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A B S T R A C T

This paper presents a rapid machine learning-based damage detection framework for identifying the damage
extent of concrete shear wall buildings. For this purpose, a parametric study was carried out to determine
the most efficient machine learning algorithm in classifying the damage states of the building. According to
this parametric study, the K-Nearest Neighbor (KNN) learner was selected as the reference prediction model
because of the higher accuracy achieved by this algorithm. Bayesian Optimization (BO) algorithm was used
to tune the hyperparameters affecting the accuracy of the model. The most efficient attributes were selected
from the set of damage indicators through the BO algorithm to train the model. Three different benchmark
buildings, including 7-,9-, and 13-story concrete shear wall buildings, were used to evaluate the robustness of
the proposed framework. A suite of 111 pair motions, originally developed for the SAC project, were employed
to create a generalized dataset. These motions were uniformly scaled from 0.05 g to 1.5 g to expand the
intensity range of the events. All the acceleration signals were polluted to 10% noise using white Gaussian
signals to simulate the field condition. Results reveal the efficiency of the proposed framework in identifying
the extent of damage in concrete shear wall elements of the building. In addition, a parametric study was
conducted to illustrate the reliability of two commonly used features, called Cumulative Absolute Velocity
(CAV) and the energy ratio between the acceleration response and the input excitation, in determining the
damage states of the shear walls under seismic motions.
1. Introduction

Assessment of structural safety is essential for post-earthquake
restoration. Generally, to evaluate the post-earthquake vitality of the
exposed structures, a complete visual inspection is required [1]. Co-
rdination and implementation of the manual visual inspection needs
everal dedicated teams and monetary resources. In this regard, consid-
rable efforts have been carried out to automate the visual inspection
rocess, e.g., image-based visual inspection [2]. However, such an
ngineering visual inspection is only able to detect the visible defects
hat occurred in the structures [3]. This means that some serious
nvisible damages may be left latent during the visual inspection. The
rocess of identifying and tracking the structural damage is known
s the Structural Health Monitoring (SHM) [4,5]. In SHM, damage
etection is related to the methods developed for identifying the
robable existence, severity, and location of the structural damage.
odel-based and data-driven methods are two of the most commonly

sed strategies proposed for damage detection. Model-based methods
enerally involve a system identification algorithm paired with a finite
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element analysis to update the structural model [6]. The performance
of the model-based approaches directly depends on the accuracy of the
information about the physical properties of the under-study structure.
In addition, updating the finite element model based on the physical
properties of the structure is computationally expensive for large-scale
structures, and rapid condition monitoring could be challenging in
this condition [7,8]. On the other hand, data-driven methods apply
statistical learning algorithms to the vibration data captured from
the structure. This method uses learning algorithms to construct a
classification or regression learner for predicting structural damage [9,
10]. Tsou and Shen [11] proposed the use of Neural Networks (NNs)
for predicting the severity and location of the structural damage. They
used the variations in the modal properties of the structure as the
damage feature to identify the damage. Worden et al. [12] proposed
outlier analysis to compute the deviation of structural response from
its normal condition for detecting the damage by solving a novelty
detection problem. Zhao et al. [13] explored the efficiency of counter-
propagation NNs to locate the structural damage and identify the
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Fig. 1. Failure mechanisms of the concrete shear walls during the 2010 Chile earthquake.
upport movement of beams in their axial direction. Yam et al. [14]
resented a method based on capturing the variations in the energy of
he structural vibrations using wavelet transform and Artificial Neural
etworks (ANNs). Zhang et al. [15] proposed the regression tree and

andom forest to evaluate the post-earthquake structural safety. Sajedi
nd Liang [16] proposed a near real-time damage detection framework
ased on a fully convolutional encoder–decoder NN. Salkhordeh et al.
17] proposed a decision-tree based algorithm for identifying the struc-
ural damage in braced-frame buildings. Neves et al. [18] presented a
ynamic decision-making algorithm to conduct the structural health
onitoring in bridges. They used the Bayesian theorem to update

he prior possibilities of the structural condition based on the new
nformation provided by the system. Different optimization algorithms
an be used to tune the hyperparameters of the machine learning
lgorithms [19–22]. In general, the application of signal processing

methods along with machine learning algorithms plays an imperative
role in implementing these approaches [1,1,23,24].

Feature extraction and compressing the size of damage index vec-
tor are two important objectives of implementing a classification al-
gorithm. The main object of reducing the size of the dataset is to
ameliorate the learning performance and rate of the learning problem.
Principal Component analysis (PCA) [25], Locally Linear Embedding
(LLE) [26], and Independent Component analysis (ICA) [27] are well-
known tools in data size compression. Several studies were carried out
to find low-dimensional features that could be used as the damage
index in the SHM. This low-dimensional features aim to avoid fitting
sophisticated statistical models to the response time series. Reed and
Kassawara [28] proposed two damage indicators based on Cumulative
Absolute Velocity (𝐶𝐴𝑉 ) and response spectrum acceleration to deter-
mine the existence of damage in the structures. Cabanas et al. [29]
proposed the modified 𝐶𝐴𝑉 and Arias intensity (𝐼𝐴) as two damage
indexes that have an appropriate correlation with the damage. Ban-
dara et al. [30] presented a damage index based on the Principal
Components (PCs) of the Frequency Response Functions (FRF) of the
structure. Muin and Mosalam [31] investigated the performance of
𝐶𝐴𝑉 for localizing the structural damage in structural systems. Sajedi
and Liang [32] presented two features based on the energy ratio of the
structural response for detecting the damage. Salkhordeh et al. [17]
showed that the features based on the energy ratio of the structural
response are not efficient as a dependent attribute to classify the struc-
tural damage after the earthquake. They combined an energy-based
feature with two additional attributes, including drift ratio extracted
from acceleration response and the correlation coefficient between the
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linear and nonlinear response of the structure. These damage indicators
were employed to identify the extent of damage based on the rec-
ommendations of ASCE-41 [33] for braced-frame buildings. Selecting
efficient features depends on the structural properties and the type of
application that is expected from the method [34,35].

Previous earthquakes show that the damage intensity is significantly
varied in buildings [36]. The extent of damage could be either vis-
ible due to the large deformations in different elements or hidden
because of the slight deflection in that elements. For example, primitive
evaluation of a building subjected to the 1994 Northridge earthquake
demonstrated that the structural elements had not suffered extensive
damage. However, by eliminating the nonstructural components, the
site engineers reported that the dynamic performance of the building
is highly reduced due to the failure of structural elements [37]. Re-
inforced concrete shear walls are widely used to provide the lateral
load resistance of buildings under earthquake motions because of their
high stiffness and strength. Experimental investigations illustrated that
the seismic performance of shear walls is different regarding the wall
characteristics. In general, short wall response is dominated by shear
and slender wall response governed by flexural behavior [38,39]. Fig. 1
shows failure mechanisms of concrete shear walls during the 2010 Chile
earthquake.

As shown in this figure, extensive crushing of the concrete followed
by local buckling of the rebars led to the complete collapse of the
walls. More than 100 concrete shear wall buildings were severely
damaged during the 2010 Chile earthquake (Mw = 8.8) [40]. In the
light of these experiences, it can be concluded that implementing a
monitoring scheme in these buildings is essential not only for mitigating
the lifetime damages but also for early identifying the post-earthquake
damages. According to the previous studies, there are two main re-
search gaps in (1) rapid estimation of the local damage exposed to the
shear-walls of concrete buildings and (2) investigating the efficiency of
different damage features derived from the ground motion records and
the structural response in identifying the local damage of the structure
caused by ground motions. In addition, in machine-learning-based
structural health monitoring, a finite number of studies investigated
the most powerful learning algorithm as well as damage indices for
detecting the structural damage.

This paper presents a machine-learning-based damage detection
framework for identifying the extent of damage exposed to the concrete
shear-wall buildings during the earthquake. For this purpose, a series
of nonlinear response history analyses are implemented on three 3D

(three-dimensional) buildings using a suite of 111 ground motions that
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Table 1
Material properties of steel rebars.

Element Yield strength (𝑘𝑠𝑖) Modulus of elasticity (𝑘𝑠𝑖) Strain hardening ratio

Steel rebar grade 𝐴𝐼𝐼𝐼 58 29000 0.01
Table 2
Material properties of concrete.

Confinement type Expected compressive Strain at Crushing strength Strain at
strength (𝑘𝑠𝑖) maximum strength crushing strength

Confined concrete 5.55 0.003 1.11 0.03
Unconfined concrete 4.26 0.003 0.85 0.01
Table 3
Results of mesh sensitivity analysis.

