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The automotive industry is undergoing a profound digital transformation to create autonomous vehicles.
Vehicle-to-Everything (V2X) communications enable the provisioning of transportation use cases for
road traffic and safety management. At the same time, during the past decade, Artificial Intelligence
(AI) and Machine Learning (ML) have been in the spotlight because of their outstanding performance
in various domains, including natural language processing, and computer vision. Considering also
current standardization efforts, towards incorporating AI and ML as integral sub-systems of beyond
5G and 6G networks, these technologies are considered very promising to optimize user, control, and
management network functions, but also to support road safety and even entertainment applications. This
survey systematically reviews existing research at the intersection of AI/ML and V2X communications,
focusing on handover management, proactive caching, physical and computation resources allocation,
beam selection optimization, packet routing, and QoS prediction in vehicular environments. We extract
the underlying AI/ML techniques, the training features, their architecture and discuss several aspects
regarding the intricacies of vehicular environments and ML. These aspects include time complexity of
the algorithms, quality of real-world vehicle traces, suitability of AI/ML techniques in relevance to the
designated network operation and the underlying automotive use case, as well as velocity and positioning
accuracy requirements towards the creation of more realistic and representative synthetic data.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

During the past years, car manufacturers have introduced driver 
assistance systems to their models, coupled with onboard intelli-
gence, leading to a higher perception of their surroundings. This 
enables the possibility to achieve different levels of autonomous 
driving. Autonomous driving is considered critical in improving car 
safety, eliminating accidents due to human error, reducing traffic 
congestion, and improving passenger comfort. The Society of Auto-
motive Engineers (SAE) has defined six driving automation levels, 
ranging from no automation to full automation [1]. Communica-
tions among vehicles, infrastructure and road users, collectively 
defined as Vehicle-to-Everything (V2X), are essential in realizing 
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safety and non-safety-related applications, such as autonomous 
driving, car platooning, information sharing among vehicles and 
high data-rate infotainment.

V2X may refer to Vehicle-to-Vehicle (V2V), Vehicle-to-Infra-
structure (V2I), Vehicle-to-Network (V2N) or Vehicle-to-Pedestrian 
(V2P) communication. V2P refers to the communication among 
vehicles and pedestrians, cyclists or motorized two-wheeler opera-
tors, collectively called Vulnerable Road Users (VRUs) [2]. There are 
two leading technologies in V2X: i) the Cellular-V2X (C-V2X) based 
on cellular 4G/LTE [3] and 5G networks [4] and ii) the Dedicated 
Short-Range Communication (DSRC) [5] based on IEEE 802.11p [6]. 
These solutions will complement the sensor/camera/radar informa-
tion and intelligently connect the car to its surroundings and the 
network.

From a network perspective, connected vehicles present chal-
lenges regarding network management, performance, and effi-
ciency. Vehicular networks exhibit strong dynamics in traffic pat-
terns, network topologies, and propagation channels. In addition, 
the rising popularity of mobile applications, such as in-vehicle in-
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Summary of abbreviations

3GPP 3rd Generation Partnership Program
5G NR 5G New Radio
5GAA 5G Automotive Association
AI Artificial Intelligence
ANN Artificial Neural Network
AoA Angle of Arrival
AoD Angle of direction
AP Access Point
ARIB Association of Radio Industries and Businesses
BLER Block Error Rate
BS Base Station
CNN Convolutional Neural Network
CPU Central Processing Unit
CQI Channel Quality Indicator
CSMA/CA Carrier Sense Multiple Access with Collision Avoid-

ance
C-V2X Cellular V2X
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q Network
DRL Deep Reinforcement Learning
DSRC Dedicated Short-Range Communication
E2E End to End
ENI Experiential Networked Intelligence
ETC Electronic Toll Collection
ETSI European Telecommunications Standards Institute
FES Fixed Edge Servers
TCMA Tiered Contention Multiple Access
TTT Transport and Traffic Telematic
FL Federated Learning
FR1 Frequency Range 1
FR2 Frequency Range 2
GHE Geoffrey E. Havers
GHR Gazis-Herman-Rothery
MAB Multi-Armed Bandit
MAC Medium Access Control
MBS Master Base Station
MEC Multi-access Edge Computing
ML Machine Learning
MLP Multi-Layer Perceptron
mmWave millimeter Wave

MNO Mobile Network Operator
NWDAF Network Data Analytics Function
OBU On-board Unit
OECD Organization for Economic Co-operation and Develop-

ment
O-RAN Open Radio Access Network
PF Prediction Function
PLMN Public Land Mobile Network
PRR Packet Reception Rate
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RIC RAN Intelligent Controller
RL Reinforcement Learning
RNN Recurrent Neural Network
RRUs Remote Radio Units
mmBS Millimeter Base Station
ETC Electronic Toll Collection
RSRP Reference Signal Received Power
RSSI Received Signal Strength Indicator
RSU Roadside Unit
SAE Society of Automotive Engineers
SAI Securing Artificial Intelligence
SBS Secondary Base Station
SDN Software Defined networking
SDOs Standardization Organizations
SINR Signal-to-Interference-plus-Noise Ratio
SL Sidelink
V2P Vehicle-to-Pedestrian
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VANET Vehicular ad hoc networks
VES Vehicular Edge Servers
VRU Vulnerable Road Users
VUE Vehicular User Equipment
WAVE Wireless Access in Vehicular Environments
WLAN Wireless Local Area Network
WMMSE Weighted Mean Squared Error
UE User Equipment
RL Reinforcement Learning
VICS Vehicle Information Communication Systems
fotainment, already introduces unprecedented demands on wire-
less networking infrastructure. As a result, Mobile Network Oper-
ators (MNOs) will need to collect an immense amount of hetero-
geneous data to monitor network performance and provide bet-
ter services. Given the current network management techniques, 
maintaining the network in an operational state, while commit-
ting to diverse Service Level Agreements (SLAs), will become an 
increasingly complex task.

A solution to this issue is deploying more intelligence to the 
network [7]. For example, Self-Organizing-Networks (SONs) are 
adaptive and autonomous networks that interact with their en-
vironment, deciding on the necessary actions to maintain perfor-
mance stability and improve their QoS level, based on previous 
resource management decisions. SON solutions are divided into 
three main categories: i) self-configurable, ii) self-optimized, and 
iii) self-healing. The first generation of SONs in 3G/4G networks
faced limitations in their performance since they employed reac-
tive techniques, where functions begin the self-organization phase 
only after a problem has occurred. Hence, these techniques can-
2

not provide the desired level of adaptability to dynamic changes in 
the environment, preventing the network from complying with the 
requirements of many advanced use cases foreseen in future wire-
less networks. In this case, Artificial Intelligence (AI) and Machine 
Learning (ML) can be investigated as potential solutions for deploy-
ing intelligence in SONs, acting proactively in upcoming network 
issues, but also being able to face the complexity of the state space 
appropriately (e.g., number of network environment/parameters). 
This way, networks can reduce the excessive signaling overhead 
that results from network faults, minimizing recurrent delays in 
the provided services. AI and ML can play a similar role also for 
control and user plane functions handling the amount of heteroge-
neous data and improving overall network performance.

Today, there is no unified consensus on a single definition of AI. 
It is out of this publication’s scope to discuss the reasons for the 
lack of a standard definition or its implications. For the remainder 
of this paper, we will adopt the definition of the Organization for 
Economic Co-operation and Development (OECD) [8] for the rea-
sons outlined in [9]: “An AI system is a machine-based system that 
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can, for a given set of human-defined objectives, make predictions, rec-
ommendations, or decisions influencing real or virtual environments. AI 
systems are designed to operate with varying levels of autonomy”.

1.1. Learning in V2X scenarios

Machine-based systems comprise agents that perceive their en-
vironment and adapt to changing circumstances through learning, 
in order to achieve a specific objective. ML is a central subfield 
of AI that studies how agents can improve their perception based 
on experience or data. ML algorithms extract underlying patterns 
among data by approximating a target function that predicts out-
comes on previously unseen data. An important aspect of ML mod-
els is their ability to generalize their learning from seen training 
data to unseen examples [10]. In recent years, advances in Graph-
ics Processing Units (GPUs) and the increased availability of data 
have given rise to Deep Learning (DL). DL is an important ML 
branch that outperforms conventional ML techniques in terms of 
accuracy when the amount of data is significant. DL relies on Arti-
ficial Neural Networks (ANNs), a popular ML technique inspired by 
the function of learning in the human nervous system.

Based on the above, machine-based systems have the poten-
tial to enable advanced transportation use cases, including colli-
sion avoidance, platooning, intersection movement, and emergency 
brakes. Such transportation use cases entail large amounts of data 
to train a learning agent according to specific constraints derived 
from the underlying use case. The agent will then make decisions 
and adapt them to changing network and road traffic conditions.

To enable such transportation use cases, it is imperative to pre-
serve uninterrupted communication between vehicles, networks, 
and pedestrians, regardless of network and road traffic conditions. 
The vehicles transmit and receive awareness messages, meaning 
that the underlying network control and management procedures 
must be in place to allow uninterrupted V2X communications. 
Motivated by the capabilities of AI/ML, this survey examines appli-
cations on such procedures, including handovers, beam allocation, 
caching, radio network resource allocation, computation resources 
management, packet routing, and QoS prediction. Subsection 1.2
describes related work and the contributions of this survey.

1.2. Related work and survey contributions

In recent years, AI/ML applications in wireless networks and 
V2X communications have been extensively studied in the exist-
ing literature, as depicted in Table 1. Ye et al. [11] review advances 
in applying ML in vehicular networks for traffic flow prediction, 
local data storage, network congestion control, load balancing, ver-
tical handover control and wireless resource management. The au-
thors also discuss the challenges when applying ML techniques 
in vehicular networks, including the strong dynamics of vehicu-
lar networks, limited on-board computation resources for efficient 
model training and heterogeneous data generation across several 
network points. Liang et al. [12] describe potential applications 
of AI/ML in learning the dynamics of vehicular networks regard-
ing mobility and traffic patterns, and elaborate on ML techniques 
that can contribute to optimizing network performance. The au-
thors also present related works on network security, handover, 
resource management and congestion control. Noor-A-Rahim et al. 
[13] focus on resource allocation techniques on DSRC, C-V2X and 
heterogeneous vehicular networks. Although the main scope of the 
paper is not AI/ML on V2X, the authors provide a comprehen-
sive overview of AI/ML techniques on several resource allocation 
tasks, such as user association, handover management and virtual 
resource management for V2V and V2I communications. Tong et 
al. [14] provide a comprehensive survey of AI/ML applications on 
3

transportation use cases, such as platooning, autonomous naviga-
tion and safety, and network-related use cases, including content 
delivery and offloading, edge computing and security in vehicu-
lar networks. They also review available software tools for AI and 
discuss research challenges on this joint research field. Tang et al. 
[15] discuss the challenges of resource allocation, network traffic 
control and security in vehicular networks and provide a survey 
on various ML techniques applied to each field. The authors ex-
tend their work in [16], by including cognitive radio, beamform-
ing, routing, OFDM and NOMA tasks. Finally, Mchergui et al. [17]
present AI/ML applications in Vehicular Ad Hoc Networks (VANETs) 
on network routing, resources allocation, security, mobility man-
agement and seamless integration of different technologies.

Driven by the recent advances in autonomous vehicles and 
V2X, our survey aims at providing a comprehensive review of 
AI/ML applications in V2X communications for a variety of dif-
ferent network operations/procedures, namely: handover/user-cell 
association, caching, physical and computation management, rout-
ing, beam management and QoS prediction. We investigate the 
AI/ML algorithms and the optimization objectives used in each cat-
egory. Unlike earlier publications, however, we extend this survey 
by examining more aspects of AI/ML: i) the training architecture, 
i.e., centralized, distributed, or federated, ii) the features used for
training the AI/ML models in each type of operation, and iii) the 
training and testing time complexity of popular AI/ML algorithms 
used in the surveyed papers, extracted from the literature, to pro-
vide context on the computational characteristics of AI/ML. We also 
extract the lessons learned in each task. We focus on network 
control and management procedures that depend on V2X com-
munications. We do not examine higher-level applications, such as 
network security, mobility and trajectory prediction, or transporta-
tion use cases that do not target network-related optimizations. 
The survey’s contributions are the following:

1) We systematically review existing research at the intersec-
tion between AI/ML and V2X communications and provide
an extensive list of network-controlled functions optimized by
data-driven approaches in vehicular environments. For each
publication, we extract the underlying AI/ML technique(s), the
training feature types and categories, the training architecture
(i.e., centralized, distributed or federated), and we summa-
rize the lessons learned in each category, identifying common
trends and suitable solutions depending on the designated
task.

2) We discuss the time complexity aspects of ML techniques
regarding their suitability in enabling automotive use cases.
These aspects include AI/ML model training, inference re-
sponse time, and techniques for accelerating the model’s ex-
ecution to meet the highly dynamic changes of vehicular envi-
ronments. We also provide training and testing time complex-
ities of standard AI/ML algorithms (supervised, unsupervised,
and reinforcement learning) extracted from related literature.

3) Finally, we discuss the quality aspects of real-world vehicle
traces used in simulating vehicular networks, as well as ve-
locity and positioning modeling aspects, concerning different
automotive use cases requirements.

The remainder of this survey is organized as follows (Fig. 1).
Section 2 briefly overviews V2X access technologies, namely DSRC, 
LTE, and 5G New Radio (NR). Section 3 provides a brief introduc-
tion to AI/ML techniques, time complexity according to the litera-
ture, and related standardization activities. Section 4 reviews exist-
ing works on different network procedures, such as handover/user-
cell association, caching, physical and computation management, 
routing, beam management, and QoS prediction, and provides the 
lessons learned based on the surveyed solutions of each task. Sec-
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Table 1
Existing surveys addressing applications of AI/ML on vehicular networks.

Ref. Year Summary Handover Beam
Selection

Radio
Access
Network
Allocation

Computation
Resources

Routing QoS
Prediction

Network
Security

Trajectory
Prediction

Road T
Flow
Predic

[11] 2018 ML applications in
vehicular networks
(traffic flow prediction,
local data storage,
network congestion
control, load balancing,
vertical handoff control
and wireless resource
management)

� � � �

[12] 2019 ML methods in vehicular
applications (learn
dynamics of V2X
networks and optimize
network performance)

� � � � �

[13] 2019 A survey on resource
allocation in DSRC and
C-V2X networks that also
presents AI/ML-based
solutions on handover,
radio network allocations
and QoS

� � �

[14] 2019 Applications of AI/ML in
vehicular use cases
(content delivery,
offloading, edge
computing, security,
AI/ML tools)

� � �

[15] 2020 Application of AI/ML in
radio network allocation,
network traffic control
and security in vehicular
networks

� � � � �

[16] 2021 AI/ML on vehicular
networks (OFDM, NOMA,
cognitive radio,
Beamforming, routing,
security, mobility and
trajectory prediction)

� � � � � � �

[17] 2021 AI in VANETs: safety
applications, routing,
security, mobility
management

� � � �

2022 Our survey � � � � � � Out of this survey’s scope
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Fig. 1. Organization of the Survey.
tion 5 discusses significant aspects of AI/ML applications in V2X 
communications, including selecting appropriate AI/ML algorithms, 
training and response times, training features in vehicular envi-
ronments, data collection methods, training architecture, dataset 
quality aspects, as well as vehicle velocity and positioning require-
ments, based on well-established automotive use cases. Section 6
presents research directions for AI/ML applications in V2X for next-
generation networks. Section 7 concludes the survey.

2. V2X overview

This section briefly presents the two most prominent access
technologies for V2X communications, namely i) IEEE 802.11p and 
ii) C-V2X, comprising LTE and 5G NR. The section serves as a pre-
liminary introduction to V2X communications, so we encourage 
readers to refer to the provided sources for more details on these 
technologies.

V2X communications are significant for implementing Intelli-
gent Transport Systems (ITSs), since they enable data exchange 
5

between vehicles and other entities in their surroundings. ITSs 
can be classified into Legacy and Advanced ITSs according to their 
technical characteristics. Legacy ITSs support only V2I communica-
tions and are already used in Electronic Toll Collection (ETC), Vehi-
cle Information Communication Systems (VICS) and Transport and 
Traffic Telematic (TTT) services. Advanced ITSs provide enhanced 
capabilities such as improved data rates, larger packet sizes, and 
broader coverage than their legacy counterpart, enabling more ad-
vanced applications through V2I, V2V, V2N, and V2P connectivity.

The main components of ITSs are: i) the On-Board Units (OBUs), 
i.e., the radio units installed on the vehicles, ii) the Roadside Units
(RSUs), the radio equipment on the roadside providing connectivity 
between the OBUs, the transportation infrastructure and the back-
haul networks, and iii) the Roadside Equipment (RSE), referring 
to the ITS field equipment in general, such as Traffic Signal Con-
trollers (TSC) and RSUs. The ITSs components regularly exchange 
messages to provide information on basic safety, VRU awareness, 
signal phase and timing, road/lane topology, traffic maneuver, pla-
tooning control, collective perception, and maneuver coordination.
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Legacy ITSs rely on the Dedicated Short-Range Communication 
(DSRC) radio technology permitting data rates up to 4 MB/s [18]. 
Advanced ITSs use different radio technologies, namely the Wire-
less Access in Vehicular Environment (WAVE) [5] in the US, ETSI 
ITS-G5 in Europe, ITS Connect in Japan and Cellular [18]. The first 
three radiocommunication systems use modified versions of the 
IEEE 802.11p technology. The WAVE system is also called DSRC in 
the US, while in Europe, DSRC refers to Legacy ITSs [18].

