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A B S T R A C T

As the world grapples with the COVID-19 and its variants, multi-user collaboration by means of cloud
computing is ubiquitous. How to make better use of cloud resources while preventing user privacy leakage
has become particularly important. Multi-key homomorphic encryption(MKHE) can effectively deal with the
privacy disclosure issue during the multi-user collaboration in the cloud computing setting. Firstly, we improve
the DGHV homomorphic scheme by modifying the selection of key and the coefficients in encryption, so
as to eliminate the restriction on the parity of the ciphertext modulus in the public key. On this basis, we
further propose a DGHV-type MKHE scheme based on the number theory. In our scheme, an extended key is
introduced for ciphertext extension, and we prove that it is efficient in performance analysis. The semantic
security of our schemes is proved under the assumption of error-free approximate greatest common divisor and
the difficulty of large integer factorization. Furthermore, the simulation experiments show the availability and
computational efficiency of our MKHE scheme. Therefore, our scheme is suitable for the multi-user scenario
in cloud environment.
1. Introduction

In the post-pandemic era, telecommuting has become an indis-
pensable working mode, and emerging technologies such as cloud
computing have played an important role in epidemic monitoring,
prevention and control and medical assistance, showing broader appli-
cation prospects and growth potential [1,2]. According to Gartner, from
2015 to 2020, the penetration rate of global cloud computing market
represented by IaaS, PaaS and SaaS increased year by year from 4.3% to
13.1%, and will rise to 15.3% in the next year. The market size is 208.3
billion dollars in 2020 and will exceed 600 billion dollars in 2025 [3].

Cloud services can eliminate the storage space constraints of per-
sonal devices and reduce local computing overhead. In practice, dif-
ferent companies or organizations store data in the cloud and use the
cloud to share data with other members. Designing a one-to-many data
sharing scheme based on attribute-based encryption(ABE) [4,5] can
achieve effective access control, but ABE is not suitable for collabo-
rative computing between multiple members in a cloud environment.
At the same time, multiple clients want to use the computing power
of the cloud server to perform machine learning and data mining,
collaboratively solve optimization problems and obtain optimal results.
However, uploading user data to the server and training the model on
the server may lead to serious user privacy disclosure. For example, in
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2021, the registration information of Alibaba Cloud users was leaked,
in 2022, 37 GB source code of Microsoft was leaked, and 170 million
data of super star learning APP was illegally sold. The losses caused
by global cybercrime more than 6 trillion in 2021, about six times as
much as in 2020. With frequent privacy disclosure, the public pays
more attention to privacy protection. In order to make better use of
cloud services, we need a method to process data safely in the cloud
environment.

Traditional encryption such as searchable encryption(SE), order
preserving encryption(OPE) and comparable encryption (CE) [6–9] can
protect the security of data and realize data query according to the ci-
phertext. However, in these schemes, the data must be decrypted before
any calculation. Homomorphic encryption can perform calculations
on encrypted data without decryption, and is an effective algorithm
to solve the security problems of cloud computing. In 2009, Gentry
proposed the first fully homomorphic encryption(FHE) scheme [10].
Dijk et al. constructed the DGHV scheme [11] based on integers and
modular arithmetic in 2010. Li et al. [12] optimized the scheme of Dijk
et al. [11] and proposed a simple FHE suitable for cloud computing
and achieve efficient ciphertext retrieval. Kocabas et al. [13] proposed
a privacy-preserving medical cloud computing method using homo-
morphic encryption. Ren et al. [14] proposed an XOR-homomorphic
vailable online 9 March 2023
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encryption scheme to perform keyword searches on encrypted data in
the cloud.

More generally, cloud servers need to perform homomorphic eval-
uation of data encrypted by different owners. To be more suitable for
multi-user scenario and reduce interaction with the cloud, there are
two types of current research, one is based on multi-key homomorphic
encryption(MKHE), and the other is based on multiparty homomor-
phic encryption(MHE). MKHE supports homomorphic calculation on
ciphertexts encrypted by different keys, and the plaintext is obtained
by the joint decryption of participants. MHE includes a key generation
protocol and a decryption protocol. The former is designed to jointly
generate a common public key and users encrypt private data under
the same common public key. Each party has only one share of the
secret key, so users perform the decryption protocol interactively when
decrypting.

In 2012, López-Alt et al. [15] put forward the first MKHE scheme
to solve the problem of joint computing of multi-user ciphertext data
in the cloud environment. Chen et al. [16] proposed a MKHE scheme
based on the ring learning with errors problem(RLWE) [17] and applied
it to neural network in the ciphertext domain, but the ciphertext dimen-
sion of this scheme is linear with the number of users. Ma et al. [18]
designed a new federated learning scheme with privacy protection
using MKHE. In addition, MHE is proposed by Asharov et al. [19]
sing threshold homomorphic encryption to solve the problem of secure
omputing among multiple users. Following the construction principle
f Asharov et al. [19], Mouchet et al. [20] proposed a MHE scheme
ased on RLWE, but it requires multiple rounds of interaction. Further,
ark et al. [21]. proposed a scheme with less interaction that is more
uitable for multi-user scenarios in cloud environment. However, the
omomorphic multiplication on the extended ciphertext in the above
chemes needs the evaluation key or relinearization key to perform the
elinearization algorithm.

In terms of homomorphic evaluation and performance characteris-
ics, both the integer-based DGHV scheme [11] and the lattice theory-
ased homomorphic scheme [17,22] maintain the compactness of the
iphertext length. However, DGHV scheme is constructed based on
odular arithmetic and integers, which is more concise in concept

nd form than the schemes based on lattice theory. Dyer et al. [23]
roposed a homomorphic encryption scheme based on integer arith-
etic, which is mainly used for secure single-party computation in

he cloud. Theoretically, any standard homomorphic scheme can be
xtended to multi-key to solve the multi-user collaborative comput-
ng problem [15]. Further, we hope to design a computationally and
onceptually simpler MKHE scheme based on the DGHV scheme.

.1. Our contribution

Based on the DGHV scheme [11], We design a novel and simple
KHE scheme to prevent privacy disclosure in the multi-user collabo-

ation in the cloud computing. To this end, two main points must be
olved on the basis of maintaining the randomness of the encryption:
ow to expand the ciphertext and the generation of the evaluation
ey. In addition, decryption essentially depends on eliminating large
andom elements in the ciphertext to keep the decryption correct.
herefore, we must ensure that it does not generate residual random el-
ments when decrypting in the MKHE scheme. Our main contributions
re as follows:

1. In order to select the appropriate modulus in a multi-key scheme
without generating additional noise, we improve the DGHV
scheme by modifying the encryption factor to remove the re-
striction on the parity of the largest element in the public key.
The noise in the improved DGHV scheme is still within a small
range relative to the threshold, which can ensure the validity of
decryption. Furthermore, we analyze the operation circuit and
prove that the scheme can perform homomorphic calculation
in the permitted circuit and give the degree of the permitted
2

polynomial.
2. On the basis of the improved DGHV scheme, we propose a
DGHV-type MKHE scheme, where the joint secret key used for
decryption is calculated from secret keys of participating users,
rather than the concatenation of secret keys. It is difficult for
an engaged user to decompose the joint key to get the secret
keys of other users. Therefore, the joint secret key will not
disclose the users’ secret keys. Unlike previous MKHE schemes,
an extended key is introduced for extending ciphertext in our
multi-key scheme and all arithmetics just depend on three basic
operations, namely addition, multiplication and modular opera-
tion. Compared with other MKHE schemes, our scheme is more
concise in computational form and ciphertext composition.

3. We prove that our scheme is semantically secure under the
error-free approximate GCD assumption and the large integer
factoring problem. Besides, we illustrate the zero knowledge
property of participating users and the cloud server. Therefore,
complicated calculations on extended ciphertexts can be dele-
gated to the cloud by sending the evaluation key to cloud server.
Users only need to download ciphertexts after computation and
decrypt with the joint secret key. In addition, the experiments
show that the size of the public key can be decreased to 𝑂(𝜆3) by
compressing in a higher dimension to further reduce the number
of elements in the public key.

1.2. Related work

The concept of homomorphic encryption (HE) [24] was first pro-
posed by Rivest et al. in 1978. It means that we have 𝑓 (Enc(𝑚1, 𝑚2)) =
Enc(𝑓 (𝑚1, 𝑚2)) for any operation 𝑓 . After that, researchers put for-
ward many partial homomorphic encryption schemes [25,26]. Until
2009, Gentry [10] proposed the first FHE scheme based on the ideal
lattice. The principle is to design a homomorphic scheme with lim-
ited ciphertext calculation, and perform reencryption operation when
the ciphertext noise reaches the threshold, so as to realize bootstrap-
ping. Then, based on Gentry’s idea, other homomorphic schemes are
proposed [27,28].

In 2010, following Gentry’s blueprint, Dijk et al. constructed the
DGHV scheme [11] which is entirely on the basis of integer operation.
This scheme does not use the ideal lattice on the polynomial ring,
which not only brings a new construction method of homomorphic
encryption scheme, but also makes the principle of the algorithm easier
to understand. However, the public key size is 𝑂(𝜆10), which is too large
to implement, and this is also the main reason for low efficiency.

Subsequently, two different techniques were proposed to compress
the public key of DGHV scheme. The first way is to reduce the number
of elements in the public key. Coron et al. [29] used quadratic encryp-
tion 𝑥𝑖,𝑗 = 𝑥𝑖,0 ⋅ 𝑥𝑗,1 mod𝑥0 rather than linear encryption for public
key elements to reduce the public key size to 𝑂(𝜆7). This can be called
the square compression technique. The second way is to optimize the
length of the bits in the elements of the public key. Coron et al. [30]
proposed the offset public key compression scheme by introducing
a pseudo-random number generator 𝑓 and a random seed, and the
public key size is reduced to 𝑂(𝜆5). Chen et al. [31] combined the
two techniques and proposed a quadratic offset compression scheme,
which can be further reduced the size of the public key to 𝑂(𝜆3.5) by
reducing the number and the bit length of public key at the same time.
Subsequent optimization [32,33] based on DGHV are put forward, but
these schemes only have homomorphism for a single key.

