
Computer Communications 198 (2023) 157–174

D

w
d
F
i

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Host load prediction in cloud computing with Discrete Wavelet
Transformation (DWT) and Bidirectional Gated Recurrent Unit (BiGRU)
network
Javad Dogani, Farshad Khunjush ∗, Mehdi Seydali

epartment of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

A R T I C L E I N F O

Keywords:
Cloud computing
Host load prediction
Deep learning
Discrete Wavelet Transformation (DWT)
Bidirectional Gated-Recurrent Unit (BiGRU)

A B S T R A C T

Providing pay-as-you-go storage and computing services have contributed to the widespread adoption of cloud
computing. Using virtualization technology, cloud service providers can execute several instances on a single
physical server, maximizing resource utilization. A challenging issue in cloud data centers is that available
resources are rarely fully utilized. The server utilization rate is poor and often below 30%. An accurate host
workload prediction enhances resource allocation resulting in more efficient resource utilization. Recently,
numerous methods based on deep learning for predicting cloud computing workload have been developed.
An efficient strategy must predict long-term dependencies on nonstationary host workload data and be quick
enough to respond to incoming requests. This study employs a Bidirectional Gated-Recurrent Unit (BiGRU),
Discrete Wavelet Transformation (DWT), and an attention mechanism to improve the host load prediction
accuracy. DWT is used to decompose input data into sub-bands with different frequencies and to extract
patterns from nonlinear and nonstationary data in order to improve prediction accuracy. The extracted features
are fed into BiGRu to predict future workload. The attention mechanism is used in order to extract the
temporal correlation features. This hybrid model was evaluated with cluster data sets from Google and Alibaba.
Experimental results reveal that our method improves prediction accuracy by 3% to 56% compared to a variety
of state-of-the-art methods.
1. Introduction

Cloud computing indicates the on-demand accessibility of computer
system resources, particularly data storage and computing resources,
enabling the users to manage without direct intervention [1,2]. Or-
ganizations can rent cloud computing services as an alternative to
investing in their own computing infrastructure or data centers. [3].
The various pay-as-you-go cloud services not only enable clients to
purchase resources on-demand [4] but also enables the provision of
an infinite amount of resource capacity (e.g., CPU, memory, network,
and disk) at a reasonable price without investing in infrastructure or
incurring additional expenditures for maintenance [5–7]. The average
capacity utilization rate for regular deployments is less than 40%,
although businesses require a relatively large number of servers and
other resources to ensure the quality of service (QoS) during peak
periods [8,9]. Fig. 1 depicts boxplots of CPU consumption over two

orking days for 50 Google cluster machines. Each record of this
ata represents the cumulative consumption in 5 min. As seen in
ig. 1, however, the average CPU utilization rarely exceeds 50%, and
n most cases, it is less than 30%.

∗ Correspondence to: Department of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Mollasadara
St., 71348-51154, Shiraz, Iran.

E-mail addresses: j.dogani@shirazu.ac.ir (J. Dogani), khunjush@shirazu.ac.ir (F. Khunjush), m.seydali@cse.shirazu.ac.ir (M. Seydali).

Virtualization technology enables cloud service providers to op-
erate numerous virtual machine (VM) instances on a single physical
server, resulting in resource utilization and increased return on in-
vestment [10]. The amount of resources required to service cloud
applications is rarely constant and varies according to the volume of
incoming requests. Predicting the number of required resources via
analyzing the workload time series of each host prior to the arrival
of requests enables more efficient scheduling and optimization of vir-
tual machine migration. The provisioning of resources based on an
accurate prediction prevents service level agreement (SLA) violations
and enhances the QoS. In addition, resource provisioning and VM
orchestration based on customer demand prediction results in optimal
resource utilization, data center energy consumption reduction, and
increased user satisfaction [11–16]. In addition, host workload predic-
tion is essential to meet future user demands, improving the efficiency
of cloud computing systems. Workload prediction plays a significant
role in cloud resource provisioning because it lays the foundation for
minimizing underutilization and resource waste, load balancing, en-
ergy consumption reduction, and preventing Service Level Agreement
ttps://doi.org/10.1016/j.comcom.2022.11.018
eceived 31 July 2022; Received in revised form 9 November 2022; Accepted 26 N
vailable online 30 November 2022
140-3664/© 2022 Elsevier B.V. All rights reserved.
ovember 2022

e-tarjome.com

https://doi.org/10.1016/j.comcom.2022.11.018
https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.11.018&domain=pdf
mailto:j.dogani@shirazu.ac.ir
mailto:khunjush@shirazu.ac.ir
mailto:m.seydali@cse.shirazu.ac.ir
https://doi.org/10.1016/j.comcom.2022.11.018
http://e-tarjome.com

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

(
p
p
t
e
i
p

{
𝑥
m
s
a
t
s
a
m
w
t
a
u
d

p
w
d
b
c
e
b
t
m
u
d
d
a
s
b
e
m
i
r
t
o
p

i
e
t
e

Fig. 1. The CPU usage for two full working days for the five machines from the Google cluster that have performed the most tasks.
c
d
p
a
f
o
f
s
b
a
t
p
u
d
e
t
l
p
t
t
f
L
3
a
c

(
i
i
m
t
o
d
d
b
a

d
a
m
e
m
a
c
d

c
t
w

SLA) violations [3,17,18]. Today, data centers make extensive use of
rediction models. As an example, PredictKube [19] is an open-source
rogram created by Disney that uses artificial intelligence technologies
o estimate workloads and then scale resources accordingly. Another
xample is Moneyball [20], which focuses on reducing this delay
n resource availability by predicting the pause/resume patterns and
roactively resuming resources for each Microsoft Azure SQL database.

Host workload traces in cloud data centers is represented as 𝑆 =
𝑥1, 𝑥2,…}, which contains an infinite sequence of elements 𝑥𝑡, where
𝑡 is a d-dimensional vector indicating the usage rate of a particular
achine resource at time t. A time series is called stationary if its

tatistical features are constant over time. Stationary is widely known
s a fixed correlation structure over time and periodic fluctuations. If
hese conditions do not exist in time-series data, time series show non-
tationary characteristics, which is a significant challenge for prediction
pplications. The real-time CPU usage traces for the Google cluster
achines in Fig. 1 demonstrate that host load data is nonstationary,
ith each machine exhibiting extremely rapid CPU utilization fluctua-

ions as well as a time-dependent mean. The non-stationarity of cloud
pplication workloads leads to fluctuating resource requirements and
npredictable overall demands generated by virtual machines (VMs)
eployed on servers, impeding optimal resource allocation.

Workload prediction can be considered a time series prediction
roblem, where each workload at a specific time interval is related to
orkloads at the previous intervals [21]. Although statistic-based pre-
iction methods achieve acceptable accuracy for predicting sequence-
ased problems, these methods assume the stationary nature of the
ollected data, which may contradict the dynamic nature of cloud
nvironments. Recently, machine-learning prediction methods have
een used for workload prediction, where their accuracy outperformed
he statistic-based methods [22]. Unfortunately, those learning-based
ethods have considered workloads an independent collection of val-
es. In order to predict nonstationary data accurately, the nonstationary
ata must first be decomposed into multiple stationary data. So, several
ecomposition methods have been developed to analyze nonstation-
ry time series [23]. Among signal analysis techniques, experimental
tate analysis (EMD) and discrete wavelet transformation (DWT) have
een widely used because of their effectiveness in processing nonlin-
ar and nonstationary time series compared to other decomposition
ethods [24]. The primary benefit of DWT over other methods is

ts ability to decompose a signal into its frequency components di-
ectly and represent data in frequency domain distribution mode over
ime [25,26]. Before applying the prediction model, DWT is used to
btain higher prediction accuracy via extracting information about the
ast and future host workloads.

Large-scale workloads prediction models should be capable of mak-
ng accurate and usable predictions. These models should be able to
xtract long-term dependencies in host load traces, deal with mul-
idimensional data, have reasonable computational complexity, and

xtract patterns from nonlinear and nonstationary data. Unfortunately, b

158
onventional approaches for cloud computing host load prediction
o not extract patterns from nonlinear and nonstationary data. The
rediction might be conducted for other metrics such as memory, disk,
nd network. Our study, along with most prediction algorithms, has
ocused on CPU utilization since it is regarded as the principal cause
f the QoS drop. Because the CPU serves as the most dynamic and
luctuating resource, it is one of the prominent sources of resource
carcity on clouds [27]. This study aims to improve resource utilization
y predicting the CPU usage of cloud hosts using a deep learning
pproach. A recurrent neural network (RNN) is a deep neural network
hat uses historical data to predict future values [28]. One of the most
opular RNN models is the Long Short-Term Memory Model (LSTM),
sed in previous studies [29,30] to predict host load in cloud computing
ata centers. Although LSTM-based methods can accurately model lin-
ar and nonlinear dependencies, they involve many computations that
ake a long time. The significant computational complexity of LSTM
imits its deployment in resource allocation applications that need quick
rovisioning [31]. Previous research on LSTM-based predictions has not
aken model training time into account. In order to address this issue,
he Gated-Recurrent Unit (GRU), is used in this study, which is a simpli-
ied version of the LSTM network. GRU structure is more concise than
STM, avoiding the problem of long updating time in the LSTM [32–
4]. Since requests arrive quickly in real cloud environments, we need
lgorithms that can make the prediction quickly, so GRU is a better
hoice than other deep learning methods.

This article uses an extension of the GRU, the bidirectional GRU
BiGRU) model, to introduce host load prediction. The GRU calculates
nput only in the forward direction, whereas the BiGRU processes
nformation in both the forward and backward directions [35]. This
ethod combines a forward and a backward unit and provides addi-

ional gains over the one-directional GRU by enabling the extraction
f dependencies between previous and future steps. In addition, We
evelop an attention mechanism for the BiGRU module. Due to the
ifferent effects of previous steps on the future host load, the attention-
ased layer can automatically exploit the various importance levels
ssociated with a workload sequence at various points in time.

The proposed technique is divided into three stages. First, DWT [25]
ecomposes nonlinear and nonstationary host load traces into low
nd high-frequency sub-bands [26]. As a result, one approximate and
ultiple detailed signals are obtained to reduce the interaction within

ach signal. Second, each sub-band data is trained by the deep learning
odel, and the test values of each signal are predicted. Finally, an

ttention mechanism for the BiGRU module is deployed to automati-
ally exploit different levels of dependencies in a workload sequence at
ifferent moments.

Fig. 2 shows the workload prediction structure of machines in cloud
omputing data centers. The user submits his resource usage request
o the data center, and the prediction module predicts the future
orkload. The resource manager determines how to allocate resources

ased on the future workload prediction. Given the significance of

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Fig. 2. Structure of host load prediction model in cloud data centers.
prediction accuracy for data center performance, this study focuses
solely on predicting CPU usage in data centers and ignores scheduling
and resource provisioning issues. The contribution of this article will
be summarized as follows:

(1) A combination of DWT, BiGRU, and the attention mechanism is
proposed to predict host workload data by learning linear and nonlinear
dependencies. To the best of our knowledge, this is the first study to
combine the DWT, the BiGRU model, and the attention mechanism to
predict the host load in cloud computing.

(2) DWT is applied to extract patterns from nonlinear and nonsta-
tionary data so that BiGRU may successfully learn periodic and random
fluctuations in the host load trace data.

(3) The proposed method aims to distinguish itself from existing
deep learning algorithms that ignore the nonstationary features of cloud
host load traces and the correlations between different sequences of
host load trace data.

(4) The hybrid model is evaluated with real Google and Alibaba
Cluster datasets. The experimental results indicate that the hybrid
model has a lower prediction error.