Model Mesh size 𝐼𝐷𝑅𝑚𝑎𝑥 Analysis time Error

1 0.5 m × 0.5 m 0.0173 5h , 10min –
2 1.0 m × 1.0 m 0.0177 1h , 17min 2.3%
3 1.5 m × 1.5 m 0.0213 58min 23.1%
4 2.0 m × 2.0 m 0.0228 34min 31.8%

originally developed in the SAC project [41]. To increase the rate
of training and eliminate unnecessary features, Bayesian Optimiza-
tion (BO) is applied. In addition, hyperparameters of the classification
learner are optimized by using the BO algorithm. This paper sheds
significant light on rapid damage estimation of concrete shear-wall
buildings using machine-learning techniques. The present paper is or-
ganized in such a way that first, the benchmark buildings and their
modeling procedure are described. Then, the damage indicators derived
from the vibration data recorded during the earthquake motions are
introduced. Next, different classification algorithms (i.e. decision trees,
support vector machine, k-nearest neighbor, linear discriminant anal-
ysis, and Naive Bayes) used to achieve the best classification learner
are explained. In subsequent, the implementation procedure of the
proposed framework is presented. Finally, the results obtained for
determining the extent of damage in benchmark structures (concrete
shear wall buildings) are discussed.

2. Benchmark buildings

This study aims to predict the structural damage in concrete shear-
wall buildings after a damaging earthquake. To investigate the effi-
ciency of the proposed method, three existing 7-, 9-, and 13-story
concrete shear wall buildings were used as the benchmark models.
These buildings were designed in high seismic zone according to the
corresponding modern code. The modeling procedure and the struc-
tural details of these benchmark buildings are explained in the next
subsections.

2.1. Seven-story building

A 3D seven-story building is selected to assess the performance of
the proposed method in identifying the structural damage of concrete
shear wall buildings. This building includes two shear walls continued
through all the stories. Fig. 2 shows a general view of the building as
well as its plan view. It is worthwhile to mention that the first three
natural periods of the structure were respectively equal to 1.27 s, 0.66 s,
and 0.45 s.

2.2. Nine-story building

The second case study model was an existing nine-story concrete
shear wall building. As shown in Fig. 3, this building had a core as
well as a single shear wall that continued from the underground level
to the roof level. The remaining walls shown in Fig. 3(b) only belonged
to the underground floors. It is notable that the first three fundamental
484

periods of the structure were respectively 1.63 s, 0.83 s, and 0.54 s.
Fig. 2. General view of the 7-story building.

2.3. Thirteen-story building

The third case study model was an existing thirteen-story concrete
shear wall building. Fig. 4 shows a general view of this model as well
as its plan view. According to this figure, this building has six concrete
shear walls continued through all the stories of the structure. The first
three natural periods of the building were equal to 1.99 s, 1.84 s, and
0.76 s. The modeling details of the benchmark buildings are explained
in the following section.
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Fig. 3. General view of the 9-story building.

2.4. Numerical modeling methodology

All the steel rebars are modeled using the Giuffre-Menegotto-Menego
Pinto uniaxial strain-hardening material model defined as 𝑆𝑡𝑒𝑒𝑙02
s 𝑂𝑝𝑒𝑛𝑠𝑒𝑒𝑠 platform. The yield stress and modulus of elasticity for
𝐼𝐼𝐼 steel bars were 58.0 ksi and 29000 ksi, respectively. In addition,

he strain hardening ratio of steel material was designated as 0.01.
he recommended values of 0.15, 0.925, and 12 were respectively
onsidered for the model parameters 𝑐𝑅2, 𝑐𝑅1 and 𝑅0 to control the

shape of hysteresis curves of the rebars. These parameters control the
transition of the hysteresis curve from elastic region to plastic branch.
The isotropic hardening parameters 𝑎1, 𝑎2, 𝑎3, and 𝑎4 defined as the
efault values of 1.0, 0, 1.0 and 0, respectively. Table 1 summarizes
he material properties of the steel rebars considered for reinforced
oncrete elements. Cross-sectional properties of concrete beams and
olumns were defined using the 𝐹 𝑖𝑏𝑒𝑟𝑆𝑒𝑐𝑡𝑖𝑜𝑛 command in 𝑂𝑝𝑒𝑛𝑠𝑒𝑒𝑠.
he material model of both confined and unconfined concrete was
efined using the model presented by Yassin [42] which is designated
n 𝑂𝑝𝑒𝑛𝑆𝑒𝑒𝑠 as 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒02. For unconfined concrete, the expected com-
ressive strength 𝑓𝑝𝑐 was 4.26 ksi, the concrete strain 𝑒𝑝𝑠𝑐0 at maximum
trength was 0.003 (which represents an initial concrete modulus (𝐸0)
485

qual to that defined in ACI 318 [43]), the concrete crushing strength w
Fig. 4. General view of the 13-story building.

𝑓𝑝𝑐𝑢 = 0.2𝑓𝑝𝑐 and the concrete strain at crushing strength was 𝑒𝑝𝑠𝑈 =
0.01. The parameters 𝑓𝑝𝑐 and 𝑒𝑝𝑠𝑐0 for confined concrete were calculated
using the recommendation of Saatcioglu and Razvi [44], depending on
the area, spacing, and configuration of the transverse reinforcement.
For the confined concrete, the expected compressive strength 𝑓𝑝𝑐 was
5.55 ksi. Similar to the unconfined concrete, the crushing strength of
confined concrete was also considered equal to 0.2𝑓𝑝𝑐 . The crushing
strain of the confined concrete was considered similar to the com-
pression strain 𝜖20 of the Saatcioglu and Razvi model [44]. The ratio
between the unloading slope and the initial slope was selected to be the
default value of 0.1. The tensile strength of concrete 𝑓𝑡 was considered
as 0.33

√

𝑓 ′
𝑐 [45] and the softening stiffness of concrete in tension 𝐸𝑡𝑠

as defined as 0.05𝐸 according to the recommendation of Yassin [42].
0
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Fig. 5. Shell element for modeling the concrete shear walls [46].

Table 2 shows the material properties of both confined and unconfined
concrete used for all the case studies. All the beam and column
elements were modeled using the displacement-based beam–column
element. The shear wall elements were assigned to the structure using
the 𝑆ℎ𝑒𝑙𝑙𝑁𝐿𝐷𝐾𝐺𝑄 element. Material properties of each layer and
corresponding geometrical characteristics of the wall can be assigned
to this element as shown in Fig. 5(a). This element is developed to take
into account the geometric nonlinearity of large deformations using the
updated Lagrangian method. The 𝑆ℎ𝑒𝑙𝑙𝑁𝐿𝐷𝐾𝐺𝑄 element simplifies
the nonlinear behavior of 3D concrete shear walls by discretizing
different elements of the wall into separate fully-bonded layers along
the thickness direction. 𝐿𝑎𝑦𝑒𝑟𝑒𝑑𝑆ℎ𝑒𝑙𝑙 command was used to create the
fiber-based multi-layer section of the shear walls. As shown in Fig. 5(b),
the rebars are defined as spread orthotropic layers considering the
direction and location of them. The axial strain and curvature of the
middle layer is firstly calculated. Then, the strain of other layers is
calculated by applying the plane-section assumption [46,47].

Remarkably, all the slabs were defined as rigid diaphragms in both
horizontal directions. Since the size of meshes considered for the shear
wall elements highly affects the computational time, a mesh sensitivity
analysis was performed to achieve an optimum model with acceptable
accuracy and analysis time. Fig. 6 shows the effect of meshing size on
the inter-story drift ratio of the building. In addition, Table 3 shows
he results of mesh sensitivity analysis for 7-story building. This Table
ummarizes the computational time and maximum inter-story drift
atio of the building under the 𝐶𝑜𝑦𝑜𝑡𝑒𝐿𝑎𝑘𝑒 earthquake record. As can be
een, the size of mesh was selected as 1.0 m×1.0 m because of promising

accuracy and computational time compared to the 0.5 m×0.5 m meshing
size.

3. Feature extraction

Vibration-based damage detection methods highly depends on the
damage index used for revealing the extent of the damage. This paper
uses seven different damage features and investigates the efficiency
of these attributes in diagnosing the extent of damage in concrete
shear wall buildings. This research reduced the number of damage
486

features by selecting efficient attributes from the set of features through m
Fig. 6. Inter-story drift ratio of the structure for different mesh sizes.

Bayesian optimization [48]. Doing so leads to increasing the learning
rate of the classifier and reducing the computational cost. The following
subsections are going to explain these damage indexes.