López-Alt et al. [15] put forward the concept of multi-key homomor-
phic encryption in 2012 and constructed the first MKHE scheme based
on NTRU cryptosystem. Subsequently, the scheme was continuously
optimized and other NTRU-type schemes have been proposed, such
as [34,35]. At present, the decryption complexity and communication
of NTRU-type MKHE schemes are large, because it needs to be realized
through complex interaction. In addition, the GSW-type MKHE schemes

and the BGV-type MKHE schemes are common.
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Table 1
Comparison of different types of MKHE schemes

Type Assumption Dimension Key aggregation Relinearization

NTRU DSPR Independent of 𝑘 Multiplication Yes
GSW LWE 𝑂(𝑘2) Concatenation No
BGV RLWE 𝑂(𝑘) Concatenation Yes
Our AGCD Independent of 𝑘 Multiplication No

GSW-type MKHE schemes [36–38] are based on the learning with
rrors problem (LWE) [39]. In these schemes, the ciphertext sequence
ncludes other auxiliary information used to complete ciphertext ex-
ansion. The ciphertext expansion of these GSW-type MKHE schemes
s complex, and the ciphertext dimension is quadratic with respect to
he number of participants.

Chen et al. [40] first put forward a BGV-type MKHE scheme by
ombining the ring-GSW. Based on the scheme of Chen et al. [40],

Zhang et al. [41] proposed four unit protocols to construct a multiparty
k-means clustering scheme and used a cloud server to implement
outsourced computation of data when participants are offline. Chen
et al. [16] proposed a MKHE scheme relied on the ring learning
with errors problem (RLWE) [17]. Kim et al. [42] redesigned the
multiplication of Chen et al. [16] using a gadget decomposition with
homomorphic properties. Instead of following the traditional proce-
dure of performing tensor product and relinearization sequentially, the
calculation performs both operations simultaneously, but causes an
increase in noise. The ciphertext dimension of these schemes is linear
with the number of users. Compared with the GSW-type MKHE, BGV-
type MKHE has simpler ciphertext expansion, but the dimension of
ciphertext increases at an exponential rate after homomorphic mul-
tiplication. In order to control the dimension of the ciphertext, the
nonlinear entries in the ciphertext need to be relinearized. We compare
different types of MKHE in Table 1 and give the characteristics of the
DGHV-type MKHE we constructed in this paper.

1.3. Our framework

The roadmap of this article is shown below. Section 2 introduces
some preliminary concepts and the system model. In Section 3 and
Section 4, we describe in detail the construction of the improved DGHV
scheme and the multi-key scheme respectively. The security of our
schemes is proved in Section 5 and the performance comparison, time,
and memory consumption about our algorithm are given in Section 6.
Finally, Section 7 briefly summarizes the general idea and main content
of this paper.

2. Preliminaries

In this part, we introduce some basic notations and definitions
and give the system model of our scheme. We also review the ho-
momorphic encryption scheme proposed by Dijk, Gentry, Halevi and
Vaikuntanathan in [11].

2.1. Notations

We denote parameters by Greek letters (𝜂, 𝜌, 𝛾, 𝜏, 𝜆, etc.). In par-
ticular, let 𝜆 represent the security parameter. Lowercase English
letters(𝑝, 𝑞, 𝑥, 𝑦, etc.) denote real numbers and integers. For a real
number 𝑥, we denote by ⌈𝑥⌉, ⌊𝑥⌋, ⌊𝑥⌉ the rounding of 𝑥 up, down, or
to the nearest integer. For integers 𝑧 and 𝑝, 𝑞𝑝(𝑧) and 𝑟𝑝(𝑧) denote the
quotient and remainder of 𝑧 with respect to 𝑝, that is, 𝑞𝑝(𝑧) = ⌊𝑧∕𝑝⌉ and
𝑟𝑝(𝑧) = 𝑧− 𝑝 ⋅ 𝑞𝑝(𝑧). The remainder can also be expressed as [𝑧]𝑝. Unless
3

otherwise specified, all logarithms in this paper are base-2.
2.2. Approximate GCD

For a specific 𝜂-bit odd integer 𝑝, the distribution 𝛾,𝜌(𝑝) over 𝛾-bit
integers is defined as:

𝛾,𝜌(𝑝) = { Choose 𝑞 ← Z ∩ [0, 2𝛾∕𝑝), 𝑟 ← Z ∩ (−2𝜌, 2𝜌) ∶

Output 𝑥 = 𝑞 ⋅ 𝑝 + 𝑟}

The (𝜌, 𝜂, 𝛾)-approximate-GCD problem is: Given polynomially many
samples from 𝛾,𝜌(𝑝) for a randomly chosen 𝜂-bit odd integer 𝑝, output
𝑝.

2.3. The DGHV scheme over the integers

2.3.1. Parameters
Given the security parameter 𝜆, the following parameters are de-

fined to control the number of elements in the public key and the
bit-length of integers to ensure the security of the scheme.

• 𝛾 is the bit-length of the public key elements 𝑥𝑖.
• 𝜂 is the bit-length of the secret key 𝑝.
• 𝜌 is the bit-length of the noise 𝑟𝑖.
• 𝜏 is the number of the public key elements 𝑥𝑖.

2.3.2. The description of DGHV scheme
1. KeyGen(𝜆): Select a random 𝜂-bit odd integer 𝑝, namely 𝑝 ←

(2Z + 1) ∩ [2𝜂−1, 2𝜂). Sample 𝑥𝑖 from distribution 𝛾,𝜌(𝑝) for 𝑖 =
0, 1,… , 𝜏. Rearrange these integers so that 𝑥0 is the largest and
satisfies the condition that 𝑥0 is odd and [𝑥0]𝑝 is even, otherwise
restart. The secret key is 𝑠𝑘 = 𝑝 and the public key is 𝑝𝑘 =
(𝑥0, 𝑥1,… , 𝑥𝜏 ).

2. Encrypt(𝑝𝑘, 𝑚): For 𝑚 ∈ {0, 1}, select a random integer 𝑟 and a
random subset 𝑆 of the public key, where 𝑆 ⊆ {1, 2,… , 𝜏}, 𝑟 ∈
(−2𝜌′ , 2𝜌′ ), 𝜌′ is the secondary noise parameter. Then calculate
and output the following ciphertext:

𝑐 =

[

𝑚 + 2𝑟 + 2
∑

𝑖∈𝑆
𝑥𝑖

]

𝑥0

3. Evaluate(𝑝𝑘, 𝐶, 𝑐1,… , 𝑐𝑡): Given the public key 𝑝𝑘, the circuit 𝐶
belonging to the permitted circuit set 𝐶𝜀 with 𝑡 inputs, and 𝑡
ciphertexts 𝑐𝑖, perform the following Add and Mult step by step
and output the result 𝐶(𝑐1,… , 𝑐𝑡).

Add(𝑝𝑘, 𝑐1, 𝑐2) ∶ 𝑐𝑎𝑑𝑑 = 𝑐1 + 𝑐2 mod 𝑥0

Mult (𝑝𝑘, 𝑐1, 𝑐2) ∶ 𝑐𝑚𝑢𝑙𝑡 = 𝑐1 × 𝑐2 mod 𝑥0
4. Decrypt(𝑠𝑘, 𝑐): As defined above, 𝑠𝑘 = 𝑝. Hence, the decryption

process is as follows:

𝑚′ = (𝑐 mod 𝑝) mod 2

The above section completes the description of the DGHV scheme.
There are some restrictions on the selection of 𝑥0 in the public key. On
the one hand, to eliminate the connection between the ciphertext parity
and the plaintext, on the other hand, to ensure that the noise items can
be eliminated during decryption.

2.4. Multi-key homomorphic encryption

A multi-key homomorphic encryption scheme  consists of five
algorithms (KeyGen, Enc, Extend, Eval, Dec), the characteristics of each
algorithm are as follows:

1.  .KeyGen(1𝜆, 1𝐾 , 1𝐿): Take the security parameter 𝜆, the num-
ber of different participants 𝐾 and the circuit depth 𝐿 as in-
put, generate public and secret keys

(

𝑝𝑘𝑖, 𝑠𝑘𝑖
)

for participants,
the extended key 𝑒𝑘𝑖 required for ciphertext extension and the

evaluation key required for evaluation algorithm.
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Fig. 1. System Model.

2.  .Enc(𝑝𝑘𝑖, 𝑚𝑖): For example, given the public key 𝑝𝑘𝑖 and mes-
sage 𝑚𝑖 to be encrypted, output a ciphertext 𝑐𝑖.

3.  .Extend(𝑐𝑖, 𝑒𝑘𝑖): Given the ciphertext 𝑐𝑖 and the extended key
𝑒𝑘𝑖, output the extended ciphertext 𝑐𝑖.

4.  .Eval(, (𝑐1,… , 𝑐𝓁), 𝑒𝑣𝑘): Given the circuit  with 𝓁 inputs, 𝓁
extended ciphertext and evaluation key 𝑒𝑣𝑘, output a ciphertext
𝑐 under the joint secret key 𝑠𝑘𝑆 .

5.  .Dec(𝑐, 𝑠𝑘𝑆 ): Given the ciphertext 𝑐 and the joint secret key 𝑠𝑘𝑆
which is constructed from the participating users’ secret keys,
output the message 𝑚.