2. Related work

In the past decade, machine learning techniques for predicting
and transforming time series have attracted attention in scientific and
industrial circles. These methods yield valuable observations regarding
the behavior of various time series. One of the most important time
series applications is the host workload in cloud computing data cen-
ters. We categorize the existing host workload prediction approaches
as parametric, nonparametric models and deep learning models. The
existing host workload prediction approaches are parametric, nonpara-
metric, neural network-based, and deep learning models. Parametric
approaches make broad assumptions regarding mapping input variables
to output variables; hence, they are easier to train and require less
data but may not be as effective. Nonparametric techniques involve
few or no assumptions about the target function and, as a result, take
a great deal more data, are slower to learn, and have a greater model
complexity, but can produce more effective models.

The parametric models include learning methods such as the Kalman
filter [36], the Autoregressive Integrated Moving Average (ARIMA)
model [37], and ARIMA variants. The ARIMA-based model was pre-
sented in [38]. It uses ARIMA to predict cloud workload and illustrates
a prediction module for SaaS providers based on real traces of web
server requests. A hybrid method, EEMD-RT-ARIMA, was proposed
in [39], in which a nonstationary host utilization sequence is de-
composed into relatively intrinsic mode function (IMF) components.
Three new parts are reconstructed by selecting appropriate IMF com-
ponents. Finally, the ARIMA method predicts each new component
and superimposes the results to make the final prediction. ARIMA-
based models cannot capture the nonlinear patterns of cloud host load
159
traces, although ARIMA accounts for the nonstationary nature of time
series. Nonetheless, due to their constant variance, these models are
insufficiently accurate for processing the stochastic nature of the host
load, which is an essential characteristic of the host load.

Nonparametric approaches include the popular support vector re-
gression (SVR) method and the neural network (NN)-based methods.
SVR is widely used to solve linear time series problems [40,41]. The
SVR does not depend on the size of the input vector space and may map
the input vectors nonlinearly into a high-dimension feature space to
create a linear decision level, enabling it to apply in high-dimensional
space. A multi-step-ahead method was proposed in [42] based on SVR
for CPU load prediction. The prediction error is reduced by Kalman
smoothing technology. A multi-step-ahead host load prediction method
called KSwSVR was proposed in [43]. KSwSVR is based on statistical
learning theory and integrates an improved SVR algorithm and Kalman
smoother. It can reduce resource consumption rates and meet SLA.
A combination of three-level wavelet transform (WT) and SVR was
proposed [44] to address both dynamic resource allocation and auto-
scaling. First, it applies WT and decomposes the load traces into some
signals using different frequency scales. Second, it uses SVR to predict
each component. Finally, a novel chaotic particle swarm optimization
(PSO) algorithm is used for tuning SVR parameters. In [45], a weighted
wavelet support vector machine (WWSVM) method was proposed that
combines the WT and SVR in order to combine their advantages. The
importance of multiple sample points is considered by weighting the
data, hence reducing prediction error. The study in [46] proposes a
PSO-based algorithm to find the optimal parameters for SVR training.
SVR is trained using historical resource utilization data and a hybrid
kernel function that combines the radial basis function (RBF) and the
polynomial kernel function. Nonparametric methods such as SVR are
not able to use nonlinear features to predict host load traces. The SVR
uses the mapping of large amounts of traffic flow data into a high-
dimensional space, and the inability to extract temporal and periodic
features leads to poor predictive performance.

Artificial neural networks (ANNs) have performed well in clas-
sification and prediction issues in cloud computing [47]. A method
named RVLBPNN (Rand Variable Learning Rate Backpropagation Neu-
ral Network) was proposed in [48]. Further, a load prediction model
is proposed to reduce cloud computing energy consumption based
on the Backpropagation Neural Network (BPNN) algorithm. A hybrid
wavelet neural network method was proposed in [49], which models
changes in load traces. It uses two heuristic algorithms, the Artificial
Immune System and the Water Cycle Algorithm, to enhance the training
process and tune optimized wavelet neural network parameters. The
ANN models have the drawback of the possibility of getting trapped in
a local minimum, and the choice of model architecture is a challenging
problem.

Early research on neural networks often used shallow or single-layer
networks, which failed to represent the uncertainty and nonlinearity

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

l
M
i
p
r
t
p
S
t
d
f
a
r
t
w
d

3

w
t

of host load traces. In recent years, deep learning methods have been
used in various time-series prediction methods. Deep learning methods
can extract inherent spatial and temporal features from data and do
not need data preprocessing. Sibyl is a deep learning-based method
for one-step-ahead prediction proposed in [50]. Sibyl has two modules.
The first module selects metrics by filtering out irrelevant metrics, and
the other trains a neural network. A powerful neural network model
was applied, built with bidirectional LSTM to predict actual load. A
method based on LSTM Encoder–Decoder (LSTM-ED) was proposed
in [51]. It constructs an internal representation of host load trace data
in order to use less memory than standard LSTM and make multi-step-
ahead predictions over intervals and actual load. A novel method was
proposed based on a combination of GRU and LSTM, named LSRU [52].
LSRU results are better than LSTM and GRU separately. LSRU is a short-
term and long-term prediction, and it can face some sudden bursts
of workload. The study [30] incorporates both bi-directional and grid
LSTM (BG-LSTM). The results show that an integrated model combining
multiple entirely different deep learning models can reduce the error of
predictions result. In [53], an actual load multi-step-ahead prediction
method was proposed to apply LSTM to predict the mean workload
over future time intervals. Bidirectional LSTM (BiLSTM) was used for
host load prediction in [17]. This method used the memory capability
of LSTM and the modeling ability of LSTM Encoder–Decoder (LSTM-
ED). In [54], the host load prediction issue was addressed by proposing
a hybrid algorithm using the empirical mode decomposition (EMD)
method. EMD extracts some components in different frequency bands
from original cloud load traces. Also, a new ensemble architecture
combining GAN and LSTM is deployed to predict each sub-band indi-
vidually. Although LSTM is suitable for processing and predicting time
series data among deep learning methods, the complex structure of the
LSTM network prolongs training time. In previous studies that used
LSTM, the training time of the model was not considered, making it
impossible to use these studies in real applications.

In [55], a novel host load prediction method was proposed. An
autoencoder was employed as the pre-recurrent feature layer. This
method predicts the future host load based on the Google cluster usage
dataset. In [56], a GRU-based Encoder–Decoder network (GRUED) was
applied to achieve accurate prediction. This network contains two gated
GRU and two data sets, including Google resources usage and the Unix
system load traces used to evaluate the proposed method. To provide
more accurate prediction results, the study in [57] presented the DP-
CUPA algorithm, a hybrid model by PSO and deep belief network
(DBN), to predict the CPU usage algorithm. An ensemble CPU model
load prediction was proposed in [58], employing a Bayesian infor-
mation criterion. The cloud resource usage history is evaluated, and
the best constituent model is chosen for each time slot. A couple of
smooth filters are employed to omit the negative impacts of outliers
in the data points. In [30], a logarithmic procedure is used to lower
the standard deviation before smoothing resource workload traces. The
approach then uses a strong filter to reduce noise interference and
extreme points. In addition, a Min-Max scaler is used to normalize the
data. A deep learning integrated technique for time series prediction
is developed. It integrates network models such as BiLSTM and grid
LSTM networks to accomplish high-quality workload and resource time
series prediction. In [59], an ensemble learning approach is given that
employs extreme learning machines (ELM) and a voting mechanism to
weight the prediction outcomes. It selects the appropriate weights using
a metaheuristic method based on blackhole theory. As base experts, k
multilayer neural networks are used in this method. To determine the
weights of synaptic connections among hidden and output neurons, an
ELM solves a general linear system.

The combination of the interactive temporal recurrent convolution
network (ITRCN) and GRU model was applied in [35] to predict
traffic for a single-service host. The convolution neural network (CNN)
captures the correlations between services in a network by learn-
ing network traffic as images, and GRU discovers temporal features.
 m

160
Although GRU-based methods are faster than LSTM-based methods,
using the GRU-based methods directly to learn and predict non-static
machine workload data does not increase forecast accuracy. If the
time series of cloud computing load data is broken down into several
other predictable components with a lower degree of nonstationary,
the prediction accuracy can be significantly increased. We employ a
two-step method that combines DWT and BiGRU. DWT is used to
split the host load traces into several sub-bands. Then, a prediction
model based on BiGRU is developed to predict linear and nonlinear
relationships in the host data load more efficiently than existing deep
learning techniques.

3. Background

This section describes the tools that have been used in this study.
These tools include discrete wavelet transform (DWT), gated recurrent
unit (GRU), Bidirectional GRU (BiGRU), and attention mechanism.

3.1. Discrete wavelet transform (DWT)

DWT is a mathematical method that is appropriate for time scale
analysis in time series [26]. DWT is an effective method for splitting
nonstationary signals into sub-bands of different scales [60]. The DWT
is a signal processing technique for nonstationary and nonlinear signals.
At each time–frequency scale, the output of wavelets might resemble
the primary signal. The output of the wavelets captures the character-
istics of the original signal and is used to identify the trend of sequence
changes in the analysis of nonstationary time series, such as workload
traces data in cloud data centers. The DWT decomposes the original
host load traces into a series with various frequencies. The decomposi-
tion process is done by Mallat’s algorithm [61], which uses high-pass
and low-pass filters and can efficiently decompose nonstationary host
load traces into multiple sequences of different frequencies. As a result,
both the low-pass and high-pass filter outputs contain sub-bands. These
sub-bands are called approximate coefficients and detail coefficients
that are defined by dA and dD in Eqs. (1) and (2) [26]:

𝑑𝐴 =
+∞
∑

𝑘=−∞
𝑋 [𝑘]𝜑𝑙 [2𝑛 − 𝑘] , (1)

𝑑𝐷 =
+∞
∑

𝑘=−∞
𝑋 [𝑘]𝜑ℎ [2𝑛 − 𝑘] , (2)

X represents the original host load traces signal, 𝜑 is the filter, and
represents the low-pass, and h represents the high-pass filter. The
allat algorithm process for three-level decomposition has been shown

n Fig. 3. The original host load traces X are decomposed through low-
ass and high-pass filters in the first layer. The decomposition process
esults in d1 and 𝑎1 that are detailed and approximate sub-bands. In
he second layer, the obtained d1 sub-band is passed through two low-
ass and high-pass filters again to obtain two coefficients a2 and d2.
imilarly, in the third layer, the obtained 𝑑2 sub-band is passed through
wo low-pass and high-pass filters to obtain two coefficients, a3 and
3. After the decomposition process, some components with different
requencies can be obtained. After decomposition, the obtained parts
re of different lengths. To have sequences of the same size, the data is
econstructed using approximate and detailed coefficients by applying
he inverse discrete wavelet transform (IDWT). IDWT obtains sequences
ith the same length as the original host load sequence but with
ifferent frequencies.

.2. GRU model

RNN is a type of neural network that uses previous outputs as inputs
hen a hidden state is available. These models use cyclic connections in

heir hidden layers to reduce memory requirements and extract infor-
ation from time series and sequence data. RNN networks can record

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

t
R
s
o
a
c
t
f
l
h
i
R
d

a
t
r
e
o
g
o
t
g
t
i
F

c
t
t

a
w
t
d

Fig. 3. A schematic diagram of DWT.

Fig. 4. GRU gate structure.

he information they currently see by employing memory variables.
NN is only able to store information that has been extracted a few
teps prior. Since the output of each layer depends on the calculations
f the previous layers, RNNs are known as recursive networks. RNNs
re stacks of temporary copies of general neural networks, and each
opy communicates information to each other. The RNN suffers from
he well-known gradient vanishing problem, which prevents the model
rom learning the long-term dependencies, making it challenging to
earn long-term dependencies. LSTM overcomes this problem by storing
elpful information in the memory unit and removing unnecessary
nformation. The primary proceeding is to replace the middle layer of
NN with an LSTM block. LSTM is well-known for learning long-term
ependencies, which RNNs are not able to learn [62].

