 
methods based on population, trial and error, and use stochastic optimization or meta-heuristic optimization mechanisms to converge 
toward the global optimal solution or approximation [59,191,192]. In evolutionary calculations, a basic set of Candidate Solutions is 
first formed. During the evolutionary process, evolutionary computational algorithms manipulate and update the population with 
candidate answers to move the population to the area containing the answer (Global Optimum) [197–199]. In each iteration of 
evolutionary computational algorithms, also called generation, an evolutionary process will eliminate undesirable responses in the 
population and make very small, albeit random, changes in candidate responses. Fig. 14 shows the outline of the evolutionary 
algorithm. 

2.7.1. Evolutionary algorithms process 
In general, evolutionary algorithms are based on Charles Darwin’s original evolutionary theory [200]. Although implementing 

evolutionary mechanisms is different, the main idea of all these changes is similar [201]. So far, various versions of evolutionary 
computational algorithms have been proposed. Genetic programming (GP), was invented by Kramer [60] and further developed by 
Koza [202]. Genetic algorithms are a family of computational models inspired by the concept of evolution. These algorithms encode 
potential solutions, candidate solutions, or possible hypotheses for a particular problem into a chromosome-like data structure 
[203–206]. The genetic algorithm preserves vital information stored in chromosome-like data structures by applying recombination 
operators to chromosome-like data structures [61,191,207]. Implementing a genetic algorithm usually begins with the production of a 
population of chromosomes (the initial population of chromosomes in genetic algorithms is usually randomly generated, and bounded 
up and down by the problem variables). In the next step, the generated data structures (chromosomes) are evaluated. The chromo
somes that can better represent the optimal solution of the problem (target) have a better chance of reproduction than weaker so
lutions. In other words, more reproductive opportunities are allocated to these chromosomes [58,208,209]. Fig. 15 shows the outline 
of the genetic algorithm. 

The artificial bee colony algorithm (ABC) is an optimization solution that simulates the behavior of a bee colony and was first 
proposed in 2005 by Karaboga [210] to optimize the actual parameter. In this mathematical model, an artificial bee colony has three 
types of bees. Worker bees work to collect food and bring it to the hive from a specific food source. Observation bees patrol among 
workers to determine if a food source is still worth using and finally watch as bees seek to discover new food sources [211–213]. In the 
ABC algorithm, a food source is defined as a state in the search space (a solution to the optimization problem), and the number of food 
sources is initially equal to the number of bees in the hive. The quality of food resources is determined by the value of the objective 
function in that position (proportionality value) [57,208,214]. Fig. 16 shows the steps of the ABCP algorithm. 

Biogeography-Based Optimization (BBO) is one of the relatively new algorithms of intelligent optimization, which was introduced 
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in 2008 by Dan Simon [215]. This algorithm is inspired by how species of organisms spread in multiple habitats. By providing a 
possible model for how species migrate in habitats, a mathematical model has been extracted that has eventually led to creating a new 
optimization model used in the BBO [208,215–217]. Fig. 17 shows the steps of the BBP algorithm. 

2.7.2. Studies based on evolutionary algorithms 
Table 5 shows the studies performed by evolutionary algorithms to predict the mechanical properties of concrete types. Golafshani 

and Behnood [208] investigated the tensile strength of concrete containing recycled aggregates using three models GP, ABCP, and BBP. 
They reported the models used as reliable algorithms for predicting the elastic modulus. They also concluded that the water absorption 
of the mixed coarse aggregate and the ratio of the fine aggregate to the total aggregate are two parameters affecting the elastic modulus 
of RAC. In another study, Abdollahzadeh et al. [218] evaluated the compressive strength of RAC concrete containing silica fume by 
gene expression programming (GEP). They reported the optimal agreement between the experimental results and the results of the 
GEP model. Iqbal et al. [219] studied the compressive strength, tensile strength, and elastic modulus of green concrete incorporating 
waste foundry sand through gene expression programming. They reported that the results obtained from RSE, MAE, RMSE, and R for 
all three sets of learning, validation, and testing confirm the accuracy and capability of the model. Kara [220] also reported satisfactory 
results using the GEP model in its study on predicting the shear strength of FRP-reinforced concrete beams. Gandomi et al. [221,222] 
reported the GEP model’s high accuracy in predicting the shear strength of reinforced concrete beams. Also, a comparative study of the 
GEP model with the models derived from the ACI, EC2, CSA, and NZS regulations shows the superiority of the GEP model. In a separate 
study, Gandomi et al. [223] investigated the compressive strength of carbon fiber reinforced plastic confined concrete using the linear 
genetic programming (LGP) model. The results showed that LGP can predict compressive strength with an acceptable level of accuracy 
and performs better than several models presented in other studies. In another study, Beheshti et al. [224] estimated the shear strength 
of short rectangular reinforced concrete columns using two models of nonlinear regression and gene expression programming. Vali
dation performed on the models showed that for the GEP model, the average errors were 15%, while for NR, ACI and EC2 models, the 
average errors were 50%, 45%, and 43%, respectively. Sarıdemir [225], in his study on concrete containing rice husk ash, reported the 
genetic programming approach model as a powerful way to predict compressive strength. The study of Shahmansouri et al. [226] 
predicted the compressive and electrical resistance of eco-friendly concrete containing natural zeolite. Their results indicate that, 
according to the values of statistical parameters (R2, RMSE, RAE, and RRSE), the model can predict compressive and electrical 
resistance. Awoyera et al. [227] investigated the compressive, tensile, and flexural strength of geopolymer self-compacting concrete by 
GEP and ANN models. The results show that both models can predict the mechanical properties of concrete up to a confidence level of 
about 97%. Dao et al. [228] predicted the compressive strength of geopolymer concrete using two combined models, GAANFIS and 
PSOANFIS. Mousavi et al. [229] predicted high-performance concrete compressive strength using gene expression programming. In 
addition to reporting GEP as an effective method for predicting HPC compressive strength, they concluded that among the input 
parameters, three parameters of water, cement, and age of samples have the greatest impact on compressive strength. Golafshani and 
Ashour [230] study predicted the elastic modulus of self-compacting concrete by two models of biogeographical-based programming 
and artificial bee colony programming. They reported that the BBP model was slightly closer to the experimental results than the ABCP 
model. In addition, the sensitivity of BBP parameters shows that the prediction by the BBP model improves with increasing habitat size, 
colony size, and maximum tree depth. 

