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A B S T R A C T

The main approach used to model uncertainties in microgrid planning is the Probabilistic Power Flow (PPF). 
However, this technique has a high computational cost due to the need to solve a system of nonlinear equations 
for different scenarios of microgrid operation. This paper aims to propose low-cost computational power flow 
algorithms to evaluate nodal voltages in islanded Direct Current (DC) microgrids under uncertainty. An 
approximated power flow is proposed based on the Admittance Summation Method for radial microgrids. In 
addition, iterative power flow algorithms, previously developed by the authors for Alternating Current (AC) 
microgrids, have been adapted for DC microgrids. The proposed iterative and approximated algorithms were 
combined with Monte Carlo Simulation to obtain a PPF method. The proposed methods were tested and vali-
dated in relation to the Newton-Raphson Method in DC radial microgrids with 33 and 906 nodes and in DC 
meshed microgrids with 33 e 144 nodes. The results showed that the developed methods have good accuracy and 
obtain considerable saving in the computational cost of the PPF.   

1. Introduction

A microgrid can be described as a cluster of loads and generators that
can operate in an interconnected or islanded way from the electrical 
distribution network [1, 2]. The islanded operation occurs when there is 
a disturbance in the utility’s system and the microgrid is automatically 
disconnected from the Common Coupling Point (CCP). During the 
islanded operation, the microgrid loads are supplied by their own native 
generation. Therefore, it is expected that the reliability of the microgrid 
will be improved. 

An important aspect that has gained importance in the design of 
microgrids is the application of Direct Current (DC) microgrids and 
hybrid microgrids (DC and Alternating Current (AC)) [3, 4]. The use of 
DC voltage is motivated by the following facts: (i) increased DC loads 
(Light-Emitting Diode (LED) lamps, computers, printers, etc.); (ii) DC 
renewable Distributed Generation (DG) (solar photovoltaic and fuel 
cells); (iii) insertion of battery energy storage systems to increase the use 
of renewable DG. The DC microgrids can offer the following advantages 
when compared with AC microgrids [5],[6]: (i) minimization of con-
version losses; (ii) greater power transfer capacity; (iii) elimination of 
the need for frequency synchronism. At this point, it is important to 
mention that the algorithms proposed in this paper are oriented towards 

DC microgrids, that is, hybrid AC-DC microgrids are not considered. 
The planning of the microgrid must ensure that the islanded opera-

tion satisfies the power quality constraints related to the voltage and 
frequency. However, the presence of uncertainties in the microgrid pa-
rameters (i.e., output power of the renewable DG, load fluctuations and 
equipment outages) gives rise to a risk of violation of these constraints. 
The main tool used to model uncertainties in microgrid planning is the 
Probabilistic Power Flow (PPF) [7]. The most used technique in the PPF 
solution is the Monte Carlo Simulation (MCS) [7]. The main disadvan-
tage of MCS is its high computational cost due to the need to solve the 
power flow equations for several randomly selected system scenarios. 
Therefore, an important prerequisite that must be considered in the 
design of the power flow algorithms for the planning of microgrids 
under uncertainty is the computational cost. 

The main characteristic that differentiates the power flow algorithms 
for islanded microgrids from the conventional power flow is the absence 
of a single slack node with infinity capacity to supply the loads plus the 
loss. Because of this, the power flow of the microgrid called Power Flow 
with Multiple Slack Nodes (FMS). 

The FMS algorithms for DC microgrids can be classified as follows 
[8]-[14]: 
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i) Jacobian based methods: apply the Newton-Raphson Method
(NRM) and its variants with the Jacobian matrix calculation to
solve the nonlinear system associated with the power flow
equations [8],[9],[10].

ii) Backward/Forward Sweep Methods: explore the radial topology
to iteratively solve the power flow equations based on the Fixed-
Point Method (FPM) and Kirchhoff’s laws [11].

iii) Gauss-Zbus Method (GZM): combine the nodal analysis of the
matrix with the FPM to obtain the power solution through an
iterative process [12].

iv) Approximations: use the first order Taylor expansion to linearize
the current injection of the nodal matrix analysis [13, 14].

The approximated algorithms do not obtain the exact solution of the 
power flow equations. However, they have great potential to reduce the 
computational cost of PPF. This advantage is due to the fact that the 
approximate algorithms do not require the iterative solution of the 
power flow equations. This potential can be explored more intensely 
through the backward/forward sweep methods, as these methods are 
free from the solution of linear systems. Despite this, no approximate 
power flow based on backward/forward sweep methods has been 
developed for radial microgrids. Thus, it is interesting to develop 
approximate power flow algorithms with good accuracy and low 
computational cost for DC microgrids with radial topology. The devel-
opment of these algorithms is very important for several application 
scenarios that demand the solution of many FMS for DC microgrids 
(FMS-DC), for example: (i) sensitivity analysis; (ii) propagation of un-
certainties; (ii) estimation of power quality and reliability indices; (iii) 
security assessment; (iv) optimization of microgrids based on meta- 
heuristic algorithms (reconfiguration, DG dispatch, DG placement, etc.). 

This paper aims to propose new FMS algorithms for DC microgrids 
with radial and meshed topologies. These algorithms are derived based 
on the following techniques: Admittance Summation Method (ASM) 
[15] and Current Summation Method (CSM) [16] for radial microgrids 
and Modified Augmented Nodal Analysis (MANA) [17] and GZM [18] 
for meshed microgrids. Linear models for loads and generators are 
derived through linear regression and Taylor’s expansion. These models 
are used by ASM to calculate the nodal voltages in radial microgrids 
without the need for an iterative process. Additionally, CSM, GZM and 
MANA are combined with the principle of superposition and the solution 
of a quadratic equation to obtain FMS-DC based on iterative FMS for AC 
microgrids previously developed by the authors [19]. In all, three ver-
sions of FMS-DC are proposed in the paper: one approximate and two 
iteratives. These versions of the FMS-DC are incorporated into the MCS 
to generate a PPF to estimate probabilistic indices for islanded DC 
microgrids. The proposed FMS-DC algorithms were tested and validated 
in radial microgrids with 33 [20] and 906 [21] nodes and in meshed 
microgrids with 33 [20] and 144 [21] nodes. The results showed that the 
developed methods have good accuracy to estimate state variables and 
probabilistic indices in islanded DC microgrids and considerably reduce 
the computational cost of PPF. 