For a MKHE scheme, we say it is semantically secure if the following
istributions are computationally indistinguishable:

𝑝𝑝,  .Enc(0, 𝑝𝑘𝑖))
𝑐𝑜𝑚𝑝
≈ (𝑝𝑝,  .Enc(1, 𝑝𝑘𝑖))

.5. System model

As shown in Fig. 1, the proposed multi-key homomorphic encryp-
ion scheme is mainly composed of three parts: data owner (DO),
loud server (CS) and data user (DU). The information is possibly
ollected from various domains, such as education, medical treatment,
ransportation, etc. Through our scheme, the data from different parties
an be shared to make better use of resources and construct a large
nformation network. It is assumed that a trusted party deals with the
istribution of keys in the system, which is not shown in the figure. The
esponsibilities of each participant are as follows.

1. DO: DO encrypts the privacy data with his public key and
uploads it to the cloud after extension. In particular, there are
multiple DOs in this system, at this time, each DO only has his
own information.

2. CS: Firstly, CS can provide data storage for DOs. In addition,
CS can use the evaluation key perform ciphertext calculations
and share the data when a participant in the system initiates an
inquiry request.

3. DU: DU is the user who has the joint secret key. In particular, DO
can also be DU in the multi-key scenario. After cloud computing,
DU can decrypt the data from CS by using the joint secret key
to obtain the information in the whole system.

We assume that the cloud server in the system model is semi-honest.
t performs the calculation as required, does not quit halfway, and does
ot enter fake data. However, it may be curious about the original
4

r

ata, retain the results of the calculation, and try to obtain sensitive
nformation by analyzing what it has. This semi-honest assumption
akes sense in practice. In this paper, MKHE is used to protect the
rivacy of participants and enable the server to efficiently complete the
alculation.

. Our variant of the DGHV scheme

In order to construct a MKHE scheme based on the DGHV scheme,
e improve the DGHV scheme in this section.

.1. The construction

1. KeyGen(𝜆): Select a random, large and 𝜂-bit prime 𝑝 ∈ [2𝜂−1, 2𝜂).
Choose an integer 𝑞0 in [0, 2𝛾∕𝑝), where 𝑞0 is three times that of
an integer which is square free and without prime factors less
than 2𝜆. Then, let 𝑥0 = 𝑞0 ⋅ 𝑝. Generate integers 𝑥𝑖 = 𝑞𝑖 ⋅ 𝑝+ 𝑟𝑖 for
𝑖 = 1,… , 𝜏, where 𝑞𝑖 ← [0, 𝑞0), 𝑟𝑖 ← (−2𝜌, 2𝜌). The secret key is
𝑠𝑘 = 𝑝 and the public key is 𝑝𝑘 = (𝑥0, 𝑥1,… , 𝑥𝜏 ).

2. Encrypt(𝑝𝑘, 𝑚): For 𝑚 ∈ {0, 1}, select a random integer 𝑟 ∈
(−2𝜌′ , 2𝜌′ ) as the encryption noise and a subset 𝑆 ⊆ {1, 2,… , 𝜏}.
Then calculate and output the ciphertext:

𝑐 =

[

𝑚 + 9𝑟 + 9
∑

𝑖∈𝑆
𝑥𝑖

]

𝑥0

3. Evaluate: The operation of this step is the same as the DGHV
scheme, ciphertext mod 𝑥0 after homomorphic calculation.

4. Decrypt(𝑠𝑘, 𝑐): The decryption process is as follows:

𝑚′ = (𝑐 mod 𝑝) mod 3

In the original scheme, 𝑚 + 2𝑟 + 2
∑

𝑖∈𝑆 𝑥𝑖 has the same parity as 𝑚.
Therefore, the modulus 𝑥0 in the public key must be odd, otherwise
the ciphertext of the two plaintext bits correspond to unique parity
respectively. Because of the change of encryption coefficient and the
uncertainty of the parity of random numbers, the parity of 𝑚 + 9𝑟 +
∑

𝑖∈𝑆 𝑥𝑖 is independent of the parity of 𝑚 and we do not need to restrict
he parity of 𝑥0 in our variant scheme. Further, in order to carry out the
ultiplication in the multi-key case, here we choose the coefficients to

e 9 instead of 3.

emark 1. In homomorphic operation, the noise change is that the
oise after addition is equal to the sum of their respective noises and
he noise after multiplication is equal to the product of their respective
oises.

.2. Parameter limitations

In order to make the subsequent proof clearer, the scheme described
bove is based on the original DGHV scheme and the restrictions of
arameters can be consistent with [11].

1. 𝜌 = 𝜔(log 𝜆) in order to resist brute-force attacks on the noise.
2. 𝜂 ≥ 𝜌 ⋅ 𝛩(𝜆 log2 𝜆) to perform homomorphic operations on

‘‘squashed decryption circuit’’.
3. 𝛾 = 𝜔(𝜂2 log 𝜆) in order to resist various attacks on the approxi-

mate GCD.
4. 𝜏 > 𝛾 +𝜔(log 𝜆) in order to apply the leftover hash lemma in the

security proof.
5. 𝜌′ = 2𝜌 as a secondary noise parameter in encryption.

For convenience, we can take such a set of parameters, 𝜌 = 𝜆, 𝜂 =
𝑂(𝜆2), 𝛾 = 𝑂(𝜆5), 𝜏 = 𝜆 + 𝛾 and 𝜌′ = 2𝜆. In this way, the public
ey size of the scheme is 𝑂(𝜆10), which is the same as that in [11]. In
xperiments, we will optimize and use a scheme with public key size
educed to 𝑂(𝜆3).
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3.3. Correctness

Lemma 1. For a fresh ciphertext 𝑐 ← Encrypt (𝑝𝑘, 𝑚), the noise will not be
more than 𝜏 ⋅ 2𝜌′+2.

Proof. Given the ciphertext 𝑐 as follows:

𝑐 =

[

𝑚 + 9𝑟 + 9
∑

𝑖∈𝑆
𝑥𝑖

]

𝑥0

Since 𝑥0 is the largest one in 𝑝𝑘, we have that

𝑐 =

(

𝑚 + 9𝑟 + 9
∑

𝑖∈𝑆
𝑥𝑖

)

+ 𝑘 ⋅ 𝑥0, where |𝑘| ≤ 𝜏.

For 𝑥𝑖, there exist integers 𝑞𝑖 and 𝑟𝑖, such that 𝑥𝑖 = 𝑞𝑖 ⋅ 𝑝 + 𝑟𝑖, and
|𝑟𝑖| < 2𝜌, |𝑟| < 2𝜌′ , 𝜌′ ≥ 𝜌 + 4. We get:

𝑐 mod 𝑝 = 𝑚 + 9𝑟 + 9
∑

𝑖∈𝑆
𝑟𝑖 (1)

Therefore, (𝑐 mod 𝑝) mod 3 and 𝑚 are the same. Its absolute value is:

𝑐 mod 𝑝| ≤ 23 ⋅ 2𝜌
′+1 + 24𝜏 ⋅ 2𝜌 < 23 ⋅ 2𝜌

′+1 + 𝜏 ⋅ 2𝜌
′+1 < 𝜏 ⋅ 2𝜌

′+2 (2)

Definition 1 (Permitted Circuit [10]). For a circuit 𝐶, we extend it to
integers, that is, operations are applied to integers rather than bits. For
any 𝑖 ≥ 1 and any integer set which the absolute value of each number
in is less than 𝜏 𝑖 ⋅ 2𝑖(𝜌′+2), the permitted circuit outputs a result with an
absolute value of up to 2𝜂−3−𝑛 < 𝑝∕ (4 (𝜆 + 1)), where 𝑛 = ⌈log2 (𝜆 + 1)⌉.
Let 𝜀 represent the set of permitted circuits. We conclude that:

Theorem 2. Our improved scheme is correct for 𝜀.

Proof. Suppose that 𝐶 is a permitted circuit in 𝜀 with 𝑡 inputs. 𝑐 is the
output after circuit operation. 𝐶 ′ is the generalized circuit of 𝐶, and its
operations are over integers. For 𝑐𝑖, 𝑖 = 1, 2,… , 𝑡:

mod 𝑝 = 𝐶 ′(𝑐1,… , 𝑐𝑡) mod 𝑝

= 𝐶 ′(𝑐1 mod 𝑝,… , 𝑐𝑡 mod 𝑝) mod 𝑝

According to Lemma 1, we know that for each ciphertext, |𝑐𝑖 mod 𝑝| <
𝜏 ⋅2𝜌′+2. So we obtain the following formula according to the definition
of 𝜀 ∶

|𝐶 ′(𝑐1 mod 𝑝,… , 𝑐𝑡 mod 𝑝)| ≤ 2𝜂−4 ≤ 𝑝∕8

That is to say 𝑐 mod 𝑝 = 𝐶 ′(𝑐1 mod 𝑝,… , 𝑐𝑡 mod 𝑝). Further for
(𝑐 mod 𝑝)mod 3, we have:

[𝑐 mod 𝑝]3 = 𝐶
(

𝑚1,… , 𝑚𝑡
)

(3)

Therefore, the result obtained by decryption is the same as that of
the same operation on the plaintext and the correctness of our improved
scheme is guaranteed.

Remark 2. From the definition of the permitted circuit, we cannot
directly judge whether a given calculation can be allowed. Therefore,
a sufficient condition for the permission of a multivariate polynomial 𝑓
is given for the related arithmetic circuit 𝐶. If the degree of polynomial
𝑓 is 𝑑 and ‖𝑓‖1 is the sum of absolute values of its coefficients, then
whether 𝐶 ∈ 𝜀 can be judged by:

𝑑 ≤
𝜂 − 3 − 𝑛 − log ‖𝑓‖1

𝜌′ + 2 + log 𝜏
(4)

s in [11], polynomials satisfying (4) are permitted polynomials and
he set of them is defined as 𝜀.