3.1. Arias intensity (𝐼𝐴)

Cabanas et al. [29] proved that the Arias intensity of the ground
motions is related to the severity of damage in earthquake-exposed
buildings. The Arias intensity of a signal can be defined as follow:

𝐴𝐼 = 𝜋
2𝑔 ∫

𝑡

0
(�̈�(𝑡))2𝑑𝑡 (1)

where �̈�(𝑡) is the earthquake acceleration at time step 𝑡. Since the Arias
intensity measure does not include any information about the structural
properties, this index is not accurate in identifying the local damage in
structural elements. For example, different ground motions may have
similar input energies, but impose different damage severities to the
building because of differences in the frequency content of the records.

3.2. Cumulative Absolute Velocity (CAV)

As mentioned before, Reed and Kassawara [28] illustrated that
the CAV is correlated with the extent of damage that imposed to the
structure during an earthquake. The CAV of the structural response can
be written as below:

𝐶𝐴𝑉 = ∫

𝑇

0
|𝑎(𝑡)| 𝑑𝑡 (2)

where 𝑇 is the duration of the structural response, 𝑎 is the acceleration
response of the building’s floor. Unlike the Arias intensity, the CAV
criterion includes the nonlinearity condition of the structure. However,
the value of CAV highly depends on the duration of the ground motion
record. For instance, a ground motion with a lower value of PGA and
a larger duration may results in a larger value of CAV compared to a
record with a larger PGA and lower duration.

3.3. Modified Cumulative Absolute Velocity (MCAV)

According to the study implemented by Salkhordeh et al. [17], the
CAV may not be efficient in detecting the extent of damage because
of its dependence on the earthquake duration. Therefore, this study
uses the Modified Cumulative Absolute Velocity (MCAV) as one of the
damage features. The MCAV attribute is written as below:

𝑀𝐶𝐴𝑉 =
𝑁
∑

𝑖=1
(𝐻(𝑃𝐺𝐴𝑖 − 𝑐)∫

𝑖

𝑖−1
|𝑎(𝑡)|𝑑𝑡) (3)

where 𝑁 is the number of one-second time intervals of the ground
otion, 𝐻(𝑥) is the Heaviside step function defined as 0 for 𝑥 ≺ 0 and
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1 for 𝑥 ≻ 0, 𝑃𝐺𝐴𝑖 is the peak ground acceleration for 𝑖th time interval,
nd 𝑐 is a 𝑃𝐺𝐴 threshold to neglect the summation for values smaller
han this threshold value [49].

.4. Spectral acceleration

It seems necessary to define a damage indicator that includes both
haracteristics of the structure and input ground motions. To do so, the
pectral acceleration of the earthquake records at the first fundamental
eriod of the building is defined as a damage feature. This attribute
nables the framework to learn the extent of damage based on the
ntensity of ground motion and also the dynamic properties of the
uilding.

.5. Energy ratio

Damage severity in a building has a direct relation to the nonlin-
arity that occurred in the structural elements [9]. This nonlinearity is
stimable from the acceleration response of the structure. To capture
he nonlinearity in the structure, a relative energy ratio is defined
elow:

𝐸 =
∫ 𝑇0 |�̈�(𝑡)| 𝑑𝑡

∫ 𝑇0
|

|

|

�̈�𝑔(𝑡)
|

|

|

𝑑𝑡
(4)

where, �̈�(𝑡) and �̈�𝑔(𝑡) are the recorded acceleration from the floor
and ground level of the structure, respectively. Nonlinearity in the
structural elements leads to the change in the relative ratio of 𝐶𝐴𝑉
in different Degree of Freedoms (DOFs) of the building.

3.6. Drift

It is well-understood that the severity of damage exposed to the
building under the earthquake motions has a direct relation with
the inter-story drift [50]. Ideally, the story drift time–history can be
computed by implementing two consecutive integration on the rel-
ative acceleration response of the structure. However, there is an
unwanted noise in the acceleration response histories captured by the
accelerometers. This makes the obtained drift history unreliable. There-
fore, signals acquired by sensors should be filtered from noise by using
the process known as ‘‘de-noising’’. The present study implements the
non-parametric de-noising approach known as ‘‘wavelet shrinkage de-
noising’’. This method was originally developed by Donoho et al. [51–
54]. The wavelet function 𝜓(𝑡) ∈ 𝐿2(ℜ) can be written as follow [55]:

𝜓𝑎,𝑏(𝑡) = |𝑎|−0.5 𝜓
( 𝑡 − 𝑏

𝑎

)

(5)

here 𝐿2(ℜ) represent the suite of integrable functions, 𝑎 and 𝑏 are
espectively the scale and translation factors, |𝑎|−0.5 is defined to nor-
alize the value of ‖

‖

𝜓𝑎,𝑏‖‖, and 𝜓 is the wavelet function. The wavelet
unction has a zero mean value, and must meet the admissibility
ondition as below:

𝜓 = ∫

∞

−∞

|�̂�(𝜔)|2

|𝜔|
𝑑𝜔 <∞ (6)

where 𝜔 refer to the frequency, and �̂�(𝜔) = ∫ℜ 𝜓(𝑥) exp (−𝑖𝑥𝜔)𝑑𝑥 is the
Fourier transform of the function 𝜓 . The inner product of the wavelet
amilies 𝜓𝑎,𝑏(𝑡) to the signal 𝑥(𝑡) is defined as Continuous Wavelet
ransform (CWT):

𝑊 (𝑎, 𝑏) =≺ 𝑥(𝑡), 𝜓𝑎,𝑏(𝑡) ≻= ∫

∞

−∞
𝑥(𝑡) 1

√

𝑎
𝜓∗( 𝑡 − 𝑏

𝑎
)𝑑𝑡 (7)

here 𝜓∗ indicates the complex conjugate of 𝜓 . This equation converts
o the Discrete Wavelet Transform (DWT) where parameters 𝑎 and 𝑏
re defined as discrete values. To reconstruct the signal 𝑥(𝑡) from its
avelet transform, Calderon’s identity can be written as below:

(𝑡) = 1
∫

∞

∫

∞
𝐹𝑊 (𝑎, 𝑏)𝜓( 𝑡 − 𝑏 )𝑑𝑎

2
𝑑𝑏
√

(8)
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𝐶𝜓 −∞ −∞ 𝑎 𝑎 𝑏 c
Notably, this method is different with the conventional linear filtering
approaches because of implementing a nonlinear shrinkage on coeffi-
cients in the transform domain. Moreover, the conventional de-noising
methods assume the low signal-to-noise ratio for the signal, which
may apply additional bias to the filtered signal. In addition, unlike the
parametric methods that need an initial approximation of the model
parameters, wavelet de-noising approaches are non-parametric, and
the correction is related to specific properties of the signal. Hence,
wavelet de-noising approach is applied in this study to prepare the
noisy signal for integration. Fundamental characteristics required to
implement the method were defined same as the recommendations
of Ansari et al. [56],Soroushian et al. [57], which evaluate the ef-
ficiency of wavelet multi-resolution analysis in correcting the noisy
signals. This method includes two phases based on wavelet de-noising
to modify the acceleration time histories.

In the first phase, the signal decomposes into 𝑁 levels, in which the
𝑁 value is selected to achieve the frequency range of interest for the
𝑁th detail of the signal. Next, two modifiers are subjected to the detail
values of the signal if its amplitude violate a pre-defined threshold
level [51–54] The modification functions depend on the single positive
parameter 𝜂, called the threshold as:

𝑆𝑜𝑓𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ∶ 𝑇𝑠(𝐷, 𝜂) =

⎧

⎪

⎨

⎪

⎩

𝐷 − 𝜂, 𝐷 ⪰ 𝜂
0, |𝐷| ≺ 𝜂
𝐷 + 𝜂, 𝐷 ⪯ −𝜂

(9)

𝐻𝑎𝑟𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ∶ 𝑇𝑠(𝐷, 𝜂) =

{

0, |𝐷| ≺ 𝜂
𝐷, |𝐷| ⪰ 𝜂

(10)

Generally, thresholds can be classified into two categories: (1) ‘‘single
thresholds’’ and (2) ‘‘level-dependent thresholds’’. In the first method,
a single threshold determined according to the properties of the signal
is imposed to the wavelet coefficients. In the second approach, the
threshold values are determined regarding the characteristics of the
signal at different levels. After the thresholding step, the corrected
signal was reconstructed according to its approximation and detail
values.

The second phase has the same steps as the first one, and only the
following differences should be considered.

• Modification factors are used for the velocity signal obtained
by applying multiple integration to the acceleration response
achieved in the first phase.

• The velocity signal should be parsed to 𝑀 levels (where 𝑀 ⪰
(𝑁 + 2)).

