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A B S T R A C T

Recently, automated disease diagnosis based on medical images has become an integral component of digital 
pathology packages. Texture analysis is commonly used to address this issue, particularly in the context of 
estimating the osteoporosis progression in bone samples. Most research in this context uses handcrafted methods 
to directly extract bones image features despite the substantial correlation between sick and healthy bones, 
which explains the limited results. In this work, the handcrafted feature extraction method (e.g. HOG and/or 
LPQ) will be applied to a set of descriptors obtained from a deep analysis of bone texture images using Gabor’s 
filter bank. In addition, the classifier automatically adjusts the Gabor filters settings, using the bat-inspired al-
gorithm based optimization, to achieve deep analysis behavior and optimal performance. Using a typically 
osteoporosis database, our experimental results reveal a significant improvement over the state-of-the-art deep/ 
handcrafted techniques, resulting in an excellent performance of 89.66% for osteoporosis diagnosis.   

1. Introduction

In 1895, Roentgen [1] may have been the first to notice that X-rays
could be used to acquire an image of the organs inside the human body, 
from which one could determine whether or not there was disease. Since 
then, medical imaging using X-rays has become an important diagnostic 
tool for a variety of diseases. In fact, information extracted from images 
plays an important role in decision-making at many stages of patient 
care, including detection, characterization, staging, evaluation of 
treatment response, follow-up and evaluation of residual and recurrent 
disease after treatment, and surgery and radiotherapy guidance [2]. 
Despite the incredible development of medical imaging devices, the 
analysis and interpretation of captured images remains a major chal-
lenge for radiologists, because any error in interpretation can lead to the 
prescription of the wrong drugs, thus putting the patient in danger and 
destroying the success of the treatment. For example, on mammogram 
images, it can be difficult for radiologists, with a subjective examination, 
to distinguish between a tumor and a calcification. It is also difficult for 
them to detect with the naked eye the presence of a tumor in the dense 
breast [3]. Due to the inexperience of many radiologists and the large 

number of cases reviewed periodically, the treatment process will be 
expensive due to the large number of errors. So, to avoid or cut down on 
diagnostic mistakes, radiologists need a way to help them make the right 
decisions. Soft computing paradigms are a good way to do this. 

Medical devices have recently played a significant role in the 
improvement of the standard of medical diagnostics thanks to techno-
logical improvements in both hardware and software. Therefore, hos-
pitals have worked in recent years to take advantage of various 
technologies to raise the quality of healthcare and boost efficiency while 
reducing errors. Indeed, diagnosis through the use of medical imaging 
has been one of the areas that has substantially benefited from the 
development of technology, as medical companies have worked in 
recent years to produce medical imaging devices of high quality that 
give very accurate results. X-ray imaging is one of the most widely used 
medical imaging techniques, giving doctors an image of the interior 
organs of the human body without the requirement for surgery [4]. 
Numerous pathologies, like osteoporosis, can indeed be detected and 
treated by utilizing X-ray imaging-based diagnosis. 

Osteoporosis is a common bone disease that frequently results in 
disability, particularly in the elderly [5]. This disease is directly caused 
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by low bone mineral density and micro-architectural deterioration of 
bone tissue. Currently, in addition to clinical examinations, the detec-
tion of this disease using X-ray imaging, despite its limited clinical use, is 
one of the most important trends for assisting doctors in making correct 
decisions regarding the presence and evolution of this disease. In this 
context, numerous researchers have developed computer-assisted bone 
image analysis techniques to aid in the diagnosis of this disease. Un-
fortunately, the largest challenge is that the images taken from a patient 
with osteoporosis are extremely similar to those taken from healthy 
subjects, making classification difficult [6]. In spite of this, encouraging 
and promising results have been obtained to continue research in this 
field. Theoretically, images of diseased and healthy bone can be 
distinguished using supervised machine learning approaches that rely 
primarily on image texture analysis. This trait provides a variety of data 
that can be used to distinguish images and classify them successfully. 
Indeed, in examining the amount of bone loss and, therefore, the pos-
sibility of osteoporosis, the size and density of texture lines is one of the 
most crucial factors. In this work, before applying the handcrafted 
feature extraction method directly to the raw image, it will be thor-
oughly analyzed using a specific set of Gabor filters [7]. These filters 
extract multiple orientations of lines, which are then combined into a 
single descriptor. Next, two handcrafted feature extraction algorithms 
(Histogram of Oriented Gradient (HOG) [8] and Local Phase Quantiza-
tion (LPQ) [9]) will be applied to the resulting descriptor. Also, the 
classifier optimizes the Gabor filter settings using optimization based on 
a bat-inspired algorithm in order to obtain optimal performance and 
deep analysis behavior. In addition, the proposed method can operate on 
the multimodality principle by fusing HOG and LPQ data or a texture 
analysis based on several distinct filter sizes. Using the dataset from the 
IEEE-ISBI Challenge: Characterization of Bone Tissue [10], experimental 
results show that the deep texture analysis approach for bone images is 
significantly more accurate than previous researches. 

The remainder of this paper is organized as follows: In Section 2, a 
brief overview of osteoporosis is provided. Section 3 provides an over-
view of relevant research. In Section 4, the concept of our proposed 
methodology is presented. Using a public database, we evaluate the 
proposed method in Section 5. The aim of Section 6 is to discuss the 
results and compare them to some of the most recent approaches in the 
literature. Finally, Section 7 concludes the paper and presents future 
research. 

2. Osteoporosis overview

The most prevalent bone disease in humans and a recognized serious
public health issue is osteoporosis. Low bone density, deterioration of 
the micro-architecture of bone tissue, increased bone fragility, and a 
propensity to fracture are all symptoms of this disease, which affects the 
skeleton (Fig. 1). 

Indeed, it can be estimated that approximately 50% of women and 
20% of men will develop osteoporotic fractures during their lifetime 
[11]. For this reason, osteoporosis screening to avoid bone fractures in 
women over 65 has been advised by the American Working Group on 
Preventive Services [12]. Indeed, early diagnosis of osteoporosis is 
important in preventing fractures due to the effectiveness of treatment in 

the early stages of the disease before fractures occur [13]. Currently, 
assessment of Bone Mineral Density (BMD) of the proximal thigh and 
lumbar spine, by Dual-energy X-ray Absorptiometry (DXA, or DEXA) 
[14], is the most appropriate test for detecting osteoporosis. 

3. Related works

The promising results obtained by analyzing the texture of X-ray
images in the medical field and specifically in the diseases diagnosis are 
one of the most important factors that have led to the popularity of this 
technology and, consequently, its adoption as one of the most important 
factors in the diagnosis and treatment of numerous diseases, particularly 
osteoporosis. Recently, many works have been proposed in this regard, 
especially those related to the challenge of Texture Characterization of 
Bone radiograph images (TCB) [10] for the diagnosis of osteoporosis. In 
this section, we will discuss a selection of these interesting works, 
focusing on those that relate to the challenge noted above. 

3.1. Current directions 

With the advent of deep learning technology and its positive impact 
on pattern recognition systems, Ran et al. [15] evaluated the effective-
ness of this technology in an osteoporosis diagnostic system. In fact, the 
model presented by the authors is mainly based on the fusion of deep 
and handcrafted features. To extract deep features, transfer learning 
principle based on four famous CNN architectures (AlexNet [16], VggNet 
[17], ResNet [18] and DenseNet [19]) was used while all features 
extracted using Grey Level Co-occurrence Matrix (GLCM) [20] and the 
Local Binary Pattern (LBP) [21] methods, as well as the encrypted 
version of the obtained features, were used as handcrafted features. The 
system performance was evaluated in both single-source and multiple- 
source scenarios. Experimental results have demonstrated that fusing 
AlexNet features with encoded features or all handcrafted features ach-
ieves the highest of accuracy (77.5%) compared to all other fusion 
combinations. 