The GRU model as a simplified version of the LSTM, aims to provide
simpler and faster version of the recurrent network by combining

he input and forget gates into one update gate. It includes only two
eset gates and an update gate [63,64]. The update gate controls the
ffect of the output of the previously hidden layer at the previous time
n the current hidden layer. The more significant value for the update
ate leads to a more significant impact of the previously hidden layer’s
utput on the current hidden layer. The reset gate mainly controls
he combination of previous and current input information. The reset
ate determines the neglection of the hidden layer information at
he previous time, and the smaller value for the reset gate leads to
gnorance of more details. The structure of the GRU gate is shown in
ig. 4.

Calculating the update gate 𝑧𝑡 for time step t is the initial step. When
𝑥𝑡 is inserted into the network unit, its weight 𝑊𝑧 is multiplied by it.
The same is done for ℎ , which stores data for the past 𝑡 − 1 units
𝑡−1

161
and is multiplied by its own weight 𝑈𝑧. Both results are summed, and
an activation function is employed to squash the result between 0 and
1 (Eq. (3)). The update gate aids the model in deciding how much
historical data from earlier time steps must be transmitted to the future.
This is incredibly effective since the model can decide to duplicate all
historical data and remove the possibility of the vanishing gradient
problem. The model uses the reset gate r t to determine how much
previous information to forget. ℎ𝑡−1 and 𝑥𝑡 is multiplied with their
orresponding weights, sum the results and apply the activation func-
ion (Eq. (4)). ℎ̃𝑡 is introduced as a new memory content that utilizes
he reset gate to store historical information. Initially, 𝑥𝑡 is multiplied

by the weight 𝑊 and ℎ𝑡−1 is multiplied by the weight 𝑈 . Then, the
element-wise product of the reset gate 𝑟𝑡 and 𝑈ℎ𝑡−1 is calculate. It will
determine which time steps should be removed. The results of each step
are then added together, and the nonlinear activation function 𝑡𝑎𝑛ℎ is
pplied (Eq. (5)). As the final step, the network calculates the ℎ𝑡 vector,
hich contains information about the current unit and transmits it to

he network. In order to accomplish this, the update gate is required. It
ecides what to collect from the current memory content ℎ̃𝑡 and what

to acquire from the previous stages ℎ𝑡−1 based on 𝑧𝑡 (Eq. (6)). The
calculations of the 𝑧𝑡, 𝑟𝑡, ℎ̃𝑡, and ℎ𝑡 are shown in Eqs. (3) to (6).

𝑧𝑡 = 𝜎
(

𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1
)

(3)

𝑟𝑡 = 𝜎
(

𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1
)

(4)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ
(

𝑊 𝑥𝑡 + 𝑟𝑡 ⊗𝑈ℎ𝑡−1
)

(5)

ℎ𝑡 =
(

1 − 𝑧𝑡
)

⊗ ℎ𝑡−1 + 𝑧𝑡 ⊗ ℎ̃𝑡 (6)

3.3. BiGRU model

In a time series, both past and future records could have an ef-
fect on the current record [65]. The fundamental unit of BiGRU is
constructed of two GRU units: one for forwarding propagation and
one for backward propagation. BiGRU employs GRU units and sepa-
rates conventional GRU neurons into forward and backward states for
learning future data (positive time direction) and past data (negative
time direction) [63]. As a result, BiGRU may learn from both previous
and future data points and gain a better knowledge of current data
points during the training phase, resulting in a lower error and higher
accuracy during the prediction phase. Two hidden layers are connected
in the opposite direction and share the same output layer. The output
layer receives information about previous and future states. The general
structure of BiGRU is represented in Fig. 5.

BiGRU has comprised of two primary components: (1) a forward
computational component that updates the hidden status based on
historical host load data, and (2) a backward computational component
that updates the hidden status based on future host load data. BiGRU
is used to extract features representing the interaction between input
instances to predict the workload over time. In particular, the BiGRU
network extracts features highly dependent on the input time series
data and employs both forward and backward computational methods.
The extracted features are sent to the fully connected layer in the
subsequent phase. The output layer is then utilized to predict the future
host load.

3.4. BiGRU encoder–decoder by attention mechanism

The BiGRU encoder–decoder architecture is based on a learning
model and now has been applied as the state-of-the-art sequence pre-
diction architecture. Two learning networks, encoder and decoder, read
and generate variant-length sequences. An attention mechanism [66] is
composed of an encoder–decoder structure. The encoder generates an
attention vector from the input and then passes it to the decoder. The
decoder takes the output of the encoder as an input and generates a
hidden state.in our work, The encoder and decoder components are Bi-
GRU. The encoder component predicts multi-step future data based on

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

w
e
l
a
t
l
p
(
I

g
s
o
s
a
c

𝐶

Fig. 5. General structure of BiGRU.
the preceding temporal context and historical data. The responsibility
of the BiGRU encoder is to encode the input data in order to generate
the context vector (CT). A CT is a fixed-length vector that serves as a
temporal representation for the input data. The BiGRU then decodes
the CT and generates a prediction. The following formula is used to
determine the probability of the prediction sequence:

𝑝(𝑤1, 𝑤2,… , 𝑤𝛥|𝑋1, 𝑋2,… , 𝑋𝑇) =
𝛥
∏

𝑡=1
𝑝(𝑓𝑡|𝐶𝑇 , 𝑤1, 𝑤2,… , 𝑤𝑡−1) (7)

here (𝑋1, 𝑋2,… , 𝑋𝑇) are the input features. We employ a classical
ncoder–decoder [60] that can be used to model web application work-
oad traces and perform a multi-step prediction. In the encoder–decoder
rchitecture, the encoder part compresses all the hidden representa-
ions of historical information into a CT vector. The temporal attention
ayer acts as an interface between the encoding and the decoding
hases. BiGRU is used as an encoder that takes a time series 𝑥 =
𝑥1, 𝑥2,… , 𝑥𝑇) as input and maintains the hidden internal state of h.
n each step t, the GRU reads 𝑥𝑡 and updates the hidden mode ℎ𝑡 as

follows:

ℎ𝑡 = 𝐵𝑖𝐺𝑅𝑈
(

𝑥𝑡, ℎ𝑡−1
)

(8)

Then, based on the BiGRU output, the temporal context vector 𝐶𝑖 is
enerated in the 𝑖th decoding step as the total weight of the hidden
tates of the encoder network, which are considered the weighted sum
f the hidden states of the encoder network. These vectors are used to
elect the best encoder hidden representation frames that map decoder
ttention to these frames. The process of calculating the temporal
ontext attention vector 𝐶𝑖 is:

𝑖 =
𝑇
∑

𝑡=1
𝛼𝑖𝑡ℎ𝑡 (9)

The weight 𝛼𝑖𝑡 of each hidden state ℎ𝑡 is calculated as follows:

𝛼𝑖𝑡 =
exp

(

𝜃𝑖𝑡
)

∑𝑇
𝑘=1 exp

(

𝜃𝑖𝑘
)

(10)

𝜃𝑖𝑡 = 𝑎(𝑆𝑖−1, ℎ𝑗) (11)

𝜃𝑖𝑡 denotes the correlation between the output value at position
i and the input value at position t, indicating the scoring function
used to compute the correlation value. In our approach, general global
attention is used as the scoring function, which is determined using
Eq. (12) [66]:

𝜃𝑖𝑡 = 𝑆𝑖−1𝑊𝑀𝑎ℎ𝑡 (12)

Where 𝑊𝑀𝑎 is the weight matrix of the scoring function. 𝑆𝑖−1 and ℎ𝑡
indicate the hidden state of the decoder layer and the hidden state of
the encryption layer, respectively. As shown in the above formulas,
Eq. (11) represents the global general attention calculation between
𝑆 and ℎ . Attention weights are calculated using Eq. (9), which are
𝑖−1 𝑡

162
related to the significance of the time series at time 𝑡 and are used for
predicting the output at time 𝑖. The vector 𝑒𝑖𝑡 has The length of 𝑇 and
is used as the attention mask over the input workload time series. 𝐶𝑖 is
the last state of the attention layer. The softmax function is used for 𝑒𝑖𝑡
vector normalization. The encoder and the decoder are trained together
to maximize the log-likelihood output sequence, which are:

𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

𝐶 = −
𝑛
∑

𝑖=1
log 𝑝

(

𝑤𝑖|𝑋𝑖; 𝜃
)

+ 𝜆‖𝜃2‖ (13)

where 𝑛 denotes the size of the training dataset, 𝜆 determines the
significance of the penalty or the regularity of the loss function, and 𝜃 is
the model parameter, including W and b of each layer. The model uses
the mean square error (MSE) as a loss function of the training process.
The early stop is utilized to terminate the training process when the
validation loss no longer decreases to avoid overfitting.

4. Proposed method

This study describes a hybrid strategy for host workload prediction
in cloud computing using a combination of DW, BiGRU, and attention
mechanisms. Its novel contribution combines the data filtering method
DWT with the attention-based BiGRU network to provide a strategy
for host workload prediction that is both accurate and efficient. This
section discusses the proposed method, DWT-BiGRU-attention. BiGRU
is superior to other learning methods such as BPNN and SVR for
learning nonstationary data and capturing the dynamic and nonlinear
nature of time series data. However, when applied to nonstationary
data such as cloud computing workload data, the prediction accuracy
of BIGRU is low.

Due to the dynamic properties of cloud computing, the input signal
is comprised of some components with different frequencies. These
components are low-frequency and high-frequency components, and
their distributions are different. Each component with different fre-
quencies is independently trained by a BiGRU, which improves the
training model performance. Therefore, an appropriate decomposition
algorithm is required to decompose the host load traces data into
low-frequency and high-frequency signals. DWT algorithms have multi-
scale resolution and time-shifting characteristics and are used to parse
the original input data and use the time scale function for analy-
sis. By splitting the time series of cloud computing load data into
several other predictable components with a reduced degree of non-
stationarity, DWT significantly improves the accuracy of predictions.
The pseudocode of the proposed method is illustrated in Fig. 6. The
DWT method decomposes the host data traces into several predictable
sub-bands. This decomposition effectively separates the high-frequency
part of the primary host load traced signal due to random load changes
and oscillations. It solves irregular fluctuations in the host workload
sequence in data centers. Considering an input train set containing the
host load sequence time series, it has m data points. We use The Mallat

algorithm process for three-level decomposition. The original host load

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Fig. 6. Pseudo Code of the proposed method.
traces X are decomposed through low-pass and high-pass filters. As
shown in Fig. 7, The decomposition process results in three detailed
sub-bands (𝑑1, 𝑑2, and 𝑑3) and one approximate sub-band (a1). Since
the approximate and detailed sub-bands values are different, using it
directly is not suitable for training BiGRU. Therefore, we use the Z-score
normalization method [67] to normalize host load traces.

Fig. 7 illustrates the process of the proposed method. As depicted
in Fig. 7, DWT is utilized to extract patterns from nonlinear and
nonstationary data, after which BiGRU encoder–decoder by Attention
Mechanism can effectively learn periodic and random fluctuations-
related features in the host workload data. The encoder recursively
inputs the cloud workload sequence and updates the cell memory state
vector and hidden state vector at each time step. The encoder sum-
marizes the whole input sequence into the final vectors. The encoder
treats the final cell memory state vector and hidden state vector as the
summarization and output of the input sequence and passes these two
vectors to the decoder as the initial input of the decoder. This strategy
may lead to information loss of input sequence as all information is
summarized to the final cell memory state and hidden state. To resolve
this issue, we employ an attention-based BiGRU encoder–decoder net-
work with the temporal attention mechanism to select parts of hidden
states that are highly related to the target location across all time steps
of the encoder, instead of the final states. Two elements comprise the
prediction model: a BiGRU encoder–decoder network with an attention

mechanism and an output layer. The encoder starts by receiving the

163
workload sequence data and encoding it into a context vector. The
decoder produces intermediate predicted results for the output layer at
each iteration. As the final output of the model, the output layer returns
the workload prediction values. Temporal dependencies are related to
intrinsic time patterns, which means that a value is dependent on its
previous values in a time series. Variations in incoming workload are
influenced by a periodic temporal pattern corresponding to the human
workday. It indicates that the demand for resources at one data point
may be highly comparable to another data point at a different period,
depending on the day of the week, the season, and the time of day.
Bi-GRU is used to learn the hidden representation of input workload
data. BiGRU explores dependencies and extracts temporal features from
resource usage traces.