• After the thresholding step, the modified velocity signal is re-
constructed by applying a summation on only the details of the
velocity signal.

It should be mentioned that the first phase is useful for modifying the
high-frequency noises, and the second phase is suitable for correcting
the low-frequency noises of the signal. In this study, according to the
study of Soroushian et al. [57], hard-thresholding is used together with
the SureShrink approach to modify the acceleration signals. Notably,
SureShrink is an efficient approach for computing the level-dependent
thresholds. In addition, to prevent the phase distortion that is usual
in conventional methods of de-noising, the symlet wavelet is used
because of its approximately linear phase response [56]. For example,
Fig. 7 shows the result of using ‘‘wavelet de-noising’’ for correcting
the drift response of the first floor of 9-building under the 𝐶𝑜𝑦𝑜𝑡𝑒𝐿𝑎𝑘𝑒
arthquake (26.86s duration) in presence of 10% noise. This Figure
lso illustrates a drift response that is directly calculated from the
cceleration response of the building polluted with 5% noise. It is
lear that the drift response obtained through direct integrating on
he acceleration history is far from the real response even when the
cceleration response of the building contains 5% noise. However,
he corrected drift history is well-correlated with the response of the
uilding. It should be noted that the ‘‘wavelet de-noising’’ approach
ay not be efficient for certain response because of different frequency
ontent of the ground motions.
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Fig. 7. Efficiency of the ‘‘wavelet de-noising’’ in correcting the drift response.

.7. Correlation coefficient

THe correlation coefficient between the nonlinear acceleration re-
ponse of the building (real structure) and the acceleration response
btained from the corresponding linear system was used as a damage
ndicator. A linear and time-invariant transfer function 𝐻(𝜔) was de-

fined as the proportion of the response signal 𝑦 and input excitation 𝑥
s below:

(𝜔) =
𝑆𝑦𝑦(𝜔)
𝑆𝑥𝑦(𝜔)

(11)

where 𝑆𝑥𝑦 represent the cross power spectral density between the exci-
tation and response signals, and 𝑆𝑦𝑦 is the power spectral density of the
acceleration response of the structure. The equivalent linear response
of the building, 𝑦(𝑡), is estimable by calculating the inverse Fourier
transform of 𝐻(𝜔)𝑋(𝜔), where 𝑋(𝜔) is the Fourier spectrum of the
input excitation. The transfer function of a structure can be obtained
by: (1) using sensory data acquired from the minor ground motions
recorded during the lifetime of the structure, or (2) by conducting an
ambient vibration-based experiment [58]. In the present research, the
acceleration response of the building under a minor earthquake is used
to calculate the transfer function of the structure.

In general, by increasing the severity of damage in the building, the
acceleration response deviates more from the response of the equivalent
linear system because of nonlinearity in the structural elements. Fig. 8
illustrates this matter for two examples, one for the response of the
structure under the scaled 𝐶𝑜𝑦𝑜𝑡𝑒𝐿𝑎𝑘𝑒 ground motion with 𝑃𝐺𝐴 =
0.1 g and another for 𝑃𝐺𝐴 = 1.2 g. It is obvious that whatever the
ground motion intensity increases, the correlation coefficient between
488
Fig. 8. The effect of nonlinearity on the correlation coefficient damage indicator.

these responses becomes lower (close to zero for severe damage). The
correlation of two signals depends on the intensity of the relationship
between the relative movements of these two signals [59]. Here, the
correlation coefficient between the nonlinear response of the building
(real building) and corresponding linear system was written as follow:

𝐶𝑋,𝑌 = 𝜌𝑥,𝑦 =
𝐸[(𝑋 − 𝑚𝑋 )(𝑌 − 𝑚𝑌 )]

𝜎𝑋𝜎𝑌
(12)

where, 𝑋 was the acceleration response recorded from the structure,
and 𝑌 was the acceleration response of the equivalent linear sys-
tem. Moreover, 𝑚𝑋 and 𝑚𝑌 were the average values of the acceler-
ation response for the real building and its equivalent linear system,
respectively.

4. Machine learning algorithms

Machine learning algorithms are extensively progressed in earth-
quake engineering, especially for damage detection, system identi-
fication, and risk assessment applications. This paper implements a
parametric study to determine the best classification learner among the
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), decision
tree, linear discriminant, and Naive Bayes algorithms. The next sub-
sections are going to present a brief description of the mathematical

foundations of these algorithms.
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Fig. 9. Response spectra for the set of earthquake motions.

Fig. 10. Effect of 10% noise on the structural response.

.1. Support Vector Machine (SVM)

SVM is a non-probabilistic binary classification learner. Typically,
VMs enlarge the features space by applying effective calculations
hrough different nonlinear kernel functions. This statistical learner is
ypically developed for binary classification at which each observation
s labeled as 𝑦𝑖 ∈ {−1, 1}. The optimization problem in SVM can be
ritten as below:

𝑚𝑖𝑛
𝜔,𝛽

1
2
‖𝜔‖2 + 𝛾𝜆

∑

𝑦𝑖∈𝐶+
𝐵𝑖𝜉𝑖 + 𝜆

∑

𝑦𝑖∈𝐶−
𝐵𝑖𝜉𝑖 (13)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ (14)

𝜉𝑖 ≥ 0, ; 𝑦𝑖
[

ℎ(𝑥𝑖)𝑇𝜔 + 𝛽
]

≥ 1 − 𝜉𝑖 ∀𝑖; (15)

here 𝜔 is the set of weights, 𝛽 is the bias parameter, and 𝜉 is the
lack variable utilized to model a soft-margin classifier. Slack variables
re useful to construct a generalized decision boundary by permitting
ome error near the boundaries. 𝜆 is the box constraint used to make
balance between the generalization and training accuracy. To train a

lassifier that performs better for observations with higher probability
489
Table 4
Distance measures proposed for W-KNN.
Distance measure Formula

Euclidean 𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =
√

∑𝑛
𝑖=1(𝑎𝑖 − 𝑏𝑖)2

Minkowski 𝐷𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 = (
∑𝑛
𝑖=1

|

|

𝑎𝑖 − 𝑏𝑖||
𝑐 )

1
𝑐

Manhattan 𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 =
∑𝑛
𝑖=1

|

|

𝑎𝑖 − 𝑏𝑖||

Chebyshev 𝐷𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = lim𝑐→∞(
∑𝑛
𝑖=1

|

|

𝑎𝑖 − 𝑏𝑖||
𝑐 )

1
𝑐

Mahalanobis 𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 =
√

(𝑎 − �⃗�)𝑇𝑆(𝑎 − �⃗�)

Cosine 𝐷𝐶𝑜𝑠𝑖𝑛𝑒 =
𝑎.�⃗�

‖𝑎‖‖�⃗�‖

of occurrence (𝑃𝑖), 𝐵𝑖 is defined as follow:

𝐵𝑖 =
𝑃𝑖

∑𝑚
𝑖=1 𝑃𝑖

(16)

In order to quantify the misclassification cost, 𝛾 is defined. The misclas-
sification penalty will increase for positive class by increasing the value
of hyperparameter 𝛾. This parameter is used to establish a uniform
distribution for different labels [60].

4.2. K-Nearest Neighbors (KNN)

KNN is a non-parametric algorithm developed for the classification
and regression [61,62]. The non-parametric term means that the algo-
rithm does not consider any pre-defined assumption on the underlying
data. This algorithm consists of two steps: (1) finding a group of KNN
for a given dataset using different distance metrics, and (2) labeling the
query based on the dominant class in KNN. Supposing the training set
{

(𝑥𝑖, 𝑦𝑖)
}𝑛
𝑖=1 in which, 𝑥𝑖 is a 𝑧-dimensional vector and 𝑦𝑖 is the corre-

sponding label, for a query 𝑥𝑗 , the algorithm determines its unknown
𝑦𝑗 as follows:

• Compute the distance between 𝑥𝑗 and each 𝑥𝑖 in the dataset
• Arrange the calculated distances in descending order
• Select K samples that have the nearest distance to 𝑥𝑗
• The label of 𝑥𝑗 is assigned based on the majority classes of the

KNNs

The Weighted-KNN (W-KNN) is an extension of KNN, which assigns a
weight to the neighbors based on their distance. The value of weight
would be increased by decreasing the distance of the neighbors to the
test query 𝑥𝑗 . There are various types of distance and weight mea-
sures proposed for W-KNN such as Euclidean, City block, Chebyshev,
Jaccard, etc. In addition, the squared inverse and inverse rules are
the main weighting measures presented for KNN. Table 4 summarizes
the formulation of some important distance measures defined for two
hypothetical vectors 𝑎 and �⃗� where 𝑆 is the covariance matrix of these
vectors.