In [22], Devendra et al. proposed a multifractal method to charac-
terize trabecular bone texture containing three basic steps. The first step 
is to calculate the Holder exponents [23] for each pixel in the X-ray 
image. In the second step, the Hausdorff dimensions [24] are deter-
mined from the Holder exponents which determine the global regularity 
of the pixels. In the last step, the lacunarity is estimated from the 
Hausdorff dimensions. After comparing the experimental results with 
the latest methods participating in the TCB challenge, the lacunarity 
plots [25] and the classification results show that the characterization of 
global regularity using Hausdorff dimensions significantly improved the 
characterization of trabecular bone texture and therefore osteoporosis 
classification performance. 

In [26], Ran Su el al. proposed two new feature groups, encoded- 
GLCM and encoded-LBP, each of which consists of two subgroups by 
encoding Gabor and Hessian information [27]. Along with the original 
feature group (GLCM and LBP features), these two feature groups were 
classified into distinct groups and utilized to train the Random Forest 
classifier [28]. In this study, the performance of each feature was eval-
uated separately, and Recursive Feature Elimination (RFE) [29] was 

Fig. 1. Healthy and osteoporotic bone architecture. (a) Healthy bone, and (b) Osteoporotic bone.  
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used to enhance efficiency. The inter and intra-groups/sub-groups re-
sults show that the GLCM-encoded and LBP-encoded features are more 
discriminate than the raw GLCM and LBP features. Thus, the optimal 
feature (LBP encoded group) can achieve up to 70% accuracy. In addi-
tion, this accuracy is increased to 71% by using only ten features. 

In the work of Keni Zheng et al. [30], high-dimensional textural 
representations and the feature selection principle were used to obtain a 
more discriminating subset, which was then classified using four clas-
sifiers (Naive Bayes [31], Multilayer Perceptron [32], Bayes Network 
[33], Random Forests). In this work, five handcrafted feature extraction 
methods were used, namely wavelet decomposition [34], discrete 
Fourier/cosine transforms [35], fractal dimension [36], statistical co- 
occurrence indices and structural texture descriptors. The experi-
mental results proved the efficiency of the system since it gave an ac-
curacy of 79.3%. 

Compared to the standard Bag-of-Visualwords (BoW) [37] model, 
Fisher’s encoding [38] is more discriminating in representing the dis-
tribution of local descriptors in addition to occurrence frequencies. So, 
based on the above, Yang Song et al. [39] proposed a bone tissue char-
acterization method based on the incorporation of an Improved Fisher 
Vector (IFV) into the BoW model. In this study, the authors extend the 
original IFV, which is based on Scale-Invariant Feature Transform (SIFT) 
[40], to include LBP. The system was evaluated on the 2014 ISBI chal-
lenge dataset [10] for characterization of bone texture, and the results 
showed excellent classification performance compared to previous 
work. 

In [41], Florian Yger et al. uses simple feature types based on 
Covariance Matrices and Wavelet Marginals. Thus, covariance matrices 
were camputed from gradient and Gabor techniques (Gabor-based 
minimum covariance (CmdMat-grad) and gradient-based minimum 
covariance (CovMat-gab)). The experimental results showed a remark-
able superiority of the method based on Wavelet Marginal. 

3.2. Research purpose 

In osteoporosis, the lines and/or pores of the bone image are unstable 
and vulnerable to significant changes, especially as the disease pro-
gresses (In images of healthy bones, the density of the lines increases and 
that of the pores decreases, whereas in images of diseased bones, the 
opposite occurs). Therefore, the information produced by these features 
is extremely reliable and can effectively diagnose the progression of this 
disease. Since a high degree of similarity between healthy and diseased 
bone is inevitable and has a significant impact on every step of osteo-
porosis diagnosis, it is important to focus exclusively on these features. 
The most significant limitations of previous research in the osteoporosis 
diagnosis are the inefficient use of bone image lines and/or pores. 
Focusing solely on texture analysis without considering these factors can 
result in feature vectors with a significant degree of interclass correla-
tion. Based on this principle and to produce distinctive features, our 
proposed method is characterized by: (i) Extraction of lines and/or 
pores in several directions (orientations), (ii) Automatic adjustment of 
method parameters to a variety of conceivable cases (e.g. lines of 
different thicknesses), (iii) Analysis at several levels, and (iv) Ability to 
perform various bone images analyzes and then combines the results to 
make an informed decision. 

4. Material and methods 

4.1. Dataset 

Our 174-subject dataset came from the IEEE-ISBI Challenge: Char-
acterization of Bone Tissue [10]. This dataset has three 58-subject gal-
leries. Osteoporotic subjects (OP, Osteoporotic patients) and control 
subjects (CT, Healthy people) are found in the first and second galleries, 
respectively, while the third gallery comprises an equal combination of 
OP patients and CT subjects. Each subject is a 16-bit bone X-ray image, 

with a size of 400 × 400 pixels. These images were used to evaluate the 
texture analysis techniques of our proposal. 

4.2. Texture descriptors 

To describe the texture of bone X-ray images, we have proposed a 
convolution based deep analysis method. All images were initially pre-
processed to improve bone image contrast. In the following, we will 
detail the techniques used in the proposed method. 

4.2.1. Theoretical aspects 
This part allows us to describe preliminary requirements that will be 

used in the proposed texture analysis process.  

• Gabor filter bank: The impulse response of a Gabor filter [42] is a 
sinusoidal function multiplied by a Gaussian function. So, in discrete 
space, the Nx × Ny-sized 2-D complex Gabor filter is: 

G(θ,f0 ,γ,η,ϕ)(x, y) =
γ • η

π e− ((αxr)
2+(βxr )

2)ej2πf0(xccosθ+ycsinθ+ϕ) , with α =
f0

γ
, β =

f0

η
(1) 

where θ, f0 and ϕ denote the sinusoid rotation angle, digital fre-
quency, and carrier phase, respectively. Also, γ and η are the normalized 
scale factors of the along-wave envelope and the wave-orthogonal 
Gaussian envelope, respectively. And. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(xc, yc) = (x − x0, y − y0) , (x0, y0) =

(
Nx

2
,
Ny

2

)

xr = xccosθ + ycsinθ

yr = − xccosθ + ycsin

(2) 

The Gabor filter has several interesting properties, including 
invariance against illumination, rotation, scale, and translation. In 
addition to these properties, Gabor filters are localized in the spatial and 
frequency domain, which makes them perfectly suited for wavelet 
analysis. In practice, filter banks [43] are comprised of many Gabor 
filters, which constitute a Gabor space. This space employs the same 
principles as the human visual cortex, enabling the rapid detection of 
complex visual patterns. Taking Eq. (1) as a reference, the set of 
K -component Gabor filters, W , is thus defined as follows: 

W (n,m)(x, y) = G(θm ,f0n ,γ,η)(x, y)
/

ϕ = 0 (3) 

Where K = Ks • Ko is the number of Gabor filters, Ks and Ko are the 
numbers of scales and orientations, respectively, and. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f0n =
f0

( ̅̅̅
2

√ )n− 1 , n = 1,⋯,Ks

θm = (m − 1)
π

Ko
, m = 1,⋯,Ko

(4) 

Also, α and β are calculated, for each component (each scale), as 
follows: 

(αn, βn) =

(
f0n

γ
,
f0n

η

)

(5) 

Gabor filter set, W , is the set of components for each set of Gabor 
filter size (square), sine angle (θm), and digital frequency (f0n), which 
must be chosen empirically to better describe bone line details. 