3. Results and discussion

3.1. Comparison of ML/DL models with statistical models 

Machine learning models have emerged as an important and serious competitor to classical statistical models in the last two de
cades. In this regard, various models such as support vector machines, decision trees, artificial neural networks, and others were 
developed and expanded in the machine learning suite. Statistical modeling formulates the relationship of variables in mathematical 
equations, while machine learning is an algorithm that can learn from data. Although machine learning is rooted in statistics, there are 
differences between statistical and machine learning models. Fig. 18 shows a summary of the comparison between ML/DL models and 
statistical models. 

Table 6 shows the prediction of mechanical properties of different types of concrete by statistical models and ML/DL models. 
Therefore, the comparison of machine learning models and statistical models is performed by the following parameters, which indicate 
the higher potential of ML/DL models compared to statistical models:  

● Coefficient of determination (R2)
● Mean Absolute Error (MAE)
● Mean Absolute Percentage Error (MAPE)
● Root-Mean-Square Relative Error (MARE)

Table 6 shows the prediction statistics of ML/DL models compared to other statistical models. The comparison made in 14 groups is
presented, which includes checking Compressive strength, Elastic modulus, Flexural strength, Splitting tensile strength, Shear 
strength. The analyzed statistical indicators include R2, MAE, MAPE, RMSE. The size of the experimental database always plays an 
important role in the reliability of the models [272]. Therefore, the dataset size is also presented in Table 6.  

● Xu et al. [134]: In this study, compressive strength, elastic modulus, flexural strength, splitting tensile strength, shear strength was
investigated. The results indicate that the indicators for prediction by the ANN model show lower values. The indicators for
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prediction by ANN model show lower values. This can be because the ANN approach has the ability to automatically adjust the 
weight index for each input parameter to reduce the scatter of the target response. Such a trend has been reported by Xu et al. [134].  

● Gholampour et al. [272]: Items such as elastic modulus, flexural strength were investigated in this study. They evaluated Recycled
aggregate concrete by GEP model. As can be seen, the GEP model provides improved accuracy. In addition, the GEP model can be 
used for a larger number of data sets than other models.  

● Vu & Hoang [90]: In this study, the shear strength of Steel fiber-reinforced concrete was investigated by the ANN model. The
calculation results show that the equation proposed by Ospina et al. [261] is the best approach based on the formula, which in
cludes RMSE, MAPE and R2 of 117.51, 15.48 and 0.91, respectively. Meanwhile, the model proposed by Vu & Hoang’s study [90] 
shows better results.  

● Al-Musawi et al. [80]: In this study, steel fiber-reinforced concrete was tested for shear strength and was evaluated by SVR-FFA
model. The comparison of SVR-FFA with other models of this group shows that SVR-FFA has superiority over other models and 
this is because of the high feasibility to understand the internal mechanism between the predictors and predictand.  

● Sarveghadi et al. [233]: In this study, steel fiber-reinforced concrete was investigated and the shear strength of this concrete was
evaluated by the MEP model. Many empirical models use statistical regression techniques and are developed after controlling a 

Fig. 13. A structure of evolutionary computational classification.  

Fig. 14. Evolutionary algorithm structure.  
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limited number of equations. Meanwhile, the MEP model was selected from many primary models. On the other hand, the MEP 
approach depends on the data to provide better generalization. It is worth noting that the proposed MEP models are mainly used to 
validate the results of laboratory tests or for cases where testing is not possible. 

Fig. 15. Flow chart of the GP algorithm.  

Fig. 16. Flow chart of the ABCP algorithm.  
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● Keshtegar et al. [88]: In this study, different methods such as ANN, RSM, SVR and RSM-SVR hybrid algorithm were investigated for
the shear strength of steel fiber-reinforced concrete. Comparing the results of ML/DL methods with statistical models shows that
artificial intelligence has the ability to provide a more reliable platform for data prediction and analysis.

This extraordinary capability of ML/DL models stems from their ability to accurately predict the properties of concrete components
and their relationship to the target strength, which is largely a non-linear relationship between them. This issue has been mentioned by 
other studies [75,80,90,134,233]. Fig. 19-a to 19-d show the validation parameters and error criteria of ANN, MEP, and SVR-FFA 
models compared to different statistical models for predicting shear strength. ML/DL models provide a better model for predicting 
shear strength due to high R2 and low error criteria (MAE and RMSE). Fig. 19-e also shows the prediction of tensile strength by the ANN 
model compared to the statistical models. The lower error criteria of the ANN model than other models are evident. The comparison of 
flexural strength prediction by the ANN model and statistical models in Fig. 19-f is also apparent. Therefore, MAE and RMSE values for 
the ANN model were 9.39 and 0.64, respectively, which are much lower values than the statistical models’ results. A comparison of 
elastic modulus prediction models in Fig. 19-g shows the superiority of the ANN model compared to statistical models. Fig. 19-h also 
shows the prediction of compressive strength by the ANN model and other models that demonstrate a clear satisfactory performance of 
the ANN model. 

