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a b s t r a c t

The research aims to reduce the network resource pressure on cloud centers (CC) and edge nodes,
to improve the service quality and to optimize the network performance. In addition, it studies and
designs a kind of edge–cloud collaboration framework based on the Internet of Things (IoT). First,
raspberry pi (RP) card working machines are utilized as the working nodes, and a kind of edge–
cloud collaboration framework is designed for edge computing. The framework consists mainly of
three layers, including edge RP (ERP), monitoring & scheduling RP (MSRP), and CC. Among the three
layers, collaborative communication can be realized between RPs and between RPs and CCs. Second, a
kind of edge–cloud matching algorithm is proposed in the time delay constraint scenario. The research
results obtained by actual task assignments demonstrate that the task time delay in face recognition
on edge–cloud collaboration mode is the least among the three working modes, including edge only,
CC only, and edge–CC collaboration modes, reaching only 12 s. Compared with that of CC running
alone, the identification results of the framework rates on edge–cloud collaboration and CC modes are
both more fluent than those on edge mode only, and real-time object detection can be realized. The
total energy consumption of the unloading execution by system users continuously decreases with
the increase in the number of users. It is assumed that the number of pieces of equipment in systems
is 150, and the energy-saving rate of systems is affected by the frequency of task generation. The
frequency of task generation increases with the corresponding reduction in the energy-saving rate of
systems. Based on object detection as an example, the system energy consumption is decreased from
18 W to 16 W after the assignment of algorithms. The included framework improves the resource
utility rate and reduces system energy consumption. In addition, it provides theoretical and practical
references for the implementation of the edge–cloud collaboration framework.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the context of the rapid development of the Internet of
hings (IoT), the basic network framework is faced with huge
hallenges because of the surge in industrial data [1]. The mass
roduction and use of IoT has brought many security issues.
lthough several organizations have published guidelines for IoT
se security, few IoT providers are able to properly follow these
uidelines due to lack of accountability [2]. Traditional centralized
loud computing centers cannot deal with massive digital busi-
ess. In this context, edge computing demonstrates its significant
dvantages. For example, it can perform the initial analysis of the
nput data on edge nodes and upload a few data that it cannot
rocess to the cloud center (CC) for processing, which effectively
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nc-nd/4.0/).
reduces the storage computing and data transmission costs of
edge nodes. In addition, the network resource pressures on edge
computing nodes and CC are also reduced correspondingly [3].
CC possesses strong storage and computing capacities. The real-
time performance of edge servers is significant, and they respond
quickly and are flexible. The combination of edge servers with CC
to support the 5th generation (5G) basic network can promote the
rapid development of domestic manufacturing and accelerate its
digital transformation [4,5].

The edge–cloud collaboration framework is a hot topic of the
current research into the IoT. The advantages of the edge–cloud
collaboration framework are more obvious, especially when the
actual node tasks are considered [6]. After the reinforcement of
the processing capacity of edge nodes, they can deal with the
uploading of deep learning and other heavy tasks. In addition, ac-
tual application scenarios constrain voltage regulation frequency
and chip technology to achieve flexible assignment in industry. At
the moment, edge nodes unload intensive computing tasks with
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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he constraints of their own resources [7,8]. Related literature
nalyses IoT data by the assignment of different user roles and
urther proposes a kind of IoT data analysis framework structure,
hich can make the maximum use of cloud resources and then
enerate corresponding computing models. On the edge sides,
he model structure is adopted in the real-time operation on
ontrollers [9–11].
However, heterogeneous platforms are used as the edge nodes

n most of the current studies. The performances of these edge
odes are different, and programming in the deployment of appli-
ation programs is very difficult. Raspberry pi (RP) can be applied
n different IoT environments and network frameworks. It can
ot only enhance the flexibility of the operation of systems, but
ts hardware chip technology is more exquisite. The included
oT-edge–cloud new collaboration system offers a kind of col-
aboration working framework. Based on the advantages of IoT,
loud computing and edge computing can be applied in the actual
anufacturing process and have good application prospects.
The main innovations of this research are as follows. 1. In the

ultitask scenario, this research proposes an RP edge–cloud col-
aboration architecture to simplify the implementation of edge–
loud collaboration. The system consists of three parts: ERP, task
SRP, and CC. To avoid heterogeneity among nodes, RP is used
s the working node. Through mathematical modeling, the sys-
em working time of the proposed framework is minimized. In
ddition, the architecture is implemented with an edge–cloud
ollaborative test platform, which reduces hardware resource
onsumption and implementation complexity. Two representa-
ive tasks are deployed in the system: face recognition and object
etection. Face recognition can be performed on one system
ue to the small amount of computation, while object detec-
ion requires edge–cloud collaboration due to model loading and
omputation. Experiments demonstrate the feasibility of this ar-
hitecture. 2. An energy-minimizing task offloading mechanism
or edge–cloud collaboration is proposed.