• HOG descriptor: Histogram of Oriented Gradient (HOG) [44] de-
scriptors is like an edge map, but it stores both the gradient magni-
tude information and the cell-level edge locations. The location 
coarseness and normalization of HOG features are crucial because 
they provide some degree of invariance to small geometric and 
photometric changes. Assume that the input is the H× W-sized 
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window I of a grayscale image, or even the whole image, to create a 
HOG feature, we follow the steps: 

Calculate gradients: Find the components of the gradient (Ix, Iy) by: 
{

Ix(i, j) = I(i, j + 1) − I(i, j − 1)
Iy(i, j) = I(i − 1, j) − I(i + 1, j) i = 1..H , j = 1..W (6) 

The gradient is then transformed to polar coordinates with the angle 
limited between 0o and 180o degrees to identify opposite gradients. 
⎧
⎪⎪⎨

⎪⎪⎩

μ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ix
2 + Iy

2
√

θ =
180
π ( tan− 1(Ix, Ix) mod π)

(7) 

where tan− 1 is the inverse tangent, which yields values between − π 
and π, and μ and θ denote respectively the magnetitude and the direction 
(angle) of the gradient of each pixel. 

Cell Orientation Histograms: The window is partitioned into non- 
overlapping neighboring c× c-sized cells (i.e. c = 8). Then, for each 
cell, a histogram of the gradient directions sorted in B bins (i.e. B = 9) is 
calculated. Thus, the bins are numbered from 0 to B − 1 and each has a 
width of w = 180

B . 
It is important to note that with so few bins, a pixel at a bin boundary 

could wind up in a different bin if the image changes significantly. 
Voting by bilinear interpolation is used to overcoming these quantiza-
tion artifacts. This method lets each pixel in a cell contribute to two 
adjacent bins. This method divides the gradient magnitude between the 
two bins for each pixel based on the distance between the gradient 
orientation and the center of each bin. In other words, it calculates how 
much of the gradient magnitude is in each bin: 

F vote(μi, θi,Bi,Bi+1) =

{
k1μ→Bi

k2μ→Bi+1

/

k1 + k2 = 1 (8) 

Since the gradient magnitude is always positive, the resulting cell 
histogram is a B-valued vector. 

Block Normalization: In this phase, the cells are organized into 
overlapping 2c × 2c pixel blocks with a vertical and horizontal over-
lapping step of c pixels. Next, the histograms of the four cells in each 
block are concatenated into a single block feature, which is then 
normalized using the Euclidean norm: 

bk =
[
h(i,j), h(i,j+1), h(i+1,j), h(i+1,j+1)

]
(9) 

Where bk denotes the feature of the block k and h(i,j) the histogram of 
the cell (i, j). This block feature is normalized as follows: 

b̃k =
bk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖bk‖
2
+ ∊

√ (10) 

Where ∊ is a small positive constant that prevents division by zero in 
gradient-free blocks. 

HOG Feature: Lastly, to represent the whole window feature, all the 
normalized block features (b̃k) are concatenated to produce one HOG 
feature vector (H ), as shown below: 

H =
[
b̃

1
, b̃2, ⋅⋅⋅, b̃k, ⋅⋅•, b̃ρ] (11) 

Where ρ is the number of blocks in the window. Finally, the resulting 
HOG function is also normalized using Eq. (10).  

• LPQ descriptor: Local Phase Quantization (LPQ) [45] extracts local 
phase information from a blurred image based on the blur invariance 
of Fourier phase response. 

Local Frequency Analysis: LPQ operator on an image pixel is done 
by employing Short-term Fourier Transform (STFT) over a M× M-sized 
window (Wn). Thus, for all pixel locations x = {x1, x2, ..., xHW} in an H×

W-sized image (f(x)), the local image patches in Wn are defined as 
follows: 

fx(y) = f (x − y) , ∀y ∈ Wn (12) 

Applying STFT to Wn gives us the local frequency domain 
representation: 

F x(u) =
∑

yi∈Wn

fx(yi)e− j2πuT yi (13) 

where i = 1, ...,M2. The variable u comprises l frequency variables 
(u1,u2, ...ul ) that serve as blur-insensitive local descriptors. The Eq. (13) 
can be rewritten as follows: 

F x(u) = ψT
u fx , ψT

u (y) = e− j2πuT y (14) 

Where. 

ψT
u = [ψu(y1),ψu(y2),⋯,ψu(yM2 )] , and fx = [fx(y1), fx(y2),⋯, fx(yM2 )]

(15) 

To find the LPQ codeword, a phase quantization process is per-
formed. Indeed, if the coefficients to be quantized are statistically in-
dependent, scalar quantization is performed directly; otherwise, the 
samples must be decorrelated before quantization. 

Phase Quantization: The blur-insensitive representation uses l fre-
quencies, producing an l -length feature vector for each pixel. In prac-
tice, the phase is quantized in four quadrants using the following 
quantizer: 

Q (F x(u) ) = (Re{F x(u) } > 0 )+ 2(Im{F x(u) } > 0) (16) 

This quantization can be expressed with 2 bits per frequency for each 
pixel, for a total of 2l bits; the concatenation of the codes for the l 

frequency components results in a single codeword. To achieve a blur- 
insensitive representation, only low-frequency components are 
employed, as they contain the most of image energy. In practice, the 
local coefficients F x are computed for each pixel at four low frequencies 
(l = 4): 

[u1, u2, u3, u4] =

[ a

0

0

a

a

a

a

− a

]

(17) 

The scalar a is the highest frequency whose point spread function 
(PSF) is positive and it is usually calculated from M (i.e. a = 1

M). Finally, 
an 8-bit codeword ([q7, q6, q5,⋯., q0]) can be obtained to describe the 
local texture surrounding each pixel (Wn). This codeword can easily be 
transformed into a decimal number (in the range 0–255) by simple bi-
nary decoding: 

LPQi =
∑8

j=1
qj2j− 1 (18) 

Decorrelation: Vector quantization is typically more efficient in 
cases when the coefficients to be quantized are correlated. To decorre-
late the frequency coefficients, we first separate the real and imaginary 
components of F x(u) and then concatenate them as follows: 

F x(u) = [F x(u1),F x(u2),⋯,F x(ul )] (19)  

Fx = [Re{F x(u) } Im{F x(u) } ] =
[

FR
x FI

x

]
(20) 

The STFT transform (Eq. (14)) shows that Fx and fx are linearly 
dependent, so we can write: 

Fx = Ψ⋅fx , where Ψ = [ΨR ΨI ]
T (21) 

And. 

ΨR = Re
{[

ψu1
,ψu2

,⋯,ψul

] }
and ΨI = Im

{[
ψu1

,ψu2
,⋯,ψul

] }
(22) 

To decorrelate Fx, Ojansivu et al. [46] applied the following 
transform: 
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Gx = VT⋅Fx (23) 

where V is an orthogonal matrix obtained from the matrix (D) 
mentioned below: 

D = UΣVT (24) 

D is the covariance matrix of Fx and can be obtained by: 

D = ΨCΨT (25) 

where C is the covariance matrix of M × M samples in Wn. After the 
decorrelation process, a scalar quantizer quantizes the jth coefficient (gj) 
of Gx: 

qj =

{ 1, if gj ≥ 0

0, otherwise
(26) 

The resulting codeword is then transformed into a decimal number 
using the Equ.18. After computing the LPQ codewords for each pixel in 
the image, and since the LPQ range is 0 to 255, an image containing the 
LPQ information of the input image is produced. To calculate a feature 
vector (H ) for the input image in practice, we divide the LPQ image into 
non-overlapping r× c-sized sub-regions and compute the histograms for 
each sub-region. Then, these histograms are concatenated to provide an 
LPQ feature vector for the whole input image. 

H = [h1, h2,⋯, hrc] (27) 

This division is used to keep some information about the spatial 
arrangement of the patterns, since the histograms of the whole image 
discard all of this information.  

• BAT Algorithm Optimization: The goal of optimization is to find 
the best solution or to run a system as efficiently as possible. So, it is 
the process of adjusting the input data (decision variables) to obtain 
the best solution (minimum/maximum) for the actual problem. 
Indeed, metaheuristic approaches outperform precise ones because 
they more effectively explore and select attractive parts of the search 
space, especially from a computational standpoint. Bat algorithm 
[47] is one of the metaheuristic approaches inspired by the echolo-
cation behavior of bats and based on swarm intelligence. 