The WAVE system comprises the IEEE 802.11p [6] and 1609 [19]
family of standards. IEEE 802.11p is an amendment to the IEEE 
802.11 Wi-Fi specification [20] to accommodate inter-vehicular 
communications and specifies the Physical (PHY) and Medium Ac-
cess Control (MAC) layer procedures. IEEE 1609 define upper-layer 
procedures, such as networking, security, multi-channel operation 
and also describe the overall system architecture. IEEE 802.11p 
uses the Tiered Contention Multiple Access (TCMA) scheme [21], 
an extension of the Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) [22], which provides a shorter back-off time 
for higher priority messages when the channel is deemed busy. In 
addition, single-radio devices that listen to one channel at a time, 
are allowed to use both safety and service-related communication 
services, through a synchronization mechanism ensuring that all 
WAVE single and multi-channel devices monitor the control chan-
nel at specific time intervals [5]. As an evolution to IEEE 802.11p, 
the IEEE 802.11bd standard is currently under development to im-
prove latency, reliability and throughput performance [23].

The regional standardization bodies designate the spectrum 
bands for both safety-specific and general V2X applications. To this 
end, ETSI and the Federal Communications Commission (FCC) have 
allocated 70 MHz and 75 MHz respectively on the 5.9 GHz ITS 
band, split into 10 MHz channels, whereas Japan’s ARIB has allo-
cated a single channel on 755,5-764,5 MHz [18].

The 3rd Generation Partnership Program (3GPP) has also en-
tered the V2X communications field by introducing C-V2X, com-
prising LTE-V2X and 5G NR V2X. C-V2X includes two complemen-
tary communication modes: i) the Sidelink (SL) for V2V, V2I and 
V2P, without relaying data through the cellular network, and ii) 
the traditional cellular mode over a base station for V2N. 3GPP in-
troduced the LTE-V2X standard in Release 14 [24] supporting two 
resource allocation modes: i) Mode 3, where the cellular network 
allocates resources used by the User Equipment (UEs) for their di-
rect communications, and ii) Mode 4, where the UEs autonomously 
select and configure the radio resources, without requiring cellu-
lar coverage. In addition, LTE-V2X supports congestion control in 
Mode 4, by defining related metrics and possible mechanisms to 
reduce channel congestion. In Release 15 [25], 3GPP designed LTE-
eV2X, which operates in Band 47 (5855-5925 MHz), corresponding 
to the European ITS spectrum, and included enhancements to ad-
dress higher KPIs than Rel. 14. LTE-V2X [24].

While LTE-V2X addresses basic safety use cases, such as inter-
section collision warning and VRUs protection, 5G NR V2X was 
introduced in Release 16 [26] to complement LTE-V2X and ac-
commodate more advanced use cases, such as autonomous driving 
[27]. 5G NR V2X SL supports flexible numerology that employs dif-
ferent Subcarrier Spacings (SCS), leading to different slot durations 
[28]. As a result, larger Subcarrier Spacings (SCS) are suitable for 
low latency applications because it results in shorter slot dura-
tions, reducing the overall user plane latency. Similarly to LTE-V2X, 
5G NR V2X SL supports two resource allocation modes: i) Mode 
1, where the network manages the resources for the UEs, and ii) 
Mode 2, where the UEs manage the resources autonomously, with-
out requiring network coverage. 5G NR V2X operates both in the 
ITS band and the licensed mobile broadband spectrum, i.e., Fre-
quency Range 1 (FR1), that includes sub-6 GHz frequency bands 
and Frequency Range 2 (FR2), including 24.25-52.6 GHz.
6

3. Machine Learning overview

This section provides a brief overview of the AI/ML methods 
employed by the publications surveyed in Section 4. We do not 
provide a detailed presentation on these methods, considering that 
they have been already covered extensively in other publications. 
For the interested reader, Figs. 2–7 include key points, challenges, 
complexity aspects and references to related introductory publica-
tion for each method.

Typical AI/ML algorithms can be classified in four distinct cate-
gories based on the way learning is performed, namely supervised, 
unsupervised, semi-supervised and reinforcement learning.

In supervised learning, model training takes place using both 
input and output data, called features and labels of the dataset, re-
spectively. The label largely determines the task we are assigned to 
solve, i.e., whether it is a regression (label is a continuous variable) 
or classification problem (label is a discrete variable). The features 
are associated with the labels through a target function. During the 
training phase, the model is learning an approximation of this tar-
get function by adjusting its parameters until it reaches an optimal 
solution. The learning process is controlled by a set of pre-defined 
hyperparameters, such as the learning rate or the batch size, which 
the user defines after fine-tuning prior to the training process. In 
effect, this is an optimization problem of finding the minimum or 
maximum of an objective function depending on the algorithm of 
choice. We evaluate the solution on a separate testing dataset, not 
used during the training phase to avoid overfitting.

Fig. 2 summarizes the key points, challenges and time com-
plexities of supervised learning algorithms surveyed in this paper, 
namely k-Nearest Neighbors (kNN) [29], [30], Random Forests [31], 
Support Vector Machines (SVMs) [32], and Artificial Neural Net-
works (ANNs), namely Multi-layer Perceptron (MLP) [33], Convo-
lutional Neural Networks (CNNs) [34], and Recurrent Neural Net-
works (RNNs) [35]. The first three methods belong to the ML field. 
At the same time, ANNs are part of the DL field and have been in 
the spotlight in recent years due to their ability to handle massive 
volumes of data more effectively than traditional ML techniques. 
ANNs are able to model non-linear functions and consist of in-
terconnected nodes called neurons, dispersed on three layers: the 
input layer, the hidden layers and the output layer. The features 
enter the input layer and are propagated through the hidden lay-
ers to the output layer. Neurons in the hidden layers transform the 
information via specific computations and finally, the output layer 
extracts the predicted values.

Fig. 3 depicts the time complexities for training various super-
vised learning algorithms used in the papers of our survey. We 
have made some assumptions about the values of parameters in-
cluded in the Big-O notation mentioned in Fig. 2, based on val-
ues supplied by the papers included in our survey or commonly 
used in the literature, whenever this information was not available. 
We have not included CNNs in this plot because their reported 
complexity does not depend on the number of training samples. 
The authors in [34] provide extensive comparisons between well-
known CNNs architectures.

Fig. 4 summarizes the key points, challenges and time com-
plexity of unsupervised learning algorithms used in the surveyed 
publications, namely k-Medoids [36], k-Means [37] and Affinity 
Propagation [38]. In unsupervised learning, the learning model is 
provided only with unlabeled datasets and extrapolates patterns 
without knowing any labels. Unsupervised learning tasks include 
clustering, i.e., grouping of similar data into groups, dimensional-
ity reduction, i.e., decreasing the number of input features while 
preserving as much of the original information as possible, and 
density estimation, i.e., estimating an underlying probability distri-
bution function.
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Fig. 3. Time Complexities for Training of common Supervised Learning Algorithms.
We have assumed the following values of the parameters in the Big-O notations of
Fig. 2: M = 100 trees, m = 10 features, h = 32 neurons per layer, k = 2 hidden layers,
o = 6 output neurons, d = 128 neurons in a single RNN layer, and i = 10 epochs.

Fig. 5 depicts the time complexities of k-Means, k-Medoids and 
Affinity Propagation for k = 5 clusters.

The third learning approach is semi-supervised learning, stand-
ing in the middle between supervised and unsupervised learning. 
In semi-supervised learning, a model is trained with both labeled 
and unlabeled data. However, the portion of labeled data is rela-
tively small compared to the unlabeled portion. Semi-supervised 
learning aims to achieve higher performance by leveraging the un-
labeled data compared to using only labeled data. There is a vast 
amount of semi-supervised learning techniques. None of the sur-
veyed papers presented in Section 4 use semi-supervised learning 
methods, so we omit an extensive presentation of related methods. 
Engelen et al. [39] provide an extensive survey on semi-supervised 
learning.

Reinforcement Learning (RL) is a branch of ML used for 
decision-making problems. The agent and the environment are the 
essential components of RL. Like humans, agents learn to select 
the optimal actions by interacting with their environment. The 
agent executes actions and receives feedback from the environ-
ment, termed “reward”. At each time step, the agent receives a 
representation of the environment’s state and selects an action 
based on this representation. The agent then receives a reward and 
finds itself in a new state [40]. Through this closed-loop interac-
tion, the agent gains experience and selects actions that maximize 
rewards from the environment.

RL agents select actions based on policies, i.e., functions that 
map states to actions and dictate the agent’s behavior. Solving RL 
problems essentially decomposes into finding an optimal policy 
for the given problem. An RL agent also includes a value func-
tion that calculates the expected reward if the agent began in a 
specific state-action pair and acted according to a policy. There are 
different forms of value functions in RL, which obey the Bellman 
equations [41]. Thus, the agent gains experience by trial and er-
ror; it calculates the expected reward for each state-action pair 
and stores the result in a lookup table. This tabular representation, 
however, is not feasible in large state spaces. In Deep Reinforce-
ment Learning (DRL), a neural network is used (that may include 
multiple hidden layers to capture the intrinsic representations of 
the problem, that is why it is termed “deep”) and approximates 
the expected value of each state-action pair, instead of just storing 
it in a lookup table.

RL algorithms specify how the agent changes its policy due to 
its experience. There are three approaches to solving RL: i) value-
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based RL, where one estimates the optimal value function, which is 
the optimal value achievable under any policy, ii) policy-based RL, 
where one searches directly for the optimal policy that achieves 
the maximum future reward, and iii) model-based RL, where one 
builds a model of the environment and makes decisions based on 
this model. Value- and policy-based algorithms are called model-
free and are currently more popular than model-based approaches. 
It is more flexible to define the value functions or policies than the 
model for the environment.

There is a vast amount of RL and DRL algorithms. Following 
the taxonomy in [42], Fig. 6 summarizes key points, challenges, 
and sample complexities for common RL algorithms used in the 
surveyed papers presented in Section 4. We supply the sample 
complexities for RL algorithms, which define the number of steps 
required to obtain a satisfactory policy for a given problem, i.e., an 
ε-optimal policy with probability at least 1-δ, where δ ∈ (0,1] is 
the failure probability. The sample complexities are critical in RL, 
since they dictate the exploration vs. exploitation trade-off, i.e., ex-
ploring an uncertain environment while maximizing a reward.

Fig. 7 depicts sample complexities of selected algorithms used 
in the papers in Section 4, including Q-learning [43], Actor Critic 
[44] and Multi-armed Bandit [45] for values of ε ∈ (0,1]. For in-
creased accuracy, i.e., smaller values of ε, Q-learning requires a 
larger number of samples compared to Multi-armed Bandit and 
Actor Critic. We plotted the sample complexity of Q-learning in a 
separate plot due to the very high number of samples required. 
To generate the plots, we have made the following assumptions, 
based on representative values used in the surveyed papers of Sec-
tion 4: i) we consider the number of arms n = 15, in Multi-armed 
Bandit, ii) we consider the number of states S = 36 and number 
of Actions = 4, and iii) we consider the discount factor γ = 0.99, 
which determines the importance of future rewards.

We presented the three learning types for training an AI/ML 
model. There are paradigms that accelerate and improve these 
learning types that have emerged recently, namely i) Federated 
Learning, ii) Meta-Learning, and iii) Transfer Learning. Federated 
Learning (FL) is an emerging solution where model training takes 
place across local edge devices (e.g., mobile devices, Mobile Edge 
Computing servers on base stations) on their own generated 
datasets. The edge devices use these datasets to build local mod-
els, which in turn are aggregated by a global server, generating 
one global model. Finally, the global server broadcasts the updated 
global model across the edge devices and then the training process 
continues.

In contrast to centralized approaches, where edge devices trans-
mit their generated data directly to a centralized server, where 
model training takes place, FL provides lower latency, higher band-
width, and privacy preservation since the user data stays on the 
edge device. Meta-Learning is described as “learning to learn”. It 
refers to gaining experience from observing the performance of 
different ML models on specific tasks and then use this experience 
to enhance one’s model performance and training speed when 
learning new tasks. The experience is gained by “meta-data” such 
as results from model evaluation, task properties or even perfor-
mance of prior models. Transfer Learning is another ML paradigm 
where a model trained on a specific task, is used as a starting point 
for creating a model on a related task. In effect, pre-trained mod-
els are used to improve a model’s generalization ability and can be 
used in both ML and DL.

Each solution comes with its advantages and disadvantages. Dif-
ferent learning types are suited for different kinds of problems, as 
it will be discussed in Section 4. It is imperative to consider these 
aspects when selecting AI/ML-based solutions and formulate the 
problem accordingly, based on the designated requirements of the 
automotive use case at hand.



M. Christopoulou, S. Barmpounakis, H. Koumaras et al. Vehicular Communications 39 (2023) 100569

Fig. 4. Unsupervised Learning Algorithms Overview.
Fig. 5. Time Complexities of Unsupervised Learning Algorithms for k = 5 clusters.

Considering the emerging trend of AI/ML in V2X, we highlight 
some of the on-going standardization activities by Standards De-
velopment Organizations (SDOs) and Industry initiatives, as a final 
note in this introductory section on AI and ML. 3GPP integrated 
into its Rel.15 5G Core Architecture [46] the Network Data Ana-
lytics Function (NWDAF) [47] to provide network data analytics 
services to other network functions. ETSI has established two In-
dustry Specification Groups (ISGs), the ETSI Experiential Networked 
Intelligence (ENI) [48] and ETSI Securing Artificial Intelligence (SAI) 
[49], whose main activities concern AI. ETSI ENI ISG has defined 
a high-level architecture based on AI techniques and context-
aware policies to adjust services offered by MNOs, according to 
the changing user needs and business goals. ETSI SAI ISG focuses 
on enhancing the security of AI entities from an ever-growing list 
of potential attacks. ITU has also investigated the use of AI and 
ML in future networks through its “ITU-T Focus Group on Machine 
Learning for Future Networks including 5G” (FG-ML5G) [50].
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Many industry initiatives have examined the use of AI in net-
working. O-RAN Alliance [51] is an industry group founded in 2018 
to develop an Open Radio Access Network (O-RAN) with embed-
ded intelligence based on general-purpose hardware. O-RAN has 
integrated data analytics services into its architecture, by introduc-
ing Radio Intelligent Controllers (RIC) for interfacing the RAN with 
third-party applications, which is impossible with current propri-
etary RAN solutions. In addition, the 5G Automotive Association 
(5GAA) has introduced the mechanism of Predictive QoS [52], al-
lowing 5G mobile networks to notify the QoS prediction service 
consumers of predicted QoS changes to adjust the V2X application 
behavior in advance. In automotive use cases, such as tele-operated 
driving and high-density platooning, the network must provide a 
certain level of QoS. The Predictive QoS mechanism includes a Pre-
diction Function (PF) that collects heterogeneous data from the 
vehicles, the network or third-party applications and provides pre-
dictions to interested consumers. Such predictions can be carried 
out using ML or DL techniques.

4. AI and ML solutions in V2X communications

This section presents applications of ML on vehicular networks 
based on recently surveyed publications. We examine several net-
work control and management operations, including a) handovers 
and user association, b) caching, c) physical resources allocation 
(i.e., power/frequency and channel access management), d) com-
putation resources management (i.e., service offloading in Mobile 
Edge computing environments), e) routing, f ) beam selection op-
timization and g) QoS prediction. For each operation, we present 
relevant papers, identifying their designated scenarios, the under-
lying ML method in use, the overall objective of the method, the 
architecture (i.e., centralized, distributed or federated), the list of 
features used during training/exploration stages and finally, the 
lessons learned with regards to the results. All scenarios involve 
only vehicular environments.
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Fig. 7. Sample complexities of RL algorithms. We assume number of arms n = 15
(Multi-armed Bandit), number of States S = 36 and number of Actions = 4.

4.1. Handover management/user cell association

In wireless networks, handover management is essential in 
maintaining continuous service delivery during the UE’s move-
ment between neighboring cells. Handover is the process where 
the primary serving base station is substituted from a new one, 
according to some criteria (e.g., pre-defined radio signal thresh-
olds). Depending on the radio conditions, a handover may impact 
the quality of the service to the end-users. Especially in vehicu-
lar networks, handovers are too frequent due to the velocity of the 
UEs and can result in service disconnections until the connection 
to a subsequent base station is established. ML is used in a predic-
tive approach to improve the handover decision process, the base 
station discovery rate, and reduce the number of unnecessary han-
dovers. Table 2 provides recent papers that have applied ML for 
handover management in vehicular networks.

In [53], Aljeri et al. employ a two-tier handover scheme imple-
mented in the vehicles, where the first tier uses a Long Short-Term 
Memory (LSTM) model to forecast Received Signal Strength In-
dicator (RSSI) values to reduce the number of lost packets and 
the number of unnecessary handovers. The second tier utilizes a 
stochastic Markov model to select the next access point based on 
vehicle mobility projections. Vehicle speeds vary from 0 to 30 m/s. 
The LSTM model shows higher accuracy compared to traditional 
algorithms, such as simple moving average (SMA), simple moving 
median (SMM), and exponential smoothing that perform poorly 
in dynamic environments, like vehicular networks. The two-tier 
framework reduced the number of dropped packets by 18%, while 
yielding a higher packet delivery ratio because of the appropri-
ate handover trigger time. However, the proposed solution did not 
consider the access point load or required QoS, left as improve-
ments in future work.

Following a distributed approach, the authors in [54] and [55], 
employ DRL in urban environments. In [54], Lin et al. develop a 
DRL-based approach using DDPG for reducing the handover over-
head during User-Centric clustering migration of high speed ve-
hicular users (VUEs) relying on RSU cooperation and V2V com-
munication. All VUEs act as agents that recommend a clustering 
policy based on their locations, observable RSU, vehicular Access 
Points (APs), and associated transmitters at previous timeslots. The 
DRL-based solution reduces the frequency of HOs at least by 50% 
compared to traditional baselines, especially when the number of 
RSUs is equal or larger than 14. The clustering design achieves at 
least 30% higher per-user average trade-off utility function and 25% 
higher per-user average data rate than the benchmarkers.
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In [55], Khan et al. present a DRL-based scheme that uses the 
Actor-Critic Algorithm for maximizing the average rate per vehic-
ular user, while maintaining a target minimum. Each RSU includes 
a local agent that determines the optimal RSU-vehicle association 
based on the past observed channels, vehicles’ experienced rate, 
and a threshold violation rate indicator defined for each vehicle. 
The vehicles move with an average speed of 25 km/h. The pro-
posed solution achieves up to 15% gains in terms of sum rate and 
20% reduction in VUE outages compared to several baseline de-
signs.