. Related works

.1. Current research into edge–cloud collaboration framework

In terms of edge–cloud collaboration frameworks and plat-
orms, Yang et al. (2020) proposed a kind of open evolutionary
ystem structure with edge–cloud collaboration intelligent cloud
anufacturing systems. The slicing gateway connecting and man-
ging workshop appliances at edge ends is introduced to support
pplication programs sensitive to delay and to realize real-time
esponse [12]. Alves et al. (2020) expand cloud computing by
oving computing closer to end users or data sources. In con-
ideration of edge computing, three layers of the framework
re designed (cloud equipment, edge equipment, and terminal
quipment layers) to meet the needs of low delay, geographical
ocation, and energy efficiency of new IoT applications [13]. In
ddition, there is some research work related to platform tests
n the research into edge computing or cloud computing. Cheng
t al. (2022) constructed an energy-efficient model of digital
ub network and a model data center network traffic predic-
ion algorithm based on the principle of high-precision traffic
rediction. They also proposed an energy-efficient multilayer vir-
ual traffic scheduling algorithm, fused the two algorithms, and
onducted an empirical study. Their study provides an improved
irection for the development of IoT technology and the con-
truction of smart cities [14]. In industrial settings, edge task
odes are needed to unload decisions according to the demands
or tasks. In other words, tasks should be executed locally, by
dge–cloud collaboration, or at cloud ends. The key reference
ndex of decision downloading is time delay, which is related
2

to the efficiency of production lines and affects the subsequent
judgment results. Wang et al. (2022) designed a lightweight and
fine-grained retrieval and data sharing scheme based on wireless
body domain networks. The cipher text policy attribute encryp-
tion scheme was improved mainly by adding a partially hidden
encryption algorithm, and the improved scheme was defined as
attribute partially hidden access control. Data users can access
data only when their attributes match the access policy set by the
data owner. The encrypted access control policy proposed avoids
excessive expenditure on computational and storage resources
by the end users while enabling them to have flexible access
control [15].

2.2. Current research into digital twins

Digital twins were proposed by a professor from an American
university and attracted widespread attention from researchers.
Zhang et al. (2020) pointed out that smart manufacturing tech-
nology is a next-generation manufacturing model with powerful
learning and cognitive capabilities. Taking autonomous manufac-
turing cells as an implementation scenario, the author proposed
a data- and knowledge-driven digital twins manufacturing cell
framework that supported autonomous manufacturing through
intelligent perception, simulation, understanding, prediction, op-
timization, and control strategies. Through the constructed digital
robot, the realization method of the digital twin manufacturing
cell framework was studied [16]. Mylonas et al. (2021) pointed
out that intelligent manufacturing or Industry 4.0 is a trend that
emerged ten years ago, aiming to utilize a technology-driven ap-
proach that revolutionizes traditional manufacturing [17]. Mod-
ern digital technologies such as the Industrial Internet of Things,
big data analytics, augmented/virtual reality and artificial intelli-
gence are key enablers of new approaches to smart manufactur-
ing. A digital twins is an emerging concept that creates a digital
replica of any physical object. To this end, the author proposes a
digital twin-based remote semiphysical debugging method for an
open-process intelligent manufacturing system and verifies the
proposed method through a case of digital twins-based remote
semiphysical debugging of a smartphone assembly line. In the
digital twins of products, Moghadam et al. (2021) propose a
driveline multidimensional torsional model, which is utilized to
monitor the remaining service life of driveline components. By
the selective collection of sensors and data in virtual models,
the corresponding data collection of physical model entities is
established and then optimized and adjusted continuously. Fi-
nally, virtual data were relatively consistent with actual data to
provide conditions for subsequent predictive maintenance [18].
Chen et al. (2022) studied the role of digital twins technology
in industrial manufacturing energy efficiency optimization, and
the experimental results proved that the optimized algorithm
improved industrial manufacturing efficiency and reduced energy
consumption [19].