. The multi-key homomorphic encryption scheme

In this section, we give a detailed description of our MKHE scheme
5

elied on the improved DGHV scheme. Our goal is to build a framework
Fig. 2. Multi-key homomorphic encryption algorithm framework.

that supports performing calculation on encrypted data under different
keys in cloud environment. As shown in Fig. 2, our scheme consists
of data owner, cloud server and data user which can also be data
owner. A trusted third party (KGC) is responsible for the generation
and distribution of keys for the system. Assuming that there are 𝑡 users
in the system, for the sake of clarity, we take two ciphertexts encrypted
by Alice and Bob as examples in the figure. The detailed process of each
part will be described below.

4.1. Scheme construction

We assume there are 𝑡 participants in the multi-key setting.

1. MK.KeyGen(𝜆): Each user obtains his own public and secret keys
from the trusted third party, which is generated by running
KeyGen algorithm in Section 3.1, and the secret key 𝑝𝑖 shall be
with the form of 9𝑘 + 1:

𝑝𝑘𝑖 =
(

𝑥𝑖,0, 𝑥𝑖,1,… , 𝑥𝑖,𝜏
)

, 𝑠𝑘𝑖 = 𝑝𝑖

Hence, the sequence of secret keys in the trusted party is (𝑠𝑘1,
𝑠𝑘2,… , 𝑠𝑘𝑡) = (𝑝1, 𝑝2,… , 𝑝𝑡), where 𝑝𝑖 ∈ [2𝜂−1, 2𝜂). Then, sim-
ilarly, a key 𝑝𝑡+1 is generated. The joint key is calculated by
multiplying all the 𝑝𝑖 generated above, namely:

𝑃 =
𝑡+1
∏

𝑖=1
𝑝𝑖

This is executed by the trusted party and sent to participating
users.

2. MK.Encrypt(𝑝𝑘𝑖, 𝑚𝑖): For one user, the corresponding public key
is 𝑝𝑘𝑖 and the message to be encrypted is 𝑚𝑖 ∈ {0, 1}. Run Encrypt
algorithm to calculate 𝑐𝑖:

𝑐𝑖 =

[

𝑚𝑖 + 9𝑟𝑖 + 9
∑

𝑗∈𝑆𝑖

𝑥𝑖,𝑗

]

𝑥𝑖,0

where 𝑟𝑖 ∈ (−2𝜌′ , 2𝜌′ ), 𝑆𝑖 ⊆ {1, 2,… , 𝜏}.
3. MK.Extend(𝑐𝑖, 𝑒𝑘𝑖): After the user get his own secret key and the

joint secret key, he can calculate the extended key required for
ciphertext extension, namely:

𝑒𝑘𝑖 =
𝑃
𝑝𝑖

= 𝑑𝑖

For the ciphertext 𝑐𝑖, it can be expanded to the joint secret key
using 𝑒𝑘𝑖 and obtain the extended ciphertext 𝑐𝑖 by running the
extension procedure described below:

𝑐 = 𝑐 ⋅
𝑒𝑘𝑖 = 𝑐 ⋅

𝑑𝑖

𝑖 𝑖 3 𝑖 3
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4. MK.Evaluate(𝑝𝑘, 𝐶, (𝑐1,… , 𝑐𝓁 , 𝑒𝑣𝑘)): Given the circuit 𝐶 with 𝓁
inputs and 𝓁 extended ciphertexts (𝑐1,… , 𝑐𝓁), homomorphic op-
eration is performed on the extended ciphertexts by the cloud.
The specific operations are as follows:

(a) MK.Add(𝑐1, 𝑐2): 𝑐𝑎𝑑𝑑 = 𝑐1 + 𝑐2
(b) MK.Mult(𝑐1, 𝑐2):

𝑐𝑚𝑢𝑙𝑡 =
𝑐1 ⋅ 𝑐2
𝑒𝑣𝑘

where the evaluation key 𝑒𝑣𝑘 is 𝑝𝑡+1, which is generated by the
trusted party and sent to the cloud server.

5. MK.Decrypt(𝑃 , 𝑐): Here 𝑐 is the extended ciphertext or the cipher-
text after homomorphic operation on extended ciphertexts. Dur-
ing decryption, in order to get 𝑚′, the participant first calculate
the following formula with the joint secret key 𝑃 :

(𝑐 mod 𝑃 ) mod 3

𝑚′ is 0 when the above result is an integer or its fractional part
is greater than 0.5, otherwise 𝑚′ is 1.

4.2. Correctness of ciphertext extension

The user extend the ciphertext 𝑐𝑖 to the joint secret key by using
the extended key 𝑒𝑘𝑖. According to the scheme, the verification is as
follows, where 𝑆𝑖 is a subset of public key of user 𝑖 and 𝑘𝑖 is an integer.

(

𝑐𝑖 mod 𝑃
)

mod 3

=
((

𝑐𝑖 ⋅
𝑒𝑘𝑖
3

)

mod 𝑃
)

mod 3

=

(((

𝑚𝑖 + 9𝑟𝑖 + 9
∑

𝑗∈𝑆𝑖

𝑥𝑖,𝑗 + 𝑘𝑖𝑥𝑖,0

)

⋅
𝑑𝑖
3

)

mod 𝑃

)

mod 3

=

(

𝑚𝑖
𝑑𝑖
3

+ 3𝑟𝑖𝑑𝑖 + 3
∑

𝑗∈𝑆𝑖

𝑟𝑖,𝑗𝑑𝑖

)

mod 3 (5)

=
(

𝑚𝑖
𝑑𝑖
3

)

mod 3

First, when 𝑚𝑖 = 0, we have
(

𝑚𝑖
𝑑𝑖
3

)

mod 3 = 0. 𝑑𝑖 is an odd integer
with the form of 9𝑘+1 because the essence of 𝑑𝑖 is the product of some
primes with the form of 9𝑘 + 1. Then, when 𝑚𝑖 = 1,

(

𝑚𝑖
𝑑𝑖
3

)

mod 3 will
not be an integer and its fractional part is less than 0.5. Therefore, the
corresponding plaintext is 1 according to the decryption rule.

In addition, the conversion between decimals and integers can be
done by encoding and decoding. If a decimal is rounded directly, some
valid numbers may be affected. In order to guarantee precision within
a certain range 1∕𝛥, where 𝛥 > 0, multiply by 𝛥 when encoding and
ivide by 𝛥 when decoding. For example, when we round 𝑥 = 1.666,
e do not want to get the closest integer 2, but in order to preserve

he precision of 0.2, we can define 𝛥 = 5, retain the precision of
∕𝛥 = 0.2, 𝛥𝑥 = 8.33 ≈ 8, and 8∕𝛥 = 1.6, which will not affect the
orrect decryption.

It can be seen from Eq. (1) that the noise of unextended ciphertext
𝑖 is

(

𝑐𝑖 mod 𝑝𝑖
)

= 𝑚𝑖 + 9𝑟𝑖 + 9
∑

𝑗∈𝑆𝑖
𝑟𝑖,𝑗 , and

(

𝑐𝑖 mod 𝑝𝑖
)

< 𝑝𝑖
2 by the

decryption correctness of the improved scheme. From Eq. (5), we can
conclude that the noise of the extended ciphertext is:

𝑐𝑖 mod 𝑃 =

(

𝑚𝑖 + 9𝑟𝑖 + 9
∑

𝑗∈𝑆𝑖

𝑟𝑖,𝑗

)

⋅
𝑑𝑖
3

ence, 𝑐𝑖 mod 𝑃 < 𝑝𝑖
2 ⋅ 𝑑𝑖

3 = 𝑝𝑖⋅𝑑𝑖
6 < 𝑃

2 , which meets the condition for
orrect decryption.
6

4.3. Analysis of homomorphic operations

For the MKHE scheme, homomorphic addition and homomorphic
multiplication are redefined. Suppose there are two ciphertexts 𝑐1 and
𝑐2, which are encrypted by their respective public keys 𝑝𝑘1 and 𝑝𝑘2. By
the extended keys, 𝑐1 and 𝑐2 can be obtained, which are the extended
ciphertexts of 𝑐1 and 𝑐2 respectively. The forms of 𝑐1 and 𝑐2 are:

𝑐1 =

(

𝑚1 + 9𝑟1 + 9
∑

𝑛∈𝑆1

𝑥1,𝑛 + 𝑘1𝑥1,0

)

⋅
𝑑1
3

(6)

𝑐2 =

(

𝑚2 + 9𝑟2 + 9
∑

𝑘∈𝑆2

𝑥2,𝑘 + 𝑘2𝑥2,0

)

⋅
𝑑2
3

(7)

4.3.1. Addition
For homomorphic addition of ciphertexts 𝑐1 and 𝑐2, add them di-

rectly and output: 𝑐𝑎𝑑𝑑 = 𝑐1 + 𝑐2. We now show the result 𝑐𝑎𝑑𝑑 can
be decrypted correctly under the joint secret key 𝑃 to get message
𝑚𝑎𝑑𝑑 =

(

𝑚1 + 𝑚2
)

mod 2, that is, the XOR operation of two plaintext
bits. We first calculate the following formula:

(

𝑐1 + 𝑐2
)

mod 𝑃

=

(

𝑚1 + 9𝑟1 + 9
∑

𝑛∈𝑆1

𝑟1,𝑛

)

⋅
𝑑1
3

+

(

𝑚2 + 9𝑟2 + 9
∑

𝑘∈𝑆2

𝑟2,𝑘

)

⋅
𝑑2
3

= 𝑚1
𝑑1
3

+ 3𝑟1𝑑1 + 3
∑

𝑛∈𝑆1

𝑟1,𝑛𝑑1 + 𝑚2
𝑑2
3

+ 3𝑟2𝑑2 + 3
∑

𝑘∈𝑆2

𝑟2,𝑘𝑑2 (8)

((

𝑐1 + 𝑐2
)

mod 𝑃
)

mod 3 =
(

𝑚1
𝑑1
3

+ 𝑚2
𝑑2
3

)

mod 3 (9)

The following analysis shows that 𝑐𝑎𝑑𝑑 can be obtained according to
the decryption criterion. In the correctness verification of the extended
ciphertext, we know that 𝑑𝑖 is odd. So neither 𝑑1

3 nor 𝑑2
3 is an integer

here. Then, according to the possible values of 𝑚1 and 𝑚2, it can be
divided into the following four situations:

1. When 𝑚1 = 0 and 𝑚2 = 0,
(

𝑚1
𝑑1
3 + 𝑚2

𝑑2
3

)

mod 3 = 0 is an integer.
From the criterion, we have:

𝑚′ = 0 =
(

𝑚1 + 𝑚2
)

mod 2

2. When 𝑚1 = 1 and 𝑚2 = 0,
(

𝑚1
𝑑1
3 + 𝑚2

𝑑2
3

)

mod 3 =
(

𝑚1
𝑑1
3

)

mod 3
is not an integer and its fractional part is less than 0.5. From the
criterion, we have:

𝑚′ = 1 =
(

𝑚1 + 𝑚2
)

mod 2

3. When 𝑚1 = 0 and 𝑚2 = 1,
(

𝑚1
𝑑1
3 + 𝑚2

𝑑2
3

)

mod 3 =
(

𝑚2
𝑑2
3

)

mod 3
is similar to case 2.