Tan et al. [56] proposed a DRL-based handover framework with 
double deep Q-learning to improve the handover decision time 
and maximize the vehicles’ throughput. Double deep Q-learning 
stabilizes the DRL training and improves the chances of conver-
gence, overcoming the potential problem of non-convergence due 
to training instabilities of the DQN algorithm. A centralized agent 
observes the Reference Signal Received Power (RSRP) measured by 
each vehicle from all surrounding base stations and decides in 
which base station it will connect to, if needed. The authors use 
metrics from the E-UTRAN measurement report to enable flexible 
integration of the proposed framework into a live cellular network. 
Results show that the DRL solution improves the handover trig-
gering instant by 10.04 sec and 42.62% cumulative packet loss for 
all trajectories compared to the traditional A3 RSRP handover algo-
rithm.

In [57], Souza et al. propose an RL-based framework using Tab-
ular Q-learning to minimize the number of handovers in vehicular, 
fog computing environments. An agent determines whether the ve-
hicle should connect to an Access Point (AP), remain connected 
to an AP, disconnect or remain disconnected. The agent interacts 
with the environment via a state space comprising the position of 
the moving device at a given time, the position immediately be-
fore (east, west, north, south) and the device connectivity status at 
that moment (disconnected or connected to one of the APs). The 
RL-based solution presented an average reduction of 16.2% on the 
number of handovers and an improvement of 16.9% on the average 
uninterrupted connection time among the different scenarios.

A promising field of AI/ML applications is on the mmWave 
spectrum, as shown by the following two papers. In [58], Yan et 
al. use a control/user plane decoupled network architecture with 
mmWave Remote Radio Units (RRUs) assisted by lower sub-6 GHz 
LF-RRUs, which pre-activate appropriate beams according to the 
vehicle’s position. The authors employ a Kernel-based method for 
predicting the vehicle’s positions based on the Channel State Infor-
mation (CSI) signal. Although its training has a high computational 
complexity, the Kernel-based method achieves the same and bet-
ter accuracy than a Kalman-filtering scheme. Then, the vehicle’s 
position along with the serving mmWave RRUs index and the serv-
ing beam index of handover vehicles are used as input features 
to a kNN classifier located on the mmWave RRUs to predict the 
selected target mmWave RRU index and the target beam index 
of the handover vehicle. Regarding the handover decision pro-
cess, the kNN scheme reduces time consumption down to approx-
imately 2.40 ms compared to conventional beam training schemes 
(40.96 ms) and provides low estimation errors.

In [59], the authors propose a FL framework for proactive han-
dover in a heterogeneous network with a Master Base Station 
(MBS) and mmWave Secondary Base Stations (SBSs). The MBS 
broadcasts a global model across all users of a specific region. 
Each moving user receives the global model and initiates training 
of their local model, an MLP, in order to select the next associ-
ated SBS based on the observed Signal-to-Noise Ratio (SNR). All 
users participate in the training and upload their local models to 
the MBS asynchronously, where the update of the global model 
takes place. This scheme addresses the limited storage capacity of 
the users, includes more participant users in the global training 
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Table 2
Publications on AI-enabled handover management in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[53] Random Access Points (Supervised)
• LSTM

Reduction of number of
unnecessary handovers

Distributed The ML-based handover trigger scheme
results in less dropped packets compared
to a hybrid solution (80000 vs. 140000
packets).
Higher accuracy of the LSTM model
compared to various forecasting models.

[54] Urban multi-lane
freeway

(DRL)
• DDPG

Reduction of number of
handovers considering the
average data rate per user

Distributed The proposed technique reduces handover
frequency in different scenarios
(approximately 20 handovers vs. 100 of
the traditional RSS-based handover
schemes.

[55] Urban micro
environment, with LOS
connectivity

(DRL)
• Actor Critic algorithm

Maximization of the average
data rate of the VUEs

Distributed 15% gains in terms of sum data rate and
20% reduction in VUE outages compared
to several baseline designs.

[56] Real-world scenario (DRL)
• Double Deep
Q-Learning

Improvement of handover
decisiontime and throughput
maximization

Centralized The proposed technique reduces the
handover delay by 11.56 seconds and the
packet loss by 25.73% per handover
compared to the A3 RSRP baseline.

[57] Grid-shaped Road
network

(RL)
• Tabular Q-learning

Reduction of number of
handovers

Centralized The scheme achieves 16.2% reduction in
the number of handovers and improves
by 16.9% the average uninterrupted
connected time compared to a greedy
benchmark.

[58] Intersection Localization:
(Supervised)
• Kernel-based

Localization
Improvement of target discovery
rate

Distributed Localization
Achieves the same or better positioning
accuracy with lower over compared to
Kalman filtering.

HO Decision:
(Supervised)
• kNN

HO Decision
Improvement of handover
decision time

HO Decision
kNN reduces time consumption and
provides low estimation errors.

[59] HetNet (Supervised)
• MLP

Reduction of handover rate Federated Reduces frequent handovers and improves
QoS of users simultaneously.

[60] 50 gNBs with 10 UEs (RL)
• SARSA (Q-learning
variation)

Select optimal cell during
handovers

Centralized For varying UE speeds, the solution
outperforms other baselines consistently,
achieving higher throughput (∼80 Mbps
against ∼70 Mbps at 150 km/h), lower
packet loss rate (∼13% against ∼10% and
∼6% at 150 km/h), packet delay reduction
(38.98%) and handover latency reduction
(24.87%) compared to Multi-armed
Bandits.

[61] Madrid Grid with 5G
mmWave stations

(DRL)
• DDQN

Avoid sudden Radio Link Failures
while providing highest
throughput

Centralized
(The UE
decides the
action)

The DDQN-based solution presents
consistently higher average throughput
gains compared to traditional DAPS and
CHO procedures for various UE velocities
(∼600 MBps at 12 m/s UE velocity).
process and effectively reduces handovers. Simulations show that 
the federated learning scheme decreases the number of handovers 
compared to reactive handover schemes (from approximately 30 to 
14 handovers for user velocities around 15-20 m/s compared to a 
baseline scheme), while it increases the average SNR of the users, 
reflecting an improved QoS across the region.

Karmakar et al. [60] present an RL-based solution in 5G NR 
based on SARSA algorithm -a variation of Q-learning- to select the 
target cell during handovers. The first step includes a Kalman filter 
that predicts the RSRPs of the serving and neighbor cells. The sec-
ond step employs SARSA; this algorithm depends on the RSRP of 
the serving and neighbor cells, the last handover Q-value and the 
RSRQ of the neighbor cell. The authors employ RSRQ as the reward, 
as it: i) includes both RSRP and RSSI, and ii) captures the over-
all handover performance. For UE speeds varying from 50 km/h to 
350 km/h, results indicate that the proposed solution achieves con-
sistently higher throughput (∼80 Mbps against ∼70 Mbps of the 
baselines at 150 km/h) and lower packet loss rate (∼13% against 
12
∼10% and ∼6% at 150 km/h) compared to selected baseline mech-
anisms, i.e., a Multi-Armed Bandit algorithm and a doppler-based 
mobility solution. SARSA also provides consistently lower packet 
delay and handover latency -the difference between the reception 
of the last packet through the old connection and the first packet 
in the new connection- for increasing cell crossing rates (24.87% 
latency reduction and 21.12% packet loss reduction compared to 
MAB).

Lee et al. [61] present a DRL-based solution with DDQN in 5G 
mmWave networks, applied in Dual Active Protocol Stack (DAPS) 
handover. The DAPS handover is triggered following the usual han-
dover events (e.g., A3, A4, etc), and maintains the connection to 
both the source and target cells. However, event-based Handovers 
are not suitable for mmWave links, which are highly volatile, while 
handover events assume more gradual changes in channel con-
ditions. The solution employs DDQN where a learning agent is 
deployed on the UEs and learns when it is best to conduct a 
handover, avoiding sudden radio link failures. The DDQN-based so-
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lution presents consistently higher average throughput gains com-
pared to traditional DAPS and CHO procedures for various UE ve-
locities (∼600MBps at 12 m/s UE velocity).

Lessons learned: We can extract a few key takeaways, based on 
the previous analysis. Handover management in vehicular environ-
ments is usually formulated as a problem for reducing the number 
of handovers. In addition, centralized architectures are common, 
considering the nature of handovers. In this case, training is con-
ducted on a central entity, such as a base station, which collects 
data from the vehicular users, trains a central model and performs 
actions according to this model. Distributed approaches are also 
present, where training takes place independently on vehicles or 
base stations. Based on the surveyed papers, FL has not been used 
extensively in handovers. However, considering privacy concerns, 
storage limitations and network overhead during data exchanges 
in V2X environments, it is anticipated that FL approaches will be-
gin surging.

Regarding the selection of ML algorithms, RL, DRL and super-
vised learning techniques have been used. Supervised learning is 
either used in regression, where one predicts time series, e.g., RSSI, 
or in classification, where one formulates handover management 
as a classification problem, e.g., selecting the optimal access point. 
RL/DRL are also popular because they are appropriate for decision 
making problems. In addition, RL does not need a labeled dataset, 
as supervised learning does since the agent learns directly from 
its environment. A disadvantage of RL/DRL is considered the ex-
ploration time, i.e., the time it takes the agent to learn an optimal 
policy and is characterized by the sample complexity, which in [55]
is addressed using offline training. We present such typical sample 
complexities extracted from the literature in Fig. 7.

All approaches that have been used in handover management 
seem promising. From [58], it is learned that kernel-based meth-
ods can predict effectively the position of vehicles based only on 
the CSI, considering that such techniques yield high computational 
complexity in training (O(n3)), while kNN can reduce handovers 
at low cost compared to traditional beam training techniques since 
it does not require separated training and testing phases. As in-
dicated in [59], FL can reduce the handovers and increase the 
SNR of the moving users, while addressing the limited storage ca-
pacity of the vehicles. In [53], it is shown that neural networks 
(LSTM and CNN) are more effective in predicting RSSI values in 
dynamic environments than traditional algorithms like moving av-
erage. Following [54] and [55], distributed DRL can help reducing 
the number of handovers and increase the data rate of vehicles. 
Finally, it is learned from [57] that tabular Q-learning can reduce 
the handovers and improve the uninterrupted connection time of 
vehicles.

4.2. Caching

In content caching, popular content requested frequently by 
users is pre-cached on edge cloud infrastructures or even on 
the vehicles themselves. This content is retrieved via V2V or V2I 
links, reducing the transmission latency and improving the over-
all backhaul capacity. Table 3 highlights the parameters of the 
surveyed publications regarding AI/ML for caching in vehicular net-
works.

Considering a DDPG-based edge cooperative cache algorithm 
over a high-speed free-flow road segment, the authors in [62]
develop a cloud cache placement method for reducing the trans-
mission delay of requested contents. A centralized agent decides 
on the amount of V2I and V2V link bandwidth allocation and the 
edge cloud cache ratio by exploring the vehicle’s instantaneous 
speed, position and remaining data that need to be obtained by 
the vehicle and the edge cloud. Compared to two baseline cache 
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placement strategies (non-cooperative and random), the RL-based 
cooperative cache scheme reduces the minimum content transmis-
sion delay and minimizes system overhead.

Except for traditional RL, the authors in [63] employ DRL on 
a multi-timescale model to jointly optimize the cost of communi-
cation, storage, and computation costs according to hard deadline 
constraints. The set of possible connected RSUs and neighboring 
vehicles, the decision on whether to offload the computation task, 
and the number of packets that should be cached are determined 
by both a large and a small timescale model. These models op-
erate over each epoch (i.e., the duration of communication for a 
requested content) and over each timeslot, comprising each epoch, 
respectively, based on the state of the available RSU/MEC servers’, 
vehicles’ and caches’ availability. The multi-timescale framework 
allows an estimation of the reward, when the agent takes an action 
each epoch, while in the small timescale model, the authors calcu-
late the exact immediate reward achieved every time the agent 
takes an action. The suggested scheme achieves higher success 
probability (meaning the tagged vehicle completes downloading 
the requested content and offloading its corresponding tasks for 
computing within the hard deadline) and significant performance 
gain compared to alternatives, outperforming the single time scale 
framework in terms of cost gain vs vehicle’s mobility intensity, 
backhaul capacities and cloud computing resources.

Similarly in [64] and [65], the authors develop centralized 
frameworks based on DRL, to maximize the profits of an MNO. 
In [64], a BS along with RSUs deliver contents and execute tasks 
for 20 vehicles with average velocity of 30 km/h, based on real 
traffic data in Hangzhou, China. An agent decides the number of 
computing tasks and requested contents to be executed at differ-
ent MEC servers, and how many resources are allocated to vehicles, 
based on the vehicle’s location and velocity, the total size of com-
puting tasks and requested contents, the popularity of requested 
contents, the size of residual contents, the remaining computing 
tasks and required computation resources, the required CPU cy-
cles for the task computing and the available resources of each 
MEC server. The proposed scheme achieves higher MNO’s profits 
considering different scenarios of increasing number of vehicles, 
computing charging time, caching charging price, vehicular velocity 
and convergence speed. In [65], a central agent decides which BS 
is assigned to the vehicle, whether the requested content should 
be cached on the BS and whether the computation task should be 
offloaded to the MEC server. The state space comprises the State of 
available BS, MEC Server and cache for a vehicle in specific times-
lots. The proposed DRL solution is compared to four alternative 
schemes and achieves higher utility, considering increasing content 
size, charging price for accessing the virtual networks, charging 
price for MEC offloading and unit charging price for connecting 
to the cache servers.

In [66], the authors develop a distributed DL framework for 
enhancing infotainment services on self-driving cars by caching re-
quested content on the RSUs, based on passenger’s features such 
as age, emotion and gender. The objective is to minimize the total 
delay for retrieving infotainment contents. To this end, the authors 
employ a CNN to obtain passenger’s features from the self-driving 
vehicle and an MLP to extract the probabilities of contents to 
be requested in specific areas and cache them at the RSUs and 
other self-driving cars. They also use k-Means to cluster the MLP 
outputs and apply Block Successive Majorization-Minimization to 
solve the optimization problem. The proposed scheme achieves 
higher MNO’s profits considering different scenarios of increas-
ing number of vehicles, computing charging time, caching charging 
price, vehicular velocity and convergence speed.

Hou et al. [67] develop a centralized RL-based approach with 
Q-learning to determine the optimal caching policy using a heuris-
tic greedy process, minimizing the latency of caching services. The 
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system space includes the number of cache units that has been 
occupied in a specific RSU. They also employ an LSTM model for 
predicting the vehicle’s mobility at an intersection with RSUs. The 
prediction accuracy of LSTM reaches up to 87.6%. The proposed 
Q-learning scheme is compared to other baselines: i) maximum, 
where the predictor knows exactly the vehicle’s behavior, ii) mini-
mum, where there is no mobility predictor, iii) no-caching scheme, 
where the content is not cached on the RSUs, and iv) greedy 
strategy scheme, where the system caches the content based on 
the local optimum in each state. The proposed Q-learning scheme 
achieves highest reward compared to schemes ii), iii) and iv) with 
increasing number of available caches and prediction accuracy.

In [68], the authors propose a mobility-aware proactive edge 
caching scheme with FL (MPCF), based on adversarial autoen-
coders, in order to maximize the cache-hit ratio. The cache hit 
ratio measures the effectiveness of a cache in fulfilling content re-
quests. The input features to the autoencoder are retrieved from 
the MovieLens 1 m Dataset [69] and include movie IDs, rating, 
user IDs, user contextual information (gender, age, occupation, zip 
code), while the output label is the predicted cache content. The 
proposed scheme presents the best cache-hit ratio compared with 
other solutions. Moreover, cache replacement in MPCF results in 
higher cache hit ratio when used (24,25% vs 22,2%), while MPCF 
achieves higher cache-hit ratio in a shorter time than a typical FL 
training process (MPCF achieves the target cache hit ratio of 16% 
in less than 60 seconds, while the typical FL process needs more 
than 600 seconds).

In [70], the authors propose FlexiCache, a centralized frame-
work for adaptive edge caching based on Kernel Ridge Regression 
(KRR), in order to optimize the content retrieval time by allocating 
different proportions of the cache to safety-related and infotain-
ment data. The input features to KRR include the average rate of 
arrival of interests for safety-critical data, the average rate of arrival 
of interests for infotainment data, the average frequency of inter-
ests for the same infotainment data object in a given period and 
the average content retrieval in seconds. The algorithm’s output is 
a value that splits the RSU cache in chunks holding safety-critical 
and infotainment data. The proposed solution outperforms undif-
ferentiated caching and the feedback mechanism of FlexiCache re-
sults in very low difference between the target and actual retrieval 
times, even for highly mobile urban road topologies.

Finally, Song et al. [71] consider a DRL based approach (DDPG) 
to maximize the QoE of the requested files by moving vehicles. 
The authors propose a class-based user interest model to predict 
the access probability of files by users, considering that users will 
request files of the same class in consecutive requests. The agent 
learns a policy that specifies whether to cache requested files in 
any RSUs, based on a reward that follows the proposed class-
based user interest model. For a single vehicle, with the proposed 
method, the QoE increases as cache size increases, while vehicle 
speed affects the QoE (0.3 against 0.2 for the largest cache size). 
For multiple vehicles, the proposed method is compared to tradi-
tional cache algorithms for different number of file classes, where 
results show that as the number of file classes increases, (i.e., 40, 
60, 80, 100) the traditional cache algorithms provide almost the 
same QoE (approximately 0.045 in all file classes), while the pro-
posed solution achieves higher QoE in almost all cases except the 
highest number of classes (∼0.09 for 40 file classes, ∼0.07 for 60 
classes, ∼0.055 for 80 file classes and ∼0.045 for 100 file classes). 
This behavior is consistent, considering that as the number of 
classes increase, the files in each class decrease, thus, reducing 
the predictability of the algorithm. The method seems promising; 
however, it could be tested in more complex vehicular scenarios to 
examine its scalability and robustness.