Thus, the main contributions of this paper are:  

• Introduction of a non-iterative ASM-based algorithm to solve the
FMS in radial DC microgrids.

• Proposition of an iterative method based on GZM and MANA for the
FMS solution in meshed DC microgrids.

• Proposition of an iterative technique based on CSM for the calcula-
tion of FMS in radial DC microgrids.

The rest of this paper is organized as follows. In section 2, an analysis
of publications correlated with the methods proposed in this paper is 
presented. Section 3 presents the non-iterative approach designed to 
solve the FMS in radial DC microgrids. The iterative algorithms based on 
CSM and GZM for FMS on radial and meshed DC microgrids, respec-
tively, are explained in section 4. Section 5 describes the uncertainty 

modelling used in PPF for DC microgrids. The tests results with the 
proposed algorithms for the FMS-DC are presented in section 6. Finally, 
the main conclusions and findings are summarized in section 7. 

2. Related Work

References [11, 12] introduced FPM variants based on back-
ward/forward sweep techniques and GZM to solve the FMS-DC. The 
attraction for the developments of these variants is their low computa-
tional cost compared to the NRM, as they do not require the assembly 
and solution of the Jacobian system for each iteration. Like [11] and 
[12], the iterative methods proposed in this paper have the FPM as 
common ancestor to achieve a low computational cost algorithms to 
solve the FMS-DC. However, the development of the iteration function 
of the methods proposed in this paper is based on power flow algo-
rithms, previously developed by the authors, for islanded AC microgrids 
[19]. In fact, the authors simplified the solution of the nonlinear sub-
problem in the AC iteration function to obtain new algorithms for DC 
microgrids. 

The authors of [13] and [14] proposed linear approximations to 
solve the FMS-DC based on nodal analysis and Taylor series. These ap-
proximations require the solution of a linear system to evaluate the 
nodal voltages. Thus, the computational cost of the algorithms proposed 
in [13] and [14] can be high in applications that demand the solution of 
several FMS-DC, for example, the PPF. In this paper, the authors intro-
duced approximated methods to solve the FMS-DC based on the 
backward-forward sweep technique and ASM. The main advantage of 
the sweep technique is that it is matrix free and, consequently, has a low 
computational in relation to the nodal analysis approximations. There-
fore, the sweep techniques proposed in this paper are more suitable for 
PPF. Furthermore, the approximate method proposed in this paper has 
better accuracy when linearization is performed using linear regression 
instead of Taylor series. Finally, it is important to mention that there is 
no record in the technical literature about the approximate method 
designed for AC or DC islanded microgrids based on backward/forward 
sweep. In this way, this paper adds a significant advance in the state of 
the art related to approximate power flow algorithms for microgrids. 

3. Equivalent Circuits and Non-Iterative Admittance Summation
Method 

The derivation of the approximated FMS-DC for radial microgrids is 
based on the equivalent linear circuits for loads and generators. These 
circuits are developed based on two techniques: first order Taylor 
expansion [22] and linear regression [23]. The equivalent circuit of the 
loads is obtained by Taylor expansion from his currents extractions as 
follows [22]: 

Idk =
Pdk

Vk
≈ Pdk(2 − Vk) = 2Pdk − PdkVk (1)  

Where: Idk, Pdk and Vk are the current extraction, the active power and 
the voltage magnitude for the load connected to node k. 

On the other hand, the linearization of Ik by means of linear 
regression results in (2). 

Ik =
Pdk

Vk
≈ Pdk(âVk + b̂) = âPdkVk + Pdk b̂ (2)  

Where: â and b̂ are the coefficients of the linear regression model to 
approximate V− 1

k . 
From (1) and (2), it is possible to obtain the equivalent circuit shown 

in Fig. 1(A). The parameters of this circuit are defined as follows:  

i) Taylor expansion: Ideq
k = 2Pdk and Gdeq

k = − Pdk;

ii) Linear Regression: Ideq
k = Pdk b̂ and Gdeq

k = âPdk.
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Using the same approach applied to loads, the linearization of cur-
rent injections for a DG with power-based droop control is given by:  

i) Taylor expansion:

IgP
i = PgP

i (Vki )
/

Vki

≈

[

2
(

Pgr,P
i +

Vr,P
i

KgP
i

)

−
1

KgP
i

]

−

(

Pgr,P
i +

Vr,P
i

KgP
i

)

Vki

(3)    

ii) Linear Regression:

IgP
i = PgP

i (Vki )
/

Vki

≈

(

Pgr,P
i +

Vr,P
i

KgP
i

)

âVki +

[(

Pgr,P
i +

Vr,P
i

KgP
i

)

b̂ −
1

KgP
i

] (4)  

Where: 

PgP
i (Vki ) = Pgr,P

i +
1

KgP
i

(
Vr,P

i − Vki

)
(5)   

IgP
i and PgP

i (Vki ) are current injection and active output power for DG 
i with power-based droop control [8], respectively. 
Pgr,P

i and Vr,P
i are the reference values for the active output power and 

the voltage magnitude of the DG i with power-based droop control, 
respectively. 
KgP

i is the constant for the power-based droop control in DG i. 
ki is the node to which DG i is connected. 

From (3) and (4), it is possible to obtain the equivalent circuit shown 
in Fig. 1(B). The parameters of this circuit are defined as follows:  

i) Taylor expansion: Igeq
ki

= 2
(

Pgr,P
i +

Vr,P
i

KgP
i

)
− 1

KgP
i 

and Ggeq
ki 

=
(

Pgr,P
i +

Vr,P
i

KgP
i

)
;  

ii) Linear Regression: Igeq
ki

=
(

Pgr,P
i +

Vr,P
i

KgP
i

)
b̂ − 1

KgP
i 

and Ggeq
ki 

= −
(

Pgr,P
i +

Vr,P
i

KgP
i

)
â. 

