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A B S T R A C T

Diabetes is a common chronic disease and a major public health problem approaching epidemic proportions
globally. People with diabetes are more likely to suffer from glaucoma than people without diabetes. Glaucoma
can lead to loss of vision if not diagnosed at an early stage. This study proposes an intelligent computer-
aided triage system with a deep neural network and machine learning to develop and analyze color retinal
fundus images and classify glaucomatous retinal images. Deep features of retinal images from the fundus
retinal image are extracted using a deep neural network, and the classification of features is performed and
analyzed using different machine learning classifiers. Experimental results show that the combination of deep
neural network and logistic regression-based classifier outperforms all existing glaucomatous triage systems,
improving classification accuracy, sensitivity, and specificity.
. Introduction

According to the World Health Organization (WHO) report [1],
laucoma is one of major eye disease which is affecting millions of
eople in developing countries such as India. The Glaucoma damages
he retina in a progressive manner and is less detected by the person
nd finally causes blindness. As per the survey of glaucoma society
f India [2], around 12 million people in India are suffering from
his disease. Therefore, early detection and treatment of glaucoma to
educe the risk of blindness is the need of the hour. The acquisition
f retinal information of eye is usually performed by gonioscopy and
phthalmoscopy. Then, the analysis of glaucoma for physical condition
f the optical nerve is done by filed vision test, intraocular pressure,
tc. [3–5]. The glaucoma detection can be performed using optical co-
erence tomography (OCT), visual test chart and color fundus camera.
he glaucoma detection can also be done by analyzing features such
s cup-to-disk (CDR) and disk rim thickness rule of inferior, superior,
asal, and temporal (ISNT).

Recently, computer-aided systems [6–18] based on various image
rocessing and machine learning algorithms are gaining importance for
ntelligent detection of glaucoma [19,20]. While supervised machine
earning algorithms are used for classification of the normal image
nd glaucomatous image for a given dataset of the retinal image,
he unsupervised machine learning algorithms are used mainly for
egmentation of disk and cup in the enhanced retinal image. Recently,
he various schemes are proposed by various researchers for detection
f glaucoma in retinal images.

Claro et al. [6] performed classification of retinal images using clas-
ifiers such as the multi-layer perceptron (MLP), random forest (RF) and
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radial basis function (RBF) on the DRISTHI-GS1 dataset and obtained
accuracy in the range of 83.54–93.03%. Another automated glaucoma
screening system developed by Soman et al. [7] used wavelet features
of retinal images and performed classification of high-resolution fundus
retinal images using classifiers such as SVM, RF, NB and resulted in
accuracy of 85.65%, 86% and 81%, respectively. Dey et al. [8,13]
used statistical features for development of an automated glaucoma
screening system for retinal image classification using SVM classifier.
Maheshwari et al. [9] developed glaucoma screening system for classi-
fying glaucomatous retinal images with an accuracy of 98.33%, taking
wavelet and corr-entropy of retinal images as features.

Singh et al. [10] developed glaucoma screening system for classify-
ing glaucomatous retinal images from the Technische Fakultat dataset
with accuracy in the range of 92%–97% with KNN, naïve bayes and
SVM classifier. Sevastopolsky et al. [11] developed glaucoma screening
system for classifying glaucomatous retinal images from the DRISTHI-
GS1 dataset using SVM classifier. Sarkar et al. [12] developed glaucoma
screening system for classifying glaucomatous retinal images from the
RIM-ONE dataset using binary classifier with an accuracy of 97.58%.

Nawaldgi et al. [14] used DRISTHI-GS1 dataset with binary classi-
fier and achieved an accuracy of 99%. Septiarini et al. [15] developed
glaucoma screening system based on supervised learning for classifying
retinal images and the accuracy resulted with naïve bayes, MLP, SVM,
and kNN is in the range 92.90%–95.12%. Zou et al. [16] used SVM
and random forest on the DRISTHI-GS1 dataset and achieved accu-
racy in the range 74%–78%. Yip et al. [17] give analysis of various
deep learning (DL) models for diabetic retinopathy. They used various
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models such as VGGNet, ResNet, DenseNet and Ensemble for analysis.
For detection of DR, four DL models showed comparable diagnostic
performance using AUC in range of 0.936 to 0.944. Sahlsten et al. [18]
proposed AI based model for diabetic retinopathy using fundus retinal
images. They are used around 41,122 retinal color images from 14,624
patients for analysis of deep learning model. The inception V3 model
used and provides sensitivity up to 0.968 (0.961–0.974) and specificity
up to 0.893 (0.883–0.902). Wang et al. [21] demonstrated transfer
learning models for classification of retinal image classification.