In terms of edge computing and edge–cloud collaboration
framework platform issues, current methods are based mainly on
simulation software demonstration without considering commu-
nication and computing among the actual equipment. In addition,
no connected entity equipment platform demonstrates the results
of edge computing and the deployment and unloading processes
of edge computing tasks, which results in the gap in the actual
demonstration development platforms of the current edge com-
puting, the difficulty in development, low development efficiency,
and the difficulty in visualization. In the research, RP, which is
easy to deploy and to be developed second, is adopted to be fused
into multitask scenarios. In addition, task scheduling methods
and programs are utilized to realize the measurement monitoring
of tasks and edge–cloud collaboration processing, which enhance
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Fig. 1. The link between edge computing and the new generation of information technology.
he utility rate of computing resources. In addition, the advan-
ages of the IoT are combined to enable edge computing and cloud
omputing technologies to take IoT equipment as the carriers, and
he technologies can be applied in actual industrial production
ines, which has reference value in the implementation of the fea-
ures of collaboration edge–cloud processing, significant practical
eaning, and application prospects.

. System framework methods of new edge–cloud collabora-
ion

.1. Framework design of RP-based new edge–cloud collaboration

Edge computing refers to the provision of service, data, and ap-
lication programs on network edges based on new basic frame-
ork technology. Compared with those of traditional central-

zed processing, the advantages of edge computing include the
roximity of data sources to computing resources and resource
llocation according to different task slices. The new generation
f information technology is delivered to users from CC. Fig. 1
emonstrates the exercise between edge computing and the new
eneration of information technology as follows.
(1) System Models
Because the current edge computing is not implemented com-

letely in industrial IoT, there are still many disadvantages in the
eployment of the actual task framework. Therefore, a kind of
dge collaboration framework is proposed based on the RP IoT
latform in the research to meet the allocation needs of com-
uting resources in different task scenarios, and the development
xperiment platforms are designed to evaluate the performance
f the framework, which is shown in Fig. 2 as follows.
According to Fig. 2, the RP edge–cloud collaboration frame-

ork diagram mainly includes CC, multiple scheduling monitor-
ng nodes, and multiple bottom-level edge computing nodes. One
ask scheduling node can connect only one bottom-level edge
quipment. With the least delay emerging in the process of task
ompletion by systems, the network structure can be divided
nto the following 3 layers. The first layer is the bottom level
alled edge raspberry pi (ERP), whose main task is the response
3

to and implementation of edge tasks, such as smart home, object
detection, and face recognition. The middle layer is monitoring
and scheduling raspberry pi (MSRP), whose main task is the
monitoring of RP on edge nodes at the bottom level. When edge
nodes receive the tasks out of their processing scope, the middle
layer requires edge nodes to transmit the tasks they cannot
process to CC by the allocation scheduling task strategy. CC is
at the top level. When CC receives the tasks edge nodes cannot
process, it processes these tasks [20–22]. The design objectives
of the system mainly include edge–cloud collaboration flexibility,
time delay minimum, and priority in the processing of edge tasks.
The specific processes are as follows. In multitask scenarios, edge
node RP receives tasks at first and then executes corresponding
tasks. In the execution of tasks, they receive the indexes needed
for task execution. If edge node RP receives heavy edge tasks, the
overload of edge node RP occurs. At the moment, the scheduling
monitoring RP becomes aware of this and requires edge node RP
to stop executing this task. After that, the scheduling monitoring
RP delivers the task to the CC. Fig. 3 demonstrates its system
modeling as follows.

To minimize the time delay in the task completion process,
the communication network model shown in Fig. 3 is adopted
in the system modeling in the research. The model consists of
three layers, including M scheduling monitoring RP and N edge
nodes RPs. In addition, three layers of structures, including the
clod center, scheduling monitoring RP, and edge node RP, are all
connected by wireless links.

(2) Local Execution Modes
Bottom-level edge node RP is at the bottom level of the plat-

form. The layer structure is very close to task ends. Therefore, its
main function is the processing of the lightweight tasks received
by edge nodes. For example, the recognition and collection of
facial information by cameras and face recognition with a local
template according to the collected facial information. Compared
with CC, the advantages of bottom-level edge node RP lie in
being closer to users and the direct processing of the received
lightweight data on network edges without the transmission of
these data to CC for processing. In addition, this type of frame-
work can shorten the response time of systems, guarantee data
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n

ecurity and reduce network broad bands. The bottom-level edge
ode RP in the platform is responsible mainly for the processing
f lightweight tasks, including smart home and object detection.
n the task execution process, edge node RP obtains the comput-
ng delay and task demand. The time demanded by the execution
f the ith task is shown in Eq. (1) as follows.

ERP
i =

∑
veV

Iv,i ·
cv
pi

(1)

In Eq. (1), Iv,i refers to the ith task performed by the bottom
edge node v, whose value is between 0 and 1; pi represents the
processing speed of the edge node; and cv represents the trans-
mission speed of the bottom edge node v. The time required for
offloading local tasks on the edge side is shown in the following
equation.