If a DG has current based droop control, then it is not necessary to 
apply Taylor expansion or linear regression to obtain a linear circuit, as 
the current injection for this type of generator is already linear according 
to (6) [10],[11],[13]. 

IgI
i (Vki ) = Igr,I

i +
1

KgI
i

(
Vr,I

i − Vki

)
(6)  

Where: 

IgI
i (Vki ) is the current injection for a DG with current based droop 

control. 
Igr,I

i and Vr,I
i are the current and voltage references values, respec-

tively, for current based droop control in DG i 
KgI

i is the constant for the current based droop control in DG i. 

DC microgrids also have renewable DG that are not dispatchable due 
to the intermittence in their power outputs [13]. In this way, renewable 
DG are modelled as constant power sources. Consequently, the equiva-
lent circuit for renewable DG is similar to that developed for loads. 

If the loads and DG of a utility connected to DC microgrid can be 
represented by equivalent linear circuits, then the nodal voltages can be 
determined in a non-iterative way using the ASM [15]. Basically, the 
backward sweep of the ASM reduces the linear equivalent circuit asso-
ciated with the distribution network based on the Norton’s equivalent 
circuit. The process of reducing the circuit performed in the ASM is 
illustrated in Fig 2(A). The equivalent currents sources and equivalent 
shunt conductances obtained in the backward sweep of the ASM are 
defined according to (7)-(11) [15]. 

i) Initialization:

IEDS
k = 0;GEDS

k = 0 ∀k = 1,…,Nnode (7)  

IEDS
ki

= IEDS
ki

− Igeq
ki
; GEDS

ki
= GEDS

ki
+ Ggeq

ki
∀i ∈ G (8)  

IEDS
k = IEDS

k + Ideq
k ; GEDS

k = GEDS
k + Gdeq

k ∀k ∈ D (9) 

ii) Backward Sweep:

IEDS
kj

= IEDS
kj

+ Dbran
j IEDS

mj
∀i = Nbran,…, 1; j←B

sort
i (10)  

GEDS
kj

= GEDS
kj

+ Dbran
j GEDS

mj
∀i = Nbran,…, 1; j←B

sort
i (11)   

G and D are sets of generation and demand nodes of the microgrid. 
Nbran and Nnode are the numbers of branches and nodes in the 
microgrid. 
B sort

i is a list of branches in which the elements are sorted in 
ascending order by layer. The branch’s layer is the number of 
branches between its receiving node and the root node. 
kj and mj are the sending and receiving nodes associated with branch 
j, respectively. 
rbran
j is the series resistance for branch j. 

Fig. 1. (A) Linearized equivalent circuit for loads. (B) Linearized equivalent circuit for generators.  
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IEDS
kj 

and GEDS
kj 

are the equivalent current and the equivalent 
conductance downstream of the kj node, respectively. 

Dbran
j = (1 + rbran

j GEDS
mj

)
− 1 is a dimensionless factor related to branch j 

[15]. 

Next, the nodal voltages are evaluated considering each equivalent 
circuit from the source to the loads (forward sweep) and applying 
equations (12)-(13) [15]. 

V1 = Vspe
1 (12)  

Vmj = Dbran
j

(
Vkj − rbran

j IEDS
mj

)
∀i = 1,…,Nbran; j←B

sort
i (13)  

Where Vspe
1 is the specified value of the voltage magnitude at node #1 

which is selected as the root node (CCP). 
In DC microgrids connected to the utility system, the voltage at the 

root node is specified (equation (12)). Consequently, it is possible to 
determine the nodal voltages remaining in the forward sweep (equation 
(13)), since the number of branches Nbran in a radial network is equal to 
Nnode − 1. On the contrary, in islanded microgrids the voltage of CCP, V1 
is unknown. Therefore, the forward sweep is underdetermined, since 
there are more variables (Nnode) than equations in the forward sweep 
(Nbran = Nnode − 1) to determine the state of the microgrid in the islan-
ded mode. This problem can be overcome by remembering that the 
reduction of the equivalent circuit of the distribution network is carried 
out until that circuit of a node composed only by the root/source node is 
obtained. This equivalent circuit is shown at the bottom of the Fig. 2(A). 
In utility connected operation there is a voltage source, representing the 
utility supply point, in parallel with Norton’s final equivalent circuit. 
However, in the islanded operation there is only the final Norton 
equivalent circuit, as shown in Fig. 2(B). This circuit can be used to 
eliminate the underdetermined characteristic of the forward sweep by 
applying the Kirchhoff’s Current Law to node 1 of Fig. 2(B). In this way, 
the voltage V1 is calculated as follows: 

IEDS
1 + Ish

1 = 0⇒IEDS
1 + GEDS

1 V1 = 0⇒V1 = − IEDS
1

/
GEDS

1 (14) 

Once the voltage V1 is determined using (14), it is possible to expand 
the non-iterative ASM to evaluate the voltages in islanded radial DC 

microgrids. Therefore, the voltages for the utility connected and islan-
ded microgrids can be evaluated using the flowchart shown in Fig. 3, 
where: 

flag is true (false) if the microgrid is connected to the utility (islan-
ded). 

The input data for the approximated FMS-DC for radial microgrids 
are: flag, Vspe

1 , B sort and data for branches, loads and DG. 

4. Iterative FMS-DC Algorithms for Radial and Meshed
Microgrids 

The iterative FMS algorithms for radial and meshed AC microgrids 
proposed in [19] are based on the derivation of a linear circuit associ-
ated with an iteration of the CSM [16] and GZM [18] with MANA [17], 
respectively. These linear circuits are obtained by replacing loads and 
generators with current sources and the CCP with a voltage source. The 
linear circuit allows nodal voltages to be expressed as functions of the 
CCP voltage based on the superposition principle. The superposition 
principle is applied by type of source (current and voltage). The 
expression of the voltages as a function of the CCP voltage allows this 
voltage to be evaluated by solving a small nonlinear subproblem via 
NRM. This subproblem has three unknowns: angular frequency and 
magnitude and angle of the voltage in the CCP. 

After calculating the CCP voltage, the remaining nodal voltages are 
obtained by adding the nodal voltage components associated with the 
voltage and current sources. 