4. When 𝑚1 = 1 and 𝑚2 = 1,
(

𝑚1
𝑑1
3 + 𝑚2

𝑑2
3

)

mod 3 is not an integer
but its fractional part is greater than 0.5. From the criterion, we
have:

𝑚′ = 0 =
(

𝑚1 + 𝑚2
)

mod 2

Thus, in any case, 𝑚𝑎𝑑𝑑 can be obtained by MK.Decrypt . In addi-
ion, the noise of 𝑐𝑎𝑑𝑑 is equal to the sum of their respective noises
rom Eq. (8).

.3.2. Multiplication
In the homomorphic multiplication of extended ciphertexts 𝑐1 and

𝑐2, the evaluation key 𝑒𝑣𝑘 generated by the trusted party is used instead
f simply multiplying the ciphertexts. We now describe how the result
𝑚𝑢𝑙𝑡 can be decrypted correctly under the joint secret key 𝑃 to get the
essage 𝑚𝑚𝑢𝑙𝑡 = 𝑚1 ⋅ 𝑚2. First, 𝑐𝑚𝑢𝑙𝑡 is:

𝑚𝑢𝑙𝑡 =
𝑐1 ⋅ 𝑐2
𝑒𝑣𝑘

where 𝑒𝑣𝑘 is a large prime number and the common divisor of 𝑒𝑘1 and
𝑒𝑘 . Further detailed description is:
2
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By analyzing from the perspective of the trusted party responsible
for distributing keys, 𝑒𝑘1⋅𝑒𝑘2

𝑒𝑣𝑘 is a multiple of 𝑃 . For the simplicity of the
argument, we set it to 𝑃 ′. Hence, the calculation result 𝑐𝑚𝑢𝑙𝑡 is denoted
y:

𝑚1𝑚2 + 9𝑞′ + 𝑘2𝑚1𝑥2,0 + 81𝑞′′ + 𝑘1𝑚2𝑥1,0 + 𝑘1𝑘2𝑥1,0𝑥2,0
) 𝑃 ′

9
where 𝑞′ is the sum of all formulas in the following form:

𝑚𝑖𝑟𝑗 , 𝑚𝑖
∑

𝑘∈𝑆𝑗

𝑥𝑗,𝑘, 𝑘𝑖𝑥𝑖,0𝑟𝑗 , 𝑘𝑖𝑥𝑖,0
∑

𝑘∈𝑆𝑗

𝑥𝑗,𝑘

𝑞′′ is the sum of all formulas in the following form:

𝑟𝑖𝑟𝑗 , 𝑟𝑖
∑

𝑘∈𝑆𝑗

𝑥𝑗,𝑘,
∑

𝑛∈𝑆𝑖

𝑥𝑖,𝑛 ⋅
∑

𝑘∈𝑆𝑗

𝑥𝑗,𝑘

The above formula is obtained by substituting Eqs. (6), (7) into 𝑐𝑚𝑢𝑙𝑡,
where 𝑖 ≠ 𝑗 ∈ {1, 2}. So

(

𝑐𝑚𝑢𝑙𝑡 mod 𝑃
)

is:

𝑐1 ⋅ 𝑐2
𝑒𝑣𝑘

mod 𝑃 =
(

𝑚1𝑚2
𝑃 ′

9
+ 𝑘2𝑚1𝑥2,0

𝑃 ′

9
+ 𝑘1𝑚2𝑥1,0

𝑃 ′

9

)

mod 𝑃

ecause 3 is the factor of 𝑥𝑖,0, we can make 𝑘1 and 𝑘2 be multiples of
by selecting the appropriate subset 𝑆𝑖, we have:

𝑐1 ⋅ 𝑐2
𝑒𝑣𝑘

mod 𝑃 = 𝑚1𝑚2
𝑃 ′

9
mod 𝑃

As long as there is 𝑚𝑖 = 0,
(

𝑐𝑚𝑢𝑙𝑡 mod 𝑃
)

mod 3 is 0 which is an integer,
o 𝑚′ = 𝑚1 ⋅ 𝑚2 = 0. When 𝑚1 = 1 = 𝑚2 = 1,

(

𝑐𝑚𝑢𝑙𝑡 mod 𝑃
)

mod 3 is
ot an integer and its fractional part is less than 0.5 because 𝑃 ′ has the
ame form of 9𝑘+1 as 𝑑𝑖. From the criterion, we have 𝑚′ = 𝑚1 ⋅𝑚2 = 1.

From the mentioned above, it can be seen that by multiplying the
xtended key by 1∕3, 𝑚1𝑚2 is multiplied by 𝑃 ′∕9 instead of 𝑃 ′, so
hat

(

𝑐𝑚𝑢𝑙𝑡 mod 𝑃
)

= 𝑚1𝑚2
𝑃 ′

9 mod 𝑃 meets the condition for correct
decryption. Other noise components will also be multiplied by 𝑃 ′∕9,
uch as 𝑚1𝑟2

𝑃 ′

9 , 𝑚2𝑟1
𝑃 ′

9 , in this case, even 𝑟1, 𝑟2 are small, the sum of
noise components will also affect correct decryption. In order to avoid
decryption failure, we modify the original scheme in Section 3 and
change the corresponding coefficient to 9 to ensure 9𝑚1𝑟2 ⋅

𝑃 ′

9 can be
converted into multiple of 𝑃 .

5. Security of our schemes

In this part, we prove the security of the improved scheme and
the multi-key scheme. The improved scheme is semantically secure
under the variant of approximate GCD assumption, i.e., error-free
approximate GCD assumption. The multi-key scheme also depends on
the difficulty of large integer factorization to ensure the security.

5.1. Security of the improved scheme

We prove that our scheme is semantically secure under the (stro-
nger) error-free approximate GCD assumption, and the security proof
follows the strategy in [11]: The adversary who destroys the security
of this scheme can be transformed into an least significant bit (LSB)
predictor of (𝑧 mod 𝑝), where 𝑧 is an integer. This in turn can recover 𝑝
in the approximate GCD problem.

For specific integers 𝑝 and 𝑞0, we define the following modified
distribution:
′

𝜌
(

𝑝, 𝑞0
)

=
{

Choose 𝑞 ← 𝑍 ∩
[

0, 𝑞0
)

, 𝑟 ← 𝑍 ∩ (−2𝜌, 2𝜌)

Output ∶ 𝑥 = 𝑝 ⋅ 𝑞 + 𝑟}

efinition 2 ((𝜌, 𝜂, 𝛾)-Error-free Approximate GCD [29]). Let 𝑝 be an 𝜂-
it prime, 𝑞0 be a random integer in [0, 2𝛾∕𝑝) and 𝑞0 be three times that
f an integer which is square free and without prime factors less than
𝜆. Given 𝑥0 = 𝑞0 ⋅𝑝, polynomially many samples randomly chosen from
′ (𝑝, 𝑞

)

, output 𝑝.
7

𝜌 0
heorem 3. Suppose  is an adversary of our improved scheme with non-
negligible advantage 𝜀, then a simulator  can be constructed to solve the
(𝜌, 𝜂, 𝛾)-error-free-approximate-GCD problem. The probability of success of
simulator  is at least 𝜀∕2. The running time of  can be represented by a
polynomial about 𝜆, 1∕𝜀 and the running time of .

Proof. Consider that an adversary  can break the semantic security
of our improved scheme with advantage 𝜀 in polynomial time, that is,
the probability of  outputting a correct plaintext for a set of public
keys and a ciphertext (generated by KeyGen and Encrypt) is at least
1∕2 + 𝜀. We construct a simulator  using . For , given 𝑥0 with 𝛾
bits,  recovers 𝑝 by sampling polynomial samples from the distribution
′

𝜌
(

𝑝, 𝑞0
)

. The process is as follows:

5.1.1. Generation of public key
The public key is created by . First, define 𝑥0 = 𝑞0 ⋅ 𝑝, where

𝑞0 is three times that of an integer which is square free and without
prime factors less than 2𝜆. Then, by sampling 𝑥𝑖 from the distribution
′

𝜌
(

𝑝, 𝑞0
)

for 𝑖 = 1,… , 𝜏,  obtains the public key 𝑝𝑘 =
(

𝑥0, 𝑥1,… , 𝑥𝜏
)

.
In this way, the public key distribution created by  is the same as that
generated by KeyGen.

