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A B S T R A C T

With the rapid development of the Internet of Things (IoT), there are several challenges pertaining to security in
IoT applications. Compared with the characteristics of the traditional Internet, the IoT has many problems, such as
large assets, complex and diverse structures, and lack of computing resources. Traditional network intrusion
detection systems cannot meet the security needs of IoT applications. In view of this situation, this study applies
cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.
Usually, traditional intrusion detection algorithms require considerable time for training, and these intrusion
detection algorithms are not suitable for cloud computing due to the limited computing power and storage ca-
pacity of cloud nodes; therefore, it is necessary to study intrusion detection algorithms with low weights, short
training time, and high detection accuracy for deployment and application on cloud nodes. An appropriate
classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a
prerequisite for the system to respond to intrusion and reduce intrusion threats. This paper discusses the problems
related to IoT intrusion prevention in cloud computing environments. Based on the analysis of cloud computing
security threats, this study extensively explores IoT intrusion detection, cloud node monitoring, and intrusion
response in cloud computing environments by using cloud computing, an improved extreme learning machine,
and other methods. We use the Multi-Feature Extraction Extreme Learning Machine (MFE-ELM) algorithm for
cloud computing, which adds a multi-feature extraction process to cloud servers, and use the deployed MFE-ELM
algorithm on cloud nodes to detect and discover network intrusions to cloud nodes. In our simulation experi-
ments, a classical dataset for intrusion detection is selected as a test, and test steps such as data preprocessing,
feature engineering, model training, and result analysis are performed. The experimental results show that the
proposed algorithm can effectively detect and identify most network data packets with good model performance
and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes. Furthermore, it can
enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time, so that
further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud
cluster.
1. Introduction

With the extension and expansion of Internet technology, the Internet
of Things (IoT), as an important information technology, promotes the
intelligent development of modern society. Intelligent IoT applications are
being gradually popularized in daily life and industrial development, such
as intelligent logistics, transportation, security, medical treatment, homes,
and agriculture. The centralized processing mode of cloud computing is to
upload all pending transactions to the cloud for execution, and the cloud
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uses computing resources, storage capacity, and transmission bandwidth
to process all service requests sent by end users. The IoT refers to con-
necting any object with the network through information sensing equip-
ment and according to the agreed protocol. Objects exchange and
communicate information through information media to realize the
functions of intelligent identification, positioning, tracking, supervision,
and so on. The number of global IoT device connections has increased
annually, and according to forecasts, the growth rate will gradually sta-
bilize at 15%. Furthermore, data transmission, processing, and storage will
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add more load to cloud services. Mobile and sensor devices connected to
the edge of the Internet are constantly generating new data with diverse
data types [1], which will lead to great challenges in the computing re-
sources and transmission bandwidth of traditional network architecture.
At the same time, for IoT applications that require low network latency,
such as automatic driving, if the traditional calculation is used as the
operation model, low latency cannot be achieved, and thus the vehicle
cannot make real-time decisions to avoid risk in the case of emergency
braking. The tasks to be processed by the terminal equipment require
strong real-time performance, i.e., the tasks must complete data trans-
mission, analysis, and processing with minimum delay, which conflicts
with the processing method of the traditional computing model. In sum-
mary, in this highly information-based era, the IoT faces multiple severe
challenges: a large amount of data redundancy, cloud processing capacity
bottlenecks, network bandwidth limits, data security and privacy,
increased cloud power load, and increased task processing delays [2].
Intrusion detection technology is an active security protection technology.
According to the different methods of data analysis, IoT intrusion detec-
tion systems can be divided into anomaly intrusion detection and misuse
intrusion detection. Anomaly intrusion detection is an attack or malicious
behavior that occurs when the host data in the network or the entire
network does not conform to normal data specifications. Misuse intrusion
detection refers to modeling certain specific attack models, determining
the characteristic behavior of the attack, and matching it with the current
behavior. A successful match representsmalicious behavior [3]. The above
problems are caused by limitations in the development of the IoT data
processing mode and the increasing requirements for service quality for
processing operations. The cloud collaborative network architecture has
brought the terminal service quality to a new development stage and
promoted fast-paced technology development. The optimization of task
scheduling and application module mapping is a key problem in cloud
computing, which plays an important role in the performance and power
optimization of network architecture. Therefore, designing an efficient
scheme and algorithm for IoT intrusion detection, task scheduling, and
application module mapping is the key to improving the overall perfor-
mance of the IoT architecture, which is of great research significance.

The specific contributions of this study include the following:

(1) This study examines security threats to the IoT and discusses
research related to IoT intrusion in a cloud computing environ-
ment from the perspective of network intrusion. Filtering and
processing data through decentralized computing resources can
meet the heterogeneous, low-latency, dense access, service and
defense requirements of IoT when the volume of data services
increases dramatically.

(2) In this study, an intrusion prevention system architecture is
developed for the Internet of Things in a cloud computing envi-
ronment. The architectural hierarchy, defense process and appli-
cation scenarios of this architecture are discussed, and the
principle that the architecture can effectively resist intrusion is
described, which lays the foundation for further development of
the proposed IoT intrusion prevention algorithm and model.

(3) In this study, an intrusion detection measurement model for IoT in
a cloud computing environment is developed. The model is based
on the characteristics of intrusion behavior in the cloud
computing environment, and intrusion and response policy
models are established from the perspective of system defenders
and external intruders. The optimal intrusion response policy is
obtained by solving the model. The simulation results show that
the proposed intrusion response strategy can effectively reduce
the intrusion frequency of intruders and improve the revenue of
the cloud cluster system.

(4) In this paper, the MFE-ELM algorithm is proposed as an intrusion
detection algorithm for cloud nodes to perform intrusion detec-
tion tasks. Simulation results show that the MFE-ELM algorithm
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performs well in cloud computing environments, especially in
terms of detection accuracy and robustness.

The remainders of this paper are organized as follows. Section 2
discusses related work and is followed by a discussion of the IoT intrusion
detection measurement model in a cloud computing environment in
Section 3. The MFE-ELM algorithm is proposed in Section 4. Section 5
presents the simulation experimental results and analysis, and Section 6
concludes the paper with a summary and future research directions.