The iterative technique summarized above can be applied directly to 
radial and meshed DC microgrids. The main difference between the 
iterative FMS for AC and DC islanded microgrids is that the angular 
frequency and voltage angles do not exist in DC microgrids. Conse-
quently, there is only one unknown in the subproblem: the voltage 
magnitude in the CCP (V1). Therefore, it is necessary to use only one 
equation to determine the CCP voltage: the active power balance 
equation defined in (15). 

PgP
tot + PgI

tot + PgR
tot = Pdtot + Ploss

tot (15)  

Where: 

Fig. 2. (A) Circuit reduction in the backward sweep. (B) Islanded one node circuit.  

E.N.M. Silva et al.                                                



Electric Power Systems Research 215 (2023) 108972

5

PgP
tot =

∑

i∈G P

PgP
i (Vki ) =

∑

i∈G P

[

Pgr,P
i +

1
KgP

i

(
Vr,P

i − Vki

)
]

(16)  

PgI
tot =

∑

i∈G I

PgI
i (Vki ) =

∑

i∈G I

[
Vki × IgI

i (Vki )
]
=
∑

i∈G I

[

Vki

(

Igr,I
i +

Vr,I
i

KgI
i

)

−
V2

ki

KgI
i

]

(17)  

PgR
tot =

∑

i∈G R

PgR
i (18)  

Pdtot =
∑

i∈D

Pdi (19)  

Ploss
tot =

∑Nbran

j=1
Ploss

j =
∑Nbran

j=1
gbran

j

(
Vkj − Vmj

)2 (20)  

G
P, G

I and G
R are the DG sets associated with power-based droop 

control, current based droop control and renewable energy resources. 

G =
(
G

P
∪ G

I
∪ G

R)

PgP
tot and PgI

tot are the total power generation for the DG with droop 
control based on power and current, respectively. 
PgR

tot is the total power generation for renewable DG. 
PgR

i is the power output for renewable DG i. 
Pdtot is the total power associated with the microgrid loads. 
Ploss

j = gbran
j (Vkj − Vmj )

2 is the resistive loss in branch j. 
gbran

j is the series conductance for branch j. 
Ploss

tot is the total power related to resistive losses in the branches. 

At this point, it is interesting to mention that the equivalent circuit of 
the network used to evaluate the voltage components related to the 
voltage sources has no connection with the ground, since generators and 

loads are modeled as current sources that are replaced by open circuits 
due to the principle of superposition. Therefore, the voltage components 
related to voltage sources are all equal to V1. Consequently, the nodal 
voltage in an iteration of the FMF-DC is defined as follows: 

V (τ)
k = VCS(τ)

k + V (τ)
1 ∀k = 1,…,Nnode (21)  

Where: 

V(τ)
k is the voltage in the node k for the iteration τ. 

VCS(τ)

k is the voltage component related to the current source at node k 
for iteration τ. This component is determined using a backward/ 
forward sweep for radial DC microgrids and MANA for meshed DC 
microgrids. In both cases, the voltage source associated with the CCP 
is zero (short circuit) due to the superposition principle. 

To obtain the power balance equation as a function of V(τ)
1 , it is 

necessary to substitute (21) in each voltage dependent term of this 
equation. Therefore, the total losses and the total generation for DG with 
droop control are given by: 

i) Ploss
tot

(τ)

Ploss
tot

(τ)
=
∑Nbran

j=1
gbran

j

(
V (τ)

kj
− V (τ)

mj

)2
=
∑Nbran

j=1
gbran

j

(
VCS

kj

(τ)
− VCS

mj

(τ)
)2

(22)  

Where Ploss
tot

(τ) are the total resistive losses for iteration τ. From (22), it can 
be concluded that the total resistive losses are functions only of the 
voltage components related to the current sources, since the voltage 
components related to the voltage sources (V(τ)

1 ) are cancelled by the 
voltage difference term, that is: V(τ)

kj
− V(τ)

mj = VCS(τ)
kj

+ V(τ)
1 − (VCS(τ)

mj
+ V(τ)

1 )

= VCS
kj

(τ)
− VCS

mj

(τ). 

ii) PgI
tot:

Fig. 3. Flowchart for the approximated FMS for radial DC microgrids.  
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PgI
tot = ag,I

tot

[
V(τ)

1

]2
+ bg,I

tot V
(τ)
1 + cg,I

tot (23)  

Where: 

ag,I
tot = −

∑

i∈G I

(
1

KgI
i

)

(24)  

bg,I
tot =

∑

i∈G I

(

Igr,I
i +

Vr,I
i − 2VCS(τ)

ki

KgI
i

)

(25)  

cg,I
tot =

∑

i∈G I

⎡

⎣

(

Igr,I
i +

Vr,I
i

KgI
i

)

VCS
ki

−

(
VCS(τ)

ki

)2

KgI
i

⎤

⎦ (26)  

iii) PgP
tot:

PgP
tot = bg,P

tot V(τ)
1 + cg,P

tot (27)  

Where: 

bg,P
tot = −

∑

i∈G P

(
1

KgP
i

)

(28)  

cg,P
tot =

∑

i∈G P

[

Pgr,P
i +

Vr,P
i

KgP
i

−
VCS(τ)

ki

KgPV
i

]

(29) 

The replacement of (22), (23) and (27) in the power balance equa-
tion (15) result in (30). 

abal
tot

[
V (τ)

1

]2
+ bbal

tot V (τ)
1 + cbal

tot = 0 (30)  

Where: 

abal
tot = ag,I

tot (31)  

bbal
tot = bg,P

tot + bg,I
tot (32)  

cbal
tot =

(
cg,P

tot + cg,I
tot +PR

tot − Ploss
tot

(τ)
− Pload

tot

)
(33) 

From the equation (30), it can be concluded that the power balance 
equation is a quadratic function of V(τ)

1 . Consequently, there are two 
solutions for V(τ)

1 : 

V ’(τ)
1 =

(

− bbal
tot +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
bbal

tot

)2
− 4abal

tot cbal
tot

√ )/
(
2abal

tot

)
(34)  

V ′′(τ)
1 =

(

− bbal
tot −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
bbal

tot

)2
− 4abal

tot cbal
tot

√ )
(
2abal

tot

)
(35) 

However, only the solution V1
’(τ) has physical meaning, since the 

solution V1
"(τ) can be associated with a negative voltage or a very low 

voltage. Once the voltage V1
’(τ) has been calculated, the remaining nodal 

voltages can be obtained using the superposition principle defined in 
(21). At this point, it is important to emphasize another important dif-
ference between FMS for AC and DC microgrids: the approach to solve 
the subproblem. In AC microgrids the solution of the subproblem re-
quires an iterative procedure based on NRM. On the other hand, the 
solution of the subproblem in DC microgrids is simpler, since it is based 
on second degree polynomial roots. 