5.1.2. A LSB predictor
In this step,  constructs a high-accuracy LSB predictor using 

to achieve the goal recovering 𝑝. For an integer 𝑧 ∈ [0, 2𝛾 ), 𝑞𝑧 is the
uotient of 𝑧 with respect to 𝑝 and the predictor will output a reliable
rediction about the least significant bit of 𝑞𝑝(𝑧).  interacts with  as
lgorithm 1.
Algorithm 1 Least Significant Bit Learning
Input: An integer 𝑧 ∈ [0, 2𝛾 ), a set of public keys generated by ,

𝑝𝑘 =
(

𝑥0, 𝑥1,… , 𝑥𝜏
)

.
Output: The least significant bit of 𝑞𝑝(𝑧).
1: for i=1 to 𝑝𝑜𝑙𝑦 (𝜆) ∕𝜀 do // 𝜀 is the advantage of 
2: Randomly choose 𝑚𝑖 ∈ {0, 1} and 𝑟𝑖 ∈

(

−2𝜌′ , 2𝜌′
)

;

3: Calculate 𝑐𝑖 =
[

𝑧 + 𝑚𝑖 + 9𝑟𝑖 + 9
∑

𝑗∈𝑆𝑖
𝑥𝑗
]

𝑥0
;

4: Ask  and get a prediction 𝑎𝑖 ← 
(

𝑐𝑖, 𝑝𝑘
)

;
5: Let 𝑏′𝑖 = 𝑎𝑖 ⊕ parity(𝑧)⊕𝑚𝑖; // 𝑏′𝑖 is the parity of 𝑞𝑝(𝑧)
6: end for
7: Select the majority among 𝑏′𝑖 as 𝑏𝑖;
8: Return 𝑏𝑖.

According to Leftover Hash Lemma [43], the distribution of cipher-
text 𝑐𝑖 of the above subroutine in line 3 is the same as that of direct
encryption of

[

𝑟𝑝(𝑧)
]

2 ⊕ 𝑚𝑖. Because 𝑝 is an odd number, we have
[

𝑞𝑝(𝑧)
]

2 =
[

𝑟𝑝(𝑧)
]

2 ⊕ parity(𝑧). If  can predict the encrypted bit with a
significant advantage under 𝑝𝑘, that is, 𝑎𝑖 =

[

𝑟𝑝(𝑧)
]

2 ⊕𝑚𝑖. So:

𝑏𝑖 = 𝑎𝑖 ⊕ parity(𝑧)⊕𝑚𝑖 =
[

𝑟𝑝(𝑧)
]

2 ⊕ parity(𝑧) =
[

𝑞𝑝(𝑧)
]

2

When  guesses successfully, 𝑏𝑖 represents the LSB prediction of 𝑞𝑝(𝑧).
Therefore, the subroutine can output

[

𝑞𝑝(𝑧)
]

2 with high probability.

5.1.3. Binary GCD algorithm
Under the condition that the LSB oracle of

[

𝑞𝑝(𝑧)
]

2 can obtain
according to the above subroutine, a binary GCD algorithm can be
constructed as in [11]. For arbitrary two integers 𝑧𝑖 = 𝑞𝑝(𝑧𝑖) ⋅ 𝑝 +
𝑟𝑝(𝑧𝑖), 𝑖 = {1, 2}, we solve the odd part of GCD(𝑞𝑝(𝑧1), 𝑞𝑝(𝑧2)). The
detailed description is as Algorithm2.

Since 𝑟𝑝(𝑧𝑖) ≪ 𝑝, deducting the parity bit does not alter the quotient
of 𝑧 relative to 𝑝, but only the remainder, namely, 𝑞𝑝(𝑧𝑖 − parity(𝑧𝑖)) =
𝑞𝑝(𝑧𝑖). So if 𝑧′𝑖 is the result after recalculation in line 7, we have:

𝑞𝑝(𝑧′𝑖) =
𝑞𝑝(𝑧𝑖)
2

, 𝑟𝑝(𝑧′𝑖) =
𝑟𝑝(𝑧𝑖 − parity(𝑧𝑖))

2

|

|𝑟 (𝑧′)|| ≤
|

|

|

𝑟𝑝(𝑧𝑖) + 1||
| ≤ |

|𝑟 (𝑧 )||

|

𝑝 𝑖
| 2 |

𝑝 𝑖
|
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Algorithm 2 Binary GCD

Input: Two integers 𝑧1 = 𝑞𝑝
(

𝑧1
)

⋅ 𝑝 + 𝑟𝑝
(

𝑧1
)

, 𝑧2 = 𝑞𝑝
(

𝑧2
)

⋅ 𝑝 +
𝑟𝑝
(

𝑧2
)

, 𝑟𝑝
(

𝑧𝑖
)

≪ 𝑝.
utput: The odd part of GCD

(

𝑞𝑝
(

𝑧1
)

, 𝑞𝑝
(

𝑧2
))

.
1: while 𝑧2 ≠ 0 do
2: if 𝑧2 > 𝑧1 then
3: Exchange them, 𝑧1 ⇔ 𝑧2; // To ensure 𝑧1 is large
4: end if
5: Get the LSB predictions of 𝑞𝑝

(

𝑧𝑖
)

using Algorithm 1 and denoted
by 𝑏𝑖;

6: if 𝑧𝑖 with 𝑏𝑖 = 0 then
7: Recalculate 𝑧𝑖, 𝑧𝑖 =

(

𝑧𝑖 − parity
(

𝑧𝑖
))

∕2; // The new 𝑧𝑖 is an
integer

8: else if the parity bits of 𝑞𝑝
(

𝑧𝑖
)

are both 1 then
9: Let 𝑧1 = 𝑧1 − 𝑧2 and 𝑏1 = 0; // Redefine to make 𝑧1 even
0: end if
1: end while
2: Return the final value of 𝑞𝑝(𝑧′1) as the odd part of GCD(𝑞𝑝(𝑧1), 𝑞𝑝(𝑧2))

for initial integers.

For 𝑧1 replaced by 𝑧1−𝑧2 in line 9, then will perform the calculation in
ine 7 in the next cycle, we record the results of the two steps as 𝑧′1, 𝑧

′′
2

emporarily. So, we get:

𝑟𝑝(𝑧′′1 )
|

|

|

=
|

|

|

𝑟𝑝(𝑧1) − 𝑟𝑝(𝑧2) − parity(𝑧′1)
|

|

|

2
≤ max

{

𝑟𝑝(𝑧1), 𝑟𝑝(𝑧2)
}

Therefore, 𝑟𝑝(𝑧𝑖) will not exceed the largest of the original two
numbers. The above process is equivalent to continuously using binary
GCD on 𝑞𝑝(𝑧𝑖). Finally, two integers 𝑧′1, 𝑧

′
2 = 0 will be obtained after

𝑂(𝛾) iteration, and 𝑞𝑝(𝑧′1) is the odd part of the original two integers
GCD(𝑞𝑝(𝑧1), 𝑞𝑝(𝑧2)).

5.1.4. Solution of p
To solve 𝑝,  selects a pair of elements 𝑧∗1 , 𝑧

∗
2 from ′

𝜌
(

𝑝, 𝑞0
)

and
runs the binary GCD algorithm. The probability that 𝑞𝑝(𝑧∗1) and 𝑞𝑝(𝑧∗2)
are coprime is at least 6

𝜋2
≈ 0.6. So we will get an integer 𝑧̃ = 1⋅𝑝+𝑟, |𝑟| <

𝜌 in Algorithm 2. Otherwise,  reselects two numbers from ′
𝜌
(

𝑝, 𝑞0
)

.
hen, let 𝑧1 = 𝑧∗1 , 𝑧2 = 𝑧̃ and use the binary GCD algorithm on these
wo numbers. The binary representation of 𝑞𝑝(𝑧∗1) can be obtained from
he sequence of parity bits of 𝑞𝑝(𝑧∗1) in the iterative process, that is, 
an get 𝑞𝑝(𝑧∗1). Finally,  finds 𝑝 by calculating 𝑝 =

⌊

𝑧∗1∕𝑞𝑝
(

𝑧∗1
)]

.
So far, we have completed how simulator  uses  to solve 𝑝 under

he condition that  can guess the plaintext with certain advantage.
hen, we will analyze the probability of success of . As demonstrated

n [11]: We denote the set of 𝑝 ∈ [2𝜂−1, 2𝜂) by  . If  has an advantage
in guessing the encrypted bits under 𝑝𝑘, for at least 𝜀∕2 of 𝑝 in  , the
dvantage of  is at least 𝜀∕2. Go a step further, for such a fixed 𝑝, the
dvantage of  is at least 𝜀∕4 for at least 𝜀∕4 of its corresponding public
ey. In line 4 of Algorithm 1,  has advantages at least 𝜀∕4−negl. Then
he correct answer will be returned with an overwhelming probability
rom the majority,  will utilize this to find 𝑝.

Therefore, for such 𝑝, the success probability of simulator  is at
east 𝜀∕4 − negl in a round. By repeating above process (4∕𝜀) ⋅ 𝜔(log 𝜆)
imes with random public keys, 𝑝 will be recovered with a significant
robability. In addition, the overall success probability of  is the
orresponding density of  , namely at least 𝜀∕2. At this point, we have
ompleted the proof of Theorem 3.

The security of the scheme is reduced to the error-free AGCD
roblem by Theorem 3. Since the error-free AGCD assumption holds,
hat is, the problem is difficult for any polynomial time solver, our
8

mproved encryption scheme is semantically secure.
Table 2
Summary of integer factorization algorithms.