2. Related work

The Internet Engineering Task Force (IETF) divides an intrusion
detection system into four components: event generator, event analyzer,
corresponding unit, and event database. The function of the event
generator is to obtain events from the entire computing environment and
provide this event to the other parts of the system. The event analyzer
obtains data through analysis and produces analysis results. The response
unit responds to the analysis results and performs strong reactions such as
cutting off the connection, changing the file attributes, or simply give an
alarm. The event database is the general name of the location where
various intermediate and final data are stored. It can be a complex
database or a simple text file [4]. As for the classification of IoT intrusion
detection, according to the audit data source, IoT intrusion detection
systems can be divided into host data-based intrusion detection systems,
network data-based intrusion detection systems, and distributed intru-
sion detection systems. In the Host-based Intrusion Detection System
(HIDS), the function of intrusion detection is placed in the host that needs
to be protected the most, and the system audit log is used as the source of
data to detect whether an intrusion has occurred and produce the
necessary response. The advantage of a HIDS is that it has access privi-
leges to the host and can detect and respond to attacks in near real time.
However, at the same time, an HIDS also has shortcomings. Because of
the limited understanding of network topology when deployed on the
tested host, attacks on other hosts without an HIDS cannot be detected. In
addition, the detected attack types are limited, and the system cannot
provide complete protection [5]. In a Network-based Intrusion Detection
System (NIDS), network adapters deployed in key network segments of
the network are used to monitor and analyze various data packets
transmitted through the network in real time. The network information
flow is used as the source of the input data, and the protection object is
the operational status of the network. A NIDS analyzes the characteristics
of each data packet and matches it with the built-in rules of the system.
After an attack is detected, the NIDS creates an attack response by means
of an alarm or disconnection [6]. In a Distributed-based Intrusion
Detection System (DIDS), network data are obtained through boundary
sensors and concentrated in supervisor sensors for correlation and anal-
ysis. Its architecture mainly includes three layers: boundary sensors, su-
pervisor sensors and a central console. A boundary sensor is responsible
for monitoring security events of traffic in the network, receiving and
executing the intrusion detection response requirements from the upper
layer, and sending monitoring data to a supervisor sensor. A supervisor
sensor is responsible for collecting data from the boundary sensor,
simplifying the information by using a local rule filter, and then trans-
mitting it to the central console, which is responsible for managing the
cooperative work of various DIDS sensors, analyzing the detection re-
sults, and responding [7]. Cloud computing builds services and applica-
tions on the server between the user layer and the datacenter. It migrates
some functions of the user layer and datacenter, and provides limited
distributed computing, storage, and network services. As an important
support for the IoT, cloud computing can solve the problems of terminal
node request delay, excessive server storage and computing burden, and
excessive pressure on network transmission bandwidth. In cloud
computing, cloud nodes provide network services for large-scale het-
erogeneous intelligent devices. A cloud network composed of cloud
nodes is dynamic. In other words, user devices may join or leave the



Fig. 1. Security architecture of Internet of Things.
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cloud network at any time. Thus, there are dynamic network security
threats in cloud networks. To deal with the complex network environ-
ment in a flexible manner, a dynamic target training set must be used for
real-time training. An Extreme Learning Machine (ELM) can be used to
solve the minimum norm of the least squares problem. It can finally be
transformed into the Moore-Penrose generalized inverse problem of a
matrix. Therefore, the algorithm has the characteristics of requiring
fewer training parameters, fast training speed, and strong generalization
ability, and is suitable for intrusion algorithms on cloud nodes [8]. To
adapt to the complex network environment and dynamic training process
of cloud nodes and reduce the training time of cloud nodes, training
samples are selected according to the network characteristics and
training characteristics of each cloud node.

IoT intrusion analysis involves many methods, including pattern
matching, statistical analysis, and integrity analysis. Each method has its
own advantages and disadvantages, as well as its own application object
and scope. After the United States proposed the concept of intrusion
detection in 1980, it attracted much attention in the field of security. The
Stanford Research Institute led the way in designing a complete intrusion
detection system model, which laid the foundation for the development
of intrusion detection. Since then, there have been many advancements
in intrusion detection technology, such as intrusion detection technology
based on monitoring network information flow and data mining, and
machine learning algorithms have been gradually integrated into intru-
sion detection [9]. At present, the research trend in intrusion detection is
the integration of multiple technologies. These include the RNN-IDS
model [10], CNN and LSTM hybrid intrusion detection models [11,12],
intrusion detection method based on multi-scale convolutional neural
networks [13], intrusion detection systems based on KNN super-
parameter adjustment and cross verification [14], high-performance
methods for DOS attacks and larger volume cores [15], the residual
network model S-RESNET [16] suitable for low-dimensional and
small-scale datasets, and network intrusion identification technology
based on the GRU-MLP model [17]. It can be seen that machine learning
has high applicability in intrusion detection and is an important tech-
nology to improve the comprehensive performance of intrusion detection
systems. Liu et al. [18] combined machine learning with principal
component analysis to design an effective method for monitoring the IoT
intrusion. This method adopts the mode of high risk to high frequency
and low risk to low frequency. Its algorithm can be adjusted according to
a change in the monitoring frequency. Thamilarasu et al. [19] built a
neural network model to solve data leakage and identity information
leakage in the application of the IoT. Roy et al. [20] proposed a new
neural network method to effectively learn and detect abnormal
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conditions in a network, which combines a cyclic neural network with
long-term and short-term memory. The selection of the most important
feature in the mass intrusion detection process is not the same as the
selection of the most effective feature. To effectively solve this problem,
Vijayanand et al. [21] combined a genetic algorithm with mutual infor-
mation technology to design a new intrusion detection method that could
identify mixed features, and successfully solved the problems of data
duplication and feature independence. Larijani et al. [22] effectively
improved the accuracy of model output results by eliminating zero values
and meaningless information in the data, so as to make the model
converge faster in the training process. Recently, some publications have
reported research results on intrusion detection technology in the IoT
environment, such as industrial IoTmalicious behavior recognition based
on an AdS deep learning model [23], an intrusion prevention system
based on self-organizing incremental neural networks and SVM [24], IoT
intrusion detection deep learning methods based on a BLSTM [25],
DNN-DT deep learning model to address the imbalance of network data
of industrial control systems [26], intrusion detection of IoT systems
based on a CNN [27], DBN and deep self-encoders applied in intrusion
detection of industrial IoT sensor systems [28], robust attack detection
methods of industrial IoT based on integrated classifiers [29], and trusted
privacy protection security frameworks based on deep blockchain in in-
dustrial IoT systems [30–32]. Nivaashini et al. [33] combined K-means
clustering and vector machine classification into a group of methods and
used correlation technology to select features to realize effective
modeling based on hybrid machine learning. Khalvati et al. [34], who
designed a hybrid model combining k-center point clustering and a
vector machine, conducted modeling learning based on the selected
feature data, and used naive Bayes to classify the data. Pham et al. [35]
used an integration method and feature selection to increase the effec-
tiveness of intrusion detection. With respect to feature selection, the gain
rate method is used to reduce redundant data, and then the decision tree
algorithm is used to classify data types. Mohammadi et al. [36] proposed
a feature selection algorithm based on a supervised filter, which uses
multivariate mutual information feature selection as the core and uses
the least squares support vector machine as the classifier. Sun et al. [37]
proposed an integration model. For a dataset with uneven data volume
distribution, it is first transformed into multiple data groups with
balanced distribution, and the corresponding classifier is then con-
structed for the newly obtained data groups through the classification
algorithm, and the results are integrated using specific integration rules.
In this study, we used a Multi-Feature Extraction Extreme Learning Ma-
chine (MFE-ELM) algorithm for cloud computing. In this algorithm, the
process of multi-sample feature extraction is added to the cloud server,