Based on the theory described above, it is possible to evaluate the 
nodal voltages in radial DC microgrids using the algorithm presented in 
the flowchart of Fig. 4, where: 

The input data for the FMS-DC for radial microgrids are: maximum 

Fig. 4. Flowchart of the iterative FMS-DC algorithm for radial microgrids.  
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number of iterations τmax, tolerance ε for the convergence test, B sort and 
data for branches, loads and DG. 

ΔVmax is the maximum voltage deviation. 
The block “Downstream Current Initialization” makes the following 

calculations: 

IEDS(τ)
k = 0 ∀k = 1,…,Nnode (36)  

IEDS(τ)
ki

= IEDS(τ)
ki

− Ig(τ)
ki

(
V (τ)

ki

)
∀i ∈ G (37)  

IEDS(τ)
k = IEDS(τ)

k + Id(τ)
k

(
V(τ)

k

)
∀k ∈ D (38)  

IEDS(τ)
kj 

is the equivalent current downstream from the node kj for the 
iteration (τ). 

Id(τ)
k

(
V (τ)

k

)
=

Pdk

V(τ)
k

∀k ∈ D (39)  

Ig(τ)
ki

(
V(τ)

ki

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pgr,P
i

V(τ)
ki

+
1

KgP
i

(
Vr,P

i

V (τ)
ki

− 1

)

, i ∈ G
P

Igr,I
i +

1
KgI

i

(
Vr,I

i − V (τ)
ki

)
, i ∈ G

I

PgR
i

/
V (τ)

ki
, i ∈ G

R

(40) 

The iterative procedure described in the flowchart of Fig. 4 can be 
expanded to meshed DC microgrids. In this case, the voltage components 
due to current sources are evaluated using GZM based on MANA instead 
of backward/forward sweep techniques. Consequently, the mathemat-
ical model of the linear electric circuit for meshed microgrids in an 
iteration of the GZM is defined according to (41) [19]. 

Ax = b (41)  

Where: 

A =

[
G Ft

F O

]

(42)  

b =

[
Ieq

Vspe

]

(43)  

x =

[
V
Ivs

]

(44)   

Nvolt is the number of voltage sources. Normally, only the voltage 
associated with PCC is needed to evaluate the voltages in meshed 
microgrids. However, there may be additional voltage sources to 
model zero impedance branches, such as protection and normally 
closed switches. 
A is the matrix of coefficients of the linear MANA system with 
dimension (Nnode + Nvolt)× (Nnode + Nvolt). 
G is the nodal conductance matrix of the microgrid with dimension 
Nnode × Nnode. 
F is the voltage source/node incidence matrix with dimension Nvolt ×

Nnode. The elements of matrix F are as follows: 

Fij=

⎧
⎨

⎩

1, if thejthnodeis thepositiveterminalfor theithvoltagesource
− 1, if thejthnode is thenegativeterminal for theinthvoltagesource

0, if theithvoltagesourceisnot incident tothejthnode
(45)   

O is a Nvolt × Nvolt matrix of zeros. 
V is a Nvolt × 1 vector associated with the microgrid voltages. 

Ivs is a Nvolt × 1 vector that stores the unknown values of the voltage 
sources currents. 
x is a (Nnode +Nvolt) × 1 vector that is composed of the MANA state 
variables, that is, nodal voltages and voltage sources currents. 
b is a (Nnode +Nvolt) × 1 vector associated with the right side of the 
MANA system, that is, equivalent current injections and specified 
values for the voltage sources. 
Ieq is a Nnode × 1 vector that contains current injections related to 
equivalent circuits for loads and DG. 
Vspe is a Nvolt × 1 vector that contains the specified values for the 
voltage sources. 

From the MANA formulation defined in (41), it is possible to evaluate 
the voltages in a meshed microgrid using the flowchart defined in Fig. 5, 
where the input data for the FMS-DC for meshed microgrids are: τmax, ε, 
and data for branches, loads and DG. 

5. Probabilistic Power Flow for DC Islanded Microgrids

Normally, the uncertainties of the microgrid are considered in
planning studies through the PPF based on the MCS [7]. 

The MCS samples the uncertainties related to individual components
to define a system state. In this paper, the state of the system is defined 
considering the uncertainties related to: load forecasting errors, vari-
ability of renewable DG and outages in DG and circuits. Consequently, 
the state of the system is defined according to (46). 

XS,[i] =
[

XD,[i] XR,[i] XG,[i] XC,[i]
]T (46)  

Where: 
The superscript T denotes the transposition of a matrix or vector. 
XS,[i] is the ith system state with dimension |D | + |G R

| + |G | + Nbran 

XD,[i] is the vector of sampled values of the active powers associated 
with the loads for the ith system state. The load forecasting error was 
modeled using the normal distribution [24],[25]. Consequently, the 
elements of the vector XD,[i] are defined as follows [24],[25]: 

X
D,[i]
j = Pdk + Znorm( 0, σkw

k

)
∀k ∈ D ; j = 1,…, |D | (47)  

σkw
k =

(
ϵkw

% ×Pdk
)/

300 (48)   

Znorm(0, σkw
k ) is a Gaussian random variable with a mean of zero and a 

standard deviation σkw
k . 

σkw
k is the standard deviation associated with the active power of the 

load at the node k. 
ϵkw

% is the load forecasting error in percentage. 

XR,[i] is the output power vector of the photovoltaic solar DG for the 
ith system state. The output power of the solar photovoltaic DG is a 
function of the solar irradiance which is a random variable. In this paper, 
solar irradiance was modelled using the beta distribution [26]. The XR,[i]

elements are defined according to (49)-(51) [26]. 