The authors [72] present a multi-actor critic solution in a 
multi-server environment. The actors are distributed over the edge 
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servers and there is a centralized critic, that informs the actors 
whether their selected actions are suitable. The main objective 
is to minimize the overall task execution delay. The system state 
represents the Edge servers’ environments and includes the task 
execution delay on the server, the remaining available resources 
and cache resources, as well as the cache policy on the server. The 
proposed solution is compared to: i) an independent multi-actor 
critic variation, where the actor-critic pairs are independent with 
each other, ii) a random cache polic, and iii) a no-cache policy. Re-
sults show that the proposed solution achieves consistently lower 
task execution delay than the other baselines with increasing edge 
caching size and edge computation capability (for 600 MB file: 
∼0.50 sec against 0.40 sec of Actor Critic variation and ∼0.78 sec
of random cache policy) and computation capability (for 3 GHz: 
∼0.30 sec against ∼0.40 sec of Actor Critic variation and ∼0.88 sec
of random cache policy). In the Centralized Critic proposed solu-
tion, the Critic module accepts information from all edge servers, 
and thus, makes decisions that perform better than its indepen-
dent variation.

The authors in [73] propose another DRL solution based on Ac-
tor Critic for minimizing the downloading delay and the caching 
cost in mobile edge networks. The solution includes a centralized 
Actor-Critic pair where the system space represents the user’s con-
tent demand matrices and the action space includes the set of 
caching decision matrices. The authors reduce the computational 
complexity of estimating the policy function with a branching neu-
ral network technique. They separate the action space in several 
dimension and assign each neural network branch on each di-
mension. The proposed solution outperforms the SoTA and other 
baselines for varying arrival rate of requests, number of con-
tent items requested and number of edge clouds in terms of to-
tal cost (12% improvement over SoTA for caching 2500 content 
items), average downloading delay (8% gain over SoTA), improv-
ing the cache hit rate and provides results closer to the upper 
bound.

Lessons learned: Centralized architectures are more popular in 
caching among the surveyed solutions. This is a result of the 
caching problem nature, where edge cloud servers retrieve infor-
mation from vehicular users and train centrally a model to perform 
the necessary actions. FL was used only in one surveyed paper, 
but considering the issues of privacy, storage capacity and network 
overhead, it is anticipated that more publications will explore its 
application on caching.

Regarding the learning techniques, RL based solutions are more 
prominent than supervised and unsupervised learning ones. This 
can be attributed to the versatility of the reward functions, used 
for training the RL agents, where one can formulate such func-
tions considering the constraints and target KPIs of the designated 
problem. Then, the agents are learning to select optimal actions 
according to this reward function. In addition, as we mentioned 
earlier, in RL, the agent is learning directly from the interactions 
with its environment, without requiring a pre-processed dataset. 
This is a significant advantage of RL compared to supervised learn-
ing techniques. Regarding the optimization objectives in caching 
management, the most commonly used objectives are to minimize 
the service latency or maximize the profits of mobile networks op-
erators, according to Table 3.

As indicated in [62] and [67], RL can help reduce the content 
transmission delay and system overhead in joint optimization of 
bandwidth allocation and content caching or minimize the latency 
of caching services. Following [63], [64] and [65], DRL has been 
effectively used in joint caching and computing schemes for max-
imizing profits and reducing costs of communication and compu-
tation. In [66], neural networks can minimize the delay of retriev-
ing infotainment contents in multi-access edge environment, when 
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Table 3
Publications on AI-enabled caching in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[62] High-speed, free-flow
road segment

(RL)
• DDPG

Weighted average transmission
delay minimization

Centralized Reduces the minimum content
transmission delay and minimizes the
system overhead, compared to non-ML
baselines.

[63] HetNet (DRL)
• DQN

Communication, storage and
computation cost minimization,
with deadline constraints on the
requested content

Centralized Higher success probability in delivering
the requested content within the imposed
deadlines and achieves higher cost gains
compared to other baselines.

[64] Real traffic data (DRL)
• DDPG

Maximize MNO’s profits Centralized Higher MNO’s profits in different
scenarios of increasing number of
vehicles, computing charging time,
caching charging price, vehicular velocity
and convergence speed.

[65] Randomly distributed
vehicles

(DRL)
• DQN

Maximize the MVNO’s revenues Centralized Higher utility compared to other baselines
at varying content size and charging
prices for connecting to the cache servers.

[66] Multiple dispersed
RSUs

(Supervised)
• CNN
• MLP
(Unsupervised)
• k-Means

Minimize the total delay for
retrieving infotainment contents

Distributed Reduces the backhaul traffic with high
accuracy of the contents that are
requested across the RSUs.

[67] Intersection (Supervised)
• LSTM for mobility
prediction
(RL)
• Q-learning for
caching

Minimize the latency of caching
services

Centralized LSTM Prediction accuracy: 87.6%.
The Q-learning scheme achieves highest
reward compared to baseline schemes
with increasing number of available
caches and prediction accuracy.

[68] Urban scenario (Unsupervised)
• Adversarial
autoencoder

Maximize cache-hit ratio Federated Best cache-hit ratio compared with other
solutions.

[70] Grid-like Road
structure with
intersections.

(Supervised)
• Kernel Ridge
Regression

Minimize the content retrieval
time

Centralized Outperforms undifferentiated caching in
low differences between the target and
actual retrieval times even for highly
mobile topologies.

[71] Straight road (DRL)
• DDPG

Maximize QoE Centralized Higher QoE for different file classes
(∼0.09 for 40 file classes, ∼0.07 for 60
classes, ∼0.055 for 80 file classes) and
∼0.045 for 100 file classes.

[72] 5 Edge Servers, 1 Cloud
Server
Random UE trajectories

(RL)
• Actor-Critic

Minimize the average task delay
of the multi-server task caching
model

Centralized The solution achieves lower task latency
with increasing edge caching size (for
600 MB file: ∼0.50 sec against 0.40 sec of
another Actor Critic variation and
∼0.78 sec of random cache policy) and
computation capability (for 3 GHz:
∼0.30 sec against ∼0.40 sec of Actor
Critic variation and ∼0.88 sec of random
cache policy).

[73] 5 Edge clouds
co-located with the BSs
1000 users

(DRL)
• Actor Critic

Minimize downloading delay
and caching cost

Centralized The proposed solution outperforms other
baselines in terms of total cost (12%
improvement over SoTA for caching 2500
content items), average downloading
delay (8% gain over SoTA), improving the
cache hit rate.
considering the passengers’ features as additional training features. 
In [68], it is learned that autoencoders (unsupervised learning) can 
help in learning the latent representations of users’ contextual in-
formation through federated learning, so that the contents stored 
in the RSUs caches are updated accordingly. It is also shown that 
synchronous federated learning is too slow for dynamic vehicular 
environments, suggesting that asynchronous federated learning be 
investigated in future work. Finally, it is learned from [70] that it is 
possible to spit the edge cache into different sections, to hold data 
of different traffic type and QoS by using a predictor that takes 
into account current network conditions.
15
4.3. Resources management

This Section examines two separate fields of resource man-
agement in vehicular networks: i) Radio Access Network (RAN) 
Resource Allocation, addressing power, spectrum and channel ac-
cess optimization for reducing interference, power consumption 
and network congestion, and ii) Computation resources manage-
ment, addressing service, task and traffic offloading in Mobile Edge 
Computing (MEC) environments with edge cloud nodes deployed 
in base stations, leading to faster response times than central de-
ployments.
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4.3.1. Radio Access Network resource allocation
RAN resource allocation refers to power, spectrum and channel 

access control targeting to reduce interference between users, thus 
increase the overall throughput. Table 4 summarizes supervised, 
reinforcement learning, and deep reinforcement learning strategies 
used to optimize power and/or spectrum over vehicular networks.

In [74], Gao et al. employ a centralized Deep Neural Network 
(DNN)-based power allocation scheme on an intersection of high 
mobility for V2I and V2V links, formulating a sum rate maximiza-
tion problem with power constraints on the V2X links. The input 
features to the algorithm are the channel power gains of V2I and 
V2V links and the result is the optimal power allocation. Simula-
tions show that the proposed DNN based solution performs close 
to the Weighted Minimum Mean Square Error (WMMSE) mini-
mization approach. Although training the DNN is time-consuming, 
the trained network can provide a real-time solution. In [75], the 
authors propose a centralized bandwidth allocation scheme and 
scheduling queue management via a wireless slice manager. They 
employ a CNN, LSTM and DNN to classify Software Defined Net-
working (SDN) flows as safety flow or not. Simulations show that 
the proposed framework optimizes resource allocations according 
to the changing demands of a vehicular network, achieving high 
accuracy in flow predictions. LSTM (99.36% accuracy) outperforms 
CNN (95%) and DNN (92.58%).

Gyawali et al. [76] employ graph theory for channel allocation 
by a centralized BS and DRL for distributed power control by the 
vehicular users. Each V2V transmitter is considered as an agent 
that learns whether the channel state is above a minimum thresh-
old required for successful V2V communication. The agent senses 
the state and selects an appropriate action, e.g., select the optimal 
transmission power level and maximize the reward. The reward is 
the aggregate capacities of the V2V links in a cluster. The objective 
is to maximize the long-term rewards through Q-learning based 
on Q-table. However, this method does not work well with large 
state-action space. To address this issue, the authors use Deep 
Q-Learning, which although presents a time-consuming training 
process, the execution is very fast and performs well in large 
state-action spaces. Results show that the proposed scheme in-
creases V2V link capacity and reduces the interference among ve-
hicles.

In [77], Koshimizu et al. proposed a distributed VANET cluster-
ing scheme applied on moving vehicles within a C-V2X network. 
They employ affinity propagation for clustering vehicles, where 
the cluster head is decided upon message exchanging among the 
vehicles through the PC5 interface of C-V2X network, according 
to 3GPP specifications. In addition, the clusters granularity, e.g., 
whether a cluster is small, medium or large, is identified through 
a soft-margin SVM algorithm, considering: i) the communication 
volume generated by each vehicle, ii) the preference of the vehicle 
in establishing a session in clustered or individual mode, iii) the 
traffic density (about 60 vehicles in a single direction over 2 km 
span), and iv) the PLMN congestion status (normal or congested 
state). Simulations took place using real traffic data recorded over 
a US highway during one day. The authors identified leading and 
car-following vehicles based on the GHR car-following model. Sim-
ulated data achieved satisfactory results in predicting appropriate 
clusters for different granularity parameters, while the overall ac-
cess latency in a 5G network achieved values as low as 3.9 ms, 
highlighting that a stable access system can provide smaller ac-
cess latency. Affinity propagation does not need the number of 
clusters beforehand, compared to other clustering schemes, as k-
Means, posing a significant advantage for high mobility environ-
ments with rapidly changing vehicle “formations”, like vehicular 
networks. Cluster formation provides stability on the cellular net-
work, as it reduces the number of direct connections when the 
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number of moving vehicles is large, avoiding the so-called “access 
stagnation”.

Ye et al. [78] developed a distributed resource allocation for 
effective channel sharing between V2V and V2I communications 
in unicast and broadcast scenarios. Such distributed approaches 
provide lower transmission overhead during information sharing 
among vehicles than centralized approaches, where this overhead 
is large and does not scale effectively with increasing network 
size. The authors employ a DRL algorithm based on deep neu-
ral networks, because traditional Q-learning requires larger times 
to converge in problems with huge state-action spaces, as in V2V 
communications. The agents’ objective is to minimize the V2V in-
terference on the V2I links, while meeting the imposed latency 
requirements regarding messages exchanging.

The reward in both scenarios includes the V2V and V2I capac-
ities and the latency constraints. In the unicast scenario, the V2V 
links observe the system space consisting of the channel V2I and 
V2V information, the previous interference power to the link, the 
selected sub-channel of neighbors in the previous time slot and 
the remaining load of the vehicular UE to transmit, and the re-
maining time to meet the latency requirements. The agents select 
a sub-channel and power level for transmission. In the broadcast 
scenario, each vehicle is an agent that re-broadcasts the messages 
that have been received to improve reliability. The state space in-
cludes the features of the unicast scenario, the number of times 
a message has been received by a vehicle, and the minimum dis-
tance to the vehicles that have broadcasted the message. The sim-
ulation environment is based on the Manhattan case in 3GPP TR 
36.885 where vehicles are dropped in lanes according to a Poisson 
process. Simulations highlight a higher probability of satisfied V2V 
links and power level selection for various vehicles compared with 
other baselines. However, one weak spot is the computation com-
plexity for selecting the power levels and sub-channels, which can 
be alleviated using known methods in the literature.

Khan et al. [79] use LSTM on vehicles to predict transmissions 
of neighboring vehicles to avoid packet collisions. The learning 
vehicle monitors the received packets of visible and hidden neigh-
bors and relies on the packet reception history to predict future 
transmissions. The input features to the LSTM model include the 
time interval between the currently received packet and the previ-
ous packet from a particular neighbor, vehicle dynamics and their 
gradients (position, degree, speed), while the output is the time 
interval for the next packet transmission. The packet reception ra-
tio is higher in cases incorporating learning, compared to the case 
without learning. The case with learning from both hidden and vis-
ible nodes presents lower Packet Reception Rate (PRR) compared 
to learning only from hidden nodes. This is due to the high num-
ber of nodes that the learning vehicle is tracking in the first case 
and thus, cannot find sufficient vacant windows of channel of low 
channel activities and transmits immediately. This is a promising 
approach on the MAC in V2X, but several open issues need fur-
ther investigation, such as the effect of transmit rate control, the 
coordination of multiple learning vehicles and hybrid scenarios in-
volving both learning and non-learning vehicles.

Xiang et al. [80] followed a distributed approach using DRL and 
multiple agents, i.e., the vehicles, to jointly optimize power and 
channel selection with the objective of maximizing the V2I sum 
throughput under latency and reliability constraints of the V2V 
links. They applied a double dueling deep recurrent Q-network 
(D3RQN) that incorporates dueling DQN to increase the approx-
imation of the value estimation of the original DQN. They also 
employed hysteretic Q-learning to coordinate multi-agent training. 
Moreover, the authors utilize the approximate regretted reward 
to address the changing environment dynamics. The observation 
space of each agent comprises the experienced interference power 
over all sub-channels, the remaining payload size to be transmit-
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ted and the remaining time to finish the transmission. The Channel 
State Information (CSI) is not included, because it is computa-
tionally complex to estimate and is not used in schemes like NR 
Mode 2, where the UEs select resources using the sidelink refer-
ence signal received power (SL-RSRP). Results show that the pro-
posed scheme presents higher robustness in the packet delivery 
ratio in V2V links against payload size (90% compared to approxi-
mately 73% of NR Mode 2 scheme) and increasing vehicle velocity 
(approximately 90% for 10-15 m/s to approximately 86% for 25-
30 m/s). The authors also conduct an ablation study to investigate 
the contribution of each ML technique in the overall performance. 
They concluded that the approximate regretted reward is signifi-
cant for training in dynamic environments, since its absence leads 
to performance degradation of the V2V packet delivery ratio.

Banitalebi et al. [81] propose a multi-agent Q-learning dis-
tributed solution to improve the energy efficiency of C-V2X net-
work. The authors formulate the problem as joint and disjoint 
power and subcarrier allocation. In the joint approach, the learn-
ing agents are the vehicles and D2D pairs and their actions include 
selecting a subcarrier and/or the power level. In the disjoint ap-
proach, the learning agents are the base stations that select the 
subcarriers. In this case, the distributed Q-learning method allo-
cates the subcarriers and then, based on this action, the power 
is allocated as a result of a non-cooperative game. The joint ap-
proach achieves higher gains in energy efficiency (36%) compared 
to the disjoint approach at the expense of using more memory.

The authors in [82] present a DRL-based distributing solution 
for automatically adjusting the message broadcasting rate of the 
vehicles in a C-V2X network. The solution employs a Double Deep 
Q-learning network with risk awareness; reduce the broadcasting 
rate if the vehicles maintain a safe distance and increase the rate 
when the distance reaches a risky distance. The vehicles are the 
learning agents that observe their environment, consisting of the 
channel busy ratio, the SINR and their position. The action space 
includes the adjustment of the broadcasting rate. The proposed so-
lution reduces redundant data up to 16%, increasing 22% the packet 
reception rate compared with baselines.

Lusvarghi et al. [83] propose a supervised learning approach to 
predict future CAM generation times in LTE with kNN. The vehi-
cles use kNN to predict the next CAM generation time. The input 
features to the kNN are the vehicle’s and preceding vehicle’s tra-
jectories, velocities and positions. Then, based on the predicted 
value, the vehicles select autonomously the radio resources, i.e., 
the resource reservation interval and the reselection counter, for 
broadcasting. The proposed solution achieves a Packet Reception 
Rate performance close to the ground truth and consistently higher 
than the Semi-Persistent Scheduling algorithm (SSPS) used in LTE 
Release 14, Mode 4 [24].

Lessons learned: In Radio network allocation, both distributed 
and centralized architectures are used. The nature of the problem 
is such, that the optimal radio resources allocation can be decided 
either by central entities (base stations) or by dispersed entities 
(vehicular users). The most popular objective is to maximize the 
average throughput of the vehicular users. The underlying learning 
techniques include all three types, supervised, unsupervised and 
RL/DRL. Supervised learning techniques are used when formulat-
ing the problem as a classification problem, e.g., enforcing specific 
thresholds to select appropriate power controls or as regression, 
for predicting upcoming transmissions, using LSTM. Unsupervised 
learning is used a first step in hierarchical solutions, for clustering 
moving vehicles. RL/DRL are also popular, considering the advan-
tages we mentioned in handover and caching operations, such as 
versatility of the reward function and the direct training without 
labeled datasets.

Various solutions seem promising. [74], [79], [76] indicate that 
deep neural networks in supervised learning and deep reinforce-
17
ment learning applications can provide fast predictions online once 
they have been trained, but exhibit high computational complex-
ity during their training/exploratory phases. A solution to this is 
to conduct training offline. Following [75], deep neural networks 
can help in accurate traffic classification and management. In [76], 
[78], classic Q-learning is not appropriate for problems with many 
state-action spaces, therefore deep reinforcement learning approxi-
mations are preferred. From [77], it is inferred that vehicle cluster-
ing can lead to a stable system with small access latency, since it 
reduces the number of direct connections on the cellular network, 
while affinity propagation is a clustering algorithm that does not 
require the definition of the number of clusters in advance. Finally, 
distributed approaches provide advantages compared with central-
ized ones, since they reduce the overhead of messages exchanged 
between vehicular users.