Fig. 2. Internet of Things architecture based on cloud computing.

Fig. 3. Perception technology.
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and the deployed MFE-ELM algorithm is used on the cloud node to detect
and discover the network intrusion to the cloud node. Many threats of the
overly use of IoT networked systems are not yet known, there is a very
recent work, addressing exactly this issue [38].

3. Internet of things intrusion detection measurement model in
cloud computing environments

3.1. Intrusion prevention system architecture of internet of things based on
cloud computing

An intrusion response is the strategy and action taken against an
intrusion after a cloud node finds and detects the intrusion, so the choice
of policy is the most critical problem in intrusion responses. In cloud
computing systems, intruders launch cyber attacks on the cloud cluster
with the varying frequency with the intent of using higher privileges to
initiate access to the servers for a higher level of intrusion. The ECS, as
the cloud cluster management system, must respond to this intrusion
process. The response policy of the ECS is to set the access prohibition
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rate for cloud clusters. However, in addition to dealing with illegal users,
cloud clusters also need to provide services to as many legitimate users as
possible. To analyze the optimal strategies for intruders and systems, the
hierarchical structure of the IoT is composed of a perception layer, a
network layer, and an application layer, and each layer cooperates with
each other to complete the collection, transmission, and processing of
information, as shown in Fig. 1. The architecture of the IoT based on
cloud computing is shown in Fig. 2. From bottom to top, there are
perception, network, and application layers.

3.1.1. Perception layer
The sensing layer of the IoT is mainly composed of sensors, RFID

readers, and other sensing terminals. It is not only the information source
of the IoT, but also the basis for various expanded applications of it. It is
one of the important differences between the IoT and the traditional
Internet, as shown in Fig. 3.

Generally, the perception layer of the IoT has the following
characteristics:

(a) A large number of nodes. The IoT has a variety of sensing objects
and a large demand for monitoring data. Sensing nodes are often
deployed in environments with less human contact, such as air,
underwater or underground, and the application scenarios are
complex and dynamic. Therefore, it is generally necessary to
deploy a large number of perception layer nodes to meet the omni-
directional and three-dimensional perception requirements.

(b) Various terminal types. The perception layer deploys different
types of perception terminals on the same perception node. These
terminals have different functions, interfaces, and control modes,
resulting in various types and structures of perception layer
terminals.

(c) Low safety performance. From the perspective of hardware, due to
the poor deployment environment, the sensing layer nodes often
face natural or man-made damage. From the perspective of soft-
ware, due to performance and cost constraints, the sensing nodes
do not have a high computing and storage capacity, so they are
unable to utilize a security mechanism with high requirements for



Fig. 4. Dynamic organization and management of data.
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computing capacity, resulting in the low security performance of
the nodes.

3.1.2. Network layer
The network layer of the IoT is mainly connected with wide-area

networks such as mobile communication networks and the Internet
through various network access devices to quickly, reliably, and safely
transmit the information collected by the perception layer to the infor-
mation processing layer. It then processes, classifies, and aggregates the
information according to different application requirements. The
network layer is mainly composed of network infrastructure, network
management, and processing systems.

The network layer integrates all existing network forms to build a
more extensive “interconnection”. Each network has its own character-
istics and application scenarios, which can play the greatest role only
when combined. Therefore, in practical applications, information can be
transmitted through any network or network combination. Fig. 4 shows
the dynamic organization and management of the data.

3.1.3. Application layer
The application layer of the IoT is located at the top of the three-tier

structure and processes information through the cloud computing plat-
form. Together with the lowest sensing layer, the application layer is the
most significant feature and core of the IoT. The application layer can
calculate, process, and mine the data collected by the perception layer to
realize real-time control, accurate management, and scientific decision-
making of the physical world.

Structurally, the IoT application layer includes the following three
parts.

(a) IoT middleware. IoT middleware is an independent system soft-
ware or service program that encapsulates various common
functions and provides them to IoT applications.

(b) IoT applications. IoT applications are those directly used by users,
such as intelligent control, security, power meter reading, tele-
medicine, and intelligent agriculture.

(c) Cloud computing. Cloud computing can facilitate the storage and
analysis of massive amounts of data in the IoT. According to the
service definition of cloud computing, the cloud can be divided
into Infrastructure-as-a-Service (IaaS), platform-as-a-Service
(PaaS), service, and Software-as-a-Service (SaaS).
3.2. Security analysis of internet of things architecture

3.2.1. Perception layer security
The security of the perception layer is the primary concern in the

security of the entire IoT. Compared with traditional communication
networks, most of the sensing nodes of the IoT are deployed in an
115
unmanned environment, and their nodes show multi-source heteroge-
neity. Because the energy and intelligence held by each node are limited,
it is impossible to obtain complex security protection capabilities.

The biggest feature of the security technology of the perception layer
is that it is “lightweight”. Neither cryptographic algorithms nor protocols
need to be complex. As a result, the security level of the perception layer
is weaker than that of the network and application layers. Therefore,
during application, it is necessary to deploy security aggregation devices
between the network and perception layers. After the security aggrega-
tion devices enhance the security of information, they then exchange
with the network layer to compensate for the lack of security capability of
the perception layer.