T
ERP
i =

∑
veV

(1 − Iv,i) ·
cv
pi

(2)

(3) Monitoring Scheduling Modes
The main functions of scheduling monitoring nodes include

the monitoring of the computing status of bottom-level edge
computing nodes, such as nodal bearing capacity and load ca-
pacity, and the arrangement and execution of tasks according
to task priority. The jth task scheduling monitoring node can
4

be expressed by MSRPf, and its value ranges between 1 and M,
which is adopted to monitor the status of bottom-level edge
computing nodes, including network flow usage, memory, and
CPU utility [23]. It has great application value in real-time moni-
toring [24]. When bottom-level edge computing nodes receive the
tasks out of their storage capacity, scheduling monitoring nodes
play their roles in requiring edge computing nodes to upload
some or all the tasks they receive to CC and then informing the
could center about the processing of these tasks [25].

The time spent uploading the tasks that edge computing nodes
cannot process is expressed by Eq. (3) as follows.

T trans
i,j =

∑
(C,u,v)∈E

(Iu,j − Iv,i) ·
(duv + dvC )

ri
(3)

In Eq. (3), Iu,j indicates whether the bottom-level edge com-
uting node i communicates with the task scheduling monitoring
ode j, whose values range between 0 and 1. duv refers to the data

amount between bottom-level edge computing nodes and task
scheduling monitoring nodes. dvC represents the amount of data
the bottom-level edge computing node i uploads to CC. ri denotes
the bandwidth received by the bottom-level edge computing
node i.
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The scheduling time spent on difficult bottom-level tasks is
xpressed by Eq. (4) as follows.

sched
i,j =

M∑
j=1,v∈V

(1 − Iv,j) ·
Cs

pj
(4)

In Eq. (4), Cs refers to the computing amount in the execution
of scheduling commands, and pj represents the computing rate.

(4) Cloud End Execution Mode
CC mainly processes the tasks that bottom-level computing

nodes cannot process and then upload. Different from bottom-
level computing nodes, it possesses pretentious virtualization,
mainly including network application software and programs
and development control platforms. Users can invoke resources
5

according to their own needs. In addition, the computing capacity
of CC is very strong. If the computing rate of the original server
needs to be enhanced, the cloud computing function can be
added [26–28]. After the tasks edge computing nodes cannot
process are uploaded to cloud ends and processed, the results are
displayed at cloud ends. The time spent on the task execution by
CC is expressed by Eq. (5) as follows.

T cloud
i,j =

∑
v∈V

(1 − Iv,i) ·
cv
p0

(5)

In Eq. (5), p0 refers to the processing rate of CC.
(5) Issue Modeling
To reduce the time delay of the system framework, sys-

tems are optimized and task time delay is minimized, which are
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emonstrated in Eq. (6) as follows.

min
MN ,ri

N∑
i=1

M∑
j=1

(T ERP
i + T sched

i,j + T trans
i,j + T cloud

i )

.t.C1 :

N∑
i=1

ri ≤ R

2 : Iv,i ≤ Iu,j,∀e(C, u, v) ∈ E,∀i ∈ [1,N] , j ∈ [1,M]

3 : T
ERP
i − (T trans

i + T sched
i + T cloud

i ) > δ,∀i ∈ [1,N] , j ∈ [1,M]

(6)

In Eq. (6), IMN refers to the index signal matrix of M and N
in rows and columns, and the linking number is set by users.
C1 represents the edge bandwidth limitation. C2 denotes the

prevention of the ping-pong effects caused by signal switching.

6

C3 means the avoidance of resource competition and instruction
conflict between MSRP and ERP. To ensure system reliability, the
collection consisting of responsive bottom-level edge computing
nodes is expressed by {Alive = fn1, fn2..., fnN ,}.

3.2. Research into the mechanism of energy minimization in task
unloading by edge–cloud collaboration

The process of edge–cloud collaboration is displayed in Fig. 4
as follows.

After detecting the task unloading by edge equipment, CC
processes the loading assignment of the task and requires edge
equipment to upload the task to it. There are a total of N edge
equipment and only one CC in the system. Based on the obtained
information about channel status, CC can monitor the status of

each edge node and process unloading decisions according to



H. Feng, L. Qiao and Z. Lv Applied Soft Computing 136 (2023) 110082

c
o
E
t
G
e
p
C
c

E

m
s
c
u
a

g

t

t
l
p
l
p

f

a

t
I
i
d
t
o
d
b

p
w
t

E

t
d
i

T

b

E

E

entral processing unit (CPU) frequency and utility. The collection
f equipment delivering edge tasks is expressed by ED = {ED1,
D2..., EDN}. CC, which is the task receiver, is denoted by Dc, and
he ith task of CC is expressed by Dci. In this section, the diagram
= (ED, E) is adopted to describe the connective tasks between
dge computing edges and CC. ED refers to the collection of peak
oints. It is assumed that there is no communication link between
C and EDj, and then eci,j = 0; otherwise, eci,j = 1. In addition, the
ollection consisting of edges is expressed by Eq. (7) as follows.