4.3.2. Computation resources management
Computation resource management includes all tasks revolving 

around service, task and traffic offloading in MEC environments. 
MEC is an emerging architecture where edge nodes provide ser-
vices closer to the users, minimizing the overall latency compared 
to centralized approaches. Table 5 summarizes the most important 
points of publications on AI/ML for computations resources man-
agement.

Dai et al. in [84] simulate a three-layer MEC architecture com-
prised of the infrastructure layer (e.g. RSUs), the edge computing 
layer comprised of MEC edge servers and the cloud computing 
layer, comprised of cloud resource pools. The authors formulate a 
distributed task assignment problem to minimize the average ser-
vice delay and employ MAB (RL) to find the optimal solution. Each 
vehicle submits a task via V2I, which is inserted into a submission 
list. The MEC server acts as an agent that either assigns the task 
to the cloud resource pool or proceeds with processing the task it-
self. The agents observe the estimated pending delay, for which the 
task is halted before being processed. The action space is the set 
of available MEC servers, which are candidates for assigning the 
newly submitted task. Simulations are based on the traffic simu-
lator SUMO [85] using real world traffic in Chengdu, China. The 
proposed scheme achieves better performance in terms of Aver-
age Service Delay, Average Pending Delay and Ratio of Tolerating 
Penalty Delay under different processing rates, varying workloads, 
MEC numbers and increasing computation resources compared to 
other baselines. The authors also provide an estimation on the 
computational complexity of the algorithm which is in the order 
of the number of newly submitted tasks during each scheduling 
period. One major point that will be investigated further is the ef-
fect of packet loss and interference which are not considered in 
the system model.

In [86], Fan et al. propose a C-V2X network architecture with 
separated control and data planes. In the control plane, a central 
SDN controller designs the traffic offloading strategy according to 
the dynamic network state in order to maximize the throughput of 
the access points and the vehicles. The SDN controller uses a DNN 
model that is trained offline on historical traffic offloading strate-
gies regarding the number of users or vehicles associated with the 
access points and predicts the future traffic offloading strategies. 
The output of the DNN is utilized in an online search algorithm 
that optimizes the association between the vehicles and the delay-
insensitive users, as well as the cellular APs and the users, in order 
to reduce its complexity. The evaluation of the framework uses real 
vehicle traces recorded in Beijing, which are used for constructing 
the dataset. The proposed scheme improves the network through-
put, load balance and user service ratio compared against existing 
schemes. The joint wireless resource allocation and the SDN com-
putation resources will also be examined as a future direction.
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Table 4
ML-based radio network resource allocation in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[74] High mobility
intersection

(Supervised)
• DNN

Power optimization for
maximizing throughput

Centralized DNN achieves similar performance to
WMMSE, albeit at the cost of training.

[75] Vehicular network (Supervised)
• CNN
• LSTM
• DNN

Bandwidth allocation
optimization

Centralized The framework optimizes bandwidth
allocation according to network dynamics.

[76] Cellular network (DRL) Power optimization for data rate
maximization

Distributed Increased V2V link capacity and reduced
interference among vehicles.

[77] Inter City highway (Supervised)
• SVM
• Decision Tree

VANET Clustering for reducing
direct connections to cellular
networks

Distributed By adjusting the granularity parameters
related to the clustering, satisfactory
results were obtained in relation the
average access latency.

[78] Cellular Vehicular
network

(DRL)
• DQN

Spectrum and power
optimization for minimizing V2V
interference

Distributed Each agent can learn how to satisfy the
V2V constraints while minimizing the
interference to V2I communications.

[79] Dense highway (Supervised)
• LSTM

A learning vehicle predicts the
packet transmissions of
neighboring vehicles

Centralized An intelligent vehicle can learn and
predict the transmit patterns of its
neighbors. This knowledge can then be
used to orchestrate its own transmissions
during periods of low channel activity.

[80] Urban environment
with uniform motion
of vehicles

(DRL)
• Double dueling deep
recurrent Q-networks

Power and sub-channel selection
optimization to maximize sum
throughput of V2I links
considering latency and
reliability constraints of V2V
links

Distributed Higher robustness in the packet delivery
ratio in V2V links against payload size
(90% compared to approximately 73% of
NR Mode 2 scheme) and increasing
vehicle velocity (approximately 90% for
10-15 m/s to approximately 86% for
25-30 m/s).

[81] Single-cell system with
vehicles and D2D pairs

(RL)
Q-learning

Subcarrier and power allocation
to maximize energy efficiency

Distributed The multi-agent Q-learning joint
algorithm achieves 36% gain in energy
efficiency compared to a disjoint power
and subcarrier allocation approach at the
expense of more memory.

[82] 2 km road segment
with six lanes

(DRL)
DDQN

Automatically adjust the
message broadcasting rate of a
transmitter vehicle

Distributed The proposed solution reduces redundant
data up to 16%, increasing 22% the packet
reception rate compared with baselines.

[83] Suburban setting
Located in Modena
(Italy)

(Supervised)
kNN

Predict future CAM generation
times, where each vehicle
selectes autonomously the radio
resources for message
broadcasting

Distributed The proposed solution achieves a Packet
Reception Rate performance close to the
ground truth and consistently higher than
the allocation algorithm used in LTE,
Release 14, Mode 4 [24].
Ke at al. [87] employ DRL and the DDPG (based on a neural 
network) for offloading tasks on a heterogeneous vehicular envi-
ronment with MEC. A centralized agent decides how much power 
and bandwidth should be allocated to a service equipment for task 
offloading, considering the task’s size, the buffer queue lengths, the 
channel vector and SINR for the uplink transmission of the particu-
lar service equipment. The agent receives a reward that contains a 
trade-off between energy consumption, bandwidth allocation and 
execution delay. The authors conduct simulations on varying chan-
nel state and available bandwidth scenarios, where the proposed 
solution outperforms other baselines in terms of consumed energy, 
convergence and cumulative rewards.

In [88], Liu et al. propose a vehicular edge computing network 
architecture where vehicles provide computation services for UEs 
and traditional edge servers. The authors employ a DRL-based so-
lution with CNN to find the policies for computation offloading and 
resource allocation to maximize the network’s total utility. A cen-
tral agent considers the number of available vehicular edge servers 
(VES), the data rate of the UEs served by the VES and fixed edge 
servers (FES), the computation resources of the VES assigned to 
the UEs. The agent decides whether to offload the task on a VES or 
edge server and the percentage of spectrum and computation re-
sources to be allocated to the UE. The DRL-based method achieves 
18
higher utility in terms of computation offloading and maintains 
lower delay for an increasing number of vehicles. It also requires 
lower computation resources required by a task, compared to ex-
ecuting tasks locally by other VES or only FES. In addition, the 
proposed method converges faster to a solution than the tradi-
tional Q-learning approach.

In [89], the authors propose a two-stage ML-based Vehicular 
Orchestrator for task offloading. The first stage consists of a Multi-
Layer Perceptron (MLP) that predicts whether the offloaded task to 
a particular server will be successful or not, based on the WLAN 
upload/download delay, the short-term load of the servers, the 
task length, the vehicle density and the average edge utilization. 
In the second step, a regression model estimates the service time 
of the offloaded task, based on the task length, the average edge 
utilization, the WAN and Core network delay. The vehicular edge 
orchestrator is compared to other baselines (random moving aver-
age, game theory-based and MAB-based), considering an increasing 
number of vehicles from 100 to 1800 with varying speeds, outper-
forming them in terms of average task failure rates.

Yuan et al. [90] employ DRL to jointly optimize the migration 
of services over edge servers or other vehicles and the mobility 
planning of the vehicles. The main objective is minimizing the 
migration and traffic costs while satisfying service delay require-
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ments. Considering that a single agent is not able to cope with the 
curse of dimensionality in such a joint optimization approach, the 
authors formulate the problem as a multi-agent deep reinforce-
ment learning, reducing the state and action spaces. Thus, each 
service entity is regarded as one agent, which decides on the opti-
mal policy based on a convolutional deep Q-network. Simulations 
indicate that the proposed method effectively reduces the vehicle’s 
system cost and service delay, under varying number of vehicles 
or different types of computation tasks.

In [91], the authors propose a hierarchical framework for hor-
izontal and vertical task offloading for software-defined vehicular 
based fog computing, based on Deep Q-Learning. The objectives 
include maximizing resource utilization at the fog layer (i.e., RSUs, 
BSs) and the minimization of the average end-to-end delay of time 
critical applications. A critical challenge in this architecture is the 
synchronization of the distributed fog nodes for optimizing the 
QoS. For this reason, the problem is formulated as a MDP function, 
solved by RL. A centralized AI-based SDN controller is an agent 
that explores its environment (state space), consisting of the traf-
fic load probability of a fog node, the next estimated queue state 
of a fog node and the end-to-end delay of a task and selects the 
best available node for offloading a particular task. Compared to 
baselines, the proposed model achieves lower latency, less energy 
consumption and lower energy shortfall.

In [92], the authors employ “meta-learning” to minimize the 
consumer’s cost when consuming edge node resources and sim-
ulate the Manhattan roadmap using Unity 3D Engine [93], incor-
porating round-abouts, intersections, highways and bridges. The 
authors define a ML algorithm space comprising various LSTM-
based models. The proposed meta-learning framework consists of 
two stages. On the first stage, a DNN decides, which model should 
be selected from the ML algorithm space, according to previous ex-
perience and meta-features, which are parameters describing the 
internal representations of a dataset. The selected ML model pre-
dicts the edge resource consumption on the second stage. Results 
highlight that simple LSTM architectures perform better in most 
scenarios, when comparing to stacked- and dropout-based archi-
tectures, which can be attributed to the time dependency of the 
data. In stacked architectures, wrong predictions are propagated 
throughout the layers, leading to enlarged errors. Dropout layers 
do not provide better performance, because erasing randomly hid-
den units, may lead to erasing important information. In addition, 
the meta-learning framework consistently makes more economi-
cal decisions in all vehicular scenarios compared to “non-meta” 
methods.

Islam et al. [94] propose an intelligent task scheduler for vehic-
ular edge server to maximize the successful task completion rate, 
while prioritizing critical tasks (e.g., safety related tasks) over non-
critical ones (e.g., infotainment). The authors employ RL and use 
Extreme Learning Machine (ELM) to approximate the function that 
maps states into actions. ELM is based on neural networks, the 
hidden neuron weights of which are assigned randomly, -instead 
of using gradient descent-, towards faster training. The solution 
is distributed and each vehicular server includes a local agent 
that schedules the task assignment. The agents observe vehicu-
lar information, including location, speed and direction, along with 
information regarding the task to be executed (QoS, timestamp). 
Vehicles move on a unidirectional straight road with speeds of 30-
55 km/h. Then, the agent decides whether to forward the task to 
other servers or rejects the task, if the scheduler predicts that the 
required QoS cannot be addressed. Simulations show that the pro-
posed solution achieves 96% completion rate, even at high task 
arrival rates (35tasks/sec) against round robin static scheduling 
policy (that achieves below 20% completion rate for 35 tasks/sec). 
ELM is a promising method that can reduce training times, how-
ever, it should be compared with neural networks trained with 
19
gradient descent in terms of time complexity and task completion 
rate for a range of road traffic flows, to quantify the differences 
between these two approaches.

Dinh et al. [95] present a DRL-based solution with DQN to min-
imize the average task latency in an urban area with gNBs, RSUs 
and vehicles. The authors follow a distributed approach where ve-
hicles and RSUs are the learning agents of the solution. The ve-
hicles use their own small DQN for computational efficiency and 
the RSUs use a larger DQN to make task offloading decisions. The 
vehicles decide whether to offload tasks in RSUs or gNBs, while 
RSUs decide whether to offload tasks on gNBs or process them lo-
cally. The state space of the problem includes parameters related 
to computational efficiency (e.g., packet size, CPU cycles needed), 
amount of time to offload jobs and processing related features, 
such as time needed to complete a task. Results indicate that the 
distributed DQN solution reduces the average task latency from 
9.5% to 68.3% compared to a Multi-armed Bandit Approach and 
a Constant Offloading Scheme for various scenarios, including in-
creasing task arrival rate, vehicle arrival rate, number of RSUs, and 
packet size.

Lin et al. [96] employ a contextual Multi-armed Bandit ap-
proach for minimizing the total task offloading energy in a two-
lane freeway. The freeway consists of RSUs, VUEs and VECs. Each 
VUE is an agent that interacts with its environment and selects the 
optimal VEC at each iteration. Since this is a Multi-armed Bandit 
application, each VEC represents the “arm” that each agent selects. 
The authors extend the solution by introducing a contextual clus-
tering of the bandits, i.e., the task preferences of neighboring VUEs 
are included in the problem formulation. The bandits of VUEs be-
longing to the same clusters, collaborate in the estimation of the 
maximum reward, since they share similar preferences. This con-
textual information improves the average success offloading ratio 
satisfying delay constraints (∼1300 seconds against ∼1800 sec-
onds of another context-aware benchmarker and ∼6600 seconds 
against a random offloading policy). Moreover, the proposed solu-
tion achieves the highest rewards among all solutions for differ-
ent popularity coefficients, while it outperforms the benchmarkers 
in terms of convergence (the proposed solution converges at the 
300th iteration, another context-aware benchmarker converges at 
the 1200th iteration, while a benchmarker that knows the input 
size of the task size converges at the 2800th iteration).

Lessons learned: Centralized architectures are more prominent 
than distributed ones, while federated learning approaches were 
not used in the surveyed papers. Unlike handover and caching 
management, there are extensive objectives used for formulat-
ing a computations recourses management problem, ranging from 
minimization of service latency to maximization of network util-
ity. Regarding the AI/ML methods preferred, there is not a clear 
winner between supervised and RL/DRL methods. Both have been 
used extensively, considering the variety of features that comprise 
computation resources management problems, as presented in the 
previous analysis.

All approaches contribute to optimizing the provided edge 
resources. From [92], it is learned that meta-learning can per-
form better than non-meta methods in vehicular scenarios, while 
time dependency of the data may lead to simpler LSTM archi-
tectures performing better than more complex ones, like stacked 
or dropout-based approaches. In addition, the Geoffrey E. Havers 
(GHE) statistic is an effective measurement for traffic analysis, 
where a smaller GHE indicates a better regression of observed 
flows. From [90], multi-agent DRL can reduce the state and ac-
tion spaces, copying effectively with the curse of dimensionality 
presented in single agent systems. In [86], [89], DNNs are used to 
improve throughput, user service ratio and task failure rates.
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Table 5
ML-based computation resources management in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[84] Real world map (RL)
• Multi-armed bandit

Minimize the average service
delay

Distributed Best average service delay under different
conditions compared with baselines.

[86] Real world vehicle
traces

(Supervised)
• DNN

Maximize the access point’s and
vehicles’ throughput

Centralized Improvement of network throughput, load
balance and user service ratio compared
against existing schemes.

[87] Unidirectional road (DRL)
• DDPG

Minimize total system cost Centralized The solution converges faster and
achieves higher average cumulative
rewards and better average consumed
energy compared to baselines.

[88] Macro BS (DRL)
• CNN

Maximize total utility of
network

Centralized Achieves highest utility and lower delay
for increasing number of vehicles
compared to baselines.

[89] Circular route (Supervised)
• MLP (classification)
• Linear regression

Task offloading Centralized Outperforms other baselines in terms of
average task failure rates and QoE.

[90] Hexagonal grids (DRL)
• CNN

Minimize the migration and
traffic costs while satisfying
service delay requirements

Centralized
training
Distributed
execution

The proposed method effectively reduces
the system cost and the service delay of
vehicles.

[91] Urban IoV (DRL)
• Deep Q-learning

Maximize resource utilization.
Minimize the average
end-to-end delay of time-critical
applications

Centralized Lower latency and energy consumption
compared to baselines.

[92] Manhattan roadmap (Supervised)
• Meta-learning
• LSTM
• DNN

Minimize the expenses to
consume edge computing
resources

Centralized Most economical decisions in roadmap
scenarios compared with fully real time
requests.

[94] Two-lane road (RL)
• Extreme Learning
Machine neural
network based on
Q-learning

Maximize the successful task
completion rate

Distributed The proposed solution achieves 96%
accuracy in successful task completion
rate. It also achieves completion rate over
96% against round robin scheduling also
for high task arrival rates (35 tasks/s).

[95] Urban area with RSUs
and gNBs

(DRL)
• DQN

Minimize average task latency Distributed DQN solution reduces the average task
latency from 9.5% to 68.3% compared to a
Multi-armed Bandit Approach and a
Constant Offloading Scheme for various
scenarios, including increasing task arrival
rate, vehicle arrival rate, number of RSUs,
and packet size.

[96] 2 km two-lane freeway (RL)
• Contextual
Multi-armed Bandit

Minimize the total task
offloading energy

Distributed Outperforms other benchmarkers in terms
of convergence (300th iteration against
1200th and 2800th iteration), average
success offloading ratio (∼1300 seconds
against ∼6600 seconds a random
offloading policy).
4.4. Routing

Efficient data dissemination among vehicles is a challenging 
field of vehicular networks and studies the problem of optimiz-
ing multi-hop path and relay selection. The main concern revolves 
around latency and reliability considering the increasing vehicle 
density in future networks. Table 6 summarizes the important 
points of publications that apply AI/ML for routing packets in ve-
hicular networks.