4.3. Decision tree

A decision tree classifier is defined as a recursive partitioning of
the paradigm space to map the observations into the target values.
The learning process of decision trees is similar to the structure of
a flowchart in which the uppermost node (root node) implements a
test on the features. The outcome of each node is partitioned through
branches and the corresponding label is determined using leaf nodes.
In general, decision trees are categorized as (1) classification trees,
and (2) regression trees. In the former one, the set of features are
labeled as the finite number of classes they belong to it. However, the
samples are labeled as arbitrary real numbers in the regression trees.
Detailed information on the regression trees is neglected because the
present study is focused on the classification learners. The main issue

in providing a classification tree is selecting the most effective feature
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Table 5
Different splitting criteria proposed for decision tree algorithms.

Splitting criteria Formula

Entropy 𝐸(𝑋) = −
∑𝑘
𝑗=1 𝑝𝑗 log2(𝑝𝑗 ) define log2(0) = 0

Gini index 𝐺(𝑋) =
∑𝑘
𝑗=1 𝑝𝑗 (1 − 𝑝𝑗 ) = 1 −

∑𝑘
𝑗=1 𝑝

2
𝑗

Towing rule 𝛷(𝑋) = 𝑃𝐿𝑃𝑅
4

[

∑𝑘
𝑗=1

|

|

|

𝑃 (𝑐𝑗 |𝐴𝐿) − 𝑃 (𝑐𝑗 |𝐴𝑅)
|

|

|

]2

Deviance 𝐷(𝑥𝑖) = −2
∑𝑘
𝑗 𝑥𝑖𝑗 log 𝑝𝑗

for partitioning the samples at each node. Several splitting criteria
were introduced during development of decision trees, e.g. towing rule,
deviance, Gini index, and entropy [63]. Table 5 summarizes some
common attribute selection criteria proposed for different decision tree
algorithms. In a binary classification tree, at a given node 𝐴, there
re 𝑁-point, 𝐾-class dataset. This node splits dataset to 𝐴𝑅 and 𝐴𝐿
right and left nodes) with a proportion of 𝑃𝑅 and 𝑃𝐿 for the right
nd left branches, respectively. The outcome of each node labeled by 𝐾
lass labels,

{

𝑐𝑖,… , 𝑐𝑘
}

. The probability of the sample 𝑋 is calculated
s 𝑝(𝑋 = 𝑐𝑗 ) = 𝑝𝑗 , in which 𝑗 = 1, 2,… , 𝑘 and ∑𝑘

𝑗=1 𝑝𝑗 = 1. In
his Table, the minimum value of the entropy is 0 and occurs when
ne of 𝑝𝑗 = 1 (𝑗 = 1, 2,… , 𝑘). This means that all other 𝑝𝑗 are
qual to 0 [64] The minimum value of Gini index is equal to 0. This
inimum value will occur if all samples in the node be of a single

ategory [65]. Notably, the towing rule is efficient for a dataset labeled
y large number of various classes [66]. In the deviance measure,
𝑖𝑗 (𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,… , 𝑘) is the 𝑖th observation related to the Kth-
omponent from the random vector 𝑋. Generally, the splitting criteria
esignate the type of splitting that results in the maximum reduction
n the a parameter called ‘‘impurity measure’’. The impurity measures
epresent the homogeneity of training examples in the child node after
ach partitioning [66].

Generally, the training process in decision tree learners is continued
ntil all the samples at the subsets have a unique label. In this condi-
ion, it is being said that the tree is a ‘‘complex tree’’ and is overfitted
n the dataset. The overfitting problem reduces the generalization
f the predictive model, and the accuracy of an overfitted model is
ow for new data. The pruning is defined as the process of removing
he branches and leaves of the tree that decreases the test accuracy
f the model. Two general approaches are recommended for pruning
rocess, (1) pre-pruning, and (2) post-pruning technique. The readers
re encouraged to review [66] to achieve more information on the
runing process.

.4. Naive Bayes

The Naive Bayes Classifier (NBC) is a supervised classification al-
orithm which founded based on the class conditional independence
ssumption [67]. For an input vector, 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛), the con-
itional probability of 𝑘th possible outcome (𝐶1, 𝐶2,… , 𝐶𝑘) can be
efined as below:

(𝐶𝑘|𝑋) =
𝑃 (𝑋|𝐶𝑘)𝑃 (𝐶𝑘)

𝑃 (𝑋)
(17)

the denominator 𝑃 (𝑋) is as follow:

𝑃 (𝑋) =
𝑘
∑

𝑗=1
⟮𝑃 (𝐶𝑗 )

𝑛
∏

𝑖=1
𝑃 (𝑥𝑖|𝐶𝑗 )⟯ (18)

the following equation can be written by assuming that all factors in 𝑋
are conditionally independent:

𝑃 (𝑋|𝐶𝑘) =
𝑛
∏

𝑖=1
𝑃 (𝑥𝑖|𝐶𝑘) (19)

the following equation is derived by substituting Eq. (19) and (18) into
q. (17):

(𝐶𝑘|𝑋) =
∏𝑛

𝑖=1 𝑃 (𝑥𝑖|𝐶𝑘)𝑃 (𝐶𝑘)
∑𝑘 ∏𝑛 (20)
490

𝑗=1⟮𝑃 (𝐶𝑗 ) 𝑖=1 𝑃 (𝑥𝑖|𝐶𝑗 )⟯ S
finally, the NBC uses the Maximum A Posteriori (MAP) decision rule [68
to determine the class for each sample. Therefore, the NBC classifier is
a function that assigns a class label �̂� = 𝐶𝑘 to a set of 𝑘 observations as
below:

𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈(1,…,𝐾) =
∏𝑛

𝑖=1 𝑃 (𝑥𝑖|𝑐𝑘)𝑃 (𝑐𝑘)
𝑃 (𝑥)

(21)

despite the simplified assumptions that laid at the foundation of the
NBC, several studies are reported surprising effectiveness of this algo-
rithm even with strong dependencies [67].

4.5. Linear Discriminant Analysis (LDA)

The discriminant analysis is a linear combination of the features to
reduce the size of feature’s space and scale the features according to
their importance [69]. Many feature extraction techniques apply linear
transformations on the original vector of patterns to achieve new vec-
tors with lower dimension. The main objective of Linear Discriminant
Analysis (LDA) is to search a vector from the vectors space that presents
better separation between different classes of data. The separability of
each vector can be examined by projecting the original set of data onto
these vectors. When the transformed data illustrate significant overlap,
the LDA algorithm seeks a better separation by using a transformation
rule know as Fisher ratio [70]. The fisher ratio for a binary problem is
defined as below:

𝐹𝑅 =
(𝜇1 − 𝜇2)2

𝜎21 + 𝜎
2
2

=
𝑆𝐵
𝑆𝑊

(22)

here 𝜇1 and 𝜇2 are the mean or center points of the first and second
lasses, respectively. It is obvious that 𝜇1 − 𝜇2 represents the distance
etween the centroids of two classes. 𝜎1 and 𝜎2 are also the variance
f the first and second classes, respectively. Thus, the LDA tries to
aximize the distance between two classes by maximizing the Fisher

atio. In other words, it maximizes the scatter between two classes
𝑆𝐵) while making two classes as condense as possible by minimizing
ithin class scatter (𝑆𝑊 ). To meet this goal, a transformation vector 𝑤

s applied as below:

𝑅(𝑤) =
𝑤𝑇𝑆𝐵𝑤
𝑤𝑇𝑆𝑊𝑤

(23)

finally, the algorithm is intended to find a transformation vector 𝑤 that
aximizes the Fisher ratio. By differentiating 𝐹𝑅(𝑤) in terms of 𝑤, the

ollowing eigen value problem will obtain:
−1
𝑤 𝑆𝐵𝑤 = 𝜆𝑤 𝑤ℎ𝑒𝑟𝑒 𝜆 = 𝐹𝑅(𝑤) = 𝑠𝑐𝑎𝑙𝑎𝑟 (24)

olving the eigen value problem yields:

= argmax
𝑤
𝐹𝑅(𝑤) = 𝑆−1

𝑤 (𝜇1 − 𝜇2) (25)

fter projecting the feature’s space onto the projection vector, a Gaus-
ian distribution can be fitted on each class to conduct the classification
roblem.

. Implementation

So far, the mathematical foundation of the proposed framework is
iscussed. For better understanding, this section presents an overall
iew of the proposed approach.