Algorithm Time complexity

Trial division 𝑂(
√

𝑛∕ log 𝑛)

Pollard’s rho algorithm [44] 𝑂(𝑛
1
4 ∕ log 𝑛)

Continued fraction method 𝑂
(

exp
(

𝑐
√

log 𝑛 log log 𝑛
))

Elliptic curve factorization [45] 𝑂
(

exp (2 + 𝑜 (1))
√

log 𝑝 log log 𝑝
)

Quadratic sieve [46] 𝑂
(

exp (1 + 𝑜 (1))
√

log 𝑛 log log 𝑛
)

General number field sieve [47] 𝑂
(

exp
(

(

64
9

)
1
3 + 𝑜(1)

)

(log 𝑛)
1
3 (log log 𝑛)

2
3

)

5.2. Security of multi-key homomorphic encryption scheme

In the multi-key scheme, each user encrypts the message with his
own public key, and the encryption algorithm adopts the improved
DGHV scheme, so the security inherits the single-key scheme, which
has been proved in the previous section. According to the proof in [29],
an adversary  with advantage 𝜀 can be converted into a solver 
to solve the error-free approximate GCD. Here we argue that using
prime number of the form 9𝑘+1 will not enhance the advantage of the
adversary. We mainly from the public key and ciphertext two aspects of
analysis. In the public key, the selection of 𝑞0 is random, and random
number 𝑟 is added to the composition of other public key elements.
Similarly, random noise is added to each ciphertext during encryption,
so that the randomness of the generated public key and ciphertext
will not be changed because of the form of secret key. Therefore, no
additional advantage is given to the , that is, this selection method
does not affect the security of the scheme.

Compared with previous multi-key schemes, such as [36–38,40],
we introduce the extended key in the process of ciphertext extension.
Therefore, it is necessary to ensure that the generation of extended key
will not affect the security of the scheme, that is, the user cannot obtain
secret keys of other users through cracking the extended key. Then we
respectively prove that users and the cloud server in the system are
zero-knowledge.

For user 𝑖, his own public and secret keys and the joint secret key
generated by a trusted third party are received. Then user 𝑖 calculates
the extended key 𝑒𝑘𝑖 according to the joint secret key and the personal
secret key. The essence of extended keys 𝑒𝑘𝑖 is the product of some
large prime numbers. Hence, the security depends on the intractability
of the problem of factoring large integers. In addition, when the number
of users is 2, the indecomposability of the keys is guaranteed due to
the existence of the evaluation key. In Table 2, we list some effective
methods to deal with the integer factoring. So far, for the large integer
factorization problem, most of the research work is to improve existing
algorithms.

None of these algorithms succeed in factoring the product of 1024-
bit prime numbers. In the parameter selection of our scheme, the bit
size of prime 𝑝𝑖 is 𝜂 = 𝜆2. The product of two or even more primes
will far exceed the factorization range of these algorithms, so it can
resist the known attack on integer factorization. Therefore, in addition
to knowing relevant information of the user’s own keys, the user cannot
further decompose to obtain secret keys of other users. That is to say,
although the user knows the joint secret key, the joint secret key will
not reveal the information of others.

For the cloud server, the evaluation key is received and used in
the homomorphic multiplication. Generating the evaluation key by the
trusted third party is feasible because it is the same as generating the
secret key for a user. However, it is impossible for the cloud server to
obtain the participating users’ secret keys and the joint secret key based
on the evaluated key. Therefore, the evaluation key is zero-knowledge

to the cloud server.
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Table 3
Comparison of relevant schemes.

Scheme 𝜌 𝜂 𝛾 𝛼 𝛽 𝜏 Constraint condition Public key Multi-key Difficult problem

DGHV [11] 𝑂(𝜆) 𝑂(𝜆2) 𝑂(𝜆5) / / 𝑂(𝜆5) 𝜏 ≥ 𝛾 + 𝜔(log 𝜆) 𝑂(𝜆10) × Approximate GCD
CMNT [29] 𝑂(𝜆) 𝑂(𝜆2) 𝑂(𝜆5) 𝑂(𝜆) 𝑂(𝜆2) / 𝛼 ⋅ 𝛽2 ≥ 𝛾 + 𝜔(log 𝜆) 𝑂(𝜆7) × Error-free approximate GCD
CNT [30] 𝑂(𝜆) 𝑂(𝜆2) 𝑂(𝜆5) 𝑂(𝜆2) / 𝑂(𝜆3) 𝛼 ⋅ 𝜏 ≥ 𝛾 + 𝜔(log 𝜆) 𝑂(𝜆5) × Error-free approximate GCD
Chen [31] 𝑂(𝜆) 𝑂(𝜆2) 𝑂(𝜆5) 𝑂(𝜆2) 𝑂(𝜆1.5) / 𝛼 ⋅ 𝛽2 ≥ 𝛾 + 𝜔(log 𝜆) 𝑂(𝜆3.5) × Error-free approximate GCD
Ours 𝑂(𝜆) 𝑂(𝜆2) 𝑂(𝜆5) 𝑂(𝜆2) 𝑂(𝜆) / 𝛼 ⋅ 𝛽3 ≥ 𝛾 + 𝜔(log 𝜆) 𝑂(𝜆3)

√

Error-free approximate GCD
Integer factorization
O

5.3. Some discussion

5.3.1. Decryption mode
In the previous multi-key schemes [36–38,40], decryption requires

secret keys of all participants, which is mainly caused by the construc-
tion of the joint secret key being a concatenation. However, since it
is impractical for one user to obtain secret keys of all users, only the
trusted party with secret keys of all participants can decrypt. Therefore,
it is necessary to construct a two-round MPC protocol to complete
distributed decryption such as [36,40]. The distributed decryption
protocol is mainly divided into two steps: (1) each user executes
partial decryption of the corresponding entry; (2) the results of partial
decryption are combined to complete final decryption.

It is difficult for users to decompose the joint secret key in our multi-
key scenario, so we take user 𝑖 as an example, where user 𝑖 has his own
keys (𝑝𝑘𝑖, 𝑠𝑘𝑖) and the joint secret key. In the cloud environment, two-
round MPC is not required to decrypt multi-key ciphertexts from the
cloud, and other users can be offline. In addition, for the data that user
𝑖 wants to share with other users, the cloud server stores the extended
ciphertexts, and user 𝑖 may still use and download from the cloud.
Besides decrypting by the joint secret key, we provide another option,
that is, user 𝑖 can still decrypt by using his own secret key. The principle
is as follows:

According to the algorithm, it can be known that the user’s extended
key and personal secret key are coprime. Therefore, there is an inverse
of 𝑒𝑘𝑖 under modulus 𝑝𝑖, which can be obtained by the Extended
Euclidean Algorithm and satisfy:

𝑒𝑘𝑖 ⋅ 𝑒𝑘
−1
𝑖 ≡ 1 mod 𝑝𝑖

For the extended ciphertext 𝑐𝑖 of user 𝑖, the modulus can be returned
to 𝑝𝑖 by using the inverse 𝑒𝑘−1𝑖 , and then decrypted with his secret key
𝑝𝑖, that is:

𝑚′ ←
(

3𝑐𝑖 ⋅ 𝑒𝑘−1𝑖
)

mod 𝑝𝑖 mod 3

5.3.2. How to manage noise growth

Multiplication leads to faster noise growth than addition in homo-
morphic encryption. Noise grows almost exponentially with the number
of multiplications in the original framework [11]. The modulus is the
upper bound for correct decryption. So noise reaches the limit after
performing logarithmic multiplications. FHE is achieved by bootstrap-
ping, that is, homomorphic decryption to refresh noise. However, the
bootstrapping process of standard FHE under the circular security is
very cumbersome.

It is first proposed FHE without bootstrapping through key-switch-
ing and modulus-switching in [17]. A DGHV version of modulus-
switching algorithm was first presented in [30], running the algorithm
after each multiplication to construct the DGHV scheme without boot-
strapping. Similarly, this technique can be applied to our scheme to
generate a set of decreasing modulus based on the joint secret key. Here
we describe the conversion process between two modulus as Algorithm
3.

According to Lemma 1 and Lemma 2 [30], it can be known ci-
phertext 𝑐′′ after switching is under 𝑠𝑘2, and the noise is 𝑃 ′∕𝑃 of the
9

original.
Algorithm 3 Modulus Switching
Input: Public parameters, two modulus 𝑠𝑘1 = 𝑃 , 𝑠𝑘2 = 𝑃 ′ and the

ciphertext 𝑐 under 𝑠𝑘1.
utput: The ciphertext 𝑐′′ under 𝑠𝑘2.

1: Let 𝜅 = 2𝛾 + 𝑛1; // 𝑛1, 𝑛2 are the sizes of 𝑠𝑘1, 𝑠𝑘2, 𝛾 is the size of
public key elements

2: Randomly generate a vector s of 𝛩 bits;
3: Generate a vector y containing 𝛩 numbers with a precision of 𝜅 bits

after the binary point and satisfy:

2𝑛2
𝑃

=
𝛩
∑

𝑖=1
𝑠𝑖 ⋅ 𝑦𝑖 + 𝜀 mod 2𝑛2+1, |𝜀| ≤ 2−𝜅

4: Calculate s′ =Powersof2
(

s, 𝑛2
)

;
5: Calculate the encryption of s′ under 𝑠𝑘2 and get ciphertext vector

𝝈 = 𝑃 ′ ⋅q+r+
⌊

s′ ⋅ 𝑃 ′

2𝑛2+1

⌉

; // where q ←
(

Z ∩
[

0, 2𝛾∕𝑃 ′))(𝑛2+1)⋅𝛩 , r ←
(

Z ∩
(

−2𝜌′ , 2𝜌′
))(𝑛2+1)⋅𝛩

6: for 𝑖 = 1 to 𝛩 do
7: Calculate 𝑐𝑖 = ⌊𝑐 ⋅ 𝑦𝑖⌉ mod 2𝑛2+1;
8: end for
9: Compute c′ = BitDecomp

(

c, 𝑛2
)

,where c = (𝑐1,⋯ , 𝑐𝛩);
10: Let 𝑐′′ = 2 ⟨𝝈, c′⟩ + [𝑐]2;
11: Return 𝑐′′.