When hunting, the bat emits short, loud acoustic pulses, and then 
analyzes the echo to determine the size and location of an obstacle or 
prey. Observing this behavior, Xin-She Yang [48] proposed the standard 
BAT algorithm which can be clarified by the following: 

(1) Initialization of the bat population and assignment to each indi-
vidual i of the position (xi), the velocity (vi), the pulse frequency 
(fi), the pulse rate (ri) and the loudness (Ai).  

(2) For ith bat, update the global best position (x*), fi, vi, and xi, as 
follows: 

⎧
⎪⎪⎨

⎪⎪⎩

fi = fmin + (fmax − fmin)β , β ∈ [0, 1]
vt+1

i = vt
i +
(
xt

i + x*)fi

xt+1
i = xt

i + vt
i

(28)    

(3) A new solution is generated for the bat if the random number is 
greater than ri: 

xnew = xold + εAt (29) 

where ε is a random number in [− 1, 1], and At represents the 
average loudness of all bats at time t.  

(4) Accept the new solution if the random number is less than Ai and 
f(xi) < f(x*), and therefore update Ai and ri as follows: 

{
At+1

i = αAt
i

rt
i = r0

i [1 − e− γt ]
(30) 

where f denotes the objective function and α and γ are constant 
parameters and are chosen as 0 < α < 1 and 0 < γ, so that..t→∞,At

i→0,
and rt

i →r0
i .  

(5) Find the current optimal solution (x*) by sorting bats based on 
their fitness.  

(6) Return to step 2 and once the maximum number of iterations is 
reached, output the optimal solution. 

4.2.2. Deep feature 
Due to the high correlation between images of healthy and diseased 

bones, the goal is to find feature vectors with high intra-class correlation 
and low inter-class correlation. In osteoporosis, bone tissue deteriorates 
often in depth, which is evident on 3D images. Sadly, in the case of 2D 
images, and in addition to the difficulties of the specialist detecting the 
disease with the naked eye, the handcrafted feature extraction ap-
proaches do not provide accurate and distinctive vectors for the auto-
matic diagnosis. 

Inspired by the advantages of deep analysis and Gabor’s descriptor, 
we propose in this part a novel feature extraction method for the 
detection of osteoporosis. First, we’ll filter the image using a Gabor filter 
bank (using certain orientations). Indeed, lines, wrinkles, ridges, sin-
gular points, and texture can all be detected in an image using a feature 
space based on the Gabor transform. This allows us to extract the bone 
features, especially the lines, from their respective backgrounds in the 
filtered image. Osteoporosis can be diagnosed by detecting a progressive 
change in the size, shape, and density of lines within an image of the 
bone. Then, we will combine all the filtered images into a single 
descriptor to reduce data amount, and finally we will use HOG/LPQ to 
extract the feature vector from the descriptor. Gabor Filter Bank pa-
rameters are adjusted, using Bat Algorithm Optimization, during 
training for accurate vectors. Fig. 2 contains a block diagram of the 
entire feature extraction process, including Gabor filtering, data reduc-
tion, and feature vector extraction. 

This structure includes three main layers: the convolution layer, the 
pooling layer, and the feature vector extraction layer. In order to discuss 
the system’s architecture, we will assume that the input images have the 
dimensions H × W and that the patch size, i.e. the size of the 2D con-
volutional filter, for the convolution layer is: 

W (n,θi) = k1 × k2 , i ∈ [1..N] (31) 

where n is the scale number (in our work, n = 1..8), θ is the Gabor 
filter orientation (we employ 16 orientations from 0 to π, i.e. step of π 
/16), and N is the number of filters used. Noting that it is necessary to 
provide the system with the scale number and the number of filters, 
which can be less than eight filters, we will now describe how to choose 
the orientations of the filters.  

• Gabor filter orientations: The purpose of the filtering process is to 
highlight the most important features of the image. Therefore, the 
choice of Gabor filter orientation is crucial and should be based on 
the type of features to be highlighted. In the image of bones shown in 
Fig. 3, the lines, which are often slanted vertically, are the most 
prominent feature. 

In this figure, the lines run from top to bottom and are generally 
restricted to an angle of 90o ± 30o. Fig. 3.(a) represents an image with 
an orientation of approximately 75o, while Fig. 3.(c) represents an 
image with an orientation of approximately 105o, however the lines in 
the image of Fig. 3.(b) point in the orientation of 90o. 

In general, orientations are determined by the number of filters used, 
and vertical orientations always take precedence, as shown in Fig. 3.(d). 
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Mathematically, if N is the number of Gabor filters, then each filter’s 
orientation can be represented as follows: 

If N odd:..N = 2p + 1⇒ 

Sθ =
{

θj
}

j=0⋯p , θj =
π
2
± j

π
16 , and p =

N − 1
2

(32) 

If N even:..N = 2p⇒ 

Sθ =
{

θj
}

j=0⋯(p− 1) ∪

{
π
2
+

N
2

⋅
π
16

}

, θj =
π
2
± j

π
16

, and p =
N − 1

2
(33) 

We utilized an increment with a step of π
16; this step can be decreased 

or increased to improve the system’s accuracy. Following the determi-
nation of the scale number and selection of the orientations of the filters, 
we will describe the functional behavior of our feature extraction 
method.  

• Functional Architecture: In this part, we will see how the feature 
extraction function works to provide an accurate feature vector to 
maximize efficiency. 

Convolution layer: The main purpose of a convolution layer is to 
enhance the dominant features of the input image. In addition to the 

orientation of the filter, its size (variance) also plays an important role, 
as it determines the size of the neighbors involved in the computation of 
each pixel’s coefficient. The outputs of this layer are obtained by a 2D 
convolution process of all the images of the train database (Ψtrain) and 
the filters W (n,θi): 

Î ji = Ij*W (n,θi) , i ∈ [1..N], θi ∈ Sθ j ∈ [1..Ntrain] (34) 

Where Ntrain denotes the number of images in Ψtrain, symbol * is the 2D 
convolution process, and ̂Iji are the filtered output images. 

Pooling layer: When N filters are applied to images, N additional 
images are produced, resulting in a significant increase in data. The 
pooling layer reduces the amount of data while keeping image features. 
Indeed, due to the fact that the relevant features have high and positive 
values, quantization can be used to find their location. in our work, we 
use the following linear threshold function: 

Ib
ji(x, y) =

{ 0 if Î ji(x, y) < τb

1 if Î ji(x, y) ≥ τb

, i ∈ [1..N] (35) 

where τb is the threshold for binarization. In our work, we set this 
threshold to 0 because the coefficients of the filtered image ( Î i(x, y),∀x,
y) had the same probability of being negative or positive. 

Fig. 2. Feature extraction. An example of a one-scale structure with three convolution filters of different orientations.  

Fig. 3. Selection of the Gabor filters orientations. (a) The lines are in the first quarter, (b) Lines are usually vertical, (c) The lines are in the fourth quarter, and (d) 
The priority orientation. 
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Next, the N-binarized images (Ib
ji

⃒
⃒
⃒
i=1..N

) are converted to an integer- 

valued image. Consequently, the N-binary codeword surrounding each 
pixel is transformed according to the following formula: 

Ijd(x, y) =
∑N

i=1
Ib

ji(x, y)⋅2
(i− 1) (36) 

As a result, we will get a single image to which we will apply a 
handcrafted feature extraction algorithm in order to extract its features. 

Feature vector layer: In this step, a handcrafted feature extraction 
method (HOG and/or LPQ) is applied to the analyzed image (Ij) to 
extract the feature vector (V I). 

V
MTD
j = F MTD

(
Ijd
)
, MTD ≡ {HOG,LPQ} (37) 

Both methods (HOG and LPQ) have a variety of parameters that can 
be modified to control the size and precision of the feature vector. 

In fact, the precision of this vector affects the effectiveness of the 
detection system; hence we selected and quantized its coefficients using 
the following formula during the training phase. 