=
{
eci,j,∀ci, j ∈ ED

}
(7)

(1) System Modeling
Task Modeling: A binary model is adopted as the unloading

ode between the CC and edge computing nodes, and orthogonal
pectral resources are utilized. At the moment, each peak point
an choose to execute tasks on edges or execute them after
nloading them to CC. The channel gain between the peak point
nd CC center is expressed by Eq. (8) as follows.

j,ci =
⏐⏐hj,ci

⏐⏐2 d−α (8)

In Eq. (8), hj,ci refers to the channel fading coefficient, d means
the middle distance, and a denotes the path loss exponent.

At the moment, the rate of data transmission from the peak
point to CC is expressed by Eq. (9) as follows.

rj,ci = log2(1 +
P t
j,ci · gj,ci

N
) (9)

In Eq. (9), P t
j,ci refers to the power value of the transmission by

he peak point, and N represents white noise:
Because edge node j is waiting for tasks, the maximum value of

he CPU frequency at peak point j is Fj,max at the moment, and the
oad rate of j is δj. In general, the task cannot be unloaded when
eak point j is executing tasks. At the moment, the value of the
oad rate of j ranges between 0 and 1. The remaining available
rocessing capacity of EDj is expressed by Eq. (10) as follows.

j,max = (1 − δj) · Fj,max (10)

The inconvenience rate caused by resource utility is expressed
s βj =

1
1−δj

.
Edge–cloud unloading energy consumption modeling: The

asks on peak point j are constructed as a tetrad
⟨
Ij,Oj,Wj, τj

⟩
.

n this tetrad, the four letters from left to right refer to the
nput data amount, the output data amount, the CPU frequency
emanded in task completion, whose value is closely related to
he computing density and task amount, and the maximum value
f the constraint of the time delay task, respectively. The time
emanded by the execution of tasks by edge nodes is expressed
y T l

j =
Wj
fj
, and the energy consumption in the process is

expressed by E l
j = Pc

j · T l
j . P

c
j denotes the CPU power of peak

int j. In addition, the energy consumption of edge side EDj,
hich is based on dynamic voltage and frequency scaling (DVFS)
echnology, is expressed by Eq. (11) as follows.
l
j = kWjf 2j,max (11)

In Eq. (11), k represents a constant, whose value is related
o the performance of the hardware chip structure. The time
emanded by the task unloading to CC by edge computing nodes
s expressed by Eq. (12) as follows.

l
j,ci =

Ij
rj,ci

(12)

The energy consumption during task unloading is expressed
y Eq. (13) as follows.
t

= (P t
+ P r ) · T t (13)
j,ci j,ci j,ci j,ci

7

In Eq. (13), P r
j,ci refers to the power when the CC receives tasks,

and P t
j,ci represents the power when tasks are delivered.

After the task from the edge computing nodes to the CC is
unloaded, the CC processes the task. The time and energy con-
sumption in the process are expressed by Eqs. (14) and (15) as
follows.

T e
j,ci =

Wj
fci

(14)

e
j,ci = Pc

ci · T
e
j,ci (15)

In Eqs. (14) and (15), Pc
ci represents the power consumption

during the processing of task i by CC. Based on the above equa-
tions, the total time delay and energy consumption in the process
of task unloading by CC can be obtained, as Eqs. (16) and (17)
demonstrate below.

T 0
j,ci = T l

j,ci + T e
j,ci (16)

E0
j,ci = E l

j,ci + Ee
j,ci (17)

(2) Issue Modeling
To enable system equipment to meet time delay constraints

and to reduce energy consumption at the same time, a time delay
constraint penalty mechanism is established first to meet the
time delay constraints of tasks, which is expressed by Eq. (18)
as follows.

UT
j =

{
ϕj, Tj > τj

0, Tj ≤ τj
(18)

In Eq. (18), Tj refers to the time spent on the execution of
task j on EDj, τj represents the tolerance time, and ϕj denotes
the constant. When the time demanded by task execution does
not meet the time delay requirement, the task limits the delay
penalty parameters. As a result, a utility function is designed for
task participants, as Eq. (19) shows below.