.1. Input excitations

In order to provide a generalized dataset, a suite of 111 pair mo-
ions (Table A.1), originally developed for the SAC project [41], are
mployed. These motions are uniformly scaled to 16 different Peak
round Acceleration values (PGAs), ranging from 0.05 g to 1.5 g, to
enerate a wide range of severity for the input excitations. Notably, the
AC motions include a set of far-field, near-field, and simulated records
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representing a wide range of frequency contents. Therefore, the set of
ground motions provide a generalized set of structural response for
the classification problem. Fig. 9 illustrates the PGA-normalized elastic
acceleration response spectra with 5% damping ratio for the suite of
ground motions.

5.2. Effect of noise

It is well understood that the sensory data are accompanied by
unwanted noise. The effect of noisy structural response on the learning
process was considered by adding white Gaussian noise to the acceler-
ation signals acquired from each floor of the buildings. The coefficient
of signal-to-noise ratio is defined to measure the level of noise that is
added to the signals. This coefficient is written as below:

𝑆𝑁𝑅 =
𝜎2𝑠𝑖𝑔𝑛𝑎𝑙
𝜎2𝑛𝑜𝑖𝑠𝑒

(26)

where 𝜎2𝑠𝑖𝑔𝑛𝑎𝑙 and 𝜎2𝑛𝑜𝑖𝑠𝑒 are the variance of the signal and noise, respec-
tively. Random noise is generated through the Gaussian process with
a variance of

𝜎2𝑠𝑖𝑔𝑛𝑎𝑙
𝑆𝑁𝑅 and added to the clean signals acquired from the

esponse history analysis to simulate the field condition. In this study,
maximum level of 10% noise is considered as the worst case. Fig. 10

hows the effect of 10% on the original acceleration response of the
tructure.

.3. Feature extraction and labeling

After simulating the field condition by adding natural noise to the
tructural response, a finite number of features should be extracted
rom these raw acceleration histories to feed the classification learn-
rs. In this regard, all the acceleration records were de-noised using
he wavelet de-noising approach explained in Section 3.6. Then, all
he damage features were extracted from the acceleration signals as
iscussed in Section 3. The performance level of the shear wall is de-
ermined based on the recommendation of ASCE 41-17 [71] (Table A.2)
o assign the proper label for each sample. According to ASCE 41-17,
he performance level of a shear wall with specific design properties
nd construction type is determined based on the amount of plastic
otation that occurred in the body of the wall. Readers are encouraged
o review Table A.2 for detailed information on the way of determining
he performance metrics. After determining the extent of damage of the
hear walls, the 𝐼𝑂, 𝐿𝑆, and 𝐶𝑃 performance levels were labeled as 0,
, and 2, respectively.

.4. Hyperparameter optimization

An important problem in training a classifier is selecting optimum
yperparameters to achieve the minimum cost for predictive model. To
revent the over-fitting of the classification learner, the 𝐾-fold cross-
alidation approach is employed. This method randomly divides the
ataset into 𝐾 equal parts in which (𝐾 − 1) partitions are utilized for
raining process, and the rest is considered to investigate the validity
f the training algorithm. This process is iterated until all partitions are
onsidered at least one time as the validation part. Finally, the average
oss for these 𝑘 trained models is reported as the cross-validation error.

𝑉𝑒𝑟𝑟𝑜𝑟 =
𝐾
∑

𝑖=1
𝑒𝑘 (27)

here 𝐶𝑉𝑒𝑟𝑟𝑜𝑟 is the cross-validation error, and 𝑒𝑘 represent the value
f error obtained for each fold. Bayesian Optimization (BO) algorithm
onducts the classifier to achieve a model with minimum 𝐶𝑉𝑒𝑟𝑟𝑜𝑟. To
491

his end, the 𝐶𝑉𝑒𝑟𝑟𝑜𝑟 is considered as an objective function for the t
Fig. 11. Bayesian optimization algorithm.

optimization problem. The value of 𝐶𝑉𝑒𝑟𝑟𝑜𝑟 is calculated through a
Gaussian process as follow:

𝐶𝑉𝑒𝑟𝑟𝑜𝑟 ∼ 𝐺𝑃 (𝑀,
∑

+𝜎2𝐼) (28)

where 𝑀 is the average value of the Gaussian process with an initial
value of 0. ∑ is the covariance matrix calculated from the squared
exponential kernel function [72]. 𝐼 is an identity matrix with com-
patible dimensionality. It is assumed that a Gaussian noise with a
variance of 𝜎2 is added to the observations. To evaluate and update the
hyperparameters, BO maximizes the following acquisition function:

𝐸𝐼(𝑥) = 𝐸[𝑚𝑎𝑥(0, 𝜇(𝑧𝑏𝑒𝑠𝑡) − 𝐶𝑉𝑒𝑟𝑟𝑜𝑟)] (29)

where 𝑧𝑏𝑒𝑠𝑡 is the location of the minimum posterior’s mean, and 𝜇(𝑧𝑏𝑒𝑠𝑡)
is the minimum value of the posterior’s average. BO may stop after
satisfying each of the following assumptions: (1) a threshold value for
the number of iterations, (2) a threshold for the learning time, and (3) a
specific stopping criterion that applied to the algorithm. In the present
research, the stopping criterion was a threshold value for the number
of iterations. This value was chosen based on the complexity of the
under-study problem. Readers are referred to study [48,72] for detailed
information on employing the BO algorithm for hyperparameter selec-
tion in the classification learners. Fig. 11 illustrates the BO flowchart
for calculating the optimized hyperparameters.

5.5. Training procedure

A parametric study is implemented to determine the most reliable
classification learner for mapping the feature’s space onto the damage
scenarios of the shear wall buildings. BO algorithm is used to tune
the hyperparameters of each model. Besides, K-fold cross-validation
technique is considered to prevent the over-fitting problem during the
training process. For this purpose, the training set is partitioned into 10
equal subset. The feature’s space is fed to the classification learners in
the following form:

𝑂𝑘𝑖,𝑗−𝑥 =
[

𝑓 1
𝑖,𝑗−𝑥, 𝑓

2
𝑖,𝑗−𝑥,… , 𝑓 6

𝑖,𝑗−𝑥, 𝑓
7
𝑖,𝑛−𝑥

]

𝑎𝑛𝑑 (30)

𝑘
𝑖,𝑗−𝑦 =

[

𝑓 1
𝑖,𝑗−𝑦, 𝑓

2
𝑖,𝑗−𝑦,… , 𝑓 6

𝑖,𝑗−𝑦, 𝑓
7
𝑖,𝑛−𝑦

]

(31)

here 𝑓 represents the feature, 𝑖 is the observation number, 𝑗 =
1, 2,… , 𝑛} is the story number, and 𝑘 is the number of features.
s mentioned before, the correlation feature is only determined for

he roof level. Therefore, 𝑓 7 and 𝑓 7 are the correlation features
𝑖,𝑛−𝑥 𝑖,𝑛−𝑦
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Fig. 12. Outline of the proposed framework.
Table 6
Comparison between the performance of different models.
Learning algorithm 7-story building 9-story building 13-story building Average

Decision tree 93% 83.5% 94.9% 90.5%
Linear discriminant 93.4% 85.6% 92.9% 90.6
Naive Bayes 87.4% 83.7% 90.6% 87.2%
SVM 94.6% 89.3% 95.4% 93.1%
KNN 95.7% 89.7% 95.6% 93.6%
obtained for the roof level of each building in 𝑥 and 𝑦 directions,
receptively. Notably, the dataset is randomly shuffled, and 80% of the
examples are employed for training process. Besides, the remaining bin
is utilized to test the accuracy of the trained classifier. Fig. 12 shows
the general view of the proposed algorithm.

A parametric study was performed to obtain a sufficient number of
features that should be used for achieving a predictive model with max-
imum accuracy and minimum computational cost. According to this
investigation, it is concluded that 4 of the proposed features improve
the accuracy of the classification learner. Therefore, in addition to
tuning the classifier hyperparameters, another problem that should be
solved during the BO algorithm is selecting four of the more significant
features among the seven attributes proposed in this study.

6. Results

This section first describes the results of different classifiers in
detecting the structural damage for the mentioned case study buildings.
Then, by selecting the best classifier, the results of this model are
explained in detail to assess the efficiency of the presented approach
in estimating the damage level of concrete shear wall buildings under
earthquake motions.