On the other hand, according to Tables 2–5, Studies in the field of ML/DL indicate that these models use a wider range of datasets to 
predict target resistance than statistical models, which ultimately leads to a more accurate and efficient model. Another thing that is 
important in predicting the target resistance is the possibility of updating the model. In this area, statistical models do not show the 
possibility of a successful update due to the weakness in the optimal evaluation of the target strength of concrete in the presence of new 
additives. They mainly do not consider the effect of new materials on the target strength. Meanwhile, different ML/DL models can 
update the forecasting mechanism by controlling the concrete components, the number of input parameters, and performing pre
processing. On the other hand, ML/DL models with sensitivity analysis also provide the potential to evaluate the impact of input 
parameters on the target resistance. Therefore, to predict the target strength of concrete with complex structures, it is better to use ML/ 
DL models, and contrary to expectations, limit statistical and experimental models to evaluate concrete with simple structures. 

3.2. Comparison of different ML/DL models 

The wide range of applications and features of different models of machine learning and deep learning has made them powerful 
prediction tools. In this regard, each ML/DL model follows a specific scenario to achieve its ultimate goal. Weaknesses in previous 
models have always been considered an incentive for researchers to create newer and more efficient models. Therefore, the strength of 
different ML/DL models in comparison with each other can be evaluated by statistical criteria. 

Fig. 20 data size shows the compressive strength related to the studies conducted by different researchers on concrete in the ML/DL 
field. The data size used in different studies is very different. RMSE, as an important evaluation index that expresses the difference 
between the value predicted by the model or statistical estimator and the actual value, is present in most studies as a comparative 
parameter. Frequently lower values than the RMSE index can bring a better-fitted line and a more reasonable result. In another sense, 

Fig. 17. Flow chart of the BBP algorithm.  
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Table 5 
A summary of studies based on Evolutionary algorithms.  

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Normal concrete GEP Compressive strength Tensile strength R2; RMSE 251 50 25 25 [231] 
Recycled aggregate 

concrete 
GP; ABCP; BBP Water to cement ratio; volume fraction of coarse RA in RAC; 

coarse aggregate to cement ratio; fine aggregate to total 
aggregate ratio; saturated surface dry specific gravity of the 
mixed coarse aggregates; water absorption of the mixed 
coarse aggregates; and 28-day cube compressive strength of 
the mixture 

Elastic Modulus MAE; RMSE; 
MAPE; OBJ 

400 80 – 20 [208] 

Recycled aggregate 
concrete 

GEP Age of specimens; cement; water; natural aggregates; 
recycled aggregates; silica fume; superplasticizer 

Compressive strength R2; MAE; 
RMSE; RAE; 
RRSE 

228 80 – 20 [218] 

Green concrete 
incorporating 
waste foundry 
sand 

GEP Water-to-cement ratio; WFS percentage; WFS-to-cement 
content ratio; fineness modulus of WFS 

Compressive strength R; RMSE; 
MAE; RSE 

234 – – – [219] 
Elastic modulus 85 
Split tensile strength 163 

FRP-reinforced 
concrete beams 

GEP Compressive strength; beam width; effective depth; shear 
span to depth ratio; reinforcement ratio; the ratio of modulus 
of elasticity of FPR to steel reinforcement 

Shear strength R; MAPE; AAE 104 54 19 27 [220] 

Reinforced concrete GEP Beam width; effective depth; shear span to depth ratio; 
compressive strength; longitudinal reinforcement ratio; 
amount of shear reinforcement 

Shear strength R; MAE; 
RMSE 

466 70 15 15 [222] 

Reinforced concrete GEP Beam width; effective depth; shear span to depth ratio; 
compressive strength; longitudinal reinforcement ratio 

Shear strength R; MAE; 
RMSE 

1942 70 15 15 [221] 

Reinforced concrete GEP The axial force; the width of the cross-section; 28-day 
compressive strength of concrete; the ratio of shear span to 
the effective depth of the cross-section; the percentage of 
longitudinal reinforcement; the cross-sectional area; the 
transverse reinforcement ratio; and the yield stress of the 
transverse reinforcement 

Shear strength R; MAE; 
RMSE 

83 53 22 25 [224] 

Reinforced concrete LGP Compressive strength; mechanic arm; longitudinal 
reinforcement ratio; maximum size of coarse aggregate; 
shear span to depth ratio 

Shear strength R; MAE; 
RMSE 

1938 70 15 15 [232] 

Carbon fiber- 
reinforced plastic 

LGP Diameter of the concrete cylinder; thickness of the CFRP 
layer; ultimate tensile strength of the CFRP laminate; 
unconfined ultimate concrete strength 

Compressive strength R; MAPE 101 90 – 10 [223] 

Steel fiber-reinforced 
concrete beams 

MEP Shear span to depth ratio; average fiber matrix interfacial 
bond stress; fiber factor; splitting tensile strength; split- 
cylinder strength of fiber concrete; compressive strength of 
concrete; longitudinal reinforcement ratio 

Shear strength R2; MAE; 
RMSE 

208 67 14 19 [233] 

Concretes containing 
rice husk ash 

GEP Genes the age of specimen; portland cement 30; Portland 
cement 40; rice husk ash; water; superplasticizer; aggregate 

Compressive strength R2; MAPE; 
RMSE 

188 60 10 30 [225] 