Uj =

{
U l
j = UT

j + E l
j , Edge execution

U0
j,ci = UT

j + E0
j,ci,Uninstall to cloud for execution

(19)

In Eq. (19), U l
j is the utility value at the time of the task

execution by edge nodes, and U0
j,ci represents the utility value at

the time of the execution of remote task unloading to cloud ends.
With the guarantee of the time delay constraints of tasks, the
energy consumption during task execution by all edge equipment
in systems is minimized, which is described by Eq. (20) below.

min
φ

N∑
j=1

(φj,jU l
j + (1 − φj,j)

∑
i

φj,ciU0
j,ci)

s.t.C1 :φj,ci = 0,∀ei,j /∈ E

C2 :

∑
i

φj,ci = ϕc,∀j ∈ D

C3 :

N∑
j=1

φj,ci ≤ 1,∀ci ∈ D

C4 : P l
j,ci ≤ Pmax

j ,∀j ∈ D

(20)

In Eq. (20), φ refers to the binary variables in task deployment,
φj,ci = 0 indicates that task j of EDj is not unloaded to cloud ends
to be processed, otherwise φj,ci = 1, ϕ denotes the binary variables
that describe task status, ϕ = 0 demonstrates that the equipment
is available for use, otherwise ϕ = 1, and φj,j = 1 reveals that the
task is being processed on edges.

It is assumed that all equipment is distributed randomly
within a square area with a side length of 100 m, and the
simulation experimental parameters are set as follows. The trans-

mission power from ED to CC is 200 mV, the path loss index is
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, the Gaussian background white noise is 10−8, the maximum
earing capacity of the CPU is [2,10] GHz, the initial CPU load is
0,0.7], and the input task data amount is [500,2000] kB. After
he independent Monteca simulation 5000 times, the simulation
esults are generated. Because of the rich computing resources
n CC, the energy consumption during the process from task
nloading to execution is effectively reduced after the unloading
f the tasks of the edge node EDj to CC.

.3. Optimal design of the edge–cloud unloading strategy

(1) Edge Power Control
The energy efficiency (EE) function is only correlated with

elivery power on the exclusive use mode. The EE function is
efined as EE =

r
(P+Pcir )

. Pcir refers to path loss. After the derivative
f the delivery power P is taken by the EE function, Eqs. (21) and
22) are generated as follows.
∂EE
∂P

=
∂Ψ (P)

∂(P + Pcir )2
(21)

(P) = (P + Pcir )
g

(1 +
Pg
N ) ln 2

− log2(1 +
Pg
N

) (22)

In Eqs. (21) and (22), g stands for channel gain. The second-
order derivative of Ψ (P) is taken to generate Eq. (23) below.

∂ψ

∂P
= −(P + Pcir )

g2

(1 +
Pg
N )2 ln 2

< 0 (23)

Based on Eq. (23), the function value decreases monotonically
in the domain of definition, and the energy efficiency demon-
strates the trend of increase followed by decline with the growth
of the delivery power due to Ψ (0) =

gPcir
ln 2 ,Ψ (∞) < 0. Hence,

an optimal task transmitting power Poptimal
j,ci needs to be searched

between the minimum transmitting power P t,min
j,ci and the maxi-

mum transmitting power Pmax
j . The minimum transmitting power

generated by the unloading mode with the constraints of time
delay penalty factors is expressed by Eq. (24) below.

P t,min
j,ci =

⎧⎪⎨⎪⎩2

Ij

τj−
Wj
fj − 1

⎫⎪⎬⎪⎭N

g
(24)

To obtain the optimal transmitting power, a kind of binary
search-based optimal power search algorithm is proposed in the
research. Fig. 5 displays the specific steps of the algorithm as
follows.

(2) Edge–cloud Unloading Strategy
To tackle the matching issue, a fast matching algorithm is

proposed according to the ED optimal transmitting power, which
is based on a greedy algorithm. According to the preferences for
the contents of each edge EDj, lists are created for them. After
that, the preference list of edge j is labeled list(j), and the content
of the list is the weight values of all edges linking with ED. Fig. 6
demonstrates the specific algorithm process.

Compared with the Kuhn–Munkres (KM) algorithm, the im-
proved greedy fast matching algorithm is more practical for dis-
tributed systems and can effectively reduce the time complexity.
Fig. 7 displays its system structure.