Ṽ j = F QNTZ
(
υj(x)

)

=

{ υj(x) if υj(x) ≥ λ0⋅ρυ

0 Othrwise
, Ṽ j ∈ R1×L, x ∈ [1..L] (38) 

and 

υj = F SLCT

(
V

MTD
j

)
(39) 

where υj represents the feature vector reorganized according to the 
coordinates obtained by the Fisher’s selection method [49], which yields 
a vector with a predefined number of coordinates (L) in decreasing order 
of importance, ρυ is the average value of υj, and λ0 is a predefined value. 

• Optimization: To create a Gabor filter bank, it is necessary to pro-
vide three parameters (f0, γ, and η). In our work and during the 
training phase, we employ the Bat algorithm optimization to find the 
optimal system performance-enhancing settings (fbest

0 0,γbest,and ηbest). 
[
f best
0 0, γbest, ηbest] = F OPT

(
Saccuracy

)
(40)  

where Saccuracy, which is the system accuracy, represents the objective 
function. 

4.3. Classifier 

In classification problems, discriminative machine learning finds a 
function that can correctly identify instance labels. As one of the most 
important techniques in discriminative machine learning, the Support 
Vector Machines (SVM) [50] classifier finds the hyperplane (Eq. (41)) 
that correctly separates two classes with maximum margin. 

g(x) = wT x+ b (41) 

Learning an SVM has been formulated as a constrained optimization 
problem that minimizes the following objective function: 

J(w, b, ξ) =
1
2
‖w‖2

+C
∑N

i=1
ξi (42) 

Subject to these constraints: 
{

yi[xiwi + b] ≥ 1 − ξi
ξi ≥ 0 , i = 1, 2,⋯,N (43) 

where C denotes the margin size control parameter. The Lagrangian 
function for SVM is constructed by adding a weighted sum of the con-
straints to the objective function: 

L =
1
2
‖w‖2

+C
∑N

i=1
ξi −

∑N

i=1
αi[yi(xiwi + b) − 1+ ξi ] −

∑N

i=1
μiξi (44) 

After executing the relevant processes, we get w and b, which 
determine the optimal hyperplane orientation: 

w =
∑N

i=1
αiyixi , and b =

1
Ns

∑

s∈S

(

ys −
∑

m∈S
αmymxm⋅xs

)

(45) 

Where S denotes the set of indices of the Support Vectors (i/αi > 0), 
and xs represents the data point that satisfies 

∑N
i=1αiyi = 0. Finally, each 

new point xnew is classified by evaluating the following formula: 

ynew= sgn(wi⋅xnew+b) (46)  

5. Results 

This section evaluates the proposed osteoporosis diagnosis system. 
We’ll split the experiments into three parts. First, we’ll thorough eval-
uation the proposed method, then determine the appropriate settings of 
our feature extraction method. In the last part, we’ll evaluate the effect 
of the data fusion on system performance. 

5.1. Construction of training and testing set 

Our dataset contains 174 samples organized in three galleries. The 
first and second galleries were used to train the classifier, while the third 
gallery was used to evaluate the blind classification. To train the clas-
sifier using 10-fold cross-validation, the 116-sample dataset was 
randomly partitioned into 10 subsets, and 10 rounds of training and 
testing were conducted. After training the classifier and determining the 
optimal parameters of the proposed feature extraction method, the best 
model was selected and used to classify the remaining 58 blind samples. 

5.2. Implementation 

All experiments were performed with Matlab 2015a software on 
Windows 7 Professional and a SONY VAIO laptop model VPCEH2J1E 
with an Intel(R) Core(TM) i3-2330 M CPU running at 2.2 GHz and 6 GB 
of DRAM. In addition to the custom routines developed by the authors, 
we also used Matlab’s built-in functions. 

5.3. Performance 

In this section, we will comprehensively evaluate the proposed 
method, from the normalization step to the fusing step, including the 
step of selecting the optimal parameters for the Gabor filters. 

5.3.1. Preliminary assessment 
The acquisition device provides 16-bit bone images. Before begin-

ning the process of feature extraction, we first apply the Contrast 
Limited Adaptive Histogram Equalization (CLAHE) [51] approach to the 
region of interest to enhance the contrast of the bone images. Thus, the 
tile sub-region is one of the most important parameters of this method, 
so we’ll explore three alternative tile sizes to determine which will 
produce the most enhanced image. To achieve this, we incorporated the 
enhanced images into an osteoporosis diagnosis model based on hand-
crafted feature extraction techniques (Filtering-free model). Our evalu-
ation dataset consists of 400× 400-pixel images, so we will explore tiles 
with medium-sized (20× 20,40 × 40 and 80× 80). Fig. 4 depicts the 
results for the three examined sizes using the two handcrafted feature 
extraction techniques (HOG and LPQ). The HOG method operates with 
cells of size 80 × 80 and produces a histogram with 9 bins, whereas the 
LPQ algorithm utilizes a window size of 15× 15. Moreover, these two 
feature extraction methods are applied on the entire image. 

The two graphs in this figure illustrate the system accuracy (ACC), 
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Fig. 4.(a), and the Area Under the receiver operating characteristic 
(ROC) curve (AUC), Fig. 4.(b), respectively. Consequently, from the 
different graphs in Fig. 4, two major observations can be drawn:  

– In terms of ACC and AUC, the LPQ method outperforms the HOG 
method regardless of tile size.  

– In general, 40× 40-sized tiles showed the highest effectiveness. 

For the HOG-based model, the performance in terms of (ACC, AUC) 
reaches (63.79%, 56.48%) at the decision threshold (THOG

d ) of − 0.1358, 
and a confusion matrix of MHOG

conf (TP, FP, TN, FN) = (17,9, 20,12) with a 
(NHOG

f = 51 features and a λHOG
0 = 0.90. Similarly, the LPQ-based model 

works with a (ACC, AUC) of (70.69%, 58.15%) at the TLPQ
d equal to 

− 0.3578, and a confusion matrix of MLPQ
conf (TP, FP, TN, FN) =

(22,10,19,7) with (NLPQ
f , λLPQ

0 ) = (16, 1.00). Indeed, in the case of LPQ, 
it appears from Fig. 4.(b) that the AUC achieved with 80x80 size tiles is 
superior to that obtained with 40 × 40 size tiles. To further demonstrate 
the superiority of 40 × 40 size tiles, Table 1 illustrates the specificity 
(SPE), sensitivity (SEN), and F1-score. 

From this table, it is clear that in the case of LPQ, the tile of size 40 ×

40 is superior to that of size 80 × 80 in terms of SPE and F1-score. 
Therefore, to normalize the dataset images, we will utilize 40 × 40 
-sized tiles in the remaining experiments.  

• Block based analysis markedly improves performance: In most 
visual systems, block-based image analysis has evolved as a pro-
cessing paradigm over the past decade. It has been widely used in 
image processing, especially for data compression and pattern 
recognition. In block-based analysis, the image is divided into sub- 
images or smaller blocks. Indeed, the calculation time and the 
memory space required to perform image processing are crucial. 
Therefore, it is more convenient to perform processing on multiple 
sets of reduced data than on the entire image. In this part of the 
testing, the efficiency of block-based image analysis in the osteopo-
rosis diagnostic system will be evaluated. Thus, in our experiments, 

we adopted the following strategy: For each block size of the set SBLK 

(SBLK = {100 × 100,200 × 200,300 × 300}), the original image is 
divided into blocks with one of the four overlap rates (OLP) provided 
in SOLP (SOLP = {0%,25%,50%, 75%}). The ACC is then calculated 
after HOG/LPQ is performed on the blocks. For each feature 
extraction method, 12 tests can be conducted, and the parameters 
with the highest ACC values are chosen as the best settings. In Fig. 5, 
system performance (ACC) is plotted as a function of block size and 
block overlap for the two feature extraction methods. 