X
R,[i]
j = PgR

i

[
Zbeta( α̂solar

, β̂
solar)]

∀i ∈ G
R
; j = |D | + 1,…, |D | +

⃒
⃒G

R⃒⃒

(49)  

β̂
solar

=
(
1 − μ̂solar)

×

[
μ̂solar

× (1 + μ̂solar
)

σ̂ solar − 1
]

(50)  

α̂solar
=

μ̂solar
× β̂

solar

(1 − μ̂solar
)

(51) 

Zbeta(α̂solar
, β̂

solar
) is a random variable with beta distribution used to 

model solar radiation. 
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α̂solar and β̂
solar 

are the parameters of the beta distribution used to 
model the solar radiation estimated by the method of moments. 

μ̂solar and σ̂ solar are the mean and standard deviation estimated from 
the solar radiation data. 

PgR
i [Zbeta(α̂solar

, β̂
solar

)] is the PgR
i as a function of the random variable 

Zbeta(α̂solar
, β̂

solar
). This function considers several typical parameters of 

PV solar DG, for example, short-circuit current, open-circuit voltage, 
nominal cell operating temperature, etc. A detailed description of the 

PgR
i [Zbeta(α̂solar

, β̂
solar

)] function is given in [26]. 
XG,[i] and XC,[i] are the vectors of component states associated with 

DG and circuits, respectively. In this paper it is considered that the 
availability of component is modeled using a two state Markovian [24]: 
operation and failure. In this way, the state vectors associated with the 
DG and circuit unavailability are sampled as follows: 

X
G,[i]
j =

{
0 (operation), if 0 ≤ Xuni ≤ UG

k

1 (repair), if UG
k ≤ Xuni < 1.0

∀k = 1,…, |G |; j

= |D | +
⃒
⃒G

R⃒⃒+ k (52)  

X
C,[i]
j =

{
0 (operation), if 0 ≤ Xuni ≤ UC

m

1 (repair), if UC
m ≤ Xuni < 1.0

∀m = 1,…,Nbran; j

= |D | +
⃒
⃒G

R⃒⃒+ |G | + m (53) 

UG
k and UC

m are the failure probabilities for DG k and circuit m, 
respectively. 

In this paper, it was considered that a circuit failure results in the 
outage of only the component in which the fault occurred. In other 
words, the fault is eliminated by the protection devices at the terminals 
of the branches. This assumption is consistent with the operation of 
medium and low voltage meshed microgrids, since each branch of these 
microgrids is equipped with bidirectional current relays and fault lim-
iters, respectively. In addition, after the failed component is isolated by 
its protection devices, it is necessary to perform topological processing 
to identify and eliminate the components isolated from the power 
sources. 

After a system state is sampled, FMS-DC (iterative or approximated) 

is performed to determine the microgrid voltages. These voltages are 
used to estimate performance indices, such as total resistive losses. The 
system state draw is repeated to generate a sample with the specified 
sample size. From this sample, it is possible to estimate probabilistic 
indices using the definition of average value as follows: 

Ẽ[F] =
1

Nsamp

∑Nsamp

i=1
F
[
XS,[i]] (54)  

Where: Nsamp is the specified sample size and F[XS,[i]] is the test-function 
for the ith system state associated with an index of interest. For example, 
the test function for risk of voltage violation at a given node is defined as 
follows: 

F
[
XS,[i]] =

{
1, Vmin

k > V [i]
k > Vmax

k

0, otherwise
(55)  

Where: V[i]
k is the voltage at node k for the ith system state and Vmin

k 
(Vmax

k ) is the minimum (maximum) voltage limit for node k. Therefore, 
voltage violation risk expresses the probability of a nodal voltage going 
outside the upper and lower bounds established by the grid code. 

6. Tests Results

6.1. Characteristics of Test-Systems and Definition of Case Studies 

The FMS-DC algorithms proposed in this paper were tested in DC 
microgrids obtained from modifications in existing AC microgrids. The 
modifications made consist of disregarding the reactance of the 
branches and the reactive power of the loads [27]. The following DC 
microgrids were used in this paper:  

i) 33-node microgrid with radial and meshed topologies (MG-33):
based on the radial microgrid proposed in [20]. The voltage level
for the MG-33 with radial and meshed topologies is 12.66 kV DC.

ii) 906-node radial microgrid (MG-906): this microgrid is based on
the low voltage radial European distribution network with 906
nodes proposed in [21]. The voltage level on the MG-906 is 3kV

Fig. 5. Flowchart of the iterative FMS-DC algorithm for meshed microgrids.  
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DC. The European distribution network is unbalanced. As a 
result, the following assumptions were considered in the gener-
ation of the MG-906: (i) branches resistances were obtained from 
positive sequence resistances; (ii) the loads of the individual 
phases were added to achieve the equivalent three-phase load. In 
addition, 2,000 kW DG were allocated to the MG-906 according 
to the GIS diagram in Fig. 6.  

iii) 144-node meshed microgrid (MG-144): based on the American
low voltage meshed network proposed in [21]. In this microgrid, 
20 DG DC of 1600 kW were allocated to the following nodes: S1, 
S6, S11, S16, S21, S42, S47, S52, S57, S62, S83, S88, S93, S98, 
S103, S124, S129, S134, S139 and S144. The voltage level 
considered in the MG-144 is 380V DC. 

The iterative and approximate FMS-DC introduced in this paper were 
validated considering the following case studies:  

i) Deterministic: evaluation of the voltage in the MG-33 with radial and
meshed topologies. In this case, the DG located at nodes 1 and 33
have current based droop control and the DG installed nodes 6, 13,
and 25 has power-based droop control.

ii) Probabilistic: estimation of probabilistic indices using PPF based on
MCS in MG-906 and MG-144. In this case study, it was considered
that half of the DGs are solar renewable and the remaining DGs are
conventional fossils. In addition, it was assumed that half of the DG
has power-based droop control and the remaining DG has current- 
based droop control. In the MG-906, the uncertainties in the
following parameters of the microgrid were considered: load, output
of renewable DG and unavailability of DG. On the other hand, in the
MG-144, the uncertainties in the unavailability of the circuits were
considered in addition to those included in the MG-906. The PPF
study was carried out considering that the Forced Outage Rate (FOR)
is equal to 4% for renewable and conventional DG. The data neces-
sary to include load forecasting errors, branch outages and vari-
ability of solar irradiation in the probabilistic power flow can be
obtained in [28] and [29].