4. Platform performance analysis

4.1. Analysis of platform performance of new edge–cloud collabora-
tion

To evaluate the performance of the new edge–cloud collabora-

tion platform, six typical computing tasks are deployed, including

8

Fig. 5. Specific steps of the edge optimal power search algorithm.

ealth management, smart home, object detection, face recog-
ition, smart factory, and licence plate recognition, which are
ompared on cloud only, edge only, and edge–cloud collaboration
odes.
The loading time of the edge node RP when detecting the first

ace during operation is 2.14 s, and the display of the calculation
esults is relatively rapid. However, when the target tasks of
nother edge node RI are detected, it needs to load the single
hot multibox detector (SSD) target detection training model. In
his case, it will take longer to detect the first face, as shown in
ig. 8 and Table 1, which show the comparison results of platform
erformance in different modes.
As shown in Fig. 8 and Table 1, compared with the response

ime under edge-only operation or cloud-only operation mode,
he response time of edge–cloud collaboration will be improved
o a certain extent. Compared with the frame rate of edge-only
peration, there is no significant difference between the frame
ate of cloud-only operation and edge–cloud collaborative op-
ration, but both show obvious advantages compared with the
rame rate of edge-only operation It is also more fluent in the
ecognition of the results and can be used for real-time detection
f the target.
The values 1 and 2 are adopted to denote the rate of the stream

ransmission method. A value of 1 indicates that the rate of the
ideo streaming transmission method is relatively high, while a
alue of 2 means that the rate of the video streaming transmission
ethod is relatively low. Finally, the comparison results of differ-
nt types of video streaming transmission methods are obtained,
nd the energy consumption in the execution of different tasks by
he system is also calculated. Fig. 9 demonstrates the comparison
esults and the energy consumption.

According to Fig. 9, the comprehensive comparison and anal-
sis reveal that the video streaming transmission method of http
low+ open CV guarantees the corresponding time delay, and ERP
PU utility is significantly superior to that of other streaming
ransmission methods. Therefore, the method is adopted in the
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Table 1
Comparison of platform performance in different modes.
Comparison factors Task time delay (s) Framework rate (s)

Compare items Edge only Edge cloud collaboration Cloud center only Edge only Edge cloud collaboration Cloud center only

Face recognition 2.5 7.5 6.5 9.1 15.2 13.5
Object detection 20.1 13.6 16.1 1.2 14.1 13.2
Health management 9.3 3.9 9.2 2.9 6.8 7.1
Smart home 2.3 12.4 10.8 0.2 12.1 7.8
Smart factory 27.6 22.4 25.3 6.7 13.1 11.8
Licence plate recognition 20.2 12.7 15.4 1.1 14.2 13.7
Fig. 6. Improved greedy fast matching algorithm.

video transmission process in the research. Because of its flexible
deployment of RP and stable running of each node, the long-term
adoption of this system in the deployment of IoT environments
can effectively reduce the energy consumption of systems. In
addition, it makes the establishment of small and medium IoT
edge computing clusters easier.
9

4.2. Analysis of simulation results of optimal edge–cloud unloading
strategy

Fig. 10 shows the comparison of the task execution perfor-
mances of different unloading strategies.

In Fig. 10, the task caching and offloading (TCO) algorithm
refers to energy efficiency-based task caching and unloading al-
gorithms [29], the caching and local execution algorithm (CLA)
denotes local execution and caching algorithms [30], and caching
and edge cloud execution algorithms (CEA) represent edge–cloud
execution and caching algorithms [31]. According to Fig. 10, the
total energy consumption of system users in unloading execution
is reduced with the increase in the number of users, which is
caused by the decrease of available equipment with the constant
increase in the number of equipment in cloud systems. There-
fore, users have more choices in task execution. Compared with
other algorithms, optimal matching algorithms and fast matching
algorithms can ensure the highly efficient completion of tasks
with time delay constraints. Fig. 11 displays the results of the
comparison of algorithm performances.

In Fig. 11, the task cache and offload algorithm (TPO) refers
to task effort caching and unloading algorithms, the task random
cache and offload algorithm (TRO) means task random caching
and unloading algorithms, and the task limited cache and offload
algorithm (TFO) denotes task limited caching and unloading algo-
rithms. According to Fig. 11, the energy consumption of the TCO
algorithm is the lowest. The difference in the energy consumption
between the TCO and CEA algorithms is not significant when
the task data amount is small. In contrast, the difference in the
energy consumption between the TCO and CLA algorithms is not
obvious when the task data amount is large. In addition, energy
consumption is also affected by caching capacities. The stronger
caching capacity of the edge cloud means more caching tasks with
less energy consumption.

To simplify the realization of edge–cloud collaboration in mul-
titask scenarios, the optimal edge–cloud unloading strategy is
tested by three representative tasks, including face identification,
object detection, and multimedia. The test results are demon-
strated in Fig. 12.