In a large cloud computing environment, computation-intensive
tasks are usually divided into multiple sub-components known as batch
workloads. In batch workloads, execution of succeeding subparts must
await the completion of preceding subparts. In such a scenario, each
preceding workload step has a distinct effect on the current task. For
example, peak workloads and initial workloads of the latter subparts
may have significant effects, whereas bottom workloads may have
only a minor effect. The historical workload sequence must be in-
cluded when modeling the relationships between the present time step
and its context. Integrated with the temporal attention mechanism,
the BiGRU encoder–decoder model captures typical workload patterns

more effectively. Different subsequences may be related to specific

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

t
a
A
t
o
t
p
t
d

5

5

d
i
d

o
e
d
t
d
s
t
e
u

Fig. 7. The process of our method.
Fig. 8. The boxplot of 5-min host load data for 50 randomly selected devices from the Google Cluster dataset.
I
t

2
t
r
d
5
G
s
a
w
a
h
1
a
b

a
P
f
r
f
T
i
b

imesteps. During each prediction, the temporal attention mechanism
daptively gives greater weight to more strongly related subsequences.
fter training the BiGRU encoder–decoder by attention Mechanism, the

est data set is utilized to predict each sub-band. The predicted values
f a sub-band are denormalized. Each BiGRU’s output is merged to de-
ermine the final prediction. The linear combination and the average of
rediction results are considered for final prediction outcomes. Finally,
he host load prediction results are obtained by comparing the original
ata to the denormalized predicted values.

. Expriments and discussion

.1. Data set

To evaluate the performance of the proposed method, two actual
ata center host load traces were used. The first is the host load traces
n the Google data center [68], and the second is the Alibaba cluster
ataset [69].
Google Cluster Dataset: This is a record of the workloads executing

n eight Google Borg compute clusters in May of 2019. The trace details
very task submission, scheduling decision, and resource utilization
ata for jobs that ran within those clusters. Google Cluster monitored
he resource usage of more than 12,500 physical computers over 29
ays, recording 67,2074 jobs and over 26 million records. These mea-
urements were taken every five minutes. The task_usage table indicates
he number of available resources consumed by each task. Each table
ntry contains twenty fields, such as the average and maximum CPU

sage, the amount of memory allocated for each task, task ID, device a

164
D, unmapped and total page cache usage, maximum input and output
ime, disk usage, etc.

Our model is trained using the data from the first 18 days. 19 to
5 days are used for the verification process. Verification is essen-
ial for selecting appropriate parameters and avoiding overfitting. The
emainder consists of the test suite used to model evaluation. As a
ataset, we randomly chose 50 machines. Fig. 8 shows a boxplot of
-minute host load data for 50 randomly selected machines from the
oogle Cluster dataset. To demonstrate the precision of our method, we

elected four unique computers and manipulated their CPU utilization
nd variances. Four machines, G1, G2, G3, and G4, are selected. G1
ith ID 1438244924 was chosen due to its low average CPU utilization
nd high volatility. G2 with id 4246069792 was chosen due to its
igh average CPU utilization and moderate volatility. G3 with ID
436371693 was selected because of its high average CPU consumption
nd moderate volatility, whereas G4 with ID 451320140 was selected
ecause of its high average CPU consumption and high volatility.
Alibaba Cluster Dataset : The second database is the publicly avail-

ble Alibaba Cluster Log, which is published by the Cluster Trace
rogram of the Alibaba Group. color-6The dataset records the per-
ormance of over 1300 machines over a 12-hour period. These traces
ecord CPU, memory, and disk usage parameters at 5-minute intervals
or all machines. For the purpose of simplicity, we predict CPU usage.
he average CPU utilization of machines within the Alibaba dataset

s approximately 26%, with a standard deviation of 10%. Fig. 9 is a
oxplot of the Cpu utilization of 100 randomly selected machines from

number of 1312 available machines.

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

p
a
C
T
r
f
1
t
f

5

a
t

Fig. 9. The boxplot of 100 machines that were randomly selected from 1312 available machines of the Alibaba dataset.
𝑅

w
w
t
t
(
A
v
v
(
o
t

S

e
p
p
d
t
c
o

5

p
t
C
d
t
u
t
l
m
m
T
F
B
B

Table 1
Parameters of our BiGRU-based model.

Parameter Value

Optimizer Adam
Loss function MSE
Learning rate 0.01
|𝑤| 28
Input layer size 24/64
Hidden layer size 128
Batch size 64
Epoch 60

Given that applications in data centers may have different usage
atterns, as described in [26], we selected four machines, A1, A2, A3,
nd A4, from a subset of 100 randomly selected machines with varying
PU usage requirements in order to evaluate diverse CPU demands.
he A1 (Machine ID 809) serves requests requiring considerable CPU
esources and changing requirements. The A2 (Machine ID 431) satis-
ies CPU-intensive but slightly varying requirements. A3 (Machine ID
19) meets the need for considerable changes in CPU usage at different
imes, whereas A4 (Machine ID 170) meets the requirement for small
luctuations in CPU usage at different times.

.2. Configuration

In this experiment, we evaluate our prediction model using BiGRU,
nd compare it with other time series prediction methods, including
he SVR, BPNN, and LSTM. Table 1 lists the parameters chosen by the

validation set. The BiGRU is trained based on the Adam optimizer [70],
which has been proven to work well. The learning rate is set to 0.01,
the number of hidden units is set to 128, and the loss function is the
Mean Squared Error (MSE). The dropout layer is used to prevent over-
fitting. Numerous experiments are required to determine the optimal
model parameters. To obtain |w|, we performed a grid search on |w|

= {12, 20, 28, 36, 44, 52, 60}, which yields a performance of 28 on
the validation set. The window length |w| and batch size parameters
have been chosen using the grid search approach. We also perform
a grid search for batch sizes = {16, 32, 64, 128, and 256}, with 64
demonstrating the highest performance. The parameter setting of the
LSTM and BPNN is exactly the same as the BiGRU, whereas details of
SVR are described as follows. For the SVR model, the kernel function
is the Radial Basis Function (RBF), the optimal cost parameter c and
the width parameter g are determined in numerous experiments. Before
training, z-normalization is used to preprocess input data.

5.3. Evaluation metrics

Three widely perceived criteria were employed to measure predic-
tion error in this study, and a statistical test was used to evaluate the
prediction results and the scientific performance. Each of these criteria
is discussed in more detail below.
165
Typical Evaluation Metrics
We use Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), and Mean Absolute Percentage Error (MAPE) to evaluate per-
formance. RMSE squared is the square root of the deviation from the
predicted and actual values relative to the number of predictions.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦̂𝑖 − 𝑦𝑖| (14)

𝑀𝑆𝐸 =

[

1
𝑛

𝑛
∑

𝑖=1

(

𝑦̂𝑖 − 𝑦𝑖
)2
]

1
2

(15)

𝑀𝐴𝑃𝐸 = 1
𝑛
∑𝑛

𝑖=1
|𝑦̂𝑖−𝑦𝑖|
|𝑦𝑖|

(16)

here 𝑛 indicates the test size. The predicted value is denoted by 𝑦𝑖,
hereas the real value is denoted by 𝑦̂𝑖. The MAE (Eq. (14)) determines

he mean absolute error between predicted and actual data. Because
he MAE is particularly sensitive to noises, the root mean square error
RMSE) (Eq. (15)) provides a more accurate representation of the result.
dditionally, because the deviation is determined using the absolute
alue and therefore avoids compensating for both positive and negative
alues, it may accurately depict the status of the prediction error.
Eq. (16)) is the average percentage used to determine the absolute rate
f variance between the predicted and actual values used to evaluate
he performance of different models.

tatistical Analysis Metric
The Diebolde–Mariano test (DM) [71] is used to demonstrate the

ffectiveness of our model. DM was used to determine how the pro-
osed model differed significantly from the baseline model in terms of
rediction results. Diebold and Mariano [71] provide comprehensive
escriptions of the DM test. The null hypothesis is that the two predic-
ions are equivalent in terms of accuracy. The alternative hypothesis
an be specified as either both predictions having different accuracy or
ne prediction being more accurate than the other prediction methods.

.4. Evaluation

We implemented the proposed model using the Keras library in
ython programming language and the Tensorflow framework. The
ests were conducted on a machine powered by an Intel Core i7-6500
PU and an Nvidia GeForce 920M graphics card. On Google cluster
ata, the proposed model requires 21.2 s to train, whereas the training
ime for the Alibaba cluster is 12.6 s. As the Google and Alibaba clusters
tilize considerably more powerful machines than the one employed in
his work, the execution time in real applications will be significantly
ess than the obtained values, enabling the implementation of our
ethod in real-world applications. To assess the effectiveness of our
odel, we compared it to other baseline and state-of-the-art models.
able 2 gives a detailed description of the various baseline models.
irst, we evaluate the performance of our technique, called DWT-
iGRU-attention, using nine algorithms: DWT-LSTM-attention, DWT-
iGRU, DWT-LSTM, DWT-BPNN, DWT-SVR, BiGRU, LSTM, BPNN, and

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Table 2
Description of the compared models.

Category Name Description

Baseline methods

SVR SVR is a method for mapping nonlinear input vectors into high-dimensional feature
space in order to generate a linear decision plan.

BPNN BPNN is a neural network-based learning method based on a reduction gradient. The
gradient of the error function is determined in this method concerning the weight of
its neural network.

LSTM A recurrent neural network (RNN) architecture used in deep learning is an expert at
processing time-series data.

BiGRU The model employs BiGRU to predict CPU usage using host workload time series.

DWT based methods

DWT-SVR The model employs DWT for data decomposition and SVR to predict CPU usage
using host workload time series.

DWT-BPNN The model employs DWT for data decomposition and BPNN to predict CPU usage
using host workload time series.

DWT-LSTM The model employs DWT for data decomposition and LSTM to predict CPU usage
using host workload time series.

DWT-BiGRU The model employs DWT for data decomposition and BiGRU to predict CPU usage
using host workload time series.

Attention-based methods

DWT-LSTM-attention The model employs DWT for data decomposition and LSTM and attention
mechanism to predict CPU usage using host workload time series.

DWT-BiGRU-attention The model employs DWT for data decomposition and BiGRU and attention
mechanism to predict CPU usage using host workload time series.
Table 3
The results for Google cluster host load.