Silica fume concrete BBP Portland cement; silica fume; water; coarse aggregate; fine 
aggregate; superplasticizer; the maximum aggregate size; the 
concrete age 

Compressive strength R; MAE; 
MAPE; RMSE; 
OBJ 

1030 75 – 15 [234] 

Bagasse ash-based 
concrete 

GEP The water-cement ratio; bagasse ash percent replacement; 
quantity of fine and coarse aggregate and cement 

Compressive strength R2; RMSE; 
NSE 

65 – – – [235] 

Eco-friendly concrete 
containing 
natural zeolite 

GEP Age of specimens; water; cement; natural zeolite; coarse 
aggregate; fine aggregate; superplasticizer 

Compressive strength R2; MAE; 
RMSE; RAE; 
RRSE 

324 80 – 20 [226] 
Electrical resistivity 162 

(continued on next page) 
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Table 5 (continued ) 

Concrete Type Algorithm Input Output Statistical 
Index 

Dataset 
size 

Training 
(%) 

Validation 
(%) 

Testing 
(%) 

Ref. 

Geopolymer concrete GAANFIS The sodium solution; the mass ratio of alkaline activation 
solution to fly ash; the mass ratio of sodium silicate to sodium 
hydroxide solution 

Compressive strength R; MAE; 
RMSE 

210 70 30 – [228] 

Geopolymer self- 
compacting 
concrete 

GEP Fly ash; GGBS; silica fume; slump flow; T50 cm; L-box; V- 
funnel; J-ring; Age 

Compressive strength; 
Split-tensile strength; 
Flexural strength 

MAE; MSE; 
RMSE 

105 70 15 15 [227] 

High-performance 
concrete 

Geometric 
Semantic Genetic 
Programming 

Cement; fly ash; blast furnace slag; water; superplasticizer; 
coarse aggregate; fine aggregate; age of testing 

Compressive strength RMSE 1028 70 – 30 [236] 

High-performance 
concrete 

GEP Water; cement; blast furnace slag; fly ash; superplasticizer; 
coarse aggregate; fine aggregate; age of specimens 

Compressive strength R; MAE; OBJ 1133 80 20 – [229] 

Normal strength 
concrete 

GP; LGP Compressive strength Elastic Modulus R; MAE 70 81 – 19 [237] 

High-strength 
concrete 

89 78 22 

Self-compacting 
concrete 

ABCP; BBP Compressive strength Elastic Modulus R2; MAE; 
MAE; RMSE; 
OBJ 

413 80 – 20 [230]  
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we calculate the sum of the errors of each point compared to the built model, and this itself is a kind of criterion for the goodness of the 
model built by the algorithm. Therefore, a summary of RMSE values from different studies is reported in Table 7. Also, Fig. 21 also 
shows a schematic picture of RMSEs of different studies. Due to the fact that many factors such as the size of the dataset, the type of data 
used, the method of the algorithm used in the results of the analysis, and evaluation indicators are effective, hence we see different 
values of RMSE. 

One of the most important things in the field of machine learning is data. This is a very influential factor in choosing the type of 
algorithm because if the number of data is large, some algorithms will not be able to evaluate correctly and logically. Also, on the other 
hand, time is one of the things that are of special importance for the user of machine learning and deep learning. If the number of data is 
large, the time that must be spent on data analysis increases. Therefore, it is very important to choose the right algorithm according to 
the size of the data. 

Due to its special properties, many researchers recommend an artificial neural network as a suitable model for predicting target 
resistance. On the other hand, ANN needs a lot of time to perform the calculations to reach its final goal, and this is due to the repetition 
of the trial and error tuning process. Another weakness of ANN can be related to backpropagation. The error propagation algorithm 
uses a descending gradient to adjust the synaptic weights. The descending gradient algorithm moves in the direction of the negative 
slope of the error with one step (learning rate) to reach the optimal value. The optimal value is the point where the error slope is zero. 
Ideally, a minimum error can be achieved by determining an appropriate learning rate. In practical projects, however, determining the 
learning rate is challenging because if a low learning rate is chosen, the algorithm may get stuck in local minima (because the local 

Fig. 18. A summary of comparing machine learning and deep learning models with experimental models.  
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Table 6 
Results of ML/DL models and statistical models for predicting the mechanical properties of concrete.  

Output Model Dataset size R2 MAE MAPE RMSE Type of concrete 

Based on statistics Based on 
ML/DL 

Compressive 
strength 

Pereira et al. [238]  82   54.22 28.15 Recycled aggregate concrete 
Silva et al. [239]  Review of 235 

papers (from 
1978 to 2014)   

7.81 34.66 Recycled aggregate concrete 

Gholampour et al. 
[240]  

650   31.29 14.18 Recycled aggregate concrete  

ANN 
[134] 

2817   15.13 7.71 Normal and high strength 
recycled aggregate concrete 

Elastic modulus Ravindrarajah and 
Tam [241]  

104   17.85 5749.73 Concrete made with crushed 
concrete as coarse aggregate 

Bairagi et al. [134]  104   25.35 7584.52 Concrete with different 
proportions of natural and 
recycled aggregates 

Dhir 32 [242]  104   20.22 5848.93 Recycled aggregate concrete 
Kheder and 
AlWindawi [243]  

172   17.44 6386.66 Natural and recycled 
aggregate concrete 

Lovato et al. [244]  204   68.51 21502.9 Recycled aggregate concrete 
Pereira et al. [238]  82   45.36 12365.1 Recycled aggregate concrete 
Gholampour et al. 
[240]  