The main security threats to the perceptual layer come from physical
capture, denial of service, Trojans, viruses and data disclosure.

(a) Physical capture: The presence of sensing devices outdoors and
decentralized installation makes them vulnerable to physical at-
tacks and easy to tamper with information, resulting in a loss of
security. With the embedding of RFID (non-contact automatic
identification technology) tags and QR codes, user access to the
IoT is scanned, tracked and located without control. Malicious
users read RFID tag data through legitimate readers, which leads
to serious security threats in the process of acquiring and trans-
mitting RFID tag data, resulting in the disclosure of the user's
private information. In addition, the rewritability of RFID tags
may not guarantee the security, effectiveness, and integrity of the
data in the tag.

(b) Denial of service: IoT nodes refuse to provide the service of for-
warding data packets in order to save their own energy or to
prevent being controlled by trojans, resulting in a sharp decline in
network performance. The perception layer is bound to be
attacked by the external network (e.g., the Internet) when it is
accessed. At present, in addition to illegal access, the main threat
is denial-of-service attacks. Because of limited resources and low
computing and communication capabilities, the ability to with-
stand denial of service of the sensing node is relatively weak,
which may cause the paralysis of the sensing network.

(c) Trojans and viruses: Because of the cost and inconvenience of
security protection measures, some sensing nodes may not take
these measures, or take very basic information security protection
measures, which may lead to counterfeiting and unauthorized
service access problems. For example, when the operating system
or application software of the sensing node of the IoT is outdated
and the system vulnerabilities cannot be patched in time, prob-
lems are prone to occur in object identification, authentication,
and control.

(d) Data disclosure: The IoT collects a wide variety and richness of
data through a large number of sensing devices. Without proper
protection, there can be privacy breaches, fraudulent use or theft
of data. If the information received by sensing nodes is unpro-
tected or insufficiently secured, it can be illegally accessed by
third parties, causing great harm.

The main security mechanisms adopted by the perception layer
include physical security, authentication and authorization, access con-
trol, encryption, and secure routing mechanisms as well as key
management.

(a) Physical security mechanism: Commonly used RFID tags have low
cost and low security. This security mechanism mainly realizes
security control by sacrificing the functions of some tags.

(b) Authentication and authorization mechanism: This is mainly used
to verify identity and the effectiveness and authenticity of the
exchanged data, which mainly includes the authentication and
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authorization management between internal nodes and that of
nodes to users. In the perception layer, RFID tags need to realize
identity authentication through authentication and authorization
mechanisms.

(c) Access control mechanism: This is embodied in the user's access
control over the node's own information and the data collected by
the node, so as to prevent unauthorized users from accessing the
perception layer. Common access control mechanisms include
mandatory access control, autonomous access control, role-based
access control, and attribute-based access control. Encryption
mechanisms and key management are the basis of all security
mechanisms and are an important means of protection of received
information. Key management is the generation, distribution,
update, and dissemination of keys. An encryption mechanism is
required for the successful operation of the RFID tag authentica-
tion mechanism.

(d) Secure routing mechanism: This ensures that when the network is
attacked, it can still correctly discover and build routes. It includes
data confidentiality and authentication, data integrity and fresh-
ness verification, equipment and identity authentication, and
routing message broadcast authentication mechanisms.

3.2.2. Network layer security
The IoT network layer also faces major security threats.

(a) Attacks against IoT terminals: With the enhancement of the
computing and storage capacity of IoT terminals, the chance of
attack from viruses and trojans is also greatly increased. Viruses
and Trojan horses are more propagative, more destructive, more
concealed and more threatening in IoT. The operating system of
the network terminal lacks integrity protection and verification
mechanisms, and the software and hardware modules of the de-
vice are easily tampered with by attackers. The communication
interface inside the terminal lacks confidentiality and integrity
protection, and the transmitted information can be easily stolen or
tampered.

(b) Attacks on the IoT network information: The basic means to ille-
gally obtain unauthorized data is to disguise as a network entity to
steal, tamper or delete data on the link to intercept business data
and analyze network traffic.

(c) Attacks on data integrity: The attacker tampers with the service,
signaling and control information transmitted in the system's
wireless link, including insertion, modification, and deletion of
data [39].

(d) Denial of service attacks are divided into physical level interfer-
ence, protocol-level interference, denial of service disguised as a
network entity, etc. Physica-level interference refers to the inter-
ference of wireless links through physical means to block normal
communication; protocol-level interference refers to interfering
with normal communication by inducing failures in specific pro-
tocol processes; denial of service masquerading as a network en-
tity refers to an attacker masquerading as a legitimate network
entity and refusing to answer a user's service request. For the
illegal access attack on a business, the attacker disguises itself as
other legitimate users, illegally accesses the network, or cuts be-
tween users and the network to carry out intermediate attacks.

(e) Attacks on the core network of the IoT involve the illegal acqui-
sition of data, eavesdropping on user services, tampering with
signaling and control data, disguising as a network entity to
intercept user information, and active and passive analysis of user
traffic, i.e., illegal access to the system data storage.

(f) Attacks on data integrity, including tampering with user services
and signaling messages, tampering with applications and data
downloaded to user terminals, tampering with user terminals by
pretending to be applications and data initiators, and tampering
with user data stored in system storage entities.
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(g) Denial-of-service attacks, including physical interference, proto-
col level interference, refusal to answer user requests
masquerading as network entities, abuse of emergency services.
Denial attacks include denial of cost, denial of sending data, denial
of receiving data, etc. Basic ways of illegal access to unauthorized
services include pretending to be a user, service network or home
network, and abusing privileges to illegally access unauthorized
services.

IoT network layer security solutions include building a network se-
curity architecture integrating the IoT, Internet, and mobile networks;
building a unified protection platform for IoT network security;
improving the security application and guaranteeing measures between
the application layers of the IoT system; establishing a comprehensive
IoT network security access and application access control mechanism.

3.2.3. Security of application layer
The major security threats facing the application layer of IoT include

privacy threats, unauthorized access, identity impersonation, informa-
tion eavesdropping, tampering, repudiation and denial, and replay
threats.

(a) Privacy threats: The widespread use of wireless communication,
electronic tags and unattended devices in IoT exposes the appli-
cation layer of IoT to the disclosure of privacy leakage and mali-
cious tracking.