By observing and analyzing Fig. 5.(a) and Fig. 5.(b), we can see that: 
(i) In the case of HOG, block-based analysis greatly increased system 
performance (13.50% improvement) compared to whole image analysis. 
In the best-case scenario (100 × 100 and 0% overlap), the system can 
operate with (ACC, AUC) values of (72.41%, 62.19%) at 
THOG

d = − 0.1390 and a confusion matrix of MHOG
conf = (15,2,27,14) with 

(NHOG
f , λHOG

0 ) values of (11, 1.00), and (ii) A block size of 100 × 100 is 
still better even in the LPQ, but with a 75% overlap, in which an ACC 
improvement of about 7.32% was obtained. Thus, the system can 
operate with (ACC, AUC) values of (75.86%, 71.34%) at TLPQ

d = 0.4441 
and a confusion matrix of MLPQ

conf = (24,9,20, 5) with (NLPQ
f , λLPQ

0 ) values 
of (41, 0.75). Additional results of block-based image analysis are shown 
in Table 2. 

Previous tests were conducted without the filter layer (filtering-free), 
during which the size of each CLAHE tile and analysis block was 
determined. Future experiments will include the filtering layer to assess 
the impact of this layer on system performance.  

• Filtering input image markedly improves performance: After 
having normalized the image using a previously determined CLAHE 
tile, each block of size 100 × 100 will be filtered using a set of Gabor 
filters to obtain numerous descriptors. After combining these de-
scriptors, a HOG/LPQ will then be applied to the resulting combi-
nation, and the obtained vectors will be concatenated to form a 
feature vector. The block was analyzed using N Gabor filters (N ∈ [2,
3, .., 8]) of three distinct sizes (k1 × k2 ≡ {3 × 3, 5 × 5, 7 × 7}). 
Notably, the initial values of f0, γ and η for the Gabor filters have been 
chosen randomly, and to limit the number of tests, only the first scale 
of the Gabor filter bank is used. 

GBR-HOG based osteoporosis diagnosis system: In the Gabor-HOG 
(GBR-HOG)-based system, f0, γ and η were randomly assigned the 
values 0.637, 0.921, and 0.834, respectively. Since varying the number/ 
size of the Gabor filter (N and k1 × k2) produces different feature rep-
resentations, we can experimentally select a (N, k1 × k2) combination 

Fig. 4. Performance comparison under numerous CLAHE tile sizes. (a) System accuracy (ACC), and (b) Area under curve (AUC).  

Table 1 
Performance for different CLAHE tile sizes.  

CLAHE Tile 
size 

HOG LPQ 

SPE 
(%) 

SEN 
(%) 

F1-score 
(%) 

SPE 
(%) 

SEN 
(%) 

F1-score 
(%) 

20× 20  37.93  79.31  65.71  48.28 82.0.76  70.59 
40× 40  58.62  68.97  65.57  75.86 65.52  69.09 
80× 80  82.76  37.93  48.89  68.97 68.97  68.97  
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that improves the system’s accuracy. In order to understand the effect of 
these parameters, Fig. 6 shows the ACC results as a function of the 
number of filters (N) for all filter sizes (k1 × k2). 

This figure clearly demonstrates that the small size of the filter gives 
better results when the number of filters increases, while the large size 
gives better results when the number of filters decreases. Thus, the 
highest ACC was generated by two 7× 7-sized filters (θ =

{90o,101.25o}) or eight 3× 3-sized filters (θ =
{

90o ± 11.25oj|j=0..3, 135o
}

). Obviously, two 7x7-sized Gabor filters 

with a confusion matrix of MGBR− HOG
conf = (22, 6, 23, 7) and (NGBR− HOG

f , 

λGBR− HOG
0 ) values of (15, 0.25) are the optimal configuration in terms of 

processing time. Fortunately, it is evident that incorporating the filtering 
layer results in a 7.15 % improvement in system performance over the 
filtering-free configuration. Finally, it should be noted that these results 
are related to certain values of the Gabor filter’s parameters (f0, γ and η), 
suggesting that they can be improved by varying these parameters’ 
values. Table 3 summarizes the overall results for the best case obtained. 

GBR-LPQ based osteoporosis diagnosis system: Similarly, in the 

Gabor-LPQ (GBR- LPQ)-based system, f0, γ and η were randomly 
assigned the values 0.898, 0.700, and 0.334, respectively. Fig. 7 shows 
the ACC results as a function of the number of filters (N) for all filter sizes 
(k1 × k2). 

The results in this figure show that the performance of our system 
generally improved (by more than 75%) only when we used a Gabor 
filter of size 3× 3. Regarding ACC, it is evident that using 8 filters 
resulted in a 2.28% improvement in system performance. In this case, 
the system operates with an ACC of 77.59% and an AUC of 74.67%. The 
resulting confusion matrix is MGBR− LPQ

conf = (23,7,22,6), while the values 
of (NGBR− LPQ

f , λGBR− LPQ
0 ) are (11, 0.70). Also, Table 3 summarizes the 

overall results for the best case obtained. 
Finally, in order to demonstrate the importance of incorporating the 

filtering layer, we compare the best results obtained with those obtained 
without filtering layer (filtering-free) in Fig. 8. 

This figure demonstrates the feasibility of the presence of this layer 
in the two cases, which greatly improved system performance, allowing 
the ACC to exceed 77%. Finally, it should be mentioned that it is feasible 

Fig. 5. Comparison of performance based on ACC using a variety of analysis block sizes. (a) HOG based osteoporosis diagnostic system, and (b) LPQ based oste-
oporosis diagnostic system. 

Table 2 
Performance for different analysis block sizes.  

Analysis HOG LPQ 

Block type SPE (%) SEN (%) AUC (%) OLP (%) SPE (%) SEN (%) AUC (%) OLP (%) 

100× 100  51.72  93.10  62.19 0  82.76  68.97  71.34 75 
200× 200  58.62  86.21  64.80 0  72.41  65.52  63.02 25 
300× 300  72.41  72.41  68.61 0  79.31  65.52  77.05 0  

Fig. 6. Performance comparison of HOG-based system regarding ACC using a variety of Gabor filter numbers/sizes.  

M. Mebarkia et al.                                                                                                                                                                                                                              



Displays 76 (2023) 102343

10

to improve these performances, as the HOG and LPQ techniques contain 
numerous parameters that, with careful selection, can be used to 
enhance the effectiveness of the osteoporosis diagnosis system. 

5.3.2. Impact of optimizer on model performance 
In previous experiments, the Gabor parameters (the digital frequency 

(fo) and the two normalized scales (γ,η)) were randomly selected for the 
HOG and LPQ feature extraction methods. In this part, we will attempt 
to determine the optimal values for these parameters in order to achieve 
the best performance. In these tests, we do not limit the optimization to 
the best configurations mentioned above; rather, we will look for the 

optimal values using all available configurations, that is, for n, values 
ranging from 2 to 8 and the three filter sizes previously used. Therefore, 
we limit the search area of these parameters to the range of 0 to 1. The 
optimal results obtained after running the optimization algorithm are 
shown in Table 4. 

From this table, in comparison with the previous results, we can 
easily see that the optimization process improved the system perfor-
mance by 4.45% and 2.22% for GBR-HOG and GBR-LPQ respectively. It 
is clear that in both cases, 2 Gabor filters of size 3x3 gave the best results. 
In the case of the GBR-HOG and for the optimal parameters of the Gabor 
filter (0.730, 0.801, 0.619), the system works with values (ACC, AUC) of 

Table 3 
System performance for effectively realized configurations (GBR-HOG and GBR-LPQ).  

Methods N W Td SPE (%) SEN (%) AUC (%) F1-score (%) Nf λ0 

GBR-HOG 2 3 £ 3  0.0493  75.86  79.31  71.22  77.97 15  0.25 
GBR-LPQ 8 3 £ 3  − 1.0054  79.31  75.86  74.67  77.19 11  0.70  

Fig. 7. Performance comparison of LPQ-based system regarding ACC using a variety of Gabor filter numbers/sizes.  