Gupta et al. [22] proposed optimal learning model for retinal image
classification. In this system, authors used two filters such as guided
filter and adaptive median filter for preprocessing of images before
fed to neural network. The features of images are extracted using
efficient network feature extractor while mayfly optimization with
kernel-based machine learning model used for classification of images.
Abdel-Hamid [23] proposed VGG16 transfer learning-based model for
classification of retinal image. This approach is used for quality check-
ing of retinal image before used for further applications. Goel et al. [24]
proposed VGG based deep learning model for classification of various
stages of diabetic retinopathy using retinal images. Kaur et al. [25]
proposed k-nearest neighbor-based classifier system for retinal image
classification. This system used for classification of diabetic retinopathy
retinal images and used wavelet features of images for classification of
images. Saba et al. [26] proposed triage system with help of two deep
learning models for classification of retinal images. In this system, U-
net model are used for extracted important features such as optical disk
which are fed as input in to dense-net model which classified the optic
disk as normal or papilledema. Jabber et al. [27] proposed VGG net
based triage system for retinal image classification. This system used
transfer learning approach and provided accuracy up to 96%.

El-Hug et al. [28] proposed triage system using convolutional neural
network model for retinal image classification. In this system, instead
of images as input, different features of images are extracted from the
images and then feed to CNN model for classification of images as
normal or abnormal. Iqbal et al. [29] gives current research trends
for retinal image classification. Also, authors give advantages and
disadvantages of different triage system for retinal image classifica-
tion. Zhang et al. [30] proposed hybrid graph convolutional network
(HGCN) for retinal image classification. This network based on semi-
supervised learning and designs a modularity-based graph learning and
integrates convolutional neural network (CNN) features to give graph
convolutional network. Abbood et al. [31] proposed deep learning
model for retinal image enhancement. This model enhances quality
of fundus retinal image before fed into triage system. Liu et al. [32]
proposed deep learning model for feature extraction of retinal images
before fed into triage system.

Kamran et al. [33] proposed generative adversarial network (GAN)
for generation of synthesis retinal fundus images and predication of
eye disease using these types of images. This proposed system has
the advantages of addressing the problem of imaging retinal vascu-
lature in a non-invasive manner. Latha et al. [34] proposed machine
learning based triage system for retinal image classification. In this
system, authors used various ML classifiers such as support vector
machine, neural network, and adaptive neuro fuzzy inference system.
Al-Antary et al. [35] proposed multi-scale attention network for retinal
image classification. In this network, the input retinal images are
pre-processing using min-pooling filtering method.

Ramasamy et al. [36] machine learning base triage system for
retinal image classification. In this system, first, the various textural
features such as co-occurrence, run-length matrix and ridgelet coef-
ficients of images are extracted. Then based on these features, the
sequential minimal optimization (SMO) based classifier used to classify
retinal images. Shi et al. [37] proposed transfer net ResNet50 deep
network for automatic retinal image analysis. Nazir et al. [38] proposed
deep learning-based system for retinal image classification. In this

system, DenseNet-100 used for feature extraction while CenterNet used e

2

for localization and classification of retinal images. Neto et al. [39]
analyzed various transfer learning model such as Xception, ResNet152
V2 and Inception ResNet V2 for retinal image classification. Sikder
et al. [40] proposed ensemble learning based model for retinal image
classification. Bilal et al. [41] proposed deep learning-based model for
retinal image classification.

After extensive survey of related papers, it is observed that the
existing screening system for glaucoma, used a variety of datasets for
performance verification, used a combination of features and machine
learning techniques. Survey also indicated that many existing AI based
triage systems are based on deep learning and transfer learning-based
approaches for retinal image classification. But these systems could
achieve maximum accuracy of 97%. Therefore, in this paper, we pro-
posed new AI based screening system which explore advantages of
machine learning and deep learning to achieve better performance in
term of classification accuracy.

The novel contribution of this paper is a fast, fully automated, and
accurate glaucoma screening system that can be used for automated
classifying for glaucomatous retinal images for a given dataset. This pa-
per also makes three major contributions to retinal image classification
such as (1) Proposed dual learning-based approach which combines
deep learning and machine learning. (2) Used deep neural network to
obtained deep features for classifying of retinal images. (3) Proposed
hybrid classification method that improves the accuracy of classifica-
tion of glaucomatous retinal images. (4) Overcomes the limitation of
existing glaucomatous screening systems [6,11,14,16,24,27,34].