(b) Unauthorized access: Illegal users may use unauthorized services
or legitimate users use unauthorized services on the IoT.

(c) Identity impersonation: An attacker may capture or hijack an
unattended device, and then impersonate its identity to send data
information and perform operations to the client or application
server.

(d) Information eavesdropping and tampering: In the heterogeneous
and multi-domain network environment of the IoT, the security
mechanisms among networks are independent of each other and
the application layer data is likely to be eavesdropped, injected,
and tampered with.

(e) Repudiation and denial: All participants in the communication
may accept or deny the previously sent data and completed op-
erations; an attacker can send the information received by a
destination node to cheat the application system.

In the face of multiple security threats, the IoT application layer uses
several approaches to secure data and privacy.

(a) Data security limits the legal object of browsing data, prevents the
harm caused by unauthorized information disclosure, and ensures
the confidentiality of data; to ensure the authenticity of the data,
the integrity of the data is verified with the help of a hash func-
tion, which provides a tampering proof environment against
hardware attacks for the system. The common methods of data
integrity detection are digital signature, MAC, and digital
watermarking.

(b) Privacy security: Data privacy is protected using probabilistic or
statistical methods while ensuring that the statistical or categori-
cal characteristics of the final data remain unchanged; some sen-
sitive and specific information is replaced with non-specific
information for privacy protection purposes based on anonym-
ization techniques.

(c) Cloud computing is secure. Cloud computing has the advantages
of ubiquitous network access, supercomputing power, and large-
capacity information storage capacity. The resource-limited IoT
requires an intelligent processing platform in the cloud
environment.
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4. MFE-ELM algorithm description

In cloud computing, cloud nodes are held responsible for providing
network services to large-scale heterogeneous intelligent devices, but the
local-area cloud network composed of cloud nodes is dynamically
changing. In other words, user devices may join or disconnect a cloud
network at any time. Thus, dynamic network safety threats are posed in
the cloud network. In order to flexibly respond to the complex network
environment, real-time training using dynamic target training sets is
required. Many intrusion algorithms take a long time in training. These
intrusion detection algorithms are not suitable for cloud computing
models due to the limited computing power and storage capacity of cloud
nodes. Therefore, this study needs to investigate the deployment and
application of intrusion detection algorithms with lightweight, short
training time, and high detection accuracy in cloud nodes.

The cloud server carries out real-time automatic response to intrusion
behavior, uniformly monitors and manages the security status of cloud
nodes, calculates security status measurement, and sets tracking paths;
The decision-making and corresponding after the intrusion is detected by
the system; Store and manage the data and logs of intrusion cloud nodes
to facilitate forensic applications. Intrusion Forensics is the tracing and
evidence recording of intrusion behavior. The cloud node monitors the
security status of the cloud node by submitting a security log to the cloud
server. Its purpose is to enable system managers to grasp the security
status of cloud clusters in real time, so as to participate in the decision-
making to deal with intrusion. However, when the number of cloud
nodes deployed is too large, cloud services need to select the cloud nodes
that are seriously threatened by intrusion in the cloud cluster. A proper
classification algorithm is a primary factor in deploying cloud computing
intrusion prevention systems and a prerequisite for the system to enter
intrusion responses and reduce intrusion threats. An ELM provides so-
lutions by seeking the minimum norm of the least square problem, which
can eventually be converted to the Moore-Penrose generalized inverse
problem of a matrix. Therefore, the algorithm is suitable for cloud node
intrusion algorithms with few training parameters, fast training speed,
and high generalization capability. To adapt to the complicated network
environment and dynamic training process and reduce the training time
of cloud nodes, training samples are selected according to the network
properties and training characteristics of every cloud node. In this study,
a Multi-Feature Extraction Extreme Learning Machine (MFE-ELM) algo-
rithm is used for cloud computing. This algorithm increases the process of
sample selection in the cloud server and uses the MFE-ELM algorithm
deployed in the cloud nodes to detect and spot the network intrusion into
cloud nodes.
4.1. Extreme learning machine (ELM)

ELM does not require iterations to adjust the neural network weights
and biases of the nodes in the hidden layer; instead, it can be achieved by
directly learning to use the least squares method. Without iteration in the
basic training steps, the neural network has a significantly faster learning
speed and a reduced possibility of becoming trapped in overfitting.

It is assumed that there areN training data [xi, ti]i¼ 1, 2,…,N. Where
xi ¼ ½xi1; xi2;…; xin�T 2 Rn is the sample, ti ¼ ½ti1; ti2;…; tim�T 2 Rm is the
expected output vector of the sample, xj and n and m represent the di-
mensions of the corresponding input and output, respectively. For N
training data and l nodes in the hidden layer l � N, g(x) is the activation
function, which is usually the sigmoid type. Therefore, the output
mathematical model of the ELM neural network is shown in Equation (1)

Xl

i¼1
βigðai � xj þ biÞ ¼ tj; j ¼ 1; 2;…;N (1)

where ai ¼ ½ai1; ai2;…; ain�T represents the input weight between the
nodes in the input layer and the node in the ith hidden layer, βi ¼
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½βi1; βi2;…; βim�T is the output weight, and bi is the bias of the hidden layer.
Equation (1) can be simplified as

Hβ ¼ T (2)

In Equation (2), the output matrix of the hidden layer is represented
byH; the output weight matrix (between the hidden layer and the output
layer) is shown as β, and the expected output matrix is indicated as T.

Hðai; bi; xjÞ ¼
2
4
gða1x1 þ b1Þ ⋯ gðalx1 þ blÞ

⋮ ⋱ ⋮
gða1xN þ b1Þ ⋯ gðalxN þ blÞ

3
5

N�l

(3)

β ¼

2
664
βT1
⋮
βTl

3
775

l�m

T ¼

2
664
tT1
⋮
tTN

3
775

N�m

(4)

When l ¼ N is met, i.e., the number of training samples is the same as
the number of nodes in the hidden layer, the inverse of matrix H can be
obtained directly from Equation (2), as shown in Equation (4), which has
nothing to do with the number of output nodes, and the optimal solution to
the output weight matrix β can also be calculated. However, normally l <
N, meaning that the number of nodes in the hidden layer is always smaller
than that of the training samples, the matrix H is a singular matrix, and it
needs to solve Equation (2) with the least squares method.