421   30.19 9287.91 Recycled aggregate concrete  

ANN 
[134] 

421   11.21 4425.89 Normal and high strength 
recycled aggregate concrete 

Elastic modulus Xiao et al. [245]  104    6.17 Recycled aggregate concrete 
Kakizaki et al. 
[246]  

33    4.51 Recycled aggregate concrete 

Ravindrarajah and 
Tam [241]  

104    5.62 Concrete made with crushed 
concrete as coarse aggregate 

Bairagi et al. [247]  104    6.76 Concrete with different 
proportions of natural and 
recycled aggregates 

de Oliveira and 
Vazquez [248]  

104    7.14 Recycled aggregate concrete 

Dillmann [249]  104    8.4 Recycled aggregate concrete 
Dhir [250]  104    5.15 Recycled aggregate concrete 
Tavakoli and 
Soroushian [251]  

104    6.55 Recycled aggregate concrete 
made using field-demolished 
concrete as aggregate 

Pereira et al. [238]  82    10.54 Recycled aggregate concrete 
Wardeh et al. [252]  104    5.79 Recycled aggregate concrete 
Lovato et al. [244]  204    21.8 Recycled aggregate concrete 
Zilch and Roos 
[253]  

84    3.1 Recycled aggregate concrete 

Kheder and Al- 
Windawi [243]  

172    6.76 Natural and recycled 
aggregate concrete 

Rahal [254]  84    3.74 Concrete with recycled coarse 
aggregate 

Corinaldesi [254]  172    3.85 Concrete with recycled coarse 
aggregate 

Hoffmann et al. 
[255]  

172    7.65 Recycled concrete and mixed 
rubble as aggregates  

GEP 
[240] 

351    3.06 Recycled aggregate concrete 

Flexural 
strength 

Bairagi et al. [247]  19   11.53 0.61 Concrete with different 
proportions of natural and 
recycled aggregates 

Kheder and 
AlWindawi [243]  

54   23.46 1.63 Natural and recycled 
aggregate concrete 

Silva et al. [256]  The collated data 
from several 
studies   

20.45 1.29 Recycled aggregate concrete 

Gholampour et al. 
[240]  

152   28.11 1.6 Recycled aggregate concrete  

ANN 
[134] 

152   9.39 0.64 Normal and high strength 
recycled aggregate concrete 

Flexural 
strength 

Bairagi et al. [247]  19    0.73 

(continued on next page) 
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Table 6 (continued ) 

Output Model Dataset size R2 MAE MAPE RMSE Type of concrete 

Based on statistics Based on 
ML/DL 

Concrete with different 
proportions of natural and 
recycled aggregates 

Tavakoli and 
Soroushian [251]  

19    1.12 Recycled aggregate concrete 
made using field-demolished 
concrete as aggregate 

Kheder and Al- 
Windawi [243]  

54    0.97 Natural and recycled 
aggregate concrete  

GEP 
[240] 

118    0.52 Recycled aggregate concrete 

Splitting tensile 
strength 

Kheder and 
AlWindawi [243]  

139   24.19 0.82 Natural and recycled 
aggregate concrete 

Xiao et al. [257]  109   22.75 0.75 Recycled aggregate concrete 
Lovato et al. [244]  149   78.05 2.55 Recycled aggregate concrete 
Pereira et al. [238]  58   14.65 0.72 Recycled aggregate concrete 
Silva et al. [256]  The collated data 

from several 
studies   

36.66 1.14 Recycled aggregate concrete 

Gholampour et al. 
[240]  

346   64.26 1.86 Recycled aggregate concrete  

ANN 
[134] 

346   11.89 0.48 Normal and high strength 
recycled aggregate concrete 

Splitting tensile 
strength 

Xiao et al. [245]  109    0.52 Recycled aggregate concrete 
Tavakoli and 
Soroushian [251]  

109    0.57 Recycled aggregate concrete 
made using field-demolished 
concrete as aggregate 

Pereira et al. [238]  58    0.78 Recycled aggregate concrete 
Xiao et al. [257]  109    0.67 Recycled aggregate concrete 
Lovato et al. [244]  149    2.5 Recycled aggregate concrete 
Kheder and Al- 
Windawi [243]  

139    0.77 Natural and recycled 
aggregate concrete  

GEP 
[240] 

307    0.51 Recycled aggregate concrete 

Shear strength El-Ghan-dour et al. 
(1999) [258]  

– 0.85  28.86 188.94 FRP reinforced concrete 

El-Ghan-dour et al. 
(2000) [259]  

– 0.9  17.07 151.27 Fiber reinforced polymers 
reinforced concrete flat slabs 

Matthys and 
Taerwe [260]  

17 0.9  24.13 201.58 Concrete slabs reinforced with 
FRP grids 

Ospina et al. [261]  – 0.91  15.48 117.51 Steel and FRP-reinforced slab- 
column  

ANN 
[90] 

82 0.96  12.86 62.29 FRP reinforced concrete slabs 

Shear strength Narayanan and 
Darwish [262]  

49  0.670596 0.211633 0.9691 Steel fiber-reinforced concrete 

Ashour et al. [263]  18  0.773966 0.249592 1.111255 Steel fiber-reinforced concrete 
Kwak et al. [264]  139  0.523656 0.171122 0.716623 Steel fiber-reinforced concrete 
Yakoub [265]  72  1.036913 0.280306 1.673775 Steel fiber-reinforced concrete 
Khuntia et al. [266]  –  1.197633 0.359082 1.89627 Normal and high-strength 

fiber reinforced concrete 
Shahnewaz and 
Alam [266]  