Machine G1 Machine G2 Machine G3 Machine G4

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

SVR 34.2 10.2 8.4 22.3 6.4 8.0 21.6 13.0 10.9 24.1 14.3 9.9
BPNN 29.1 6.9 7.8 18.0 6.0 5.5 19.1 9.8 7.8 21.3 13.5 9.6
LSTM 23.1 6.5 4.8 15.8 3.3 5.0 15.6 7.4 5.7 17.7 8.4 5.8
BiGRU 20.5 5.7 4.1 14.7 3.1 4.6 15.2 6.9 5.3 16.4 8.2 5.5
DWT-SVR 28.2 9.2 7.3 20.1 4.6 6.6 19.2 11.1 8.8 21.5 9.6 6.8
DWT-BPNN 24.0 6.8 5.1 17.4 4.4 5.3 17.3 7.9 6.3 20.6 9.7 7.0
DWT-LSTM 18.1 5.0 3.7 13.6 1.8 4.4 14.2 6.5 5.3 16.4 7.0 4.4
DWT-BiGRU 17.6 4.1 3.4 12.8 1.5 3.8 13.3 5.9 5.0 15.2 6.9 4.3
DWT-LSTM-attention 16.4 3.9 3.2 11.3 1.4 3.5 11.8 5.3 4.8 14.7 6.3 3.9
DWT-BiGRU-attention 15.4 3.1 2.8 10.5 1.1 3.0 10.9 4.8 3.9 13.3 5.6 3.2
a
a
m

o

SVR. The comparative algorithms are divided into three groups. Group
one includes baseline algorithms, including SVR, BPNN, LSTM and
BiGRU. To assess the efficiency of the DWT method’s decomposition
of host load data traces, comparative techniques incorporating the
DWT, such as DWT-LSTM, DWT-SVR, and DWT-BPNN, are included in
the second group. The second set of prediction algorithms uses DWT
operations, whereas the first group uses baseline techniques. Group 1
was utilized to determine the optimal LSTM, SVR, and BPNN neural
networks for the time series prediction task, whereas Group 2 illustrates
the influence of a DWT modification on prediction accuracy. Group
3 illustrates the influence of an attention mechanism on prediction
accuracy. In these experiments, workload time series from four Google
machines (G1, G2, G3, and G4) and four Alibaba machines (A1, A2, A3,
and A4) are used as model input, whereas CPU consumption predictions
for the next step ahead are used as output.

5.4.1. Google cluster dataset
Four Google Cluster machines were used for prediction operations,

and the MAPE, RMSE, and MAE results are given in Table 3. The bold
font in Table 3 shows the optimal values for each metric.

As seen in Table 3, DWT-BiGRU-attention has a higher prediction
accuracy than the other approaches studied. Comparing DWT-BiGRU-
attention to various prediction algorithms reveals that DWT-BiGRU-
attention has significantly reduced MAPE, RMSE, and MAE, as a result
of the use of DWT, Bidirectional learning of BiGRU, and attention
mechanism. DWT enables prediction models to learn nonstationary
features and capture the dynamic and nonlinear nature of time series

data. The bidirectional nature of BiGRU enables the prediction model to

166
learn information from two past and future directions and to learn the
relationship between the different data points in historical data during
the training phase. The attention mechanism enables the prediction
model to analyze the historical data relationships and extract temporal
dependencies to modify the weights accordingly. Fig. 10 compares
actual and predicted CPU use for baseline and DWT-based approaches
using Google Cluster data for four selected machines. Fig. 11 compares
ctual and predicted CPU usage for DWT-based approaches with DWT-
ttention-based methods using Google Cluster data for four selected
achines.

We standardized the evaluation metrics criteria values to compare
ur technique error to other methods. Fig. 12 depicts the normalized

values for RMSE, MAE, and MAPE. The results indicate that estimation
of CPU consumption in the Google Cluster Database test set using RMSE
and MAE criteria outperforms basic approaches. Fig. 13 illustrates a
boxplot representation of the absolute deviation of CPU usage for each
prediction algorithm using the Google cluster dataset. We observed that
the DWT-BiGRU technique is superior in absolute error reduction.

Table 4 demonstrates the results of the DM test of each baseline
method using the Google cluster dataset. As seen in Table 4, all of the
DM test results for all prediction horizons exceed the upper limit of the
1% significance threshold. The prediction accuracy of our model varies
significantly from other models.

Following is a comparison of the proposed method with numerous
previous studies using the Google cluster dataset. The methods pro-
vided in [30,46], and [54] are utilized for these purposes. Since these
studies did not specify which Google cluster machine data they were
tested on, we implemented these approaches and evaluated them on
the same machines as the proposed method.

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Fig. 10. Comparison of actual and predicted CPU usage for baseline and DWT based methods with Google Cluster data for four selected machines.
Fig. 11. Comparison of actual and predicted CPU usage for baseline and DWT-based methods with Google Cluster data for four selected machines.
Table 4
DM test results for Google cluster machines.

Model DM value (significance level)

M1 M2 M3 M4

SVR 8.367
(1%)

7.254
(1%)

6.665
(1%)

7.254
(1%)

BPNN 7.824
(1%)

5.520
(1%)

7.447
(1%)

5.520
(1%)

LSTM 6.881
(1%)

5.798
(1%)

5.559
(1%)

5.798
(1%)

BiGRU 7.796
(1%)

7.413
(1%)

4.212
(1%)

7.413
(1%)

DWT-SVR 4.058
(1%)

4.872
(1%)

3.259
(1%)

4.872
(1%)

DWT-BPNN 3.997
(1%)

3.075
(1%)

2.733
(1%)

3.075
(1%)

DWT-LSTM 3.808
(1%)

2.769
(1%)

2.381
(1%)

2.769
(1%)

DWT-BiGRU 4.058
(1%)

4.872
(1%)

3.259
(1%)

4.872
(1%)

DWT-LSTM-attention 3.997
(1%)

3.075
(1%)

2.733
(1%)

3.075
(1%)

DWT-BiGRU-attention 3.808
(1%)

2.769
(1%)

2.381
(1%)

2.769
(1%)
167
According to Table 5, DWT-BiGRU-attention has a higher accu-
racy than the other studied. Comparing DWT-BiGRU-attention to other
workload prediction studies reveals that the combination of DWT,
BiGRU, and attention mechanism considerably reduces MAPE, RMSE,
and MAE. Table 5 demonstrates the error metric of different studies
using the Google cluster dataset.

5.4.2. Alibaba cluster data
This section describes the outcomes of applying the proposed

method to four hosts from the Alibaba cluster dataset. Table 6 displays
the prediction error for several criteria. Our method has the lowest
error rate for predicting CPU utilization for various host workload
patterns. As demonstrated in Table 5, DWT-BiGRU-attention has a
higher prediction accuracy than the other techniques in the Alibaba
cluster dataset. The experimental results indicate that the MAE, MAPE,
and RMSE of the DWT-BiGRU-attention approach are lower than other
methods.

As demonstrated by Table 6, DWT-BiGRU-attention has a higher
prediction accuracy than the other methods examined. The compari-
son of DWT-BiGRU-attention and other prediction techniques indicates
that DWT-BiGRU has a considerably lower MAPE, RMSE and MAE.
Fig. 14 compares actual and predicted CPU use for baseline and DWT-
based approaches using Alibab Cluster data for four selected machines.
Fig. 15 compares actual and predicted CPU usage for DWT-based

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

m
t

Fig. 12. Normalized Metrics Comparison for different methods using Google Cluster dataset.
Table 5
The comparison of errors metrics in different studies using Google cluster host load.

Machine G1 Machine G2 Machine G3 Machine G4

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

Kernel based SVR [46] 21.3 7.9 5.9 15.3 3.7 5.2 14.8 7.9 6.1 13.2 8.1 6.1
BG-LSTM [30] 17.2 4.6 3.5 13.1 1.7 4.0 13.8 6.3 4.8 15.7 6.9 4.2
E2LG [54] 16.7 3.7 3.1 12.2 1.4 3.3 12.7 5.4 4.5 14.4 6.2 3.8
DWT-BiGRU-attention 15.4 3.1 2.8 10.5 1.1 3.0 10.9 4.8 3.9 13.3 5.6 3.2
d
h
c
o

and DWT-attention-based methods with Alibab Cluster data for four
selected machines. Figs. 14 and 15 prove the efficiency of the DWT
decomposition algorithm and attention mechanism, respectively.

Figs. 14 and 15 show that DWT-BiGRU-attention generally produces
ore accurate predictions than other models for all hosts. Combining

he DWT and BiGRU techniques enables the model to learn temporal
 a

168
ependency by moving forward and backwards in time from past
ost load data, extracting feature information about future host load
hanges, and achieving a more strong nonlinear generalizability than
ther methods.

Our method is more accurate than previous methods at predicting
ctual CPU usage. Moreover, it is essential to emphasize that our

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174

p
m
r
r
a
h
o
b

M
t
a
a
a

Fig. 13. The boxplot diagram for the absolute error of processor usage for each prediction algorithm using the Google cluster dataset.
Table 6
The results for Alibaba dataset host load.

Machine A1 Machine A2 Machine A3 Machine A4

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

SVR 16.6 7.41 5.51 7.19 0.049 0.041 24.18 2.5 2.0 24.7 9.0 7.20
BPNN 15.51 5.52 4.41 6.31 0.043 0.036 17.82 1.8 1.53 18.13 7.12 5.51
LSTM 12.0 4.81 3.76 4.43 0.033 0.025 14.95 1.69 1.38 14.6 5.56 4.41
BiGRU 11.72 4.70 3.52 4.30 0.030 0.25 14.73 1.62 1.37 14.4 5.41 4.19
DWT-SVR 15.45 5.86 4.68 6.72 0.045 0.038 19.74 2.1 1.6 23.7 8.30 6.93
DWT-BPNN 14.73 5.42 4.47 5.78 0.040 0.033 16.72 1.7 1.4 16.09 5.82 4.72
DWT-LSTM 11.70 4.62 3.59 4.25 0.029 0.024 14.53 1.6 1.35 14.21 5.47 4.25
DWT-BiGRU 10.66 4.21 3.32 4.03 0.028 0.024 14.20 1.5 1.23 13.45 5.23 4.14
DWT-LSTM-attention 11.23 4.35 3.42 4.12 0.029 0.024 14.42 1.5 1.24 13.92 5.31 4.24
DWT-BiGRU-attention 10.4 3.9 3.15 3.96 0.027 0.022 14.12 1.48 1.22 13.2 5.21 4.11
Fig. 14. Comparison of actual and predicted CPU usage for baseline and DWT based methods with Alibaba Cluster data for four selected machines.
rediction is more accurate when load fluctuations occur. For example,
achine A3 demonstrates a high degree of fluctuation, with each

ecord in the test data set is significantly different from the previous
ecord. Our methodology employs DWT to distinguish between high
nd low frequencies, which improves the accuracy of predictions. Two
idden layers are connected in the opposite direction to the same
utput layer in BiGRU, enabling the output layer to collect data from
oth the past and the future, allowing accurate CPU load prediction.

Fig. 16 depicts the results of our comparison of the normalized
APE, RMSE, and MAE of our method to those of other techniques. In

erms of MAPE, RMSE, and MAE, the results indicate that DWT-BiGRU-
ttention predicts CPU usage in the Alibaba Cluster Dataset more
ccurately than conventional methods. Fig. 17 depicts a boxplot of the
bsolute CPU error for each prediction algorithm using the Alibaba
169
cluster dataset. We found that, in terms of absolute error reduction,
the DWT-BiGRU-attention strategy outperforms others.

The performance differences between the proposed model and vari-
ous baseline models can be determined further by analyzing the results
of the DM test. Table 7 demonstrates the results of the DM test of each
baseline method using the Alibaba cluster dataset. As seen in Table 7,
all but two of the DM test results for all machines exceed the upper limit
of the 1% significance threshold. The prediction accuracy of our model
varies significantly from other models. The DM test values of the DWT-
BiGRU-attention model for predicting three steps exceed the upper limit
of the 5% significance level. It indicates that the predicted performance
of our model is significantly different from the DWT-BiGRU-attention
model, with a probability of 95%.

Following is a comparison between the proposed method and a
number of previous studies that utilized the Alibaba cluster dataset.

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Fig. 15. Comparing actual and predicted CPU usage for baseline and DWT-based methods with Alibaba Cluster data for four selected machines.
Table 7
DM test results for Alibaba cluster machines.