In [97] and [98], the authors employ a two-level clustering-
based approach, including fuzzy logic for selecting the cluster-
heads and RL select the next-hop/gateway node. In [97], Wu et 
al. employ clustering to copy the MAC contention problem by re-
ducing the sender nodes’ transmission of the concurrent messages. 
Clustering is based on a fuzzy logic scheme, where the vehicle 
mobility, channel conditions and vehicle distributions are consid-
ered inputs to select the cluster head. In the second stage, they 
employ a distributed RL approach to select the next-hop node to 
20
deal with the degradation of multi-hop TCP transmissions. The net-
work nodes are agents who learn the environment by exchanging 
messages. Results indicate that the proposed approach effectively 
maintains packet collisions at a low level and provides improved 
TCP throughput for an increasing number of flows compared to 
static approaches, leading to lower packet delay.

In [98], Khan et al. extend this idea by using link reliability sta-
tus, k-connectivity and relative velocity factor as input to the fuzzy 
logic scheme. Each vehicle calculates the leadership value for itself 
and its one-hop neighbors through exchanging messages. In addi-
tion, they use an improved Q-learning (IQL) approach for selecting 
the gateway, where the Q-values are updated only if the best ac-
tion is available, reducing time and space complexity compared to 
the classical Q-learning (CQL) approach. The authors show that the 
proposed IQL algorithm converges faster to a solution compared 
to CQL (for 400 vehicles, CQL reaches a solution with 18000 itera-
tions, while IQL needs only 6000), and produces a smaller number 
of request route messages for an increasing number of cluster-
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heads (for 30 cluster-heads/agents, IQL produces 60 messages and 
CQL ∼120). In terms of performance, the proposed two-level clus-
tering scheme maintains higher throughput for increasing vehicle 
speeds and reduces the probability of route change compared to 
other DSRC-based cluster schemes.

Unlike the previous cluster-based approaches, the authors in 
[99] do not select a fixed cluster head for forwarding the route 
messages. Instead, they select the optimal next-hop grid using Q-
learning. The agents learn based on the different grids, without 
including any observations from other vehicles, reducing the con-
vergence speed because of the smaller number of available learn-
ing states. After selecting the optimal grid, the agents select the 
best relay vehicle for forwarding messages from the previously se-
lected grid using a greedy or Markov prediction method. Higher 
priority in vehicle selection is given to buses, considering that 
they have fixed routes and schedules, improving the performance 
of the proposed scheme. An important parameter is the timeslot, 
during which two vehicles are considered neighbors if they are 
in each other’s transmission range. Simulations highlight the im-
proved performance of the proposed hierarchical routing scheme 
in terms of delivery ratio and throughput, at the cost of similar 
or slightly increased delay, hop count and number of times pack-
ets are forwarded, compared to alternative position-based routing 
protocols for different timeslots. The authors also showcase that 
“bus-aided” schemes increase the throughput and delivery ratio, 
decrease the hop count and the iterations a packet is forwarded, 
at the cost of slightly increased delay for different timeslots.

The authors in [100] and [101] employ a two level approach, 
where a convolutional neural network is applied to images for 
extracting features and then, they employ RL and DRL to select 
the next relay node. In [100], the authors apply a CNN to clas-
sify satellite images into Buildings, Open fields and Streets and 
then, each vehicle acts as an agent that learns from the environ-
ment using Q-learning and decides upon which vehicle to hop next 
by minimizing the propagation loss experienced at its receiver. 
This approach extends the reachability of a V2X link around 66,7% 
compared to traditional shortest-distance approaches. Similarly in 
[101], the authors use a CNN to extract features from the traffic 
and communication topologies maps that act as the state space for 
a centralized agent to decide on the next virtual relay node, us-
ing Deep Q-learning to accommodate a large number of features. 
This approach is compared to greedy and random decision-making 
frameworks showing significant improvements in utility perfor-
mance. However, the proposed scheme assumes that the operator 
has all the necessary information available.

In [102], the authors propose a model-based RL solution that 
uses fuzzy logic to model the links between the vehicles. The fuzzy 
system evaluates the stability and connection quality of the links 
and outputs a rule, which is used by the agents, i.e., the vehicles, to 
decide the forwarding destination of the packets. The authors com-
pare their solution with a model free-based approach and conclude 
that their solution presents higher packet delivery ratio even at 
high velocities (∼67% against 53% at 80 km/h) and improved trans-
mission delay, because the fuzzy logic model discovers more stable 
paths (560 ms against 490 ms). Moreover, the model-based solu-
tion presents improved packet delivery ratio (82% against ∼70%), 
control overhead ratio (30% against ∼40%) and transmission delay 
(310 ms against 450 ms) for 500 simulated vehicles against tradi-
tional routing benchmarks.

Luo et al. [103] propose a location-based packet forwarding 
scheme with Q-learning. The solution includes two steps: i) the 
RSUs select the optimal road segments at intersections, and ii) the 
vehicles select other vehicles as optimal relays at the road seg-
ments via V2V communication, while at the intersections, the RSUs 
select the relays, considering the decision in step i). There is a cen-
tralized server, i.e., agent, that monitors historical traffic flows on 
21
road segments and selects the optimal road segment adjacent to 
an intersection, where the packets will be forwarded. Then, the 
Q-table is distributed to the RSUs at the intersections. The vehi-
cles are assumed to know their own positions and the destination 
vehicle’s position by GPS and obtain the road topology via digi-
tal maps. The solution also provides a congestion mechanism that 
selects an alternate path in case the optimal path is congested. Ve-
hicular speeds vary from 40 km/h to 60 km/h. Compared to other 
solutions, the proposed scheme shows improved average delay for 
increasing packet sending rates (∼1 sec against ∼1.40 sec and 
∼2.50 sec for 6 packet/sec), improved packet delivery ratio for in-
creasing packet sending rate (∼0.66 against ∼0.56 and ∼0.53 at 6 
packets/sec), with a slightly increased average hop count (∼12hops 
against ∼11hops at 6 packets/sec) because of its congestion mech-
anism.

Kandali et al. [104] employ a routing protocol based on k-
Means to locate the optimal cluster head. The authors use the Con-
tinuous Hopfield Network to assign the initial set of cluster heads. 
Then, the number of clusters is fed into k-Means, which assigns 
the vehicles into the appropriate cluster, considering a link relia-
bility model between the cluster head and the designated node. 
Results show that the proposed scheme presents higher through-
put for increasing number of vehicles compared to other baselines 
(∼800 Kbps against ∼750Kbps for 200 vehicles), higher through-
put for increasing vehicle velocities (∼770Kbps against ∼760Kbps 
for 100 km/h average velocity), lower end-to-end delay for in-
creased vehicle velocities (∼0.5 sec against ∼3 sec at 100 km/h) 
and higher packet deliver ratio for increasing number of vehicles 
(∼97% against 90% for 100 vehicles). However, the packet delivery 
ratio approaches that of the baselines for 200 or more vehicles.

Lessons learned: Following [97–104], distributed approaches 
have been used more extensively in routing schemes than central-
ized ones, since the selection of next hop nodes takes place by the 
vehicles themselves utilizing V2V. Following this, the most popu-
lar optimization objective is selecting the next optimal node for 
forwarding the packets.

Regarding the AI/ML methods used, RL/DRL methods prevail 
compared to supervised and unsupervised learning techniques, 
which are only used as first stages in hierarchical solutions based 
on RL solutions. From [97],[98], it is learned that two-level cluster-
ing schemes can be effective in maintaining satisfactory through-
put even in high density scenarios, when used in conjunction with 
RL. In [99], it is learned that an observation space consisting of 
the possible grids that the vehicle can follow, can provide im-
proved delivery ratio and throughput, at the cost of similar or 
slightly higher delay compared to traditional routing methods. Fi-
nally, [100],[101], present an alternative approach for optimal relay 
selection, where features are extracted from traffic topology maps 
using neural networks to reduce the number of available dimen-
sions and are used as inputs to RL or DRL models for optimal 
path search. DRL is used again in cases where the number of 
dimensions is high and cannot be accommodated by traditional 
Q-learning approaches.

4.5. Beam selection optimization

Millimeter wave (mmWave) is the radio spectrum above 24 GHz 
and includes the new 5G NR radio bands that can provide higher 
data volumes than sub-6 GHz bands, but at significantly lower dis-
tances. Beam selection is a technique, where multiple antennas in 
the transmitter form narrow beams and help overcome the poor 
propagation characteristics of mmWave. However, the RSU must 
always select the optimal beam pairs to achieve the highest per-
formance. In this context, ML has been used to increase successful 
beam alignments, improve the system’s overall performance and 
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Table 6
ML-based routing in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[97] Freeway and street
scenario

(Unsupervised)
• Clustering for
selecting Cluster Head
based on Fuzzy Logic
(RL)
• Q-learning for
selecting the next-hop
node

Select the route that maximizes
network performance

Distributed Notable improvement of TCP throughput
over baselines.
More effective in terms of throughput and
delay when the number of hops increases.

[98] Freeway scenario (Unsupervised)
• Clustering (Select
Cluster Heads with
Fuzzy Logic)
(RL)
• Q-Learning for
gateway selection

Reduce the number of iterations
in the gateway selection to LTE
Base Station

Distributed Good throughput in high-density
vehicular network scenarios.
In high dense topology, there will be
many agents and actions for Improved
Q-Learning, which will lead to excessive
iterations in gateway discovery.

[99] Real trace data (RL)
• Q-learning for
selecting the next
optimal grid
Greedy/Markov
methods for selecting
the relay vehicle

Improve the delivery ratio in
VANETs

Distributed Improved delivery ratio and throughput at
the cost of similar or slightly increased
delay, hop count and number of times
packets are forwarded, compared to
alternative position-based routing
protocols for different timeslots.

[100] Satellite images from
urban environment

(Supervised)
• CNN for Satellite
image segmentation
(RL)
• Q-learning for
optimal path search

Multi-hopping path selection for
lowest propagation loss

Distributed The proposed method can improve
environmental recognition and extend the
reachability of multi-hop communications
by up to 66.7%.

[101] Simulated traffic
density map

(Supervised)
• CNNs for extracting
traffic patterns
(DRL)
• Deep Q Learning
with DQN for relay
selection

Selection of vUEs as virtual
relays for transmission range
extension

Centralized Compared with the greedy and random
decision-making schemes, the proposed
scheme improves utility performance,
transmission rate, and achieved SINR
dramatically.

[102] Simulated city part (RL)
• Model-based RL with
Fuzzy Logic

To improve packet delivery ratio,
control overhead ratio,
transmission delay

Distributed The model-based solution presents
improved packet delivery ratio (82%
against ∼70%), control overhead ratio
(30% against ∼40%) and transmission
delay (310 ms against 450 ms) for 500
simulated vehicles against benchmarks.

[103] 3 km × 3 km urban
area with 24
intersections

(RL)
• Q-learning

Select the optimal road segment
for message forwarding

Centralized
training
Distributed
execution

Improved average delay for increasing
packet sending rates (∼1 sec against
∼1.40 sec and ∼2.50 sec for 6 packet/sec),
improved packet delivery ratio for
increasing packet sending rate (∼0.66
against ∼0.56 and ∼0.53 at 6
packets/sec), with a slightly increased
average hop count (∼12 hops against ∼11
hops at 6 packets/sec) because of its
congestion mechanism.

[104] Highway (Supervised)
• k-Means

Select cluster heads based on
link reliability

Centralized Higher throughput for increasing number
of vehicles compared to other baselines
(∼800 Kbps against ∼750 Kbps for 200
vehicles), higher throughput for increasing
vehicle velocities (∼770 Kbps against
∼760 Kbps for 100 km/h average
velocity), lower end-to-end delay for
increased vehicle velocities (∼0.5 sec
against ∼3 sec at 100 km/h) and higher
packet deliver ratio for increasing number
of vehicles (∼97% against 90% for 100
vehicles).
reduce the complexity of exhaustive beam search schemes, as 
shown in Table 7.

In [105], the authors apply a contextual MAB algorithm, where 
a mmBS observes the direction of arrival of the vehicles and selects 
a subset of the best beams over time to maximize the data suc-
22
cessfully received by the bypassing vehicles in the coverage area. 
A significant advantage of this algorithm is that it does not re-
quire accurate location information or statistical information on 
traffic and environmental changes. Compared with baselines, the 
proposed solution achieves near-optimal performance in terms of 
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Table 7
ML-based beam selection in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[105] HetNet Cellular with
macro and mmBS

(RL)
• Contextual
multi-armed bandit

Maximize the data successfully
received by bypassing vehicles

Centralized The proposed solution achieves near
optimal performance on 33 minutes
compared to baselines.

[106] HetNet Cellular with
macro and mmBS

(RL)
• Multi-armed bandit

Maximize the SNR of vehicles
belonging to the same beam
broadcasting cluster

Centralized The proposed scheme increases the
amount of aggregate received data by the
vehicle. Social preferences provide
robustness against blockages even under
increasing vehicle arrival rate.

[107] Two-lane urban street (Supervised)
• Random Forest

Beam selection based on
situational awareness

Centralized Probability of successful alignment is 60%
with reduced overhead.

[108] Two-lane straight
street in urban canyon

(Supervised)
• Random forest

Beam selection based on
situational awareness

Centralized Random Forest achieves the highest
alignment probability (84.16%) compared
to RBF-SVM, gradient boosting, and deep
feedforward neural network.

[109] At least 10 VUES TXs
randomly distributed
in the network.

(Supervised)
• SVM

Select the best analog beam that
can achieve the highest Average
Sum rate (ASR) with low
complexity

Centralized Performance is very close to the
theoretical boundary at a very low
complexity. Higher average sum rate of
the proposed algorithm compared to
traditional channel estimation methods
Lower computational complexity at
increasing V2V link density.

[110] Small mmWave cell in
the UK

(RL)
• Contextual
Multi-armed Bandit
(C-MAB)

Select the beam that maximizes
the average vehicle sojourn time
within that beam

Centralized The C-MAB algorithm achieved the
highest average beam sojourn time
(approximately 22 sec), outperforming the
classic MAB by 40%. Meanwhile, the
random and best SNR schemes achieved
approximately 11 sec of average beam
sojourn time.

[111] mmBS with blockages
at an urban area

(DRL)
• DQN

Maximize total capacity Centralized The solution achieves connection
probabilities and capacity levels close to
the maximum capacity scheme,
outperforming the random connection
direct link connection schemes.

[112] 250 m road with one
mmBS

(RL)
• Contextual
Multi-armed Bandit

Maximize received amount of
data for all vehicles

Centralized Compared to risk-free schemes, the risk
aware solution reduces the percentage of
vehicles that do not receive enough data
from 3.5% to 2.2% at the expense of a
performance penalty of 9% at worst,
presenting high adaptation behavior in
sudden statistical changes.
throughput for different arrival rates (for vehicles with velocities 
from 20 km/h to 70 km/h), learning autonomously from its en-
vironment on average 33 minutes. However, the simulation setup 
assumes that only one vehicle communicates with the mmBS, even 
though multiple vehicles may exist in the coverage area. The work 
can be extended to study this effect as well.

Similarly, the authors in [106] employ a contextual MAB to se-
lect appropriate beams and beam angles by maximizing the SINR 
of the vehicles of the same broadcasting beam cluster. In this case, 
the state space includes the direction of arrival and the social pref-
erences of the vehicles’ passengers, expressed through a preference 
factor for movies. The proposed algorithm is compared to an op-
timal algorithm and an algorithm that does not consider social 
preference in its features (CML). The proposed scheme provides 
an approximately 9.6% increase in the vehicle’s aggregate received 
data, transmitting 13 Gb more data than CML. In addition, social 
property provides robustness against blockages, while the under 
increasing vehicle arrival rate, the performance of CSML is im-
proved by 13,2% on average.

Following a different approach, Wang et al. in [107], [108] se-
lect the optimal beam pair index with Random Forest model, by 
considering the RSRP of the beams and the vehicle’s location (in-
cluding errors from localization). The authors employ a top-K clas-
sification scheme, where the labels for classification are the top-K 
23
beam indices with the highest RSRP. In [70], the probability of suc-
cessfully identifying the optimal beam is 60%, while in [71], the 
model achieves 84.16%, highlighting that the additional informa-
tion of vehicle’s locations increases the situational awareness of 
the solution. In addition, they showcase that an auto-terminated 
beam search achieves comparable performance compared to the 
exhaustive search over the recommended beam sets, regarding 
successful alignment. The authors reference online learning as a 
promising approach to increase training accuracy, while they plan 
to study the use of temporally-correlated data.

In [109], the authors apply an SVM model to select the best 
analog beam to achieve the highest Average Sum rate (ASR) with 
low complexity. They consider transmitter’s output power, path 
loss, azimuth angles of Angle of Arrival (AoA) and Angle of Direc-
tion (AoD) and channel gain as input features to the model and the 
output is the best analog beam. The authors model the large num-
ber of VUEs with the random distribution of heterogeneous Poison 
point process and verify that the proposed scheme’s performance 
is very close to the theoretical boundary at a very low complexity. 
The average sum rate of the proposed algorithm is higher than that 
of traditional channel estimation methods while its computational 
complexity remains lower at an increasing V2V link density. The 
authors highlight that they plan to study the effect of the vehicle’s 
speed into the problem formulation.
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In [110], Kose et al. apply a Contextual Multi-Armed Bandit (C-
MAB) that considers the vehicle’s contextual information, including 
vehicle orientation with respect to the small cell (i.e., north-east, 
north-west, south-west, south-east) and the vehicle’s range from 
the small cell (i.e., near, middle, far) to select a beam-vehicle pair 
that maximizes average vehicle sojourn time within that beam. 
The authors note that they did not include vehicle speed in the 
features, because its impact on the performance is low, given the 
limited speed range in the city area (30-50 km/h). The algorithm 
is compared to a classic MAB (that does not consider the vehicle’s 
context), a random scheme and a best SNR method, where the base 
station selects the vehicle with the highest SNR. The C-MAB algo-
rithm achieves the highest average beam sojourn time (approxi-
mately 22 sec), outperforming the classic MAB by 40%. Meanwhile, 
the random and best SNR schemes achieve approximately 11 sec of 
average beam sojourn time. In addition, the C-MAB is not affected 
by the street layout as the classic MAB does, which eventually se-
lects specific beams affected by the street layout and the vehicle’s 
mobility. C-MAB utilizes the vehicle’s context differentiating the 
vehicle’s orientation resulting from the street layout.