6.1. Performance of different classifiers

As mentioned before, a parametric study is carried out to determine
the best learner for solving the under-study classification problem. For
this purpose, the score of different models was considered as the perfor-
492

mance metric. Table 6 summarizes the average accuracy of each model
in detecting the performance level of various stories of the buildings.
According to this table, the KNN algorithm performs better than the
other classification learners in terms of cross-validation accuracy. Of
course, the SVM algorithm demonstrates comparable accuracy to the
KNN, but the optimization process of SVM shows more computational
cost. On the other hand, the Naive Bayes algorithm, with an average
cross-validation accuracy of 87.2%, was the worst case in learning the
damage detection problem. As a result, the KNN algorithm is proposed
to identify the extent of damage in concrete shear wall buildings. In the
following subsections, the results of the KNN algorithm in detecting
the performance level of each case study model are explained. The
confusion matrix calculated for the test set, the Receiver Operating
Characteristic (ROC) curve, and the cross-validation accuracy of each
classifier are presented to evaluate the performance of the predictive
models in a perceptible manner. A confusion matrix represents the
robustness of the model in terms of the true predicted instances against
the false classified samples. In addition, a ROC curve presents the
True Positive Rate (TPR) versus the False Positive Rate (FPR) along
the training process for different thresholds. Readers can refer to Fan
et al. [73] to obtain more information on the ROC curve characteristics.
Whatever the ROC curve is closer to the upper-left corner of the plot,
the prediction model presents more accuracy and generalization. The
area under the curve (AUC) is defined to measure the closeness of the
ROC curve to the upper-left corner. It is obvious that an AUC closer to
1 indicates a more reliable prediction model with a higher estimation
accuracy. This index is more applicable when the dataset is polluted
to noise. On average, the number of optimized neighbors is selected
as 11 for all stories of the structure. Moreover, 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 distance
and 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 rule were respectively selected as the most efficient
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Fig. 13. The ROC curve and confusion matrices for damage extent detection of the 7-story building.
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distance metric and weighting measure during the BO algorithm. It
should be mentioned that the 𝐷𝑟𝑖𝑓𝑡, 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑀𝐶𝐴𝑉 attributes

ere chosen as the optimized features among the seven pre-defined
amage indicators. Fig. 13 shows the confusion matrices for different
loors of the seven-story building. A close look to this figure reveals
hat the proposed method provides promising accuracy in estimating
he local damage exposed to the shear walls of the building. A mean
ccuracy of 95.6% is achieved for estimating the performance level of
ach floor. The ROC curve that is presented in Fig. 13(d) belongs to
he story level with minimum cross-validation accuracy (second story).
he minimum AUC among different performance levels was 0.96,
hich represents the effectiveness of the selected features in estimating

he damage state of the floors. The prediction model illustrates the
inimum true positive rate of 73.0% for the last floor. Notably, the

alse negative rate in this story can be assigned to the proximity of those
ortions of samples to the true predicted boundaries, and also the low
umber of samples exceed the LS level in the last floor of the building.
ence, the false estimated cases do not remarkably influence decision-
aking metrics for the confronting actions after the earthquake. In

ddition, since the prediction models determine the performance level
f the building for each story, a reliable decision can be made for the
hole building.

Fig. 14 illustrates the confusion matrices for shear walls in 𝑋
irection of the nine-story building. On average, the accuracy of the
rediction models was equal to 91.5% for identifying the extent of
amage in 𝑋 direction. Fig. 14(d) shows the ROC curve of the clas-
ification learner for the story with minimum prediction accuracy
second story). According to this figure, The AUC values are close to
.0, which indicates the generalization and robustness of the proposed
lassification process. The minimum true positive rate for different
erformance levels through all the stories was 75.7% for the shear
alls in 𝑋 direction. Accordingly, the false negative rate in that story
as 24.3%. As the features presented in this study are directly related

o the structural damage of the building, this rate of false predicted
ases can be specified to the vicinity of these portions of instances
493
o the true predicted borders. Thus, the false predicted cases do not
ignificantly influence the decision-making process after the event.
oreover, expert engineers can make a reliable decision for the whole

tructure by considering the performance levels achieved for each story
f the structure.

Fig. 15 shows the confusion matrices for shear walls in the 𝑌
irection of the building. The average accuracy of the classifiers was
9.4% for identifying the extent of damage in the 𝑌 direction. It is
bvious that the average accuracy of the prediction models is less than
he seven-story for both directions. This problem is due to the complex
ehavior of the nine-story building compared to the seven-story case
ecause the intense vertical irregularity exists in the architecture of
he nine-story building. Fig. 15(d) illustrates the ROC curve of the
rediction model for the second story of the building, which presents
he minimum prediction accuracy among all the stories of the structure.

closer look at this figure reveals that all the AUC values are greater
han 0.94, which demonstrates the promising accuracy of the models
n identifying the severity of damage for each floors of the building.
hese figures indicate that the proposed method capable of estimating
he damage state of the concrete shear walls of the building with an
verage accuracy of 89.4%. This means that the prediction models
ay represent an average false prediction rate of 11.6% for marginal

ases. However, these false prediction cases have similar damage in-
icators to the proximate performance level. Therefore, these false
lassified scenarios generally do not impose significant errors on the
ecision-making metrics.

Fig. 16 reveals the confusion matrices for shear walls in 𝑋 direction
f the thirteen-story building. An average accuracy of 91.4% was ob-
ained for detecting the extent of damage in 𝑋-direction shear walls. As
n example, Fig. 16(d) illustrates the ROC curve of the prediction model
or the third story (story with minimum cross-validation accuracy).
his figure indicates that the AUC values are close to 1.0 for all the
erformance levels. It can be concluded that the prediction models
resents promising performance in estimating the level of damage. The
inimum true positive rate belongs to the CP state of the last story
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Fig. 14. The ROC curve and confusion matrices for damage detection model of the 9-story building (Shear walls in 𝑋 direction).
Fig. 15. The ROC curve and confusion matrices for damage detection model of the 9-story building (Shear walls in 𝑌 direction).
which was equal to 68.8%. It is obvious from Fig. 16(c) that the pre-
dictive model underestimates the extent of damage in 31.2% of cases.
However, approximately in 29.5% of cases, the false predicted cases
do not significantly affect the decision-making process because these
false predicted samples have marginal damage indicators between two
adjacent classes. The lowest level of performance for the CP damage
state was related to the low number of samples that exceeded the LS
level in the last story of the building. This behavior was predictable
taking into account the fundamental concepts of dynamics of structures.
494
It should be mentioned that expert engineers can also make their
decision considering the damage state obtained for adjacent floors of
the building.

Similarly, Fig. 17 summarizes the confusion matrices for the shear
walls in 𝑌 -direction of the thirteen-story building. The overall view
of this figure reveals the efficiency of the proposed framework in
estimating the structural damage subjected to the concrete shear wall
buildings. Similar to the 𝑋-direction, an average accuracy of 91.4% was
achieved for prediction models of the shear walls in the 𝑌 direction.
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Fig. 16. The ROC curve and confusion matrices for damage detection model of the 13-story building (Shear walls in 𝑋 direction).

Fig. 17. The ROC curve and confusion matrices for damage detection model of the 13-story building (Shear walls in 𝑌 direction)

Fig. 18. Comparison between the 𝐶𝐴𝑉 obtained for two different ground motions.
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Fig. 19. Comparison between the 𝑅𝐸 obtained for two different ground motions.
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Fig. 20. Predictive model based on 𝐶𝐴𝑉 and 𝑅𝐸 attributes.

ccording to Fig. 17(d), the ROC curves of the story with minimum
ross-validation accuracy are close to the upper-left corner of the
iagram and their AUC is close to 1. Therefore, the prediction models
erform acceptably even for the worst prediction model. Fig. 17(a)
ndicates that the prediction model of this story underestimates the LS
tate in 19.7% and overestimates them in 7.5% of cases. In addition,
his predictive model underestimates the CP state in 26.4% of cases. Of
ourse, approximately 22.9% of these underestimated cases belong to
hose samples that have similar damage indicators to the LS state. In
act, these scenarios do not impose much error on the decision-making
etrics as they are in the margins of the acceptance criterion defined

n 𝐴𝑆𝐶𝐸 − 41.