Model DM value (significance level)

M1 M2 M3 M4

SVR 8.367
(1%)

7.254
(1%)

6.665
(1%)

7.254
(1%)

BPNN 7.824
(1%)

5.520
(1%)

7.447
(1%)

5.520
(1%)

LSTM 6.881
(1%)

5.798
(1%)

5.559
(1%)

5.798
(1%)

BiGRU 7.796
(1%)

7.413
(1%)

4.212
(1%)

7.413
(1%)

DWT-SVR 4.058
(1%)

4.872
(1%)

3.259
(1%)

4.872
(1%)

DWT-BPNN 3.997
(1%)

3.075
(1%)

2.733
(1%)

3.075
(1%)

DWT-LSTM 3.808
(1%)

2.769
(1%)

2.381
(1%)

2.769
(1%)

DWT-BiGRU 4.058
(1%)

4.872
(1%)

3.259
(1%)

4.872
(1%)

DWT-LSTM-attention 3.997
(1%)

3.075
(1%)

2.733
(1%)

3.075
(1%)

DWT-BiGRU-attention 3.808
(1%)

2.769
(1%)

2.381
(1%)

2.769
(1%)

For these goals, the approaches described in [30,46], and [54] are
employed. Table 8 demonstrates the error metric of different studies
using the Alibaba cluster dataset.

According to Table 8, DWT-BiGRU-attention has a higher accu-
racy than the other studied. Comparing DWT-BiGRU-attention to other
workload prediction studies reveals that the combination of DWT,
BiGRU, and attention mechanism considerably reduces MAPE, RMSE,
and MAE.

5.5. Discussion

Based on Tables 3–6 and Figs. 10–17, the complete comparison
analysis results are summarized as follows:

– According to the experiment results, the SVR and BPNN ap-
proaches have the most significant prediction errors among the three
criteria. These results demonstrated that SVR and BPNN cannot extract
the linear and nonlinear features of host load traces. SVR employs
vast quantities of data to map them into a high-dimensional space;
therefore, the absence of temporal and periodic features leads in poor
prediction accuracy. LSTM outperforms SVR and BPNN with regard to
performance prediction. Comparing BiGRU to other baseline methods
indicates that BiGRU significantly reduces MAPE, MAE, and RMSE
170
prediction errors. BiGRU combines a forward and a backward unit and
promises added benefits over unidirectional GRU and other baseline
methods by allowing the extraction of dependencies between previous
and future steps.

– A comparison of methods employing DWT compared to methods
not using DWT demonstrates that employing DWT for prediction in-
creases the prediction accuracy. For instance, according to the result
for the M1 machine in Tables e and 5, the MAPE, RMSE, and MAE
values for BiGRU are 22.5, 5.7, and 4.1, respectively, whereas the
values for DWT-BiGRU are 21.6, 5.1, and 3.4, respectively, which is
significantly less than the BiGRU error values. Similar comparisons
indicate that the MAPE, MMRE, and MAE criteria of the DWT-SVR,
DWT-BPNN, and DWT-LSTM methods have decreased compared to the
SVR, BPNN, and LSTM. For all M1, M2, M3, and M4 machines, the
employing DWT method reduced the MAPE, MMRE, and MAE values
for all methods. Since DWT extracts temporal correlation between the
records of the input host load data, employing DWT reduces significant
fluctuations and makes more accurate predictions via learning short-
term and long-term dependencies. As a result, it was concluded that
learning nonstationary data and capturing the dynamic and nonlinear
nature of workload time series data by DWT improved the accuracy of
host resource usage prediction in cloud computing.

– Although both BiGRU and LSTM models may be used to learn
long-term dependencies from historical host load traces, the MAPE,
MAE, and RMSE criteria for the BiGRU model outperform those for
LSTM. Compared to DWT-LSTM, the DWT-BiGRU significantly de-
creases prediction error rates for MAPE, MAE, and RMSE. It is be-
cause BiGRU predicts workload through bidirectional learning. The
results indicate that BiGRU may give superior accuracy than LSTM in
nonstationary host load data.

– Figs. 8 and 10 illustrate how the attention process contributes
to reducing prediction error. Comparing the prediction performance of
DWT-BiGRU-attention and DWT-LSTM-attention with DWT-BiGRU and
DWT-LSTM, it is clear that the MAPE, MMRE, and MAE of attention-
based prediction models are significantly lower than comparable ap-
proaches without an attention mechanism across all Machines. The
attention mechanism provides different weights to resource usage at
different times and considers the varied effect of historical data on
future workload. The results of the comparative analysis indicate that
the attention mechanism improves the host workload prediction per-
formance.

– As shown in Fig. 14, the DWT-BiGRU-attention technique has a
lower absolute error rate than the DWT-LSTM-attention method. It is
because of the superior performance of our method with respect to
long-term dependencies. The number of outlier points in the boxplot
for DWT-LSTM-attention is more than that of DWT-BiGRU-attention.

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Fig. 16. Comparing normalized Metrics for different methods using Alibaba data set.
Table 8
The comparison of errors metrics in different studies using Alibab cluster host load.

Machine G1 Machine G2 Machine G3 Machine G4

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

Kernel based SVR [46] 14.76 5.81 4.63 6.30 0.042 0.035 18.75 2.07 1.71 22.79 8.33 6.42
BG-LSTM [30] 11.93 5.03 4.15 5.31 0.032 0.029 15.61 1.89 1.53 15.82 7.14 5.31
E2LG [54] 10.52 4.04 3.17 4.02 0.027 0.023 14.17 1.59 1.23 13.35 5.37 4.16
DWT-BiGRU-attention 10.4 3.9 3.1 3.96 0.027 0.022 14.12 1.48 1.22 13.2 5.21 4.11
In terms of RMSE, MAPE, and MAE, it causes the DWT-LSTM-attention
approach is less accurate than the DWT-BiGRU-attention method.

– Even though some deep learning-based techniques, such as the
LSTM network, are highly effective and accurate at predicting host
load, they are often time-consuming and inappropriate for efficient
resource allocation and scheduling based on prediction results. Due to
the necessity of generating quick predictions on cloud computing data
center load data, our technique is superior to LSTM-based methods in
real-world applications.
171
– As demonstrated by Tables 5 and 8, the proposed method is
more precise than other previous techniques. The method described
in [46] is a workload prediction method that employs hybrid kernel-
based SVR and then a voting mechanism to weigh the results. The
reason why the proposed method is superior to [46] is that, unlike SVR-
based methods, the DWT-BiGRU-attention effectively extracts hidden
nonlinear patterns from workload data. It demonstrates that BiGRU
combines forward and backward learning and reduces prediction errors
significantly. The approach employed in [30] combines the BiLSTM

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
Fig. 17. The boxplot diagram for the absolute error of processor usage for each prediction algorithm using the Alibaba data set.
and GridLSTM models for accurate workload time series prediction.
The approach employed in [54] decomposes the workload time series
into its components in different frequency bands using EMD, and then
a GAN/LSTM learning model predicts each sub-band workload time
series. Comparing the results of the proposed method with [30,54]
reveals that the accuracy of the proposed method has been enhanced
by employing the technique of decomposing the input signal into
many sub-bands and then employing the attention-based deep learning
model.

6. Conclusion

This article proposes a host workload prediction method in cloud
computing by combining the DWT, BiGRU model and attention mech-
anism. In addition to learning long-term dependencies in BiGRU, DWT
can decompose nonlinear and nonstationary data into predictable sub-
bands in order to predict future host workload in cloud computing.
The proposed approach was evaluated using two real-time host load
trace datasets, the Google Cluster Database and the Alibaba Cluster.
According to the experimental results, basic techniques cannot learn
nonlinear data, mainly when random fluctuations occur in the data.
However, the model presented in the proposed method shows good
compatibility and achieves better results than DWT-LSTM, DWT-BPNN,
DWT-SVR, LSTM, BPNN, and SVR in both datasets. Since distributed
computing is increasingly oriented toward lightweight virtualization
technologies such as containers, we will predict container workloads
in the Docker and Kubernetes environments in future research. We run
various applications in these environments, and a series of simulations
will run to generate tasks and measure the container’s CPU load. Then,
the workload will be predicted using machine learning models, and
resource provisioning will be performed.

Ethical approval

This article does not contain any studies with human participants
or animals performed by any of the authors.

CRediT authorship contribution statement

Javad Dogani: Methodology, Software, Simulation, Writing – orig-
inal draft. Farshad Khunjush: Conceptualization, Validation, Method-
ology, Writing – review & editing. Mehdi Seydali: Conceptualization,
Software, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
172
Data availability

Data will be made available on request.

References

[1] T. Khan, T., S. Tian, R. Ilager, W. Buyya, Workload forecasting and energy state
estimation in cloud data centres: ML-centric approach, Future Gener. Comput.
Syst. 128 (2022) 320–332, http://dx.doi.org/10.1016/j.future.2021.10.019.

[2] A.A. Khan, M. Zakarya, R. Khan, I.U. Rahman, M. Khan, A. Khan, An energy
performance efficient resource consolidation scheme for heterogeneous cloud
datacenters, J. Netw. Comput. Appl. 150 (2020) 102497, http://dx.doi.org/10.
1016/j.jnca.2019.102497.

[3] A. Nelli, R. Jogdand, SLA-based workload scheduling technique in multi-cloud
platform, J. Ambient Intell. Hum. Comput. (2022) http://dx.doi.org/10.1007/
s12652-021-03666-z.

[4] T. Xie, C. Li, N. Hao, Y. Luo, Multi-objective optimization of data deployment
and scheduling based on the minimum cost in geo-distributed cloud, Comput.
Commun. 185 (2022) 142–158.

[5] K. Chakravarthi, L. Shyamala, TOPSIS inspired budget and deadline aware multi-
workflow scheduling for cloud computing, J. Syst. Archit. 114 (2021) 101916,
http://dx.doi.org/10.1016/j.sysarc.2020.101916.

[6] J. Zhu, Q. Li, S. Ying, SAAS parallel task scheduling based on cloud service flow
load algorithm, Comput. Commun. 182 (2022) 170–183.

[7] R. Anantha Kumar, K. Kartheeban, Resource allocation using dynamic pricing
auction mechanism for supporting emergency demands in cloud computing, J.
Parallel Distrib. Comput. 158 (2021) 213–226, http://dx.doi.org/10.1016/j.jpdc.
2021.07.016.

[8] J. Dogani, F. Khunjush, M.R. Mahmoudi, Seydali. M., Multivariate workload and
resource prediction in cloud computing using CNN and GRU by attention mech-
anism, J. Supercomput. (2022) http://dx.doi.org/10.1007/s11227-022-04782-
z.

[9] W. Shu, K. Cai, K, N. Xiong, Research on strong agile response task scheduling
optimization enhancement with optimal resource usage in green cloud comput-
ing, Future Gener. Comput. Syst. 124 (2021) 12–20, http://dx.doi.org/10.1016/
j.future.2021.05.012.

[10] M. Alotaibi, Hybrid metaheuristic technique for optimal container resource
allocation in cloud, Comput. Commun. 191 (2022) 477–485.

[11] H. Kholidy, An intelligent swarm based prediction approach for predicting
cloud computing user resource needs, Comput. Commun. 151 (2020) 133–144,
http://dx.doi.org/10.1016/j.comcom.2019.12.028.

[12] R. Anantha Kumar, K. Kartheeban, Resource allocation using dynamic pricing
auction mechanism for supporting emergency demands in cloud computing, J.
Parallel Distrib. Comput. 158 (2021) 213–226, http://dx.doi.org/10.1016/j.jpdc.
2021.07.016.

[13] H. Mezni, F. Hamoud, F. Charrada, Predictive service placement in cloud using
deep learning and frequent subgraph mining, J. Ambient. Intell. Hum. Comput.
(2022) http://dx.doi.org/10.1007/s12652-022-03720-4.

[14] S. Zaman, D. Grosu, Combinatorial auction-based dynamic VM provisioning and
allocation in clouds, in: 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, 2011, http://dx.doi.org/10.1109/cloudcom.
2011.24, [Preprint]. Available at.