Ju et al. [111] employ a DRL-based beam allocation solution 
to maximize capacity in mmWave networks. The mmBS acts as 
an agent that learns the optimal policy with DQN, retrieving in-
formation on beams, potential relays, target vehicles and block-
age conditions. The agents select the optimal link (direct or re-
lay), potential relay vehicles and optional beams. The proposed 
solution achieves connection probabilities very close to the max-
imum capacity scheme under different capacity thresholds (80%) 
and outperforms the random selection (30%) and direct connec-
tion schemes (0%) at the highest capacity threshold. Moreover, the 
total capacity of vehicles is achieved with the DRL solution for dif-
ferent communication blocking levels, reaching almost always the 
optimal performance.

Wirth et al. [112] propose a risk-aware contextual Multi-armed 
Bandit approach for maximizing the received amount of data by 
vehicles in mmWave networks. The mmBS selects the best beams 
based on the vehicles located in its coverage area, considering 
the risk that some vehicles cannot fulfill their communication re-
quirements. Risk is quantified through statistical metrics, such as 
the conditional value at risk (the higher this value is, the smaller 
the risk is for receiving few data) and the mean variance (the 
higher the variance, the higher the risk for receiving few data). 
The agents select a set of beams (representing the arms of the 
Multi-armed Bandit problem) in a 250 m long road with vehicle 
speeds from 30 km/h to 70 km/h. Compared to risk-free schemes, 
the risk aware solution reduces the percentage of vehicles that do 
not receive enough data from 3.5% to 2.2% at the expense of a per-
formance penalty of 9% at worst, since it avoids beams with poten-
tially poor performance. The solution also presents high adaptation 
behavior in sudden statistical changes of the underlying conditions, 
because it is able to converge back to acceptable performance in 
25% of the time steps needed compared to a non-adaptive solu-
tion.

Lessons learned: We can summarize a few points regarding 
beam selection in vehicular networks, based on Table 7. Beam se-
lection optimization solutions use mainly centralized architectures, 
directly resulting from the problem’s nature. A central entity col-
lects data from the vehicular users and the networks and decides 
on the most optimal beam for a specific cell. The objectives used 
for optimizing the decisions include various metrics, such as max-
imizing the SNR or the sum rate of users. In addition, RL/DRL 
and supervised learning techniques are equally used in formulating 
these scenarios, either as decision-making or classification prob-
lems. Unsupervised learning was not used in the surveyed papers, 
but it would have been interesting to investigate whether the clus-
tering of vehicles would have contributed to optimizing specific 
24
network metrics, as shown in caching and handover management 
problems.

Therefore, all approaches have similarly contributed to optimiz-
ing beam selection strategies. It is learned from [105] that online 
learning can be used in conjunction with MABs to maximize the 
received data, while from [106], cross-layer data, such as the pas-
sengers’ social preferences and the direction of the vehicle’s arrival, 
can provide additional contextual information and increase the ve-
hicle’s received data in the presence of blockages and under in-
creasing vehicle rate. Following [107],[108], Random Forests have 
shown the highest probability of beam alignment compared with 
other supervised learning algorithms, while the vehicle’s location 
can increase the situational awareness of the solution. Finally, in 
[109], an SVM classifier can help select the best analog beam, but 
the model’s training should take place offline because of the high 
computational complexity. However, the prediction phase of the 
trained model presents lower complexity than traditional channel 
estimation methods.

4.6. QoS prediction

In [113], the authors use supervised learning techniques to pre-
dict the end-to-end (E2E) delay over three commercial LTE net-
works by conducting a vehicle measurement campaign. Then, they 
use the expected E2E delay, the vehicle’s speed, SINR, RSRP and 
RSSI of the recorded data to train an ML model that classifies the 
delay below or above a threshold of 50 ms and 100 ms. The au-
thors compare four ML models, namely an MLP, a Recurrent Neu-
ral Network, Random Forest and SVM where the MLP and RNN 
achieve the highest performance in classifying the delay. Consid-
ering that simple MLPs present smaller complexity than RNNs, it 
is shown that MLPs are suitable for such application. The authors 
conclude that additional information coming from the UE and the 
network could increase the model’s performance regarding QoS 
prediction.

Moreira et al. [114] use supervised learning to classify whether 
a packet that will be transmitted can or cannot be delivered within 
a required latency window from the base station to a vehicle. The 
authors use multiple input features to train the ML models, in-
cluding previous recorded delays, vehicle’s coordinates, best cell 
index, radio measurements (RSRP, RSRQ, SINR, CQI), BLER, aver-
age cell throughput. The ML models are a multilayer perceptron 
(MLP), Logistic Regression and Random Forest which are compared 
to the traditional ARIMA filter. Simulations under different network 
workloads and packet sizes highlight that supervised ML extracts 
reliable results when the class imbalance is handled, which must 
be considered a step in the pre-processing pipeline. When the class 
imbalance is handled, the ML models can predict the successful 
delivery a few seconds before.

Zhang et al. [115] propose a latency prediction framework using 
data recorded over four months in an urban scenario. The authors 
observed that data presented fluctuations, which led them to de-
compose the latency in two separate components, i) the baseline, 
which has a trackable trend over time, and ii) the residual, which 
behaves like random noise. For the baseline, the authors used k-
medoids to separate the data into k-clusters, according to their LTE 
signal strength, RSRP and RSRQ. Then, they applied k independent 
LSTM networks to predict the latency of each cluster. The proposed 
scheme presented the lowest RMSE compared to non-ML methods, 
like long- and short-term sampling.

In [116], the authors develop an LSTM-based scheme that pre-
dicts the QoS that will be available in a specified time horizon to a 
tele-operated driving vehicle. The LSTM autoencoder is trained on 
vehicle and network related data, including vehicle’s location and 
speed, distance from the network cell, cell load percentage, num-
ber of connected vehicles in the cell, and the uplink throughput of 
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the vehicle. After the data are pre-processed, they are forwarded 
into an LSTM encoder that encodes them into a context vector. 
Then, an LSTM decoder reconstructs the context vector and pro-
duces the predicted uplink throughput of the vehicle for multiple 
timesteps into the future. Results show that the proposed scheme 
predicts the uplink throughput for the next 7 seconds with satis-
factory performance.

Mendoza et al. [117] present a QoS prediction solution for acti-
vating/deactivating Dual Connectivity in automatic guided vehicles, 
depending on their QoS requirements. The solution employs a k-
Means algorithm for clustering the input data, i.e., uplink physical 
resource blocks, SINR and modulation. Then, the clustered data are 
fed into dedicated logistic regression models (one for each cluster) 
for classification in specific QoS categories. The proposed solution 
reduces QoS outages to 31% in single-frequency networks and 11% 
in dual frequency networks, compared to two naive predictor base-
lines, while being more robust to changing radio and interference 
conditions.

Kousaridas et al. [118] propose a QoS prediction scheme with 
Random Forests in a Tele-Operated Driving (ToD) Use case over 
a 5G network. QoS prediction takes place at the NWDAF of the 
5G core network and includes two phases: i) the offline train-
ing phase, where data are collected from various sources, and ii) 
online inference phase, where the trained model provides a predic-
tion on the UL throughput for a specific predicted horizon. Input 
training features include the location of the teleoperated vehicle, 
its distance from the base station, the number of vehicles con-
nected to each cell, the data rate demands of non-tele-operated 
vehicles, and the reciprocal of the sum of distances between the 
tele-operated vehicle’s serving cell and the non-tele-operated ve-
hicles attached to neighboring cells. The prediction accuracy of the 
Random Forests model depends on the features used for its train-
ing. The authors highlight that using features related both to the 
ToD service and the network, results in lower mean absolute er-
ror (45 kbps), standard deviation of the absolute error (21 kbps), 
and mean absolute percentage error (0.0005) compared to training 
with network-only features (607kbps, 1637 kbps, 0.070, respec-
tively) or ToD-only features (1528 kbps, 2053 kbps, 0.140). More-
over, the authors evaluate the model’s performance, when trained 
with imperfect estimates of the input features (using ARIMA) for 
a specific time horizon. The predicted UL throughput with imper-
fect input estimates follows closely the case with the ideal esti-
mates for the first three seconds of the prediction horizon, after 
which the error increases. Finally, the authors evaluate the Ran-
dom Forests model in an unknown scenario, where there are 80 
NToD vehicles in the simulation, which were not part of the train-
ing dataset. In this case, the UL throughput predictions present 
high errors after the fourth seconds of the prediction horizon, 
due to increased uncertainty introduced int he scenario (Predicted 
throughput: ∼1.6x107 bps, Actual throughput ∼1.9x107 bps at 
6 seconds prediction horizon). The authors conclude that proper 
identification of input features and prediction horizon are needed 
and advanced ML-related techniques, e.g., online learning, need to 
be investigated, that can deal with the high dynamics of V2X en-
vironments.

Lessons learned: Following [113–118], supervised learning tech-
niques prevail in QoS prediction in vehicular environments. This is 
a direct result of the QoS prediction problem, where the predic-
tion of certain network metrics is needed to assess forthcoming 
QoS of deployed services (using LSTM) or classify whether packets 
delay will violate imposed thresholds. Therefore, RL/DRL methods 
are not preferred since regression and classification procedures are 
more appropriate for this kind of problems. From an architecture 
perspective, centralized architectures are preferred compared to 
distributed ones, which is a direct result of the problem formula-
tion.
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While QoS prediction seems not as popular as previous net-
work operations, we can extract some specific points regarding the 
contributions of the AI/ML approaches. For example, it is learned 
that LSTM based neural networks are suitable for QoS prediction, 
because the features are mostly time dependent, while supervised 
learning needs handling of the potential imbalance that may exist 
in the data to produce accurate predictions [114].

5. Discussion and open issues

This section reports observations based on the surveyed papers 
and discusses the most critical aspects regarding the application 
of AI/ML in automotive use cases, including the selection of the 
ML algorithms depending on the task, the time complexity and 
the impact on the training and response times, the features used 
for training ML models in vehicular networks, the data collection 
phase and the selected architecture (centralized, distributed, feder-
ated).

5.1. Learning types in vehicular networks

The selection of the appropriate ML algorithm depends on the 
problem formulation, i.e., whether it refers to regression, classifi-
cation, decision making or clustering. Different approaches can be 
used in the context of the same network operation. In QoS pre-
diction, the authors in [113] train an MLP, a RNN, Random Forest 
and SVM to classify whether a packet delay is below or above a 
specified threshold, while in [115], the authors formulate the QoS 
problem as time series forecasting/regression and apply LSTM net-
works to predict the latency of vehicle clusters. The same analysis 
can be applied to the other network operations we examined in 
this survey.

The supervised learning algorithms utilized in the surveyed pa-
pers include traditional approaches, such as kNN, Decision Trees, 
SVM, and neural networks. Tables 2–8 show that neural networks 
are more popular in vehicular environments than traditional ap-
proaches. This can be attributed to two reasons: i) the inher-
ent characteristics of the neural networks architecture, that makes 
them appropriate for GPU acceleration to reduce training speed, 
and ii) the fact that neural networks are capable of building bet-
ter data representations when the amount of data and features 
increases. We describe in detail the time complexity aspects in 
Section 5.2 – Time Complexity.

On the other hand, supervised learning presents some difficul-
ties that need to be addressed before deploying ML models in 
production. First, most supervised ML algorithms need data that 
have been pre-processed prior to training. Pre-processing proce-
dures include missing values management, feature transformation, 
normalization and standardization, in order to avoid problems due 
to different scaling between the features of a dataset. Xin et al. 
[119] highlighted that pre-processing accounts for almost 60% of 
the ML production pipeline, while training only for 20%. In ad-
dition, Moreira et al. [114] showcased that class imbalance can 
affect the accuracy of ML models in QoS Prediction for V2X, if not 
addressed. Therefore, going beyond the simulation environment, 
all these pre-processing operations must be considered before de-
ploying ML models in production environments, and especially dy-
namic vehicular ones. Secondly, labeling datasets and producing 
high quality annotated data are time consuming, error prone and 
costly activities. To this end, self-supervised learning has emerged, 
where ML models are trained to predict the label of datasets, based 
on a part of the same dataset [120]. An additional technique is 
Few-Shot Learning, which rapidly generalizes to new tasks using 
prior knowledge based on a few samples in a supervised manner 
[121]. This technique was not considered in any of the surveyed 
papers.
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Table 8
ML-based QoS prediction in vehicular networks.

Ref. Scenario ML method Objective Architecture Conclusion

[113] Highway (Supervised)
• MLP
• RNN
• Random Forest
• SVM

Classify the E2E packet
delay between specific
thresholds

Distributed (although only
one vehicle is used, the
concept can be extended to
multiple vehicles)

MLP achieved f1-scores of up to 88%.
Better performance than Random Forest
and SVM.

[114] Manhattan grid urban
scenario

(Supervised)
• Logistic regression
• Multilayer perceptron
• Random Forest

Classify whether a packet
can be delivered within a
latency requirement

Centralized For prediction accuracy for varying packet
sizes, RF performs better, with MLP being
close to it, while the ARIMA filter has the
lowest accuracy.
ARIMA model performs better for the
“late” label (the case in which the packet
delay exceeds the latency requirement).

[115] Fixed-location
scenarios (office and
apartment) Mobile
scenarios

(Unsupervised)
• k-Medoids (latency
clustering)
(Supervised)
• LSTM

Delay prediction Centralized Combination of LSTM and statistical
approaches can result in low prediction
errors for end-to-end latency.

[116] Manhattan grid urban
scenario

(Supervised)
• LSTM

Uplink & Downlink latency
and throughput prediction
for Teleoperated Driving use
case

Centralized The use of LSTM for predicting metrics
such as latency/throughput for relatively
short time windows is a promising
solution. Increasing the prediction horizon
for more than a few seconds may result
in high prediction accuracy errors.

[117] 2 km x 1 km area with
macro and small cells

(Unsupervised)
• k-Means
(Supervised)
• Logistic Regression

Predict QoS user
requirements to
activate/deactivate dual
connectivity

Centralized The proposed solution reduces QoS
outages to 31% in single-frequency
networks and 11% in dual frequency
networks, compared to two naive
predictor baselines.

[118] Urban Grid Road with
three macro sites

Supervised
• Random Forests

Predict UL throughput in
Tele-Operated Driving use
case

Centralized Using features related both to the ToD
service and the network, results in lower
mean absolute error (45 kbps), standard
deviation of the absolute error (21 kbps),
and mean absolute percentage error
(0.0005) compared to training with
network-only features (607kbps, 1637
kbps, 0.070, respectively) or ToD-only
features (1528 kbps, 2053 kbps, 0.140).
Prediction accuracy decreases as the
prediction horizon increases in unknown
environments.
RL is used when the problem formulation includes decision 
making. One or multiple agents explore their observation envi-
ronment and select a suitable action according to a reward func-
tion. RL and DRL have been used extensively in V2X for han-
dovers, beam selection, caching, physical and computations re-
sources management, and routing. This can be attributed to the 
following: i) the reward function can be formulated to include 
a wide range of KPI metrics and constraints in line with various 
scenarios, such as maximization of mobile operators’ revenues or 
minimization of migration and traffic costs, ii) the agent learns di-
rectly from its environment, so the data are available immediately 
to it without the need to conduct labeling, and iii) RL can be used 
in multi-agent distributed systems, reducing the state and action 
spaces and avoiding the curse of dimensionality that can occur in 
single agent systems [90].

However, RL presents some weak points that need to be ad-
dressed. First, the agent needs time until it reaches the state for 
selecting the optimal action, called convergence time. This can be 
time-consuming and may render an RL approach unsuitable for 
network operations that support automotive use cases with strin-
gent latency constraints. Second, traditional tabular approaches in 
solving the Q-learning problem have presented improved perfor-
mance in relatively small state spaces with a few features. How-
ever, when the state and action spaces increase, the convergence 
time of these algorithms increases as well [76], [78], [101]. In 
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these cases, DRL is more appropriate, because it relies on neural 
networks for the function approximation and provides better data 
representations. DRL can benefit from GPU acceleration, as we dis-
cussed in supervised learning.

Finally, unsupervised learning has also been used in V2X, al-
though to a smaller extent. Clustering is used as the first stage 
in hierarchical approaches, in order to reduce the amount of data 
that need to be processed by subsequent steps involving ML [66], 
[97], [98], [115]. In addition, autoencoders is a family of neural 
networks that do not need labeled datasets, since they are trained 
using the input features as labels. Autoencoders have been used 
in QoS Prediction [116] and Caching [68] vehicular applications for 
identifying latent data representations.

5.2. Time complexity

Due to the time-critical services that numerous V2X use cases 
involve, the time complexity of ML-based solutions must be care-
fully considered in dynamic vehicular environments to assess the 
feasibility and viability of the implementation. The time cost of 
AI/ML algorithms can be distinguished based on the training and 
the response time [7], [122]. The training time refers to the time it 
takes to train an ML algorithm, while the response time is defined 
as the time it takes a trained model to make a prediction. The 
training time can be computationally high when neural networks 
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are used either in DRL or on their own. To mitigate this issue, the 
authors in [74], [76], [78], [79], [88] conduct training offline and 
make the prediction online. However, when training a model of-
fline, the varying network, mobility and environmental conditions 
may be changing at rates much higher than the training time, and 
thus, the model may learn patterns that are not true after some 
time, leading to unsuitable predictions [122]. In such cases, online 
learning schemes are more appropriate.