β ¼ HyT (5)

where Hy is the Moore-Penrose generalized inversion of the output ma-
trix of the hidden layer.

The above is the solution process of the ELM algorithm, in which the
parameters of the hidden layer nodes are determined randomly during
the parameter training process. In practical applications, as experimental
samples need to be standardized, the values of the parameters of nodes in
hidden layers are usually randomly selected within the scope of [�1,1].
4.2. MFE-ELM algorithm description

We divide the total sample set Zn saved in the cloud server into the

sample set distributed by the cloud nodes Zf
nf ¼

n
zfJ ¼

�
xfJ ; y

f
J

�onf

J¼1
and

the alternative sample set Zc
nc ¼ �

zcJ ¼
�
xcJ ; y

c
J

� �nc
J¼1, whereZf

nf [ Zc
nc ¼

ZnZ
f
nf \ Zc

nc ¼ ∅. The purpose of sample selection is to select Zf
nf from

Znand make the network obtained by Zf
nf learning and based on the ELM

algorithm meet Jðai; bi; βÞ � σ, where σ 2 ð0;min Jðai; bi; βÞ Þ is the upper
limit of the pre-determined performance index.

We assume that Uc ¼
n���ucj

���ucj ¼
���ycj � f

�
xcj ; ai; bi; β

� onc

j¼1
is the set

constituted by the absolute values of the differences in sample output,
network input, and network output in Zc

nc. We define Zc
s ¼

�
xcm; y

c
m

�
as any

element of the biggest element Zc
nc corresponding to Uc. Initialize the

sample sets Zf
nf ¼ ∅and Zc

nc ¼ Zn and the network structure parameters

ai ¼ ∅, bi ¼ ∅, β ¼ ∅ and adopt the following learning rules

Rule1;Zf
nf ¼ Zf

nf [
�
zcs
�

(6)

Rule2;Zc
nc ¼ Zc

nc �
�
zcs
�

(7)

Rule3; a' i ¼ ai þ
�
xcs
�� �

xcs
�
min�

xcs
�
max �

�
xcs
�
min

(8)

b
0
i ¼ bi þ

�
xcs
�� �

xcs
�
min�

xcs
�
max �

�
xcs
�
min

(9)



Fig. 5. Dataset label feature distribution.
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Rule 4: Calculate and update the optimal external weight
β(Jðai; bi; βÞ ¼ σ) according to Equation (6) with Zf

nf and ai and bi and

update Zf
nf , Zc

nc, ai, bi and β. After several iterations, we obtain
Jðai; bi; βÞ � σ.

The algorithm includes the following steps:

1) Initialize sample sets Zf
nf ¼ ∅ and Zc

nc ¼ Zn in the cloud server and the

network structural parameters ai ¼ ∅, bi ¼ ∅, β ¼ ∅;
2) Randomly generate the parameters in the nodes of the hidden layer

ðai; biÞ; i ¼ 1;…;L;
3) Calculate the output matrix H of the hidden layer (make sure H color

full rank matrix);
4) Calculate Jðai; bi; βÞ and Uc;
5) If Jðai; bi; βÞ � σ, turn to Step 10), otherwise, continue;

6) Select Zc
s from Zc

n, Z
f
nf ¼ Zf

nf [
�
zcs
�
, Zc

nc ¼ Zc
nc �

�
zcs
�
;

7) Update ai and bi;

a' i ¼ ai þ
�
xcs
�� �

xcs
�
min�

xcs
�
max �

�
xcs
�
min

(10)

b
0
i ¼ bi þ

�
xcs
�� �

xcs
�
min�

xcs
�
max �

�
xcs
�
min

(11)
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8) Use Zf
nf as well as ai and bi. Calculate and update the optimal external

weight β(makeJðai; bi; βÞ ¼ σ);
9) If Zc

nc 6¼ ∅, implement Step 4), otherwise, continue;

10) Use Zn as well as ai and bi, calculate and update the optimal external
weight β, the algorithm ends.

In this study, the activation function for the hidden layer of the MFE-
ELM model uses the sigmoid transformation function

Gðai; bi; xÞ ¼ 1
	

1þ eð�aixþbiÞ � (12)

After analyzing the MFE-ELM, it can be learned that when selecting
samples for cloud nodes, the most time-intensive process is the calcula-
tion of Jðai; bi; βÞ. Assume that t(J) is the average time to calculate
Jðai; bi; βÞand that the delay t0 of the data transmission between cloud
computing and cloud nodes and t0 ≪ t(J), then the learning time of the
cloud node is t � nL ⋅ t(J).

5. Simulation experiment

5.1. Environmental preparation

In this study, the experiment was conducted in a Python 3.6 envi-
ronment under the Windows 10 operating system of Intel Core i7-6500U,
ature distribution.



Fig. 7. Dataset label feature distribution.
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2.50 GHz CPU and 8.00 GB RAM. The NSL-KDD dataset was used as the
experimental dataset due to the complexity of collecting real network
attack data by the sensing nodes. The NSL-KDD dataset was formerly
provided by the Advanced Research and Design Bureau under the U.S.
Department of Defense. It was organized by the design bureau and
collected during the intrusion detection project in the Lincoln Labora-
tory. It records data such as network connections and system audit logs
by simulating the attack mode in a real situation, forming a dataset
specially used to judge the behavior of network data. At present, the NSL-
KDD dataset has become the most authoritative dataset for network
intrusion detection, which provides a solid foundation for the develop-
ment of intrusion detection technology intelligence.

The objective of this experiment is to classify and predict the collected
datasets of an intrusion detection system. To better evaluate the experi-
mental performance, this study mainly uses indicators such as accuracy
rate, false positive rate, false negative rate, and so on. The characteristics
of the NSL-KDD dataset can be roughly divided into three types: category,
digital count, and digital rate. They are analyzed as follows:

(1) Category. Some features identify the named value of some content
in the feature, such as the protocol. The type feature column in-
dicates that the protocol is being observed, or the flag identifies
the flag that occurs during this record. The values are TCP, UDP,
Fig. 8. Dataset label fe
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and other protocol names. These feature columns must be
uniquely hot coded during data preprocessing.