Fig. 8. Performance comparison between systems with and without a filtering layer. (a) HOG and GBR-HOG based osteoporosis diagnosis system, and (b) LPQ and 
GBR-LPQ based osteoporosis diagnosis system. 

Table 4 
System performance at optimal Gabor filter settings.  

Methods N W Td SPE (%) SEN (%) ACC (%) AUC (%) F1-score (%) Nf λ0 

GBR-HOG 2 3 £ 3  0.1565  86.21  75.86  81.03  80.86  80.00 61  0.30 
GBR-LPQ  0.3775  93.10  65.52  79.31  75.86  76.00 46  0.10  
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(81.03%, 80.86%) at TGBR− HOG
d = 0.1565 and a confusion matrix of 

MGBR− LPQ
conf = (25, 7, 22, 4), with (NGBR− HOG

f , λGBR− HOG
0 ) values of (61, 

0.30). In the case of GBR-LPQ feature extraction method, the optimal 
parameters of the Gabor filter were (0.880, 0.701, 0.719) and the system 
can operate with (ACC, AUC) values of (79.31%, 75.86%) at TGBR− LPQ

d =

− 0.3775 and a confusion matrix of MGBR− LPQ
conf = (27,10,19,2) with 

(NGBR− LPQ
f , λGBR− LPQ

0 ) values of (46, 0.10), In order to demonstrate the 
significance of the optimization process, we compared the optimal re-
sults to those obtained without optimization in Fig. 9. 

These two figures show the impact of the optimization procedure on 
system performance. It should also be remembered that another opti-
mization algorithm can be used, such as Genetic Algorithm (GA) [52] or 
Particle Swarm Optimization (PSO) [53], and search in a wide range to 
improve filter parameters of Gabor. 

5.3.3. Impact of data fusion on model performance 
With diagnostic systems that only use information obtained from a 

single source, we cannot guarantee an accurate diagnosis. In fact, the 
error rates associated with these systems are rather significant, making 
their decisions unreliable. Creating multi-source diagnostic systems 
using lots of information extracted from the input image can overcome 
this challenge. Consequently, the purpose of this part is to explore 
whether the system performance might be improved by combining 
several information derived from the bone sub-image. 

Pattern recognition systems have many sources of information that 
can be combined to improve their efficiency. In fact, this combination is 
performed according to the data fusion principle [54] which is a tech-
nique used to process information from multiple sources. It consists in 
combining data from several sources in order to obtain a better decision 
than that obtained from each source separately. In general, data fusion is 
the process of integrating several data in order to extract new infor-
mation that is more representative of all the data. 

In a multi-source system, there are many possible scenarios for the 
sources of information that can be considered. In our work, we have 
adopted multi-algorithm scenario, in which the bone image is inde-
pendently analyzed using HOG and LPQ algorithms, and the resulting 
information is then fused to improve system performance. In this sce-
nario, the fusion process can only be combined at three distinct levels: at 
feature level, at matching score level, or at decision level.  

• Feature level: At this level, various feature vectors (observations) 
produced from the processing step (feature extraction step) are 

fused. Feature-level fusion can be implemented using a variety of 
techniques described in the literature. In our work, we implemented 
feature-level fusion using the Average (AVR), Concatenation (CAT), 
Canonical Correlation Analysis (CCA) [55], and Discriminant Cor-
relation Analysis (DCA) techniques [56]. 

Let V HOG = F HOG(Ii) and V LPQ = F LPQ(Ii) be the feature vectors 
obtained from the bone sub-image Ii using the HOG and LPQ based 
feature extraction methods respectively. The resulting fused feature 
vector (V FUS) is defined as: 

Average: in this case V HOG and V LPQ must be the same length. 

V FUS =
1
2
(V HOG + V LPQ) (47) 

Concatenation (CAT): 

V FUS = [V HOG,V LPQ] (48) 

In CCA and DCA, feature-level fusion is performed either by 
concatenation or by summation of the transformed feature vectors: 

Canonical Correlation Analysis (CCA): 

V FUS = WT
HOG •V HOG +WT

LPQ •V LPQ or
[
WT

HOG •V HOG,WT
LPQ •V LPQ

]

(49) 

Discriminant Correlation Analysis (DCA). 

V FUS =W ′T
HOG•V HOG+W ′T

LPQ •V LPQ or
[
W ′T

HOG •V HOG,W ′T
LPQ •V LPQ

]

(50) 

where WT
HOG, WT

LPQ, W′T
HOG, and W′T

LPQ denote the transformation 
matrices (for more details see [57]).  

– Matching score level: At this level, the individual scores are fused 
into a single score, which is then used to make the ultimate decision. 
Matching score-level fusion is the most common sort of fusion since it 
can be applied to all types of systems using simple and effective 
techniques. There are various techniques for combining scores 
(fusion rules) [58]. Indeed, the sum of the scores (SUM), the mini-
mum of the scores (MIN), the maximum of the scores (MAX), and the 
product of the scores (MUL) are the rules most frequently employed. 

Let dHOG and dLPQ be the matching scores obtained by the classifi-
cation subsystems SHOG and SLPQ , the fused score (dFUS) is computed by: 

Fig. 9. Performance comparison between systems with and without a optimization. (a) HOG and GBR-HOG based osteoporosis diagnosis system, and (b) LPQ and 
GBR-LPQ based osteoporosis diagnosis system. 
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SUMrule : dFUS = dHOG + dLPQ (51)  

MAXrule : dFUS = max(dHOG, dLPQ ) (52)  

MINrule : dFUS = min(dHOG, dLPQ ) (53)  

MULrule : dFUS = dHOG•dLPQ (54) 

It is important to note that these combination rules can only be 
applied if the scores of all subsystems are homogeneous. Consequently, 
an initial step of scores normalization is required.  

– Decision level: At this level, the various decisions of the subsystems 
are combined in a single decision [59]. In fact, each subsystem 
provides a binary decision in the form of ’true’ or ’false’, and the 
decision fusion step is to make a final decision based on this series of 
’true’ or ’false’. AND, OR and majority voting (VOTE) are the 
simplest principles for combining these decisions. 

Let SHOG
i
⃒
⃒N
i=1 be a set of N HOG-based classification subsystems that 

use N different filter sizes, and let dHOG
i be the decisions provided by the 

different classification subsystems, the fused decision (dHOG
FUS ) is 

computed by: 

ANDrule : dHOG
FUS = &N

i=1dHOG
i = dHOG

1 &dHOG
2 & • • • &dHOG

N (55)  

ORrule : dHOG
FUS = ‖

N
i=1dHOG

i = d
HOG
1

⃦
⃦
⃦ dHOG

2

⃦
⃦
⃦ • • •

⃦
⃦
⃦dHOG

N (56)  

VOTErule : dHOG
FUS =

⎧
⎨

⎩

1 if NTrue ≥

⌈
N
2

⌉

0 Otherwise
(57) 

where NTrue denotes the number of classification sub-systems with 
decision 1 (‘true’), and the symbol ⌈α⌉ denotes the smallest integer that is 
not less than α. 

By using all available configurations, it is possible to have several 
single-source subsystems. Consequently, our test will be limited to 
selecting the optimal configuration already obtained for all filter sizes 
for the GBR-HOG and GBR-LPQ based feature extraction methods. So, in 
order to find which fusion technique yields the highest ACC, Table 5 was 
generated for three fusion levels. 

As this table shows, it was only by using fusion at the decision level 
that the performance of the osteoporosis diagnostic system was signifi-

cantly improved. Indeed, fusing the information obtained by analyzing 
the image using all filter sizes according to the LPQ and the VOTE rule 
leads to a significant improvement in system performance. In this case, 
the system operates with an ACC equal to 89.66%, with an improvement 
of 26.85% compared to the primary system. The three fused subsystems 
keep the same decision thresholds (TGBR− LPQ

d ) and the same number of 
selected features (NGBR− LPQ

f ), resulting in a confusion matrix MFUSION
conf 

equal to (25, 2, 27, 4). At the score-fusion level, the osteoporosis diag-
nostic system either retains the same performance as the uni-source 
system or degrades. 