358  0.478787 0.157857 0.705898 Steel fiber-reinforced concrete 

Zhang et al. [267]  139  0.573344 0.211633 0.72441 Steel fiber-reinforced concrete  
SVR-FFA 
[80] 

139  0.175995 0.249592 0.276813 Steel fiber-reinforced concrete 

Shear strength Khuntia et al. [266]  – 0.8972 1.5417  2.1557 Normal and high-strength 
fiber reinforced concrete 

Li et al. [268]  183 0.6169 1.1759  1.9308 Reinforced concrete 
kwak et al. (A) 
[264]  

139 0.903 0.8038  1.6795 Steel fiber-reinforced concrete 

kwak et al. (B) 
[264]  

139 0.889 0.9594  2.2906 Steel fiber-reinforced concrete 

Swamy et al. [269]  – 0.7458 1.5015  2.214 Steel fibre reinforced 
lightweight concrete 

Sharma [270]  – 0.5963 1.2135  2.0841 Steel fiber-reinforced concrete 
Narayanan and 
Darwish [262]  

49 0.7946 1.3638  4 Steel fiber-reinforced concrete 

(continued on next page) 
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minimum has properties similar to the original minimum, and in these areas, the error slope is zero. The algorithm mistakenly thinks 
that it has reached the optimal value). As a result, the network is not properly trained, or if a large learning rate is chosen, the network 
may fluctuate and become unstable and therefore not converged and trained. 

ELM can thus be a suitable alternative to ANN because it can reduce the problem of convergence to local optima and does not 
require stopping criteria and learning rate [277]. Al-Shamiri et al. [147] compared the HSC compressive strength prediction by ELM 
and BP models and reported better ELM model results. However, they cited the number of optimal neurons in the hidden layer ELM 
network as a weakness. So that if the number of neurons in the hidden layer is too large, the ground for overfitting is created; as a result, 
the model has a very good accuracy of training data, but the generalizability of the data is not seen (testing) is incapable. Conversely, 
the model will have an underfitting problem if the number of optimal neurons in the hidden layer is low [278,279]. Because it is based 
on the empirical risk minimization (ERM) concept, the typical ELM may tend to yield an overfitting model, even if it is designed to 
deliver strong generalization performance at a fast learning speed [280–282]. To solve this problem, regularization is used in the ELM 
model [283]. Therefore, according to ridge regression theory [284], ELM is more stable and performs better generalizability [280, 
283]. Al-Shamiri et al. [183] studied the performance of ELM and RELM models in predicting the compressive strength of HPC 
concrete. They reported better performance of RELM, an upgraded model of ELM. 

To also solve the aforementioned problems, different ensemble and metaheuristic models can be used as alternative solutions. For 
example, Yuan et al. [204] predicted compressive strength by three algorithms ANN, GA-ANN, and ANFIS. To solve the BP-ANN 
problem, they used GA to optimize the weights and thresholds of BP-ANN to minimize the actual and target outputs and get the 
desired results. In another study, Erdal et al. [184] compared the predictive performance of ensemble models (including BANN, 
GBANN) and wavelet-ensemble models (including WBANN, WGBANN). Finally, they compared both groups with the standard ANN. 
This study showed that ensemble models show better results in predicting compressive strength and perform better than conventional 
ANN. Using a Discrete Wavelet Transform (DWT), they reported a significant increase in the accuracy of the ANN ensembles. The 
problem with ensemble models, however, can be attributed to the complexity of the model and, ultimately, the increase in compu
tational time. Therefore, ANFIS models that use the combination of FL reasoning and ANN learning potential can provide another 
alternative. 

Selecting membership functions and basic rules is one of the most difficult parts of creating fuzzy systems. On the other hand, 
implementing fuzzy logic in common hardware requires multiple time-consuming experiments. Unfortunately, the efficiency of fuzzy 
logic in pattern recognition is less than that of a neural network in machine learning. For this reason, it is less discussed in Data Science. 
In this regard, some researchers have used the combination of FL with artificial intelligence optimization techniques, such as ant 

Table 6 (continued ) 

Output Model Dataset size R2 MAE MAPE RMSE Type of concrete 

Based on statistics Based on 
ML/DL 

Ashour et al. (A) 
[263]  

18 0.75 1.2465  2.5579 Steel fiber-reinforced concrete 

Ashour et al. (B) 
[263]  

18 0.8154 0.944  1.5691 Steel fiber-reinforced concrete  

MEP 
[233] 

208 0.9063 0.5198  0.7333 Steel fiber-reinforced concrete 

Shear strength Narayanan and 
Darwish [262]  

49  0.64  0.942 Steel fiber-reinforced concrete 

Ashour et al. [263]  18  0.737  1.079 Steel fiber-reinforced concrete 
Kwak et al. [264]  139  0.508  0.699 Steel fiber-reinforced concrete 
Yakoub [265]  72  1.033  1.693 Steel fiber-reinforced concrete 
Shama [270]  –  0.803  1.416 Steel fiber-reinforced concrete 
Khuntia et al. [266]  –  1.184  1.901 Normal and high-strength 

fiber reinforced concrete 
Shahnewaz and 
Alam [271]  

358  0.461  0.688 Steel fiber-reinforced concrete 

Zhang et al. [267]  139  0.55  0.706 Steel fiber-reinforced concrete  
RSM +
SVR [88] 

139  0.186  0.233 Steel fiber-reinforced concrete  

RSM 
[88] 

139  0.347  0.444 Steel fiber-reinforced concrete  

SVR [88] 139  0.622  1.04 Steel fiber-reinforced concrete  
ANN 
[88] 