(2) Digital count type. Duration, src bytes, dst, the data in the char-
acteristic columns such as bytes represent the count of their
respective tracking contents, and the data type is an integer. For
the data of these characteristic columns, the value range of the
data cannot be determined at present. If the value distribution
range is large, it needs to be standardized to eliminate the impact
of subsequent analysis.

(3) Digital rate type. The values of the feature columns named rate are
floating-point values from 0 to 1.0, indicating the rates of the
things they represent. These features do not require temporary
processing.

In order to observe the data distribution of label columns more
intuitively, the histogram is used for data visualization, and the results
are shown in Fig. 5.

It can be seen from the results in Fig. 5 that there is an obvious
quantitative contrast in the number of tag column features in the data,
and the number of normal behavior and Neptune attacks is significantly
higher than that of other tags. This phenomenon is mainly caused by the
attacker continuously sending a large number of forged syn packets by
taking advantage of the defects in the TCP protocol's three handshakes.
ature distribution.



Fig. 9. Training set feature standardization results.
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5.2. Feature engineering of dataset

5.2.1. Label column processing
In view of the large deviation of this data volume, the data volume of

normal and Neptune in the training set and test set was reduced to 5000
and 1000, respectively, and then histogram analysis was conducted on
the label column again. The results are presented in Fig. 6.

After data reduction, it can be seen that the data scale between
different tags is closer than that before processing, but further observa-
tions found that some target tag data were rarely observed, resulting in
an insufficient amount of tag data, and some tag data only appeared in
the test set, which would have a great impact on the follow-up training
results. At this time, the attack tags (normal, Neptune, Satan, ipsweep,
portsweep, Smurf, nmap, back, teardrop, and warezclient) with sufficient
data were retained, the tag data with small remaining data was merged,
Table 1
Training set processing results.

duration src_bytes dst_bytes land

13 �13.815511 5.811141 �13.815511 0
17 �13.815511 2.890372 �13.815511 0
30 �13.815511 2.079442 �13.815511 0
33 �13.815511 �13.815511 �13.815511 0
46 �13.815511 3.332205 �13.815511 0
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and the merged class was uniformly named another class. The number of
label categories was visualized again, and the results are shown in Fig. 7.

The above results indicate that the discretization degree of the pro-
cessed label category data was more standardized, which greatly reduces
the huge data volume difference between various categories and facili-
tated the subsequent data use. It is further observed that the number of
other label categories just merged shows an obvious difference between
the training set and the test set, i.e., the number of other tag categories in
the training set is the lowest, but the number of other tag categories in the
test set is the highest, which is significantly better than the amount of
data of the same type in the training set. Such contrast greatly interferes
with subsequent training results, affecting the accuracy of the model. In
view of the large difference in the amount of data, some data items in the
other tag category in the training set (80% selected in this experiment)
were transferred to the test set to balance the data scale of the same tag
… flag_S2 flag_S3 flag_SF flag_SH

… 0 0 1 0
… 0 0 1 0
… 0 0 1 0
… 0 0 0 0
… 0 0 1 0



Table 2
Comparison of accuracy and training time of different algorithms.

ALGORITHM ACCURACY (%) TRAINING TIME (s)

MFE-ELM 96.53 � 0.34 4.64 � 0.20
ELM 94.05 � 0.18 4.25 � 0.07
SVM 91.41 � 0.13 19.04 � 0.15
BP 86.72 � 0.27 82.93 � 0.36

Fig. 10. Comparison of accuracy of MFE-ELM, ELM, SVM and BP.
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category in the training and test sets. A comparison of the number of label
categories after processing is shown in Fig. 8.

After the above multi-step processing, we reduced the 23 tag values in
the original training set and 36 tag values in the test set to 11 tag values,
and reduced the number of normal and Neptune tag values in the training
set and test set to 5000, and neutralized the number of other tag values in
the training set and test set to approximately 2000 and 400, respectively,
and the specific gravity was in the middle of the same dataset. Through
the label category data scale comparison chart at this time, it can be seen
that the label feature columns of the training set and the test set were
processed.

5.2.2. Number type column processing
Integer-type features with more than 10 eigenvalues are standardized

below. Taking the training set data as an example, the processed results
Fig. 11. Terminal fl
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are shown in Fig. 9.
In addition, because this dataset is the benchmark dataset, to avoid

destroying the integrity of information or causing unnecessary informa-
tion loss, the integer-type features representing the rate will not be
standardized for the time being.

To facilitate subsequent data training, the feature labels of category
classes were transformed into the feature labels of integer values, and the
discontinuous features were processed by unique heat coding. Here, we
first reconciled the training and test sets, encoded the overall classifica-
tion features, and then split the connected dataset back into separate
training and test sets. After processing, the processed training and test
sets were viewed. Consider the training set as an example, and the results
are listed in Table 1.

Thus far, data preprocessing and feature engineering are completed.

5.3. Experimental results and analysis

In the simulation experiment, we compared the performance of MFE-
ELM, traditional ELM, SVM and BP neural network as intrusion detection
algorithms in a cloud computing environment, in which ELM, SVM and
BP are deployed on cloud nodes. The kernel function of SVM is sigmoid.
The learning rate of BP is lr¼ 0.07, the momentum term coefficientmc ¼
0.9, the maximum number of iterations epochs ¼ 6000, goal ¼ 0.0001.
30000 pieces of data are taken as the total training samples and 10000
pieces of data are taken as the test samples. The parameters of compar-
ison are training time and detection accuracy. The experimental data is
the average of the data obtained by running the experimental program 20
times. According to the results in Table 2, the MFE-ELM proposed in this
study performs well in terms of accuracy. In terms of training time, MFE-
ELM needs to perform the process of sample screening, so it is slightly
longer than that of the traditional ELM. In terms of training time and
accuracy, BP performs worse than MFE-ELM and ELM, while SVM also
requires a longer training time. Therefore, it can be concluded that in
terms of accuracy, MFE-ELM, as an intrusion detection algorithm, has a
better performance in a cloud computing environment.

In the experiment, we analyzed the training time and accuracy of the
MFE-ELM algorithm under different training sets. Based on the above
experiments, only MFE-ELM, ELM, SVM and BP were selected to compare
the training time and accuracy. The number of training sets was extracted
from 1000, 2000 , … , 20000, respectively. The experimental results are
shown in Fig. 10.

As shown in Fig. 10, MFE-ELM still exhibits higher intrusion detection
accuracy than ELM and SVM as the training set size increases. From the
perspective of the algorithm, the main reason is that traditional classical
ow generator.