6. Discussion 

In this part, we will attempt to present and discuss the major findings 
and provide some recommendations. In addition, a comparative study 
with relevant prior research will be presented. 

6.1. Major findings 

This paper explores the use of texture analysis to distinguish between 
healthy and osteoporotic bones. We have found that applying hand-
crafted feature extraction techniques directly to bone images does not 
yield encouraging results, as opposed to applying these techniques to 
descriptors derived through deep image analysis. Fig. 10 illustrates the 
difference between the two aforementioned methods. 

From this figure it can be deduced that:  

– Bone deterioration may be localized in a specific portion of the 
analyzed area; therefore, it is recommended to analyze the image 
block by block in order to decrease the inter-correlation ratio (be-
tween images of healthy and diseased bone). This strategy would 
decorrelate the feature vectors in a substantial portion of the vector 
coefficients at least.  

– Practically, the filtering procedure will eliminate all unnecessary 
traits. In the bone image, the image lines are the most essential traits, 
so filters that can increase the contrast of these traits should be 
applied in order to effectively extract their features.  

– It is crucial to link the classifier to the feature extraction method. In 
this scenario, the classifier plays the role of an expert, who will 
choose the parameters of the feature extraction method to improve 
its performance (deep behavior). 

Table 5 
Multi-source osteoporosis diagnostic system performance.  

Fusion Level GBR-HOG GBR-LPQ 3 × 3 5 × 5 7 × 7 RULE SPE (%) SEN (%) ACC (%) AUC (%) F1-score (%) 

FEATURE £ £ £ CCA  75.86  72.41  74.14 66.83  73.68  
£ £ £ CAT  72.41  72.41  72.41 73.01  72.41  
£ £ £ AVR  72.14  72.41  72.41 69.80  72.41   

£ £ £ CAT  75.86  65.52  70.69 68.85  69.09   
£ £ £ AVR  68.97  72.41  70.69 70.63  71.19  

£ £ £ CCA  79.31  65.52  72.41 65.99  70.37  
£ £ £ DCA  79.31  60.07  75.00 65.87  67.92  
£ £ £ DCA  55.17  86.21  70.69 58.86  74.63 

SCORES £ £ £ MIN  82.76  72.41  77.59 78.48  76.36  
£ £ £ SUM  79.31  79.31  79.31 78.24  79.31  
£ £ £ SUM  72.41  82.76  77.59 78.69  78.69   

£ £ £ MIN  86.21  68.97  77.59 77.29  75.47   
£ £ £ MAX  68.97  82.76  75.86 73.01  77.42   
£ £ £ SUM  75.86  75.86  75.86 75.03  75.86  

£ £ £ SUM  72.41  82.76  77.59 74.91  78.69  
£ £ £ SUM  82.76  72.41  77.59 75.98  76.36  
£ £ £ MAX  75.86  75.86  75.86 79.79  75.86 

DECISION £ £ £ £ VOTE  88.46  81.25  84.48 /  85.25   
£ £ £ £ VOTE  92.59  87.10  89.66 /  90.00  

£ £ £ OR  95.00  73.68  81.04 /  83.58  
£ £ £ AND  68.42  85.00  74.18 /  69.39  
£ £ £ OR  100.00  69.05  77.59 /  81.69  
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– Given the significant correlation between healthy and diseased bone 
images, analyzing the image using many techniques and combining 
their results will improve system performance due to the additional 
data offered by each analysis process. 

Lastly, it should be highlighted that there is still much work to be 
done to improve the performance of this system, for example by 
adopting feature-level fusion and pyramid analysis. 

6.2. Comparison to previous methods 

In the development of pattern recognition systems, it is essential to 
compare the results with those of previous research. To ensure a fair 
comparison, only works that used the same dataset and evaluation 
protocol will be chosen. In this part, in order to show the efficiency of 
our proposed method compared to existing methods (handcrafted 
/based deep learning), a comparative study with some recent works is 
carried out using the dataset provided by IEEE-ISBI Challenge, where the 
main works are summarized in Table 6. 

This table clearly demonstrates the effectiveness of the proposed 
osteoporosis diagnostic system, as our system, whether based on a single 
source or multi-sources, outperforms all the methods listed in the table 
in terms of ACC (up to 89.66%) and AUC (up to 80.86%), allowing its 
use in Computer Aided Diagnosis (CAD). 

7. Conclusion 

Recent increases in the need for radiologists are primarily due to the 
rapid growth of medical imaging due to advancements in imaging 

technologies. Indeed, following the increase in demand, the workload of 
the radiologist has increased, which can unfortunately lead to diagnostic 
errors due to the specialists workload. Recently, the application of 
Artificial Intelligence (AI) approaches to the clinical practice of medical 
imaging has played a significant role in enhancing diagnostic accuracy 
and efficacy. In addition to improving diagnostic accuracy, these stra-
tegies bridge the gap between inexperienced and experienced clinicians 
or between generalists and specialists. The diagnosis of osteoporosis is 
one of the most crucial diagnostic practices requiring medical imaging. 
In this paper, we present an AI-based technique for automatically 
detecting osteoporosis by analyzing X-ray images of bone tissue. In this 
study, we developed a model for diagnosing osteoporosis based on 
handcrafted features taken from descriptors obtained from a thorough 
analysis of the bone image using a set of Gabor filters with different 
orientations. Two well-know hand-crafted methods were used to extract 
descriptor features, namely HOG and LPQ. To achieve a high level of 
performance, we used a bat-based optimization method to determine 
appropriate Gabor filter parameters. Additionally, we combined infor-
mation at two distinct levels, including fusion at score level and fusion at 
decision level. In this study, we have attempted to cover all aspects of 
system development. Consequently, our studies consisted of selecting 
the optimal parameters of the normalization approach, deciding 
whether to analyze the full image or to analyze it in blocks, selecting the 
Gabor filter parameters, and lastly combining the information from 
various subsystems. In fact, all of these tests resulted in an excellent 
performance (ACC = 89.66%) that outperformed several previously 
published studies. In future work, we intend to combine these features 
with clinical data to develop a multimodality model. In addition, we will 
try to use/develop more predictive handcrafted features to improve the 

Fig. 10. The progress of improving system performance (the most significant results achieved).  

Table 6 
Performance comparison to some works in the state-of-the-arts.  

Authors Methods Classifier ACC (%) SEN (%) SPE (%) AUC (%) F1-score (%) 

Yang et al. 2015, [39] SIFT-IFV SVM  68.00  72.00  66.00  68.00  63.90  
LBP-IFV   68.50  70.00  64.00  64.00  68.40 

Florian Yger, 2014, [41] Haar SVM  64.00  62.00  66.00  –  63.90 
Su et al. 2020, [15] AlexNet + ECD1 SVM  77.50  74.70  83.30  82.10  76.40 
Su et al. 2018, [26] FS2 SVM  71.20  73.30  69.00  –  71.00 
Palanivel et al. 2020, [22] LH3 SVM  59.00  59.00  59.00  –  – 
Proposed Gabor-HOG SVM  81.03  75.86  86.21  80.86  80.00  

Gabor-LPQ   79.31  65.52  93.10  75.86  76.00  
Decision fusion (HOG)   84.48  81.25  88.46  –  85.25  
Decision fusion (LPQ)   89.66  87.10  92.59  –  90.00  

1 ECD: Encoded features provided by: Gabor-GLCM (GGLCM) + Hessian- GLCM (HGLCM) + Local Gabor binary patterns (LGBP) + Local Hessian binary patterns 
(HLBP). 

2 FS: Feature selection from: GGLCM + LHBP + LGBP. 
3 LH: Lacunarity computed from the Hausdorff dimensions. 
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accuracy of the diagnosis. 
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