The organization of this paper is as follows. In Section 2, the
functionalities of the deep neural network and various classifiers are
explained. Section 3 describes each step of the proposed system. Re-
sults regarding the performance of the proposed system described in
Section 4 followed by concluding the discussion in Section 5.

2. Background

In this section, the information of various terminologies used in the
proposed system is discussed.

2.1. Deep neural network (DNN)

The first neural network (NN) was introduced by Dr. Robert Hecht-
Nielsen who was the inventor of first neurocomputers [42]. This net-
work basically is known as an artificial neural network (ANN) and is
defined as ‘‘a computing system made up of a number of simple, highly
interconnected processing elements which process information by their
dynamic state response to external inputs’’ [42,43]. This network, also
referred to as forwarding neural network (FNN) is used in applications
such as big data analysis, person recognition, and data prediction. A
simple model for the neural network is shown in Fig. 1. The network
has mainly three layers: input layer, hidden layer, and the output layer.
The number of neurons or nodes is depended on the size of inputs and
outputs. Each node is fully connected to its adjacent layers. The nodes
of each adjacent layer are connected by a link carrying specific weight.
The working of each node in the neural network is given in Fig. 2.

The neural network is unable to learn weights for unstructured data
such as images and videos [44–46]. Therefore, activation functions
such as sigmoid and ReLU (rectified linear unit) are used with the
neural network. The bias is used for shifting of activation function for
better prediction of data. The output of this model (seen in Figs. 1 and
2) can be given by the below Eqs. ((1) & (2)):

𝑦 = 𝑝 + 𝑏 (1)

Where,

𝑝 = 𝑊1 × 𝑥1 +𝑊2 × 𝑥2 +⋯ +𝑊𝑁 × 𝑥𝑁 (2)

n Eqs. ((1) & (2)), y is predicted output value, W is a weight values of

ach node and x is input values, and b is a bias.
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Fig. 1. Basic structure of neural network (NN).
Fig. 2. Working of neural network (NN).
Fig. 3. Basic structure of deep neural network (DNN).
A deep neural network (DNN) is an extension of the neural network.
he deep neural network consists of an input layer, several hidden

ayers, and an output layer. Here, each layer is connected via nodes
here each hidden layer gives predicted results based on a prediction
f the previous layer. The main difference between NN and DNN is that
N has one hidden layer while DNN has two or more than two hidden

ayers. The basic structure of DNN is given in Fig. 3.

.2. Classifier based on machine learning algorithm

Once deep features of each retinal image are obtained using DNN,
lassification of each image is done using six different types of machine
earning algorithms: k-nearest neighbor (kNN), decision tree (DT), sup-
ort vector machine (SVM), random forest (RF), naive bayes (NB) and
ogistic regression (LR) and are analyzed for their performance.
3

3. Proposed system

In the proposed automated system, the color retinal images are
taken from the given dataset. After that, three stages are performed
for screening of glaucomatous retinal image. The block diagram of the
proposed system is shown in Fig. 4 and the working stages of the system
are described below.

This proposed system presents new learning model for classification
of retinal image classification. This model uses both type of learning
such as deep and machine in this. The input of model is color fundus
retinal image and output of model is prediction tumor type of input
image such as normal and glaucoma. In this model, the deep learning
uses for finding important features from the input image. These features
of image are then fed to binary classifier for prediction of class of it.
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Fig. 4. Block diagram of proposed system.

ere, convolutional layers of SqueezeNet [47] are used for extraction of
eatures from the fundus retinal image while different machine learning
lgorithm [48] such as k-nearest neighbor (kNN), decision tree (DT),
upport vector machine (SVM), random forest (RF), naive bayes (NB)
nd logistic regression (LR) are used for prediction of tumor class.
herefore, this model is called as ‘‘dual learning model’’ and shown

n below Fig. 5. The working of this model is described in subsections.