The NRM was used in two case studies specified above to provide a
reference to assess the accuracy and computational cost of the proposed 
FMS-DC algorithms. The algorithms compared to the NRM are desig-
nated as follows: 

i) FMS-ASM1: approximate FMS-DC based on ASM with linear cir-
cuits for loads and DG obtained through the Taylor expansion
series.

ii) FMS-ASM2: approximate FMS-DC based on ASM with linear cir-
cuits for loads and DG obtained by linear regression.

iii) FMS-CSM: iterative FMS-DC based on CSM.
iv) FMS-GZM: iterative FMS-DC based on GZM with MANA.

Finally, it is important to identify the following application scenarios 
for the iterative and approximate algorithms in the scope of test-systems:  

i) Approximate: FMS-ASM1 and FMS-ASM2 can only be applied in
radial microgrids, as they are based on the backward/forward sweep
technique. Thus, the deterministic and probabilistic tests with these
methods were performed on the MG-33 with radial topology and on
the MG-906, respectively.

ii) Iterative: FMS-CSM can only solve FMS-DC in radial microgrids as it
is based on backward/forward sweep technique. Consequently,
deterministic and probabilistic tests with this method were also
performed on the MG-33 version with radial topology and MG-906,
respectively. On the other hand, FMS-GZM can solve FMS-DC in
radial and meshed microgrids, as it is based on GZM with MANA.
Thus, the deterministic and probabilistic tests with this method were
performed on the MG-33 with meshed topology and MG-144,
respectively.

The applications scenarios specified above are summarized in
Table 1, where the cell elements “Det.”, “Prob.” and “X” are associated 
with deterministic tests, probabilistic tests and without application 
scenario, respectively. 

6.2. Deterministic Case 

Fig. 7 shows the voltage profiles on the MG-33 with radial and 
meshed topology. In addition, Table 2 presents some statistics associated 
with the relative error (in relation to the NRM) for nodal voltages in this 
microgrid. From Fig. 7 and Table 2, it can be concluded that the voltages 
calculated by the proposed FMS-DC present good accuracy in relation to 
the NRM. 

Table 3 presents the output powers of the DG and the total losses in 
the MG-33 with radial and meshed topology obtained by the proposed 
methods and NRM. In addition, this table shows the relative errors for 
these variables in relation to the NRM. From this table, it can be noted 
that the proposed methods also provide very accurate estimates for the 
losses and output powers of the DG. From the Tables 2 and 3, it can be 
concluded that: the accuracy of the approximate FMS-DC algorithms 
based on the linear regression is better than those based on the Taylor 
expansion. 

6.3. Probabilistic Case 

This subsection presents the results obtained by the PPF based on the 
proposed FMS-DC. These results were obtained considering that Nsamp =

50000. Fig. 8 shows the risk of voltage violation for the nodes of MG- 
906 and MG-144. 

Additionally, Fig. 9 presents the probability density functions of the 
total losses in these microgrids. From these figures, it can be concluded 
that the PPF based on the proposed FMS-DC produces probabilistic 

Fig. 6. GIS diagram of MG-906 showing DG allocation (circles).  

Table 1 
Specification of the application scenario for the approximate and iterative FMS- 
DC algorithms  

Microgrid Topology Approximate Iterative 
FMS-ASM1 FMS-ASM2 FMS-CSM FMS-GZM 

MG-33 Radial Det. Det. Det. X 
MG-33 Meshed X X X Det. 
MG-144 Meshed X X X Prob. 
MG-906 Radial Prob. Prob. Prob. X  
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indices that are very close to those generated by the PPF based on the 
NRM. Table 4 presents some statistics related to the total losses in MG- 
906 and MG-144. In addition, this table shows the relative absolute 

errors (in percentage) associated with the indices estimated by FMS- 
ASM1 and FMS-ASM2. These relative errors were calculated consid-
ering the NRM indices as reference values. For example, relative abso-
lute errors for FMS-ASM1 are given by: 

ErrStat
ASM1 = 100%

⃒
⃒
⃒
⃒
StatASM1 − StatNRM

StatNRM

⃒
⃒
⃒
⃒ (56)  

Where: 

StatASM1 and StatNRM are the statistics estimated by PPF based on 
FMS-ASM1 and NRM, respectively. 
ErrStat

ASM1 is the relative absolute error in percentage associated with 
the statistics Stat estimated by PPF based on FMS-ASM1. 

The relative absolute errors associated with FMS-ASM1 and FMS- 
ASM2 are identified by the numbers in parentheses below the indices 
in the second and third columns of Table 4, respectively. Based on the 

Fig. 7. Voltage profile in MG-33: (A) Radial (B) Meshed.  

Table 2 
Nodal voltage relative error Statistics (in percentage) on the MG-33.  

Statistics Radial Meshed 
FMS- 
ASM1 

FMS- 
ASM2 

FMS-CSM FMS-GZM 

Mean 0.311673 0.080544 2.0358 ×
10− 6 

1.1661 ×
10− 6 

Standard 
Deviation 

0.017907 0.003777 1.6176 ×
10− 6 

5.2788 ×
10− 7 

Minimum 0.272278 0.070862 6.8745 ×
10− 8 

4.5490 ×
10− 8 

Maximum 0.336159 0.086218 4.9525 ×
10− 6 

2.5074 ×
10− 6  

Table 3 
DG output powers, losses, and relative errors (in parentheses) in the MG-33.  