139  0.322  0.461 Steel fiber-reinforced concrete  
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Fig. 19. Comparison of target resistance prediction by ML/DL models with statistical models: a) Shear strength (ANN), b) Shear strength (MEP), c) Shear strength (SVR-FFA), d) Shear strength (ANN), e) Tensile strength (ANN), 
f) Flexural strength (ANN), g) Elastic modulus (ANN), h) Compressive strength (ANN). 
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colony and GA, to overcome the problems of fuzzy logic [285,286]. Therefore, optimization techniques have shown their ability to 
minimize time-consuming operations and the level of human intervention to optimize MFs and fuzzy rules. Dao et al. [168] predicted 
the compressive strength of geopolymer concrete by ANFIS and ANN models and reported better ANFIS performance according to the 
obtained statistical parameters. In a separate study, Dao et al. [228], In their study of two hybrid models (PSOANFIS and GAANFIS), 
concluded that PSOANFIS performed better. ANFIS, however, may suffer from network architecture design, fuzzy rule selection, 
weight and bias optimization, and the number of training samples that greatly affect model performance. 

SVM has acceptable generalization and nonlinear mapping potential [89,96], but one of the weaknesses of the backup vector 
machine is its time-consuming approach to selecting the appropriate kernel function according to the test process. Omran et al. [93] 
also reported that although the advanced SMOreg data mining model has higher accuracy in forecasting than the other models in this 
study, the time required for building and training is significantly longer than the other models (M5P, REPTree, and M5-Rules). 
Therefore, this issue can be considered an important factor in choosing the right data mining model, especially when dealing with 
a large data set. Because ANN and SVM do not demonstrate the knowledge learned during training in a way that is comprehensible to 
humans, they are referred to as black-box models [127,287,288]. These models cannot provide an explicit formula for describing input 
and output variables, but EA or DT can be used to solve such a problem. Hence, EA and DT can describe the relationships between 
inputs and outputs by providing a clear mathematical formula. In addition, a review of studies in this area shows that ANN and SVM 
models (as combined and separate models) are more accurate than EA and DT [25,96,170]. On the other hand, the weaknesses of the 
DT models can be overcome by using alternative models such as MART, RF, and WSVM. Chou et al. [74] reported better performance of 
MART than other models (ANN, MR, SVM, BRT) in predicting compressive strength. They also noted that the ANN does not perform 
well in the training sector, as it requires 100 times more time in the training phase than other models. Ling and Wang [289] proposed 
WSVM as a modified model of SVM that can weigh all training data to allow different input points to participate in the learning 
decision surface. WSVM acts as a supervised learning tool to manage fuzzy input-output mapping and focus on time series data 
characteristics. In addition, the size of the data set used to develop the models varies from study to study. Studies that have considered 
fewer data samples may record accurate results. However, this model can show more errors when dealing with new data than those 
exposed to data from wider databases. 

Fig. 20. Schematic representation of data size from different ML/DL models in predicting compressive strength.  
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4. Conclusions and recommendations

The present study investigated the performance of different ML/DL models to predict the mechanical properties of concrete. Among
the wide range of ML/DL models, support vector machines, decision trees, evolutionary algorithms, and artificial neural networks were 
examined due to the popularity of these models as well as their frequent use in the field of civil engineering. Therefore, the perfor
mance of these models in various studies to evaluate the compressive strength, tensile strength, shear strength, flexural strength, and 
elastic modulus was evaluated. A comparison of experimental models with ML/DL methods shows that ML/DL models with better 
updating capability and the ability to analyze large datasets perform better. On the other hand, statistical models are not good for 
predicting complex structures due to their high cost and time-consuming nature. According to ML/DL methods, selecting the 
appropriate model for predicting the target strength of concrete should be made by considering different criteria. A review of various 
studies shows that the relationship between concrete components and mechanical strength is influential in choosing the forecasting 
model. Therefore, models that can respond in nonlinear space should be used if the relationship is nonlinear. In these cases, SVM and 
ANN models can be used for their acceptable performance in a non-linear environment with fewer errors. To achieve more accurate 
results, optimization of these models with metaheuristic algorithms can also be used. But if we need the transparency of the model and 
the explicit mathematical formula between input and output, we can use decision tree models and evolutionary algorithms. On the 
other hand, the use of ensemble models to optimize these models, although it results in higher accuracy, increases computation time 
and model complexity. The combined SVM and ANN models, although they increase the computation time, have accurate results in the 

Table 7 
RMSE value from different ML/DL models in predicting compressive strength.  

Ref. Models RMSE Dataset size Ref. Models RMSE Dataset size 

Chou et al. [273] ANN 5.0303 1030 compressive 
strength 

Omran et al. [93] M5P 3.8386 144 compressive 
strength SVM 5.6192 REPTree 4.9233 

MART 4.9489 M5-Rules 4.0111 
BRT 5.5720 SMOreg 3.4967 

Pham et al. [274] ANN 6.74 239 compressive 
strength 

Prem et al. [82] RVM 3.29 120 compressive 
strength SVM 6.07 KRR – SVM 1.02 

FA-LSVR 4.86 GPR- SVM 0.96 
Chithra et al. [132] ANN1 2.1412 270 compressive 

strength 
Yuan et al. [275] ANN 3.21 180 compressive 

strength ANN2 1.2315 GA-ANN 2.22 
ANN3 1.0361 ANFIS 1.46 

Gholampour et al. [87] M5Tree 8.3 650 compressive 
strength 

Deepa et al. [121] BPNN 9.9054 300 compressive 
strength LSSVR 7.7 M5P-tree 7.1874 