Fig. 12. Clustering results of terminal test points (range 1).
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machine learning algorithms are based on gradient descent. Their main
purpose in the training process is to achieve the minimum training error
without considering the size of the output weight. In contrast to these
learning algorithms, MFE-ELM achieves not only the minimum training
error, but also the minimum weight norm. There is no overfitting phe-
nomenon in the training process of MFE-ELM, and there is no problem
with local minima in the solution process. Therefore, compared with the
traditional learning algorithm, the learning repetition rate will not be too
high to improve the accuracy of intrusion classification. In the training
process of the MFE-ELM, the square loss function on each cloud node is
optimized. The optimization is mainly reflected in the sample screening
process. According to this algorithm, each cloud node obtains the best
external weight that is more suitable for training. As shown in Table 2, for
the training time, the simulation results show that the training time of the
MFE-ELM proposed in this paper is slightly slower than that of ELM. The
main reason is that MFE-ELM has a new sample screening process
compared with ELM. Although MFE-ELM performs more slowly than
ELM, the difference is small and within an acceptable range. It can be
concluded that the MFE-ELM algorithm performs well in the intrusion
detection of cloud computing. Fig. 11 shows the simulation experiment
terminal traffic generator, in which the red dot represents the randomly
distributed terminal traffic generator, the blue circle represents the
coverage of all deployed edge gateways, and its center is the deployment
location of edge gateways. There are 30 terminal traffic generators in
Figs. 11(a) and 60 terminal traffic generators in Fig. 11(b). The way to
Fig. 13. Clustering results of terminal test points (range 2).

122
cover each endpoint traffic generator is shown in Fig. 11.
Visualize the clustering of all terminal test points. The first range is

the clustering of all terminal test points with horizontal coordinates
within [0, 0.4] and vertical coordinates within [0, 0.4], as shown in
Fig. 12. The second range is the clustering of all terminal test points with
horizontal coordinates in the range of [0, 0.4] and vertical coordinates in
the range of [0, 0.4], as shown in Fig. 13, in which the black triangle is
the final base station position.

In cloud computing networks, the network environment of cloud
nodes is highly dynamic. Therefore, this study needs to analyze the
robustness of theMFE-ELM algorithm, and specifically, it needs to use the
NSL-KDD dataset to simulate the dynamic network environment. In other
words, we analyze the dependence of the MFE-ELM algorithm on time
statistics. In the NSL-KDD dataset, some fields are related to time-based
traffic statistics, which are statistical parameters of time that form the
relationship between the current connection record and the previous
connection record during the training process. However, in an actual
cloud computing network environment, there is a large amount of raw
data without manual statistical processing. In other words, it is difficult
to obtain data according to the time statistics. To ensure that the intru-
sion detection algorithm could be effectively implemented in a real-time
and highly dynamic network environment, a robustness experiment was
carried out by eliminating the characteristics of some fields.

How to effectively use unlabeled data, for discrete data, it is impos-
sible to obtain statistical characteristics of traffic; the short length of data
makes it difficult to calculate statistical characteristics of payload.
Because the source domain data and target domain data in a real network
often contain a variety of protocol data and noise, the distributions of the
source and target domains are quite different. At this time, the direct use
of all data cannot improve the algorithm performance, or even reduce the
classification effect, especially the existence of a large number of samples
with different distributions from the data to be tested. For encrypted
data, because of its strong randomness, the encrypted data of different
protocols have little impact on the learning and training of the classifier.
For non-encrypted data, the distribution of the different protocols varies
significantly. Data with different distributions will affect the selection of
the classifier classification hyperplane and result in a reduction in the
classification performance. In this study, the non-encrypted data of some
datasets were analyzed, as shown in Fig. 14.

As can be seen in Fig. 14 above that there are great differences in the
statistical distribution of data values between ACARS and AIS, which
shows that there are also great differences in the data distribution be-
tween ACARS and AIS. If ACARS unlabeled data are used as auxiliary
data, the mined data distribution information cannot be used to improve
the classification effect of the AIS. Also, Since the target dataset is
composed of public protocols, this study also extracted the data payload
for processing and filtered non-encrypted data with a similar distribu-
tion. As the filtered data were not pure non-encrypted data, they are
called semi-labeled non-encrypted data, and the encrypted data gener-
ated by the encryption algorithm were used as unlabeled data to assist in
classification and recognition.

6. Conclusion and future work

The IoT is a complex, dynamic environment, which poses new chal-
lenges to the deployment and algorithm performance of IoT intrusion
detection. Based on the research of cloud-based IoT defense architecture,
this study focused on cloud computing intrusion detection algorithms
and measurement models. Considering the resource constraints of cloud
nodes and the high complexity of the network environment, a mea-
surement model of IoT intrusion detection in a cloud computing envi-
ronment is proposed, and an MFE-ELM algorithm of a limit learning
machine with multi-feature extraction is proposed. Experimental simu-
lations verified the training time and detection accuracy of the proposed
algorithm. In the experiment, the MFE-ELM algorithm showed good
performance in cloud computing, especially in terms of accuracy and



Fig. 14. Statistical distribution of non-encrypted data in ACARS and AIS protocols.
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time efficiency. Through several experiments, it was proved that the
MFE-ELM is an intrusion detection algorithm suitable for cloud
computing environments.

The future work of this study is as follows:

(1) Cloud node host exception detection. There is no complete and
reliable detection method for abnormal data that may be gener-
ated locally by the cloud node, such as operation records, registry
data, and cloud node hardware parameters. Because of the het-
erogeneous characteristics of cloud nodes, constructing a general
IoT intrusion detection method is one of the problems to be
solved.

(2) When studying problems in this field, we should focus on a spe-
cific application scenario, such as intelligent gateway host
anomaly detection in the IoT. Due to the resource-constrained
characteristics of cloud nodes, the lightweight host anomaly
detection method is worthy of research.

(3) Analysis of intrusion behavior. The intrusion behavior of the IoT
often has the characteristics of multi-objective, multi-channel, and
multi-source. Intruders hide their intrusion intentions through
various technical methods. It is difficult to detect these intrusions
with only lightweight detection methods. Therefore, it is neces-
sary to further analyze and process the collected data to analyze
the intruder's attack intention or correctly predict the intruder's
intrusion behavior.
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