6. Experimental performance and analysis

In this section, we simulate our scheme and the contrastive schemes
in Python programming language, mainly compares the storage ca-
pacity of public key, the time of key generation and the function of
these schemes. The setting of the experimental environment is 64-bit
Windows 7, the CPU is Intel Core i5-4590 clocked at 3.30 GHz and the
memory is 4 GB. In addition, in the implementation of the algorithm,
we use the gmpy2 database to optimize the operation.

6.1. Parameter size and function analysis

In Table 3, we compare the theoretical values of the parameters
in [11,29–31] with our scheme, where 𝜆 is the security parameter.
𝛼 is the bit-length of the noise used for encryption. 𝛽 is related to
the number of the subgroup public key elements, 𝜏 is the number of
integers in public key and 𝛽 =

√

𝜏 in [29,31], 𝛽 = 3
√

𝜏 in our scheme.
Besides, 𝛼 and 𝛽 meet the constraints in Table 3 in order to use the
leftover hash lemma in the reduction to approximate GCD assumption.
In the experiment, the cubic form used in the public key element during
encryption instead of linear or quadratic form. In other words, the
public key elements can be obtained by multiplying 𝑥𝑖,0, 𝑥𝑗,1 and 𝑥𝑘,2,
where 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝛽. There are 𝛽 elements in each part, so 3𝛽 elements
need to be saved in the public key. The original public key can be
obtained by multiplying these three groups of elements. Similar to the
quadratic offset compression scheme proposed by Chen et al. [31], we
reserve 3𝛽 offsets 𝛿𝑖,𝑏, where 1 ≤ 𝑖 ≤ 𝛽, 𝑏 ∈ {0, 1, 2} in the public key.
The sizes of 𝛿𝑖,𝑏 and 𝛽 are 𝑂(𝜆2) and 𝑂(𝜆) respectively, so the public key
has the size 𝑂(𝜆3), which is optimal. In addition, due to the large integer
factoring problem, our proposed scheme can be extended to multi-key
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Table 4
Value of security parameter.

Security parameter level Actual value of 𝜆

Toy 42
Small 52
Medium 62
Large 72

Table 5
The parameters of toy level.

Scheme 𝜌 𝜂 𝛾 × 10−6 𝛼 𝛽 𝜏

DGHV [11] 16 1088 0.16 / / 158
CMNT [29] 16 1086 0.16 / 12 /
CNT [30] 27 1026 0.15 936 / 158
Chen [31] 26 1040 0.15 936 12 /
Ours 26 1050 0.15 936 6 /

Table 6
The parameters of small level.

Scheme 𝜌 𝜂 𝛾 × 10−6 𝛼 𝛽 𝜏

DGHV [11] 24 1626 0.86 / / 527
CMNT [29] 24 1632 0.86 / 23 /
CNT [30] 41 1558 0.83 1476 / 572
Chen [31] 41 1640 0.85 1476 23 /
Ours 41 1646 0.85 1476 9 /

Table 7
The parameters of medium level.

Scheme 𝜌 𝜂 𝛾 × 10−6 𝛼 𝛽 𝜏

DGHV [11] 32 2177 4.23 / / 2110
CMNT [29] 32 2176 4.20 / 44 /
CNT [30] 56 2128 4.20 2016 / 2110
Chen [31] 56 2240 4.25 2016 44 /
Ours 56 2250 4.25 2016 11 /

Table 8
The parameters of large level.

Scheme 𝜌 𝜂 𝛾 × 10−6 𝛼 𝛽 𝜏

DGHV [11] 39 2653 19.00 / / 7654
CMNT [29] 39 2652 19.00 / 88 /
CNT [30] 71 2698 19.35 2556 / 7659
Chen [31] 71 2840 19.00 2556 88 /
Ours 71 2846 19.00 2556 20 /

homomorphic encryption, while the other comparison schemes cannot.
Then we set the parameters, calculate the actual storage capacity and
the time consumption of five schemes, and analyze the comparison
results in detail.

6.2. Comparison of actual storage and time

Public key size and time consumption are the main factors affecting
the performance of the scheme. In the experiment, the size of security
parameters are set according to [10] and 𝜆 is divided into four different
security levels in Table 4.

After the security parameter is fixed, the values of other parameters
in the scheme according to theoretical calculation are too large to
facilitate operation. During the experiment, according to these four
levels of the security parameter, concrete values of other parameters
are shown from Tables 5 to 8.

Because the public key generated by DGHV [11] is too large, it can
reach tens of GB at the large level, and the public key generation time
is up to more than ten hours. Therefore, in the subsequent description
of this paper, we mainly compare with other three schemes.

Fig. 3(a) shows the change of key generation time under different
security levels. With the increase of security parameter, the key gen-
10

eration time of CMNT scheme [29] increases significantly. When the t
Table 9
Time to calculate the extended key.

Number of users 10 20 30 40 50
Time(ms) 12 24 33 45 54

security parameter is 72, the key generation time reaches 43 min, while
the CNT scheme [30] takes less time than CMNT. When the security
parameter is 72, the time is 13.9 min. Chen’s [31] and our scheme
have little difference in time in minutes. Therefore, we further compare
our scheme with Chen’s scheme in Fig. 3(b). It can be seen that the
key generation of our scheme is faster than Chen’s scheme. Although
when the security level is low, the time of our scheme is less than one
second different from that of Chen’s scheme, the time consumption of
our scheme is no more than 10 s at large level while Chen’s scheme
needs 20.12 s.

Fig. 3(c) shows the effect of security parameter on storage capacity
of public key. The public key storage spaces increase with the increase
of the security parameter. Distinctly, the public key storage capacity of
CMNT [29] is the highest and increases most obviously. At large level,
the public key size reaches 406.5MiB while the other three schemes are
smaller. Therefore, we further compare our scheme with CNT [30] and
Chen’s scheme [31] in Fig. 3(d). It can be seen that the public key size
of our scheme is the smallest. When the security level is low, our public
key size is only half of Chen’s scheme. When the security parameter
reaches 72, the memory occupied by 𝑥0 in the public key will be much
larger than that of other elements, Therefore, the storage capacity of
public key is not significantly reduced at large level, but it is also lower
than other schemes.

In Fig. 4, we further compare the number of elements in the public
ey. CMNT scheme and Chen’s scheme are equivalent to dividing the
ublic key into two subsets and there are 2𝛽 public key elements. In

our optimization, it is divided into three subsets. When the security
parameters are increased, 𝛽 will not grow too fast. So there are fewer
elements stored in our scheme. For encryption, our public key com-
pression scheme is more complex than Chen’s scheme in form, but no
additional operation is introduced. At the same time, the decryption
steps of the above homomorphic encryption schemes are actually the
same, so there is little difference in encryption and decryption time.

6.3. Performance analysis of multi-key scheme

In our multi-key homomorphic encryption scheme, we introduce the
extended key in the process of ciphertext extension. The calculation of
the extended key is closely related to the number of participating users.

In Table 9, we show the time consumed to calculate the users’
extended key under different number of users. It takes only about 1
millisecond on average to calculate the extended key of a user. Fig. 5
shows the impact of number of users on the generation time of the
secret key and the public key respectively. It can be seen that the key
generation time increases linearly with the increase of the number of
users. When the number of users is 50, the sum of the two times is
about 80 s. Hence, the proportion of calculated extended key in the
whole key generation stage is very small, even negligible.

Table 10 shows the running times of ciphertext extension, homo-
orphic operation of extended ciphertexts and decryption using the

oint secret key in our multi-key scheme at different security levels.
n the experiment, we assume that the number of users is 20. From
able 10, we can see that there is little time difference between decrypt-

ng the extended ciphertext with the joint secret key and the original
ingle key scheme. Because they are the same modular operation, so the
ifference between them can be ignored. In our scheme, the addition
peration is the fastest for the operation of extended ciphertexts. Both
iphertext extension and multiplication are more complex, so they take
ore time. Furthermore, homomorphic multiplication is not simply
ultiplying, so it takes the longest time, but the time is still within
he acceptable range.
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Fig. 3. Comparison of time and storage capacity.
Table 10
Running time of our multi-key scheme.

Security parameter level Ciphertext expansion Addition Multiplication Decryption

Toy 0.06 s 0.02 s 0.12 s 0.02 s
Small 0.23 s 0.08 s 0.65 s 0.03 s
Medium 0.98 s 0.51 s 3.34 s 0.05 s
Large 4.2 s 2.12 s 13.95 s 0.07 s
Fig. 4. Comparison of the number of elements in the public key.
11
Fig. 5. Impact of number of users.
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7. Conclusion

Considering the diversity of users in the cloud computing envi-
ronment, MKHE supports information storage and sharing and secure
homomorphic calculation from different users. It is more suitable to
solve privacy and security issues in the cloud computing, which is
of great practical significance. However, the existing MKHE schemes
weaken the functionality of MKHE in the expansion of ciphertext di-
mension and computational complexity. In this paper, we first improve
the DGHV scheme [11] and propose a DGHV-type MKHE scheme.
Compared with the original DGHV scheme, on the premise of ensuring
security, an extended key is introduced to expand the function of the
scheme. Compared with other MKHE schemes, our scheme is easier to
understand in ciphertext composition and calculation form. In addition,
in the experiment, the cubic form is used to reduce the public key size
of the scheme to 𝑂(𝜆3). Through experiments, we evaluate the gener-
tion time of the keys, storage capacity, expansion and homomorphic
peration. However, introducing a trusted KGC when generating joint
ey may be difficult to meet in some practical applications. Whether
o cancel the setting of KGC in joint key distribution is an important
esearch content. We should also strive to make MKHE better applicable
o the cloud environment.
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