According to Fig. 12, the system energy-saving rate is affected
by the task generation frequency. A higher task generation fre-
quency indicates a lower system energy-saving rate, which is
caused by more random tasks generated by the decrease in the
number of available resources and the difficulty in the processing
of tasks loaded by users in sequence.

4.3. System server test results

The average response time measurement of the system server
can reflect whether the optimization and improvement algorithm
can improve the running speed of the server. In the experimental
process of this paper, different numbers of connection threads
are established in a step-by-step manner, requests are sent to the
server through these connection threads, and the throughput of
the server is calculated. The test results of the system server are

shown in Fig. 13:
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Fig. 7. System framework diagram.
Fig. 8. Comparison of platform performance on different modes. (a shows the comparison of task time delay, and b demonstrates the comparison of framework
ate).
As shown in Fig. 13a, the response time of TCO (min) algorithm
s shorter than that of the other five algorithms, and the gap
etween the response time of TCO (min) algorithm and that of
ther five algorithms increases as the number of connections
ncreases. As shown in Fig. 13b, with the increase of the num-
er of connection threads, the overall throughput of TCO (min)
lgorithm is more and more different from that of other five al-
orithms. As the number of connections increases, the throughput
10
of the TCO (min) algorithm is higher than that of the other five
algorithms. Compared with the study of Nasirahmadi and Hensel
(2022) [32], this work not only designs a more comprehensive
algorithm model and introduces more advanced technical means,
but also conducts a more comprehensive comparative study on
the model, thus highlighting the advantages. By comparing with
the current study results, the study in this work has achieved
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Fig. 9. Analysis of system energy consumption. (a shows different types of video streaming transmission methods, and b displays the comparison of system energy
consumption).
Fig. 10. Comparison of task execution performances of different unloading strategies. (a shows the change curves of energy-saving rates, b demonstrates the change
curves of the number of expired tasks, and c displays the comparison of the running time of algorithms).
a greater degree of breakthrough, and provides more advanced
technical methods for the future development of science and
technology. When contrasting the proposed algorithm with the
study of NasirahmadiHensel (2022) [32], Zhang et al. (2022) [33],
11
Ahmad et al. (2022) [34], the experimental results are shown in
Table 2:

It can be concluded from Table 2 that the algorithm proposed
in this work has the best performance in terms of efficiency,
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Fig. 11. Comparison of algorithm performances. (a demonstrates the changes in task data amount, b shows the changes in task request computing capacities, c
presents the changes in the size of edge cloud caching, d shows the changes in task data amount, and e indicates the changes in task request computing capacities).
Table 2
Algorithm comparison.
Index Accuracy (%) Efficiency (s) Coverage (%)

Algorithm proposed in this work 96 34 92
Algorithm proposed by Nasirahmadi and Hensel (2022) [32] 91 37 90
Algorithm proposed by Zhang et al. (2022) [33] 90 41 89
Algorithm proposed by Ahmad et al. (2022) [34] 89 45 89
accuracy, and coverage. This shows that the proposed algorithm
not only has the excellent performance of a single algorithm, but
also makes up for the deficiencies of a single algorithm, thus
improving the overall effect of the system.
12
5. Conclusion

With the background of IoT, it is difficult to meet the re-
quirements of the high-quality low time delay by delay-sensitive
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Fig. 12. Comparison of the energy-saving effects of platforms. (a shows the change curves of energy-saving rates, and b the energy-saving effects of platforms after
algorithm deployment).
Fig. 13. System server test results. a. Response time; b. Throughput.
pplications because of the long physical distance between CC
nd sensors. As a result, the service quality can hardly be guaran-
eed. In this research, cloud computing is combined with edge
omputing to study and design a kind of edge–cloud collabo-
ation framework. First, RP card machines are utilized as the
orking nodes in multitask scenarios, and a kind of edge–cloud
ollaboration framework is designed for edge computing. The
ramework consists mainly of ERP, MSRP, and CC layers. Among
ach of the layers, the collaborative communication between RPs
nd between RP and CC can be realized by wireless networks.
econd, a kind of edge–cloud matching algorithm is proposed
n time delay constraint scenarios to achieve the deployment of
ndustrial manufacturing lines by initial edge–cloud collaboration
rameworks. In addition, the resource utility rate is enhanced,
nd the system energy consumption is saved. Due to time lim-
ts, there are still many disadvantages in the research, and fur-
her studies are necessary. During the framework construction
n the research, remote command, only remote data streaming
ransmission, and file transmission are taken into account. In
ubsequent research, lightweight node tasks will be virtualized
ombined with KUbemet and lightweight container technologies
such as Docker).
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