[15] Rodero I. others, Towards energy-aware autonomic provisioning for virtualized
environments, in: Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing - HPDC ’10, 2010, http://dx.doi.org/
10.1145/1851476.1851520, [Preprint]. Available at.

http://dx.doi.org/10.1016/j.future.2021.10.019
http://dx.doi.org/10.1016/j.jnca.2019.102497
http://dx.doi.org/10.1016/j.jnca.2019.102497
http://dx.doi.org/10.1016/j.jnca.2019.102497
http://dx.doi.org/10.1007/s12652-021-03666-z
http://dx.doi.org/10.1007/s12652-021-03666-z
http://dx.doi.org/10.1007/s12652-021-03666-z
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb4
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb4
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb4
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb4
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb4
http://dx.doi.org/10.1016/j.sysarc.2020.101916
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb6
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb6
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb6
http://dx.doi.org/10.1016/j.jpdc.2021.07.016
http://dx.doi.org/10.1016/j.jpdc.2021.07.016
http://dx.doi.org/10.1016/j.jpdc.2021.07.016
http://dx.doi.org/10.1007/s11227-022-04782-z
http://dx.doi.org/10.1007/s11227-022-04782-z
http://dx.doi.org/10.1007/s11227-022-04782-z
http://dx.doi.org/10.1016/j.future.2021.05.012
http://dx.doi.org/10.1016/j.future.2021.05.012
http://dx.doi.org/10.1016/j.future.2021.05.012
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb10
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb10
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb10
http://dx.doi.org/10.1016/j.comcom.2019.12.028
http://dx.doi.org/10.1016/j.jpdc.2021.07.016
http://dx.doi.org/10.1016/j.jpdc.2021.07.016
http://dx.doi.org/10.1016/j.jpdc.2021.07.016
http://dx.doi.org/10.1007/s12652-022-03720-4
http://dx.doi.org/10.1109/cloudcom.2011.24
http://dx.doi.org/10.1109/cloudcom.2011.24
http://dx.doi.org/10.1109/cloudcom.2011.24
http://dx.doi.org/10.1145/1851476.1851520
http://dx.doi.org/10.1145/1851476.1851520
http://dx.doi.org/10.1145/1851476.1851520

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
[16] A. Suresh, R. Varatharajan, Competent resource provisioning and distribution
techniques for cloud computing environment, Cluster Comput. 22 (S5) (2017)
11039–11046, http://dx.doi.org/10.1007/s10586-017-1293-6, Available at.

[17] H. Shen, X. Hong, Host load prediction with Bi-directional long short-term
memory in cloud computing, 2020, arXiv:2007.15582v1.

[18] G. Yang, et al., Prediction of the resource consumption of distributed deep
learning systems, in: Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP
PERFORMANCE Joint International Conference on Measurement and Model-
ing of Computer Systems, 2022, http://dx.doi.org/10.1145/3489048.3530962,
[Preprint]. Available at.

[19] http://www https://predictkube.com/.
[20] O. Poppe, et al., Moneyball, Proc. VLDB Endow. 15 (6) (2022) 1279–1287,

http://dx.doi.org/10.14778/3514061.3514073.
[21] Baldan F.J. others, A forecasting methodology for workload forecasting in cloud

systems, IEEE Trans. Cloud Comput. 6 (4) (2018) 929–941, http://dx.doi.org/
10.1109/tcc.2016.2586064, Available at.

[22] M.M. Al-Sayed, Workload time series cumulative prediction mechanism for cloud
resources using neural machine translation technique, J. Grid Comput. 20 (2)
(2022) http://dx.doi.org/10.1007/s10723-022-09607-0.

[23] M. Rhif, A. Ben Abbes, I. Farah, B. Martínez, Y. Sang, Wavelet transform
application for/in non-stationary time-series analysis: A review, Appl. Sci. 9 (7)
(2019) 1345, http://dx.doi.org/10.3390/app9071345.

[24] H. Toumi, Z. Brahmi, M.M. Gammoudi, RTSLPS: Real time server load prediction
system for the ever-changing cloud computing environment, J. King Saud Univ.
Comput. Inform. Sci. (2019) http://dx.doi.org/10.1016/j.jksuci.2019.12.004.

[25] X. Fu, W. Luo, C. Xu, X. Zhao, Short-term traffic speed prediction method for
urban road sections based on wavelet transform and gated recurrent unit, Math.
Probl. Eng. 2020 (2020) 1–13, http://dx.doi.org/10.1155/2020/3697625.

[26] J. Xiang, Z. Qiu, Q. Hao, H. Cao, Multi-time scale wind speed prediction based on
WT-bi-LSTM, MATEC Web Conf. 309 (2020) 05011, http://dx.doi.org/10.1051/
matecconf/202030905011.

[27] N. Djennane, et al., CPU-based prediction with self organizing map in Dynamic
Cloud Data Centers, Int. J. Sensors Wirel. Commun. Control 11 (7) (2021)
733–747, http://dx.doi.org/10.2174/2210327910666201216123246, Available
at.

[28] C. Fan, J. Wang, W. Gang, S. Li, Assessment of deep recurrent neural network-
based strategies for short-term building energy predictions, Appl. Energy 236
(2019) 700–710, http://dx.doi.org/10.1016/j.apenergy.2018.12.004.

[29] E. Golshani, M. Ashtiani, Proactive auto-scaling for cloud environments using
temporal convolutional neural networks, J. Parallel Distrib. Comput. 154 (2021)
119–141, http://dx.doi.org/10.1016/j.jpdc.2021.04.006.

[30] J. Bi, S. Li, H. Yuan, M.C. Zhou, Integrated deep learning method for workload
and resource prediction in cloud systems, Neurocomputing 424 (2021) 35–48,
http://dx.doi.org/10.1016/j.neucom.2020.11.011.

[31] S. Baig, W. Iqbal, J.L. Berral, A. Erradi, D. Carrera, Adaptive prediction models
for data center resources utilization estimation, IEEE Trans. Netw. Serv. Manag.
16 (4) (2019) 1681–1693, http://dx.doi.org/10.1109/TNSM.2019.2932840.

[32] D. Lien Minh, A. Sadeghi-Niaraki, H.D. Huy, K. Min, H. Moon, Deep learning
approach for short-term stock trends prediction based on two-stream gated
recurrent unit network, IEEE Access 6 (2018) 55392–55404, http://dx.doi.org/
10.1109/access.2018.2868970.

[33] A.S. Saud, S. Shakya, Analysis of look back period for stock price prediction with
RNN variants: A case study on banking sector of NEPSE, Procedia Comput. Sci.
167 (2020) 788–798, http://dx.doi.org/10.1016/j.procs.2020.03.419.

[34] G. Weiss, Y. Goldberg, E. Yahav, On the practical computational power of
finite precision RNNs for language recognition, in: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2018, http://dx.doi.org/10.18653/v1/p18-2117.

[35] X. Cao, Y. Zhong, Y. Zhou, J. Wang, C. Zhu, W. Zhang, Interactive temporal
recurrent convolution network for traffic prediction in data centers, IEEE Access
6 (2018) 5276–5289, http://dx.doi.org/10.1109/access.2017.2787696.

[36] H. Huang, N. Cressie, Spatio-temporal prediction of snow water equivalent
using the Kalman filter, Comput. Statist. Data Anal. 22 (2) (2016) 159–175,
http://dx.doi.org/10.1016/0167-9473(95)00047-X.

[37] S.L. Ho, M. Xie, T.N. Goh, A comparative study of neural network and Box-
Jenkins ARIMA modeling in time series prediction, Comput. Ind. Eng. 42 (2–4)
(2002) 371–375.

[38] R.N. Calheiros, E. Masoumi, R. Ranjan, R. Buyya, Workload prediction using
ARIMA model and its impact on cloud applications’ QoS, IEEE Trans. Cloud
Comput. 3 (4) (2015) 449–458, http://dx.doi.org/10.1109/TCC.2014.2350475.

[39] J. Chen, Y. Wang, A hybrid method for short-term host utilization prediction
in cloud computing, J. Electr. Comput. Eng. (2019) 1–14, http://dx.doi.org/10.
1155/2019/2782349.

[40] K.W. Lau, Q.H. Wu, Local prediction of nonlinear time series using support
vector regression, Pattern Recognit. 41 (5) (2008) 1539–1547, http://dx.doi.org/
10.1016/j.patcog.2007.08.013.

[41] M.S. Raimundo, J. Okamoto, SVR-wavelet adaptive model for forecasting finan-
cial time series, in: 2018 International Conference on Information and Computer
Technologies, ICICT, 2018, pp. 111–114, http://dx.doi.org/10.1109/INFOCT.
2018.8356851.
173
[42] R. Hu, J. Jiang, G. Liu, L. Wang, CPU load prediction using support vector
regression and Kalman smoother for cloud, in: 2013 IEEE 33rd International
Conference on Distributed Computing Systems Workshops, 2013, http://dx.doi.
org/10.1109/icdcsw.2013.60.

[43] R. Hu, J. Jiang, G. Liu, L. Wang, Kswsvr: A new load forecasting method for
efficient resources provisioning in cloud, in: 2013 IEEE International Conference
on Services Computing, 2013, http://dx.doi.org/10.1109/scc.2013.67.

[44] S. Sharifian, M. Barati, An ensemble multi-scale wavelet-GARCH hybrid SVR
algorithm for mobile cloud computing workload prediction, Int. J. Mach. Learn.
Cybern. 10 (11) (2019) 3285–3300.

[45] W. Zhong, Y. Zhuang, J. J. Sun, J. Gu, A load prediction model for cloud
computing using PSO-based weighted wavelet support vector machine, Appl.
Intell. 48 (11) (2018) 4072–4083.

[46] P. Nehra, A. Nagaraju, Host utilization prediction using hybrid kernel based
support vector regression in cloud data centers, J. King Saud Univ. Comput.
Inform. Sci. (2021) http://dx.doi.org/10.1016/j.jksuci.2021.04.011.

[47] W. Jiang, Z. Song, J. Zhan, Z. He, X. X. Wen, K. K. Jiang, Optimized
co-scheduling of mixed-precision neural network accelerator for real-time mul-
titasking applications, J. Syst. Archit. 110 (2020) 101775, http://dx.doi.org/10.
1016/j.sysarc.2020.101775.

[48] Y. Lu, J. Panneerselvam, L. Liu, Y. Wu, RVLBPNN: A workload forecasting model
for smart cloud computing, Sci. Program. 2016 (2016) 1–9, http://dx.doi.org/
10.1155/2016/5635673.

[49] S. Jeddi, S. Sharifian, A water cycle optimized wavelet neural network algorithm
for demand prediction in cloud computing, Cluster Comput. 22 (4) (2019)
1397–1412.

[50] Z. Zhang, X. Tang, J. Han, P. Wang, Sibyl: Host load prediction with an efficient
deep learning model in cloud computing, Algor. Archit. Parallel Process. (2018)
226–237, http://dx.doi.org/10.1007/978-3-030-05054-2_17.

[51] H.M. Nguyen, G. Kalra, D. Kim, Host load prediction in cloud computing
using long short-term memory encoder–decoder, J. Supercomput. 75 (11) (2019)
7592–7605.

[52] H. Shuvo, M.N. Hasan Shuvo, M.N. Shahriar Maswood, M.M. Shahriar Maswood,
M.M. Alharbi, A.G. Alharbi, LSRU: A novel deep learning based hybrid method to
predict the workload of virtual machines in cloud data center, in: 2020 IEEE Re-
gion 10 Symposium, TENSYMP, 2020, http://dx.doi.org/10.1109/tensymp50017.
2020.9230799.

[53] B. Song, Y. Yu, Y. Zhou, Z. Wang, S. Du, Host load prediction with long
short-term memory in cloud computing, J. Supercomput. 74 (12) (2017)
6554–6568.