Al-Shamiri et al. [147] ELM 0.7998 324 compressive 
strength 

Cheng et al. [83] SVM 10.401 1030 compressive 
strength BP 0.9498 BPN 6.902 

Chou and Pham [276] ANN 6.329 1655 compressive 
strength 

Dao et al. [228] PSOANFIS 2.251 210 compressive 
strength SVM 6.911 GAANFIS 2.531 

Dao et al. [168] ANFIS 2.265 210 compressive 
strength 

Al-Shamiri et al. [183] RELM 0.0771 1133 compressive 
strength BPNN 2.423 ELM 0.1401 

Erdal et al. [184] ANN 5.57 1030 compressive 
strength 

Nazari and Sanjayan [81] ICOA–SVM 3.8032 1347 compressive 
strength 

BANN 4.87 Chou et al. [45] SVM 5.59 1675 compressive 
strength 

GBANN 5.24 Behnood and Golafshani 
[119] 

M5P-tree 4.715 470 compressive 
strength 

WBANN 4.54 Behnood et al. [122] M5P-tree 6.178 1912 compressive 
strength 

WGBANN 5.75 Han et al. [124] RF 4.5444 1030 compressive 
strength 

Iqbal et al. [219] GEP 9 234 compressive 
strength 

Zhang et al. [125] RF 3.9021 131 compressive 
strength 

Javed et al. [235] GEP 4.57 159 compressive 
strength 

Shahmansouri et al. [226] GEP 4.238 54 compressive 
strength 

Awoyera et al. [227] GEP 3.33 105 compressive 
strength 

Duan et al. [173] BPNN 3.6804 168 compressive 
strength 

Topcu and Sarıdemir 
[157] 

BPNN 2.3948 210 compressive 
strength 

Gupta et al. [176] BPNN 0.03585 
0.02865 

324 compressive 
strength  
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face of extensive data. Therefore, based on the study, the best option for predicting the strength of concrete in terms of model accuracy 
and model implementation is the combined use of SVM and ANN combined models. 

In terms of concrete science, limited studies have been conducted in the field of identifying the capabilities of geopolymer concrete, 
engineered cementitious composite, self-healing concrete, nano-containing concrete, and self-compacting concrete, which researchers 
can examine in future studies. 
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Nomenclature  

AAD Average Absolute Deviation 
AAE Average Absolute Error 
ABCP Artificial Bee Colony Programming 
ABS Absolute error 
a/c Aggregate-to-cement ratio 
ACI, EC2, CSA, NR, NZS Building codes 
AI Artificial Intelligence 
ß A correction factor 
BANN Bagged Artificial Neural Networks 
BAS Beetle Antennae Search 
BBP Biogeography-Based Programming 
BPNN Back-Propagation Neural Network 

Fig. 21. Schematic representation of RMSE results from different ML/DL models in predicting compressive strength.  
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COA Cuckoo Optimization Algorithm 
COV coefficient of variation 
DL Deep Learning 
E Adjusted coefficient of efficiency 
EA Evolutionary Algorithms 
EFSIMT Evolutionary Fuzzy Support Vector Machine Inference Model for Time Series Data 
ELM Extreme Learning Machine 
FFA Firefly Algorithm 
FL Fuzzy Logic 
GA Genetic Algorithm 
GAANFIS A genetic algorithm (GA)-based adaptive network-based fuzzy inference system (GAANFIS) 
GBANN Gradient Boosted Artificial Neural Networks 
GP Genetic Programming 
GWO Grey Wolf Optimizer 
HANNMOGW Hybrid Artificial Neural Network with Multi-Objective Grey Wolves 
L1QP L1 soft-margin minimization by quadratic programming 
LGP Linear Genetic Programming 
LSSVM Least Squares support Vector Machines 
m The number of instances that do not have missing values for this attribute 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MART Multiple Additive Regression Trees 
ME Mean Error 
MEP Multi-Expression Programming 
MFA Modified Firefly Algorithm 
ML Machine Learning 
MOGWO Multi-Objective Grey Wolves Optimization 
MRE Mean Relative Error 
MSE Mean Square Error 
NSE Nash–Sutcliffe efficiency 
P Pearson coefficient of correlation 
PSO Particle Swarm Optimization 
PSOANFIS A particle swarm optimization (PSO)-based adaptive network-based fuzzy inference system (PSOANFIS) 
ρRCA Bulk density of recycled concrete aggregate 
R Coefficient of correlation 
R2 Coefficient of determination 
RAE Relative Absolute Error 
RAC Recycled Aggregate Concrete 
RBFNN Radial Basis Function Neural Network 
RCA% Coarse recycled concrete aggregate replacement ratio 
RE Relative Error 
RELM Regularized Extreme Learning Machine 
RF Random Forest 
RMSE Root Mean Square Error 
RMSRE Root-Mean-Square Relative Error 
RRMSE Relative RMSE 
RRSE Root Relative Squared Error 
RSE Relative Squared Error 
RVM Relevance Vector Machine 
SDR Standard Deviation Reduction 
SI Scatter Index 
SRL Slope of Regression Line 
SSE Sum of Squared Errors 
std.ABS The standard error of the mean value of the ABS 
std.MSE The standard error of the mean value of the MSE 
SVM Support Vector Machine 
SVR Support Vector Regression 
T The series of instances that reach the node 
TL & TR Sets that arise from the division on this attribute 
WARCA Water absorption of coarse recycled concrete aggregate 
weff/c Effective water-to-cement ratio 
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