The training/convergence time can be reduced with various 
approaches. Qi et al. [59] employed an online learning scheme 
with transfer learning for proactive handovers and showed that 
it is more effective compared to offline schemes in reducing the 
convergence speed of the ML model when the users’ velocities 
changed. Khan et al. [98] used an improved Q-learning approach 
to select the gateway in a V2V routing application, where the Q-
values were updated only if the best action was available, reducing 
the convergence speed, compared to the traditional Q-learning ap-
proach. Sim et al. [105] proposed an online MAB algorithm where 
mmWave base stations identify the best beam for V2I links us-
ing only the vehicle’s direction of arrival. Results showed that 
the model was able to converge to the near-optimal state in 33 
minutes on average (ranging between 7 minutes and 75 minutes 
depending on the state conditions), which is considered a satis-
factory value compared to war-driving tests that need more than 
75 minutes[105]. ELM [123] is another approach that assigns ran-
dom weights in the hidden layers of feedforward neural networks 
leading to reduced training speed with excellent performance and 
was considered only in one of the surveyed papers [94]. ELMs 
have been considered in cache management in general wireless 
networks [122]. In addition, studying the model’s generalization is 
also critical to deal with cases when the distribution of the testing 
data is different than that of the training data, which would be ex-
pected in highly dynamic vehicular environments in urban areas. 
Therefore, the training time is significant to report when applying 
ML algorithms in order to fully capture the dynamic changes of the 
vehicular environment.

The response time is also critical and is bound by the require-
ments of automotive use cases. ML algorithms with high response 
time cannot be applied in time-critical scenarios. Use cases, such 
as emergency trajectory alignment, impose an end-to-end latency 
requirement of 3 ms, i.e., the latency between the V2X applica-
tion server and the vehicle [27]. This means that any underlying 
network operation that supports critical automotive use cases, e.g., 
handover, must preserve the connectivity of V2V/V2I links to sup-
port the imposed requirements.

Yan et al. [58] employed kNN to conduct proactive handovers in 
intersections, achieving a handover decision duration of 2.40 ms. 
The authors noted that this is lower than conventional beam train-
ing schemes which reach 40.96 ms. Ye et al. [78] proposed a 
DRL-based solution with deep neural networks that selects the op-
timal power level for transmission considering latency constraint 
of 100 ms. They reported 0.240 ms as the response time it takes to 
select a power level, running on a GPU. Xiang et al. [80] reported 
0.670 msec for each agent’s action selection on a CPU. Neural net-
works running on GPUs can provide response time in the order 
of milliseconds [124]. Therefore, these results show that there is 
potential for deep neural networks in optimizing V2X communica-
tions for critical automotive use cases.

5.3. Features to train ML models in vehicular networks

The features used in each paper to train the ML models were 
reported above in detail. These features can be categorized in 
seven distinct categories based on the source, from which they 
are retrieved, namely: Vehicle (e.g., position, velocity, degree of ar-
rival), User (e.g., age, movies preferences), Content (e.g., content 
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popularity, content size), RSU (e.g., availability, PLMN congestion 
status), Radio Access (e.g., RSRP, RSSI, SINR), Edge Servers (e.g., re-
quired computation resources) and Road (e.g., roadmaps).

Following the surveyed papers, the required features mainly de-
pend on the assigned task. ML algorithms used in handovers are 
trained using mainly Vehicle-, RSU- and Radio-related features, 
such as vehicle’s location, vehicle’s throughput and the RSUs/ve-
hicle’s service beam indices or RSSI. Caching uses mainly Content-, 
User- and Edge-related information, including content popularity, 
user contextual information (age, gender, zip code), availability of 
cache units, rate of arrival of critical and non-critical data, and 
availability of resources in edge servers. Computation resources 
management tasks tend to use features from the Edge and Vehicle 
layers, such as buffer queues’ length, queuing delay, assigned com-
putation resources to vehicles and computation capabilities (i.e., 
CPU cycles). On the other hand, physical resources allocation re-
lies more on Radio-related features like V2V and V2I links channel 
power gains and PLMN congestion status. Beam selection scenar-
ios use Radio and Vehicle features, including location, transmis-
sion power, beam pairs indices and in one case, Content-specific 
information. Routing relies on Road information (grid roadmaps, 
satellite images, traffic topology), and vehicle location. Finally, QoS 
prediction uses Radio (RSRP, RSRQ, SINR, HARQ), Vehicle informa-
tion and network delay.

In almost all surveyed papers, features come from multiple cat-
egories in order to improve the model’s performance. Li et al. [106]
verified that using cross-layer information, such as requested user 
content and channel state information, improves the model’s per-
formance (and the beam broadcasting strategy overall) compared 
to using information from the radio access layer only. On the other 
hand, the number of features impacts the time and space com-
plexity of the algorithm and the training and response times, so 
this aspect should always be considered when performing feature 
selection.

5.4. Training datasets

The availability of training datasets is a significant aspect of 
modeling vehicular networks and extracting performance results. 
In the surveyed papers, there are three major pillars which are 
used to create a vehicular simulation environment: i) the road 
network, ii) the vehicle traffic flows, and iii) the communication 
model between vehicles-vehicles (V2V) and vehicles-RSUs (V2I).

The production of vehicle traffic flows takes place with road 
traffic generators, such as SUMO [85] and iTETRIS [125]. Regarding 
road network modeling, the same traffic generators can gener-
ate generic road scenarios, such as highways. Several papers [53], 
[64], [66], [67], [77], [84], [90], [92], [99], [105] also use real-word 
roadmaps with vehicle Global Positioning System (GPS) data that 
are imported in road traffic generators, to produce the vehicle traf-
fic flows or they are used to calibrate traffic models, such as the 
Macroscopic Bureau of Public Roads function (MBPR) [90] and the 
Gazis-Herman-Rothery (GHR) car-following model [77]. Using real-
world data leads to more representative simulation environments 
and more accurate performance analysis of ML algorithms under 
different traffic and road conditions. However, such real-world ve-
hicle traces may include irregularities and special characteristics 
that need to be examined before using them.

Celes et al. [126] defined five quality criteria to assess exist-
ing real-world vehicle trace data: i) sampling granularity variation, 
because vehicles’ positioning is made at different times and the 
sampling rate introduces gaps on vehicles’ trajectories, ii) position-
ing errors, due to sensors, tunnels, urban canyons that may need 
to be filtered in advance, iii) variability, where vehicular environ-
ments are characterized by restricted mobility patterns, but exhibit 
different stop-and-go patterns (e.g., buses, taxis) that impact the 
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network topology, iv) volume of mobility data, referring number 
of vehicles, trajectories and trace duration, and v) spatiotemporal 
observation window, considering that mobility patterns change at 
different time intervals and can result from the city’s particular-
ities, which could be used in designing context-aware solutions. 
Based on this, real vehicle traces need to be pre-processed accord-
ingly before being used to simulations.

Regarding the communication model, the environment consists 
of RSUs, vehicles with transmitters/receivers, which can interact 
via cellular (LTE, 5G) or IEEE-802.11p (DSRC) and channel fading 
models. The simulation of the communication models takes place 
with NS-2 [127], NS-3 [128], OMNET++ [129] and MATLAB [130]. 
The channel fading models follow 3GPP technical and reports, in-
cluding TR 36.814 [131], TR 37.885 [132], or they use traditional 
Nakagami [133] and Rayleigh [134] channel models. The training 
datasets are generated through these three sources and they are 
used in ML packages, such as TensorFlow [135], Keras [136] and 
MATLAB for training and testing the ML algorithms. It is impera-
tive to create more realistic synthetic data using the tools above 
while assessing the quality of the datasets regarding the proper 
representation of actual mobility patterns.

5.5. Data sampling granularity

In the surveyed papers, the features for training the ML algo-
rithms are sampled in fixed time intervals. The authors focus on 
selecting some of the system features in order to train their mod-
els, but do not investigate how the granularity of the retrieved data 
may affect the model’s performance. A vehicular environment un-
dergoes dynamic changes in mobility patterns not only per day, 
but throughout the year, so this aspect may create the need to 
adjust the sampling intervals of the data. Adaptive data collection 
and storage is a logical step considering the massive amounts of 
data that are generated in multi-layer environments. Such intelli-
gent strategies can also be used in vehicular environments accord-
ing to contextual and environmental changes to optimize the net-
work transmission overhead and available computation resources, 
while they could widen the prediction window whenever needed. 
A promising direction is investigating the impact of adaptive data 
collection on the performance of underlying ML algorithms used in 
network operations.

5.6. Vehicle velocity and positioning requirements

Vehicular environments include vehicle’s velocity and position-
ing as two key parameters of the system model in the surveyed 
papers. Velocity is modeled as an average value with a typical 
deviation varying according to the road scenario, i.e., whether it 
includes a highway or an urban setting. Typical values for urban 
settings vary between 30 km/h to 70 km/h [55], [64], [89], [97], 
[99], [105], [114], [116], while in freeways the velocities range 
from 20 km/h to 160 km/h [54], [58], [59], [79], [97], [108], [137]. 
Velocity values should be considered in light of the underlying au-
tomotive use case that the V2X solution wants to enable. 5GAA has 
defined a set of automotive use cases along with their Service Level 
Requirements including positioning accuracy and velocity [138], 
[139]. Velocity is defined as “the maximum absolute speed of a 
vehicle at which a defined QoS can be achieved” and that “there 
may be a need to capture the peak expected speed” [139]. In light 
of this, simulation models need to also consider the designated ex-
pected peak velocity in their simulation models depending on the 
underlying automotive use case and the road scenario. Typical ve-
locity limits are 50 km/h in cities, 100 km/h in rural areas and 
180 km/h in highways. However, there are some exceptions, such 
as the case of hazardous location warning in highways, where the 
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peak velocity can go up to 250 km/h [139]. In summary, the ve-
locities used for V2X simulation should address the requirement 
imposed by the underlying automotive use cases.

Similarly, positioning accuracy is another parameter of vehic-
ular environment’s modeling. City scenarios impose positioning 
accuracy down to 10 cm [138], [139]. This means that the local-
ization of vehicles by the network must come with a great degree 
of accuracy. GPS receivers provide high accuracy, but not at the 
expected level of some critical use cases, as urban settings can af-
fect their performance. GPS in smartphones is accurate to within 
4.9 m under open sky, but its accuracy worsens near buildings, 
bridges and trees [140]. When complemented by dedicated base 
stations, the Global Navigation Satellite System (GNSS) can also 
provide accurate measurements to the centimeter level, but fail to 
work in dense urban environments under tree canopies and when 
blocked by buildings [141]. A promising solution to this issue is us-
ing mmWave communication that can provide accurate positioning 
in dense urban deployments and complement GNSS in cases where 
it fails to operate. 5G positioning along with GNSS and other sen-
sors on top of autonomous vehicles can solve the issue of accurate 
positioning in V2X scenarios.

5.7. Federated, centralized & distributed architecture

The architecture largely depends on the designated network op-
eration in question. Centralized architectures are used mostly in 
computations’ resource management [86–92] and beam selection 
[105–109], where a central server receives all information from 
the radio, vehicle and edge layers and decides how to offload tasks 
to maximize the network’s utility or to select the best beam for 
a vehicle-RSU pair. A disadvantage of centralized architectures is 
the high network transmission overhead that comes with retriev-
ing data from multiple entities, which can be costly and complex 
in real-world environments.

Distributed architectures are more appropriate for routing ap-
plications [97–100], where vehicles participate in selecting the 
next hop nodes by exchanging messages and information with 
each other over V2V. Similarly, increasing the V2V links’ capacity, a 
physical-resource allocation problem, can be easily formulated as a 
distributed application. However, distributed approaches have the 
disadvantage of strict synchronization between the different enti-
ties involved. An interesting variation was presented in [90], where 
the training took place in a central node and the execution was 
distributed.

FL has also been used in handover [59] and caching [68] to 
cope with the limited storage capacity of the vehicles and protect 
the privacy of the users when caching content. It has been effective 
in terms of performance, but a disadvantage is that synchronous FL 
is slow for the highly dynamic vehicular environments [68]. As the 
authors note, asynchronous FL can be applied to solve this issue 
and preserve the advantages that come along with it. Consider-
ing that FL addresses privacy issues, limited storage capacity of 
users, as well as the increased network overhead of centralized 
approaches, it is anticipated that more V2X applications will adopt 
it.

6. Research directions

AI/ML applications in next-generation networks have gained 
considerable attention by the research community and relevant in-
dustry stakeholders. Especially for B5G and 6G networks, the use 
of such algorithms in network planning, network diagnostics and 
network optimization and control is actively investigated [142]. 
Following our discussion in Section 5 on the implications of AI/ML 
in V2X communications, we present a set of key points and chal-
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Table 9
Research directions on AI/ML in V2X communications.

Research Directions Key Points and Challenges

Intelligent data acquisition and storage • Big data require excessive amounts of storage
• Adaptive acquisition and storage depending on network and road traffic conditions
• Maintain the robustness of underlying algorithms regardless of the varying sampling granularity

Explanation of AI/ML-based decisions • “Black box” models, like deep neural networks, do not provide direct explanations on how they reached a
particular decision
• V2X environments are highly dynamic, so decisions should not be outdated, following the current road traffic
and network conditions
• Evaluation of selected decisions based on feedback from the environment to increase the trustworthiness of
the model for critical decision making

Context Awareness • Contextual information on users’ habits can be readily available in the network to optimize network and
control procedures (e.g., NWDAF in cellular networks)
• Reduce prediction effort by integrating contextual information, as well as destination and path information
about the vehicle, into the network’s analytics functions

Decentralized and Collaborative AI • Centralized approaches are not efficient for big data due to increased network overhead
• V2X vehicles belonging to different mobile operators will need to exchange data
• Federated Learning introduction in 3GPP Rel. 17 [144] for model sharing between NWDAF instances
distributed in different areas

Energy Efficient AI/ML algorithms • Increased use of AI/ML on connected low-power devices
• Benchmarking AI/ML algorithms for energy efficiency
• Identify computationally intensive algorithm parts and reduce overall energy consumption while maintaining
performance
lenges and subsequent research directions for next-generation net-
works. Table 9 summarizes these open areas.

Intelligent data acquisition and storage refer to an adaptive 
strategy regarding data collection and storage based on changing 
network and road traffic conditions. All papers surveyed in our 
work used fixed sampling intervals for acquiring their data. On 
real-world deployments, however, network and road traffic con-
gestion levels vary on a daily basis. Considering the vast amount 
of data of large-scale V2X deployments, collecting, processing, and 
storing these volumes results in costly operations. In this con-
text, the intelligent adaptation of the sampling granularity based 
on current conditions could provide the means to lower opera-
tional costs. Another challenge is to maintain the robustness of 
the underlying AI/ML algorithms at acceptable levels under vary-
ing sampling granularities.

Explaining the decisions of AI/ML models is another active re-
search area with social implications. Deep neural networks con-
stitute the so-called “black box models”, because the user cannot 
directly explain how the model reached a decision about a spe-
cific data point. Therefore, providing meaningful explanations to 
users (e.g ., Mobile Network Operators, Service Providers, drivers) 
in a comprehensible manner is imperative to increase trustworthi-
ness about the underlying algorithms’ decision-making capabilities. 
Considering also that vehicular environments are highly dynamic 
with sudden changes daily, the decisions made by the AI/ML mod-
els should reflect current network and road traffic conditions to 
ensure that they are not outdated. There are several approaches 
for extracting explanations from a deep neural network, such as 
gradient-based methods and layer-wise relevance propagation. A 
comprehensive review and taxonomy are provided in [143].

Another point worth considering is that contextual informa-
tion regarding the users’ trajectory patterns and preferences can 
be integrated into the network without the need for an increased 
complexity to predict their actions. For example, autonomous ve-
hicles will follow specific trajectories based on the users’ habits. In 
cellular networks, the NWDAF can readily include this information 
in their analytics to optimize specific network and control proce-
dures without additional prediction effort. Moreover, information 
about the destination and the path of a vehicle available to GPS 
navigational systems could also be used to simplify the state space 
of the problems.
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Traditional centralized training architecture presents shortcom-
ings, such as increased network overhead due to raw data transfer, 
especially in large-scale V2X deployments. Distributed and fed-
erated learning approaches have emerged that can reduce this 
overhead. It is anticipated that such decentralized approaches will 
increase in the future due to several reasons: i) local AI/ML de-
ployments on the vehicles themselves, ii) collaborative model/data 
sharing between vehicles and RSUs belonging to different Mobile 
Network Operators, iii) user’s privacy, and iv) network congestion 
reduction. To highlight the trend towards decentralization, we re-
fer to 3GPP’s introduction of Federated learning for model sharing 
between multiple NWDAF instances [144]. In this use case, 3GPP 
considers a hierarchical NWDAF deployment in a single PLMN, 
where transferring all raw data centrally is inefficient. By keeping 
one NWDAF in a central location and distributing multiple NWDAF 
instances locally -possibly co-located with other 5G Core Network 
Functions- only model sharing takes place, while raw data are not 
exposed.

Finally, we reference energy-efficient AI/ML algorithms. Re-
cently, the number of connected devices has increased consider-
ably, introducing use cases where AI/ML runs on top of embedded 
devices. These devices present a low power footprint, while AI/ML 
can produce computationally intensive tasks unsuitable for such 
environments. To this end, benchmarking AI/ML algorithms with 
respect to energy efficiency is essential when selecting a particular 
solution for embedded devices.

7. Conclusion

This survey presented recent advances in AI/ML applications in
V2X communications. We classified the related literature in han-
dover management, beam allocation, caching, radio network allo-
cation, computations resources management, routing and QoS pre-
diction considering only vehicular environments. For each category, 
we surveyed the ML technique, the training features, architecture, 
and optimization objectives, and extracted results and observations 
concerning time complexity, performance and suitability of learn-
ing techniques according to the designated problem.

Based on the surveyed publications, there is no “one size fits 
all” solution. Depending on the problem, different tasks require 
different formulations, including AI/ML algorithm selection, opti-
mization objectives, architecture, and training features. Each family 
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of AI/ML algorithms comes with their own advantages and disad-
vantages. The problem formulation must also consider the require-
ments of the underlying use case, which is largely affected by the 
training and response times of the selected AI/ML model. In ad-
dition, it is vital to explore approaches that reduce these times, 
while preserving the robustness of the AI/ML algorithm. AI/ML in 
V2X has already shown potential in optimizing network opera-
tions, but there are still open issues that need to be addressed due 
to the intricacies of both AI/ML and the highly dynamic vehicu-
lar networks. Based on the surveyed papers, vehicular networks, 
empowered by AI/ML and V2X communications as cooperative 
technologies, can be transformed into autonomous networks with 
self-configuration/optimization/healing capabilities.
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