.2. Discussion

This research investigated the efficiency of two commonly used
amage indicators proposed for identifying the extent of damage in
oncrete shear walls buildings. Many studies showed the efficiency
f energy-based damage indicators, such as output energy and the
elative energy between the output and input signals of the structure,
or detecting the structural damage in buildings [29,31,32]. However,
ased on an investigation conducted in the present study, it is shown
hat these features are not capable of classifying the severity of local
amage subjected to the concrete shear wall frames under ground mo-
ions. Fig. 18 illustrates the CAV diagrams for two records (𝐶𝑜𝑦𝑜𝑡𝑒𝐿𝑎𝑘𝑒
nd 𝑀𝑜𝑟𝑔𝑎𝑛𝐻𝑖𝑙𝑙) with different durations, where both motions scaled
imilarly. This figure indicates that the maximum value of CAV is
ependent on the ground motion duration. In this figure, the CAV
esponse space was partitioned into three windows of 𝑊 1, 𝑊 2, and 𝑊 3
ased on the performance level of the building under the 𝐶𝑜𝑦𝑜𝑡𝑒𝐿𝑎𝑘𝑒
arthquake. Despite the good agreement between the 𝐶𝐴𝑉 and damage
496
xtent in each event, the damage extents obtained from two records
ave interfered. The same behavior was observed for the energy ratio
eature (Fig. 19). To illustrate the total efficiency of these two features
n detecting the severity of damage at concrete shear wall buildings, a
𝑁𝑁 classifier was trained, and an example confusion matrix of this
rocess is shown in Fig. 20. The total accuracy of 69% achieved for the
rediction model indicates the insufficiency of these damage indicators
or identifying the local damage subjected to the concrete shear walls.
ccording to this study, it can be concluded that the extent of damage
as a direct relation to the lateral behavior of the building system, and
he damage indicators proposed for a specified building may not be
ffective for another structural system.

. Conclusion

This paper presented a rapid algorithm for identifying the severity
f local damage in the concrete shear wall buildings. A total number
f 1884 nonlinear response history analyses were conducted for each
uilding using the SAC motions. A suite of damage indicators was ex-
racted from the acceleration signals to construct the prediction models.

parametric study was carried out to determine the most efficient
earner for classifying the damage states of the buildings. The KNN
lassifier was selected to construct the predictive models because of its
aximum accuracy compared to the other algorithms. The Bayesian

ptimization algorithm implemented to tune the hyperparameters of
he classification learners. The main conclusions derived from the study
re as below:

• The proposed features were efficient in detecting the probable
extent of local damage subjected to the concrete shear walls.

• The parametric study showed that the 𝐾𝑁𝑁 classifier is the most
reliable algorithm for identifying the structural damage at the
concrete shear wall buildings.

• Bayesian optimization algorithm prevented the possible errors
related to the improper architecture of the classification learner.

• According to the outcome of the Bayesian optimization, it was
concluded that the 𝐷𝑟𝑖𝑓𝑡, 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑀𝐶𝐴𝑉 are the most
powerful indicators in classifying the damage states of the con-
crete shear wall buildings.

• Results showed that vertical irregularity could decrease the ac-
curacy of the prediction models because of the more complex
dynamic behavior of such buildings.

• The task of damage identification was successfully implemented
by achieving an average accuracy of 95.6%, 90.4%, and 91.4%

for 7-, 9-, and 13-story buildings, respectively.
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Table A.1
SAC ground motions.
ID Event name Duration (s) PGA (g) ID Event name Duration (s) PGA (g)

1 CoyoteLake 26.86 0.59 56 LongBeach 39.1 0.174
2 ImperialValley 39.1 0.143 57 MorganHill 60 0.663
3 Kernmodified 78.62 0.159 58 WestWashington 80 0.384
4 Landersm 80 0.338 59 WestWashington 66.7 0.389
5 MorganHill 60 0.546 60 NorthPalm 60 0.588
6 Parkfield 43.94 0.781 61 PugetSound 81.84 0.752
7 Parkfield 26.16 0.79 62 PugetSound 74.1 0.369
8 NorthPalm 60 0.518 63 EasternWa 60 0.575
9 SanFernando 79.48 0.253 64 Llolleom 100 0.698
10 Whittier 40 0.769 65 Vinadel Mar 100 0.542
11 ImperialValley 53.48 0.676 66 Mendocino 60 0.756
12 ImperialValley 39.4 0.488 67 Erzincan 20.78 0.605
13 ImperialValley 39.1 0.302 68 Olympiamod 80 0.896
14 Landersmod 80 0.426 69 Seattlemod 81.84 1.756
15 Landersmod 80 0.52 70 Valpariso 100 1.637
16 LomaPrieta 40 0.97 71 Valpariso 100 1.271
17 Northridge 60 0.678 72 DeepInterplate 80 0.797
18 Northridge 14.96 0.58 73 Miyagioki 80 0.784
19 Northridge 60 0.817 74 ShallowInter 80 0.563
20 NorthPalm 60 1.019 75 ShallowInter 80 0.75
21 Kobemodi 60 1.283 76 Tabasmod 50 0.978
22 lomaPrieta 25 0.473 77 LomaPrieta 25 0.718
23 Northridge 14.96 0.944 78 LomaPrieta 40 0.686
24 Northridge 60 1.33 79 CMendocino 60 0.655
25 Tabasmod 50 0.992 80 Erzincan 20.78 0.457
26 ElysianPark 30 1.296 81 Landersmod 49.3 0.799
27 ElysianPark 30 0.782 82 Nothridge 14.98 0.89
28 ElysianPark 30 1.101 83 Nothridge 60.02 0.732
29 PalosVerdes 60 0.776 84 Kobemodi 60 1.088
30 PalosVerdes 60 0.625 85 Kobemodi 40.1 0.786
31 hangingwall 30 0.124 86 Elysianmod 40 0.892
32 footwall 30 0.144 87 Elysianmod 40 1.803
33 NewHampshire 19.24 0.576 88 Elysianmod 40 1.013
34 Nahannimod 20.34 0.088 89 Elysianmod 40 0.922
35 Nahannimod 18.76 0.074 90 Elysianmod 40 1.162
36 Nahannimod 19.02 0.136 91 Palosmod 80 0.974
37 Saguenay 17.74 0.29 94 Palosmod 80 0.968
38 Saguenay 29.58 0.524 95 PalosVerdes 80 0.874
39 Saguenay 39.06 0.227 96 PalosVerdes 80 0.793
40 Saguenay 33.26 0.273 97 PalosVerdes 80 0.916
41 footwall 30 0.316 98 Northridge,CA 30 0.516
42 footwall 30 0.335 99 Northridge,CA 20 0.482
43 footwall 30 0.309 100 Duzce,Turkey 55.9 0.822
44 Nahannimod 20.34 0.252 101 HectorMine,CA 45.32 0.337
45 Nahannimod 18.76 0.211 102 ImperialValley 99.92 0.351
46 Nahannimod 19.02 0.389 103 ImperialValley 39.04 0.38
47 Saguenay 17.74 0.783 104 Kobe,Japan 40.96 0.509
48 Saguenay 29.58 1.504 105 Kobe,Japan 40.96 0.243
49 Saguenay 39.06 0.651 106 Kocaeli,Turkey 27.2 0.358
50 Saguenay 33.26 0.781 107 Kocaeli,Turkey 30 0.219
51 Landers,CA 27.98 0.417 108 Chi-Chi,Taiwan 61.78 0.44
52 LomaPrieta,CA 39.96 0.541 109 Chi-Chi,Taiwan 53.66 0.512
53 LomaPrieta,CA 39.96 0.555 110 SanFernando 28 0.21
54 Manjil,Iran 46 0.538 111 Friuli,Italy 36.36 0.351
55 SuperHills,CA 40 0.358
Table A.2
Modeling parameters and numerical acceptance criteria for nonlinear procedures—reinforced concrete structural walls.
Conditions Acceptable plastic hinge rotation (Radians)

Performance level

IO LS CP
(𝐴𝑠 − 𝐴′

𝑠)𝑓𝑦𝐸 + 𝑃
𝑡𝑤𝐼𝑤𝑓 ′

𝑐𝐸

𝑉

𝑡𝑤𝐼𝑤
√

𝑓 ′
𝑐𝐸

Confined Boundary

≤ 0.1 ≤ 4 Yes 0.005 0.015 0.020
≤ 0.1 ≥ 6 Yes 0.004 0.010 0.015
≥ 0.25 ≤ 4 Yes 0.003 0.009 0.012
≥ 0.25 ≥ 6 Yes 0.0015 0.005 0.010
≤ 0.1 ≤ 4 No 0.002 0.008 0.015
≤ 0.1 ≥ 6 No 0.002 0.006 0.010
≥ 0.25 ≤ 4 No 0.001 0.003 0.005
≥ 0.25 ≥ 6 No 0.001 0.002 0.004
497
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• This research illustrates that the efficiency of damage indicators
depends on the lateral behavior of the building. For example,
several studies show that damage indexes like output energy of
the structure and relative energy between the output and input
signals are efficient in determining the damage level in structures.
However, this study reveals that these features are not suitable
for achieving a reliable local-damage detection framework in
reinforced concrete shear wall buildings.

• The proposed method did not consider the uncertainties related to
the ground motion directionality, material properties, etc. These
uncertainties can be applied to the framework to analyze the
reliability of the proposed technique [21,74].
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