[54] P. Yazdanian, S. Sharifian, E2LG: a multi-scale ensemble of LSTM/GAN
deep learning architecture for multistep-ahead cloud workload prediction, J.
Supercomput. (2021) http://dx.doi.org/10.1007/s11227-021-03723-6.

[55] Q. Yang, Y. Zhou, Y. Yu, J. Yuan, X. Xing, S. Du, Multi-step-ahead host load
prediction using autoencoder and echo state networks in cloud computing, J.
Supercomput. 71 (8) (2015) 3037–3053.

[56] C. Peng, Y. Li, Y. Yu, Y. Zhou, S. Du, Multi-step-ahead host load prediction with
GRU based encoder-decoder in cloud computing, in: 2018 10th International
Conference on Knowledge and Smart Technology, KST, 2018, http://dx.doi.org/
10.1109/kst.2018.8426104.

[57] Y. Wen, Y. Wang, J. Liu, B. Cao, Q. Fu, CPU usage prediction for cloud resource
provisioning based on deep belief network and particle swarm optimization,
Concurr. Comput.: Pract. Exper. 32 (14) (2020) http://dx.doi.org/10.1002/cpe.
5730.

[58] S. Tofighy, A.A. Rahmanian, M. Ghobaei-Arani, An ensemble CPU load prediction
algorithm using a Bayesian information criterion and smooth filters in a cloud
computing environment, Softw. - Pract. Exp. 48 (12) (2018) 2257–2277, http:
//dx.doi.org/10.1002/spe.2641.

[59] J. Kumar, A. Kumar Singh, R. Buyya, Ensemble learning based predictive
framework for virtual machine resource request prediction, Neurocomputing 397
(2020) 20–30, http://dx.doi.org/10.1016/j.neucom.2020.02.014.

[60] A. Feltane, Time-frequency based methods for non-stationary signal analysis
with application to EEG signals, 2016, Open Access Dissertations Paper 445
https://digitalcommons.uri.edu/oa_diss/445.

[61] S. Mallat, A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 674–693,
http://dx.doi.org/10.1109/34.192463.

[62] L. Song, J. Xue, X. Wang, J. Zhang, L. Wang, Z. Jiang, J. Cheng, Time-series
well performance prediction based on long short-term memory (LSTM) neural
network model, J. Pet. Sci. Eng. 186 (2020) http://dx.doi.org/10.1016/j.petrol.
2019.106682.

[63] J. Zhao, D. Zeng, S. Liang, H. Kang, Q. Liu, Prediction model for stock price
trend based on recurrent neural network, J. Ambient. Intell. Hum. Comput. 12
(2021) 745–753, http://dx.doi.org/10.1007/s12652-020-02057-0.

[64] D. She, M. Jia, A BiGRU method for remaining useful life prediction
of machinery, Measurement 167 (2021) 108277, http://dx.doi.org/10.1016/j.
measurement.2020.108277.

[65] H. Zou, H. Liu, T. Zhou, L. Jiashun, Y. Zhan, Short-term traffic flow prediction
using DTW-bigru model, in: 2020 35th Youth Academic Annual Conference of
Chinese Association of Automation, YAC, 2020, pp. 557–562, http://dx.doi.org/
10.1109/YAC51587.2020.9337579.

http://dx.doi.org/10.1007/s10586-017-1293-6
http://arxiv.org/abs/2007.15582v1
http://dx.doi.org/10.1145/3489048.3530962
http://www
https://predictkube.com/
http://dx.doi.org/10.14778/3514061.3514073
http://dx.doi.org/10.1109/tcc.2016.2586064
http://dx.doi.org/10.1109/tcc.2016.2586064
http://dx.doi.org/10.1109/tcc.2016.2586064
http://dx.doi.org/10.1007/s10723-022-09607-0
http://dx.doi.org/10.3390/app9071345
http://dx.doi.org/10.1016/j.jksuci.2019.12.004
http://dx.doi.org/10.1155/2020/3697625
http://dx.doi.org/10.1051/matecconf/202030905011
http://dx.doi.org/10.1051/matecconf/202030905011
http://dx.doi.org/10.1051/matecconf/202030905011
http://dx.doi.org/10.2174/2210327910666201216123246
http://dx.doi.org/10.1016/j.apenergy.2018.12.004
http://dx.doi.org/10.1016/j.jpdc.2021.04.006
http://dx.doi.org/10.1016/j.neucom.2020.11.011
http://dx.doi.org/10.1109/TNSM.2019.2932840
http://dx.doi.org/10.1109/access.2018.2868970
http://dx.doi.org/10.1109/access.2018.2868970
http://dx.doi.org/10.1109/access.2018.2868970
http://dx.doi.org/10.1016/j.procs.2020.03.419
http://dx.doi.org/10.18653/v1/p18-2117
http://dx.doi.org/10.1109/access.2017.2787696
http://dx.doi.org/10.1016/0167-9473(95)00047-X
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb37
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb37
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb37
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb37
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb37
http://dx.doi.org/10.1109/TCC.2014.2350475
http://dx.doi.org/10.1155/2019/2782349
http://dx.doi.org/10.1155/2019/2782349
http://dx.doi.org/10.1155/2019/2782349
http://dx.doi.org/10.1016/j.patcog.2007.08.013
http://dx.doi.org/10.1016/j.patcog.2007.08.013
http://dx.doi.org/10.1016/j.patcog.2007.08.013
http://dx.doi.org/10.1109/INFOCT.2018.8356851
http://dx.doi.org/10.1109/INFOCT.2018.8356851
http://dx.doi.org/10.1109/INFOCT.2018.8356851
http://dx.doi.org/10.1109/icdcsw.2013.60
http://dx.doi.org/10.1109/icdcsw.2013.60
http://dx.doi.org/10.1109/icdcsw.2013.60
http://dx.doi.org/10.1109/scc.2013.67
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb44
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb44
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb44
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb44
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb44
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb45
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb45
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb45
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb45
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb45
http://dx.doi.org/10.1016/j.jksuci.2021.04.011
http://dx.doi.org/10.1016/j.sysarc.2020.101775
http://dx.doi.org/10.1016/j.sysarc.2020.101775
http://dx.doi.org/10.1016/j.sysarc.2020.101775
http://dx.doi.org/10.1155/2016/5635673
http://dx.doi.org/10.1155/2016/5635673
http://dx.doi.org/10.1155/2016/5635673
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb49
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb49
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb49
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb49
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb49
http://dx.doi.org/10.1007/978-3-030-05054-2_17
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb51
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb51
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb51
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb51
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb51
http://dx.doi.org/10.1109/tensymp50017.2020.9230799
http://dx.doi.org/10.1109/tensymp50017.2020.9230799
http://dx.doi.org/10.1109/tensymp50017.2020.9230799
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb53
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb53
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb53
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb53
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb53
http://dx.doi.org/10.1007/s11227-021-03723-6
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb55
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb55
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb55
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb55
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb55
http://dx.doi.org/10.1109/kst.2018.8426104
http://dx.doi.org/10.1109/kst.2018.8426104
http://dx.doi.org/10.1109/kst.2018.8426104
http://dx.doi.org/10.1002/cpe.5730
http://dx.doi.org/10.1002/cpe.5730
http://dx.doi.org/10.1002/cpe.5730
http://dx.doi.org/10.1002/spe.2641
http://dx.doi.org/10.1002/spe.2641
http://dx.doi.org/10.1002/spe.2641
http://dx.doi.org/10.1016/j.neucom.2020.02.014
https://digitalcommons.uri.edu/oa_diss/445
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1016/j.petrol.2019.106682
http://dx.doi.org/10.1016/j.petrol.2019.106682
http://dx.doi.org/10.1016/j.petrol.2019.106682
http://dx.doi.org/10.1007/s12652-020-02057-0
http://dx.doi.org/10.1016/j.measurement.2020.108277
http://dx.doi.org/10.1016/j.measurement.2020.108277
http://dx.doi.org/10.1016/j.measurement.2020.108277
http://dx.doi.org/10.1109/YAC51587.2020.9337579
http://dx.doi.org/10.1109/YAC51587.2020.9337579
http://dx.doi.org/10.1109/YAC51587.2020.9337579

J. Dogani, F. Khunjush and M. Seydali Computer Communications 198 (2023) 157–174
[66] Z. Niu, G. Zhong, H. Yu, A review on the attention mechanism of deep learning,
Neurocomputing 452 (2021) 48–62, http://dx.doi.org/10.1016/j.neucom.2021.
03.091, Available at.

[67] Fei N. others, Z-score normalization, hubness, and few-shot learning, in: 2021
IEEE/CVF International Conference on Computer Vision (ICCV). Available At,
2021, http://dx.doi.org/10.1109/iccv48922.2021.00021.

[68] [dataset] https://github.com/Google/cluster-data.
[69] [dataset] https://github.com/alibaba/clusterdata.
[70] H. Salem, A.E. Kabeel, E.M.S. El-Said, O.M. Elzeki, Predictive modelling for

solar power-driven hybrid desalination system using artificial neural network
regression with adam optimization, Desalination 522 (2022) 115411, http://dx.
doi.org/10.1016/j.desal.2021.115411.

[71] V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann ma-
chines, in: Proceedings of the 27th International Conference on Machine Learning
(ICML-10) Israel, Haifa, 2010, pp. 807–814.

Javad Dogani received his B.Sc. degree in software engi-
neering from technical and Vocational University, Shiraz,
Iran, in 2009 and the M.Sc. degree in software engineering
from, School of Electrical and Computer Engineering, Shiraz
University, Shiraz, Iran in 2012. His Ph.D. is in the field
of Cloud Computing from the School of Electrical and
Computer Engineering, Shiraz University, Shiraz, Iran. His
main research areas are Distributed systems, Cloud Com-
puting, Machine Learning, Parallel Computing, and Big-Data
Processing.
174
Farshad Khunjush received the B.Sc. and M.Sc. degrees in
Computer Engineering from Shiraz University and a Ph.D.
degree from the University of Victoria, Canada, 2008. He
was a Post-Doctoral fellow at the Laboratory for Parallel
and Intelligent Systems (LAPIS) (2008 to 2009). He joined
the Department of Computer Science at Shiraz University
in 2009. He served as the head of System/Software En-
gineering (2010–2014) and acted as the director of ICT
Center (2014–2020). He was a visiting professor at EPFL
in 2019 and the University of Toronto (2020–2021). His
research interests include Multi-Core & Parallel Computer
Architectures and Cloud Computing.

Mehdi Seydali received his B.Sc. degree in software en-
gineering from Shahid Bahonar University, Kerman, Iran,
in 2008, Iran and M.Sc. degree from Tarbiat Modares
University, Tehran, Iran, in 2013. His Ph.D. is in the field
of Cloud Computing from the School of Electrical and
Computer Engineering, Shiraz University, Shiraz, Iran. His
research interest is mainly in Big data, Cloud computing,
parallel processing and distributed deep learning.

http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1109/iccv48922.2021.00021
https://github.com/Google/cluster-data
https://github.com/alibaba/clusterdata
http://dx.doi.org/10.1016/j.desal.2021.115411
http://dx.doi.org/10.1016/j.desal.2021.115411
http://dx.doi.org/10.1016/j.desal.2021.115411
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb71
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb71
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb71
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb71
http://refhub.elsevier.com/S0140-3664(22)00447-9/sb71

	Host load prediction in cloud computing with Discrete Wavelet Transformation (DWT) and Bidirectional Gated Recurrent Unit (BiGRU) network
	Introduction
	RELATED WORK
	BACKGROUND
	Discrete wavelet transform (DWT)
	GRU MODEL
	BiGRU model
	BiGRU encoder–decoder by attention mechanism

	PROPOSED METHOD
	EXPRIMENTS AND DISCUSSION
	Data Set
	Configuration
	Evaluation Metrics
	Evaluation
	Google cluster dataset
	Alibaba cluster data

	Discussion

	CONCLUSION
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