Index Radial Meshed 
FMS-ASM1 FMS-ASM2 FMS-CSM NRM FMS-GZM NRM 

PgP
6(V6)

(p.u.) 
1.57177 
(1.69046%) 

1.55247 
(0.44162%) 

1.545641 
(0%) 

1.545641 
(0%) 

1.538545 
(0%) 

1.538545 
(0%) 

PgP
13(V13)

(p.u.) 
1.53506 
(1.86887%) 

1.51394 
(0.46744%) 

1.506893 
(0%) 

1.506893 
(0%) 

1.507581 
(0%) 

1.507581 
(0%) 

PgP
25(V25)

(p.u.) 
1.57261 
(1.75095%) 

1.55275 
(0.46605%) 

1.545550 
(0%) 

1.545550 
(0%) 

1.550392 
(0%) 

1.550392 
(0%) 

PgI
1(V1)

(p.u.) 
1.45333 
(1.32759%) 

1.43929 
(0.34913%) 

1.434287 
(0%) 

1.434287 
(0%) 

1.424025 
(0%) 

1.424025 
(0%) 

PgP
33(V33)

(p.u.) 
1.43103 
(1.22720%) 

1.41821 
(0.32018%) 

1.413683 
(0%) 

1.412972 
(0%) 

1.421924 
(0%) 

1.421924 
(0%) 

Ploss
tot 
(p.u.) 

0.016038 
(0.10051%) 

0.016057 
(0.01916%) 

0.016054 
(0%) 

0.016054 
(0%) 

0.012467 
(0%) 

0.012467 
(0%)  
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relative absolute errors, it can be concluded that the FMS-ASM1 and the 
FMS-ASM2 have high accuracy for practical applications in relation to 
the NRM, despite the approximations considered in the derivation of 
these methods. For example, the maximum relative error for the 

statistical indices calculated using FMS-ASM1 and FMS-ASM2 are equal 
to 0.7315% and 0.6101%, respectively. Additionally, Table 4 also 
showed that the statistical indices estimated through the proposed PPF 
based on the FMS-CSM and FMS-GZM exactly coincide with those 

Fig. 8. Voltage violation risks: (A) MG-906 (B) MG-144.  

Fig. 9. Losses Probability distributions: (A) MG-906 (B) MG-144.  

Table 4 
Total Losses statistics for the MG-906 and MG-144 (CI-Confidence Interval for significance level of 95%).  

Statistics to Ploss
tot (p.u.) MG-906 MG-144 

FMS-ASM1 FMS-ASM2 FMS-CSM NRM FMS-GZM NRM 

Lower Quartile 0.7497 
(0.6714%) 

0.7449 
(0.0269%) 

0.7447 0.7447 0.1243 0.1243 

Median 0.8698 
(0.7179%) 

0.8648 
(0.1390%) 

0.8636 0.8636 0.1388 0.1388 

Upper Quartile 1.0053 
(0.7315%) 

1.0004 
(0.2405%) 

0.9980 0.9980 0.1652 0.1652 

Mean 0.8865 
(0.6929%) 

0.8817 
(0.1477%) 

0.8804 0.8804 0.1518 0.1518 

Std. Deviation 0.1976 
(0.4575%) 

0.1979 
(0.6101%) 

0.1967 0.1967 0.0435 0.0435 

CI Lower Bound 0.5427 
(0.7051%) 

0.5383 
(0.1113%) 

0.5389 0.5389 0.1092 0.1092 

CI Upper Bound 1.3217 
(0.5477%) 

1.3182 
(0.2815%) 

1.3145 1.3145 0.2664 0.2664  

Table 5 
Computational costs of the PPF based on NRM and proposed FMS-DC  

Index MG-906 MG-144 
FMS-ASM1 FMS-ASM2 FMS-CSM NRM FMS-GZM NRM 

Time (sec.) 22.105672 22.663284 102.323321 3292.190891 80.000041 122.159340 
Gain 148.9297 145.2654 32.1744 1 1.5270 1  
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obtained through the PPF based on the NRM. 
Finally, Table 5 presents the CPU times and gains (in relation to the 

NRM) associated with the PPF based on the proposed FMS-DC and NRM. 
From this table, it can be concluded that the proposed FMS obtained a 
very significant saving in the PPF CPU time. It is interesting to note that 
the biggest gains are associated with the approximate backward/for-
ward sweep methods, since these methods are free of linear systems 
solution and iterative processes. For example, the maximum gain (about 
149) was achieved by the FMS-ASM1. 

7. Conclusions

This paper presented approximate and iterative power flow algo-
rithms for islanded Direct Current microgrids with radial and meshed 
topologies. These algorithms were developed based on the combination 
of the following techniques: Admittance Summation Method, Current 
Summation Method, Gauss-Zbus Method, Modified Augmented Nodal 
Analysis and Superposition Principle. The proposed algorithms were 
embedded in a Probabilistic Power Flow, based on Monte Carlo Simu-
lation, in order to demonstrate that these algorithms are suitable for 
planning studies under uncertainties. The tests results with large scale 
microgrids demonstrate that the proposed algorithms have good accu-
racy in relation to the Newton-Raphson Method in the evaluation of the 
voltage profile and losses. In addition, the proposed methods achieve 
significant reductions in the computational cost associated with the 
Probabilistic Power Flow. Future work associated with the proposed 
power flow algorithms is oriented to towards expanding these algo-
rithms to model the following aspects related to DC microgrids: sec-
ondary control, voltage unbalance in bipolar configuration and 
networked (interconnected) microgrids. 

CRediT authorship contribution statement 

Elson N.M. Silva: Conceptualization, Methodology, Software, 
Writing – original draft. Anselmo B. Rodrigues: Conceptualization, 
Methodology, Writing – review & editing. Maria da Guia da Silva: 
Conceptualization, Methodology, Writing – review & editing. 

Declaration of Competing Interest 

No Data 

References 

[1] N. Hatziargyriou, Microgrids: Architectures and Control, 1st ed., Wiley-IEEE Press, 
Chichester, UK, 2014. 

[2] D.E. Olivares, A. Mehrizi-Sani, A.H. Etemadi, et al., Trends in Microgrid Control, 
IEEE Trans. on Smart Grid 5 (4) (July, 2014) 1905–1919. 

[3] A.T. Elsayed, A.A. Mohamed, O.A. Mohammed, DC microgrids and distribution 
systems: An overview, Electric Power Systems Research 119 (Feb. 2015) 407–417. 
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