.1. Feature extraction using SqueezeNet model

SqueezeNet model is a deep convolutional neural network (CNN)
hich has compressed architecture, small number of parameters and
chieved higher accuracy compared to AlexNet and ImageNet with
ame number of parameters. The main advantages of this model are
equired less communication channel requires for training, easy to
eploy on cloud server and can be customized and used on hardware
ith limited memory. This original SqueezeNet model [47] has 14

ayers where contains 2 conventional convolution layers, 8 fire layers, 3
ax pooling layers, 1 global average pooling layer and softmax. Here,
e have used only convolution layers of the model for extraction of

eatures from the input color fundus retinal image.
This sequential model starts 𝑖th a standalone convolution layer

followed by 8 fire modules and ending with a final convolution layer.
The number of filters per fire module is gradually increased from the
beginning to the end of the model. The max pooling with a stride of
2 is performed after layers conv layer 1, fire3, fire7 and conv layer 2.
The fire module is a squeeze convolution layer which has only 1 × 1
filters feeding into an expand layer that has a mix of 1 × 1 and 3 × 3
convolution filters. There are three tunable hyperparameters such as
s1 × 1, e1 × 1, and e3 × 3. The s1 × 1 refers as squeeze layer with filter
size 1 × 1 while e1 × 1 an e3 × 3 refers as expand layer with filter size
1 × 1 and 3 × 3, respectively. In this model, we use fire modules with
hyperparameter s1 × 1 which squeeze layer helps to limit the no. of
input channels to the 3 × 3 filters. After extract features from the input
retinal fundus image, we used to flatten layer which converts features
into one dimensional layer.

3.2. ML based binary classifier

In machine learning, multiclass classification refers the problem of

classifying instances into one of three or more classes. In this case, we
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need to classified input retinal fundus image into one of class such
as no tumor, glioma tumor, meningioma tumor and pituitary tumor.
For this purpose, in this model, we have used different conventional
classifiers such as k nearest neighbor (KNN), support vector machine
(SVM), Decision Tree (DT), Naïve Bayes (NB), and logistic regression
(LR) for classification of multiclass brain tumor images. Here, we have
modified each classifier which performs the operation of multiclass
classification and prediction.

4. Results

The performance of the classifiers and screening of glaucomatous
retinal image are analyzed in this section. The metrics used for per-
formance analysis of system are confusion matrix, true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) [48]. The
confusion matrix for the proposed system is given in Fig. 6.

• True Positive (TP): A glaucoma retinal image if predicted by
classifier as glaucoma retinal image.

• True Negative (TN): A normal retinal image if predicted as
normal retinal image.

• False Positive (FP): A normal retinal image if classified as glau-
coma retinal image.

• False Negative (FN): A glaucoma retinal image if predicted as
normal retinal image.

Other performance metrics such as Classifier accuracy (CA), Pre-
cision, Recall (sensitivity) and F1 score are calculated using below
Eqs. ((3) to (6)) based on the above parameters.

𝐶𝐴 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(3)

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅

(6)

The main objective of the proposed system is to classify the input
fundus retinal image that is a glaucomatous image or a normal image.
Here, the system is designed and validated with 2-fold cross validation
method. Here, the system is designed and validated with a 2-fold cross
validation method. The size of training dataset is 101 retinal images
and test dataset is 30 retinal images.

For training of proposed system, the hyper parameters values such
as batch size, epochs and learning rate is chosen as 32, 10 and 0.001, re-
spectively using try and error method. The adaptive moment estimation
(Adam) optimizer and ReLu activation function is used in the proposed
system.

The following subsections present the dataset used for the analysis
of the system, features of the dataset, and the performance of the
classifier on given features of dataset and comparison with existing
work.

4.1. Performance of proposed system using DRISTHI-GS dataset

4.1.1. Information of DRISTHI-GS dataset
The DRISTHI-GS dataset was created by IIIT, Hyderabad [49] and is

used in the simulations. The retinal images in the dataset are obtained
by Aravind Eye Hospital, Madurai, India. This dataset has a total of
101 images in which 70 images are the glaucomatous image and 31
images are normal images. The images belong to patients with age
group between 40 to 80 years. The sample retinal images from this
dataset are given in Fig. 7.
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Fig. 5. Dual learning model for retinal image classification.
4.1.2. Features for DRISTHI-GS dataset
In the proposed system, SqueezeNet model is used to extract deep

features from retinal images. The deep features of the first seven layers
(n0–n6) are shown in Table 1 along with the height and width of the
image.

4.1.3. Performance evaluation of classifiers usingDRISTHI-GS dataset
After obtaining deep features of the retinal image, the features

are fed to 6 different classifiers for, and the performance analysis
of each classifier is done. The classifiers applied are kNN, decision
tree (DT), SVM, naïve bayes (NB), random forest (RF) and logistic
regression (LR). The confusion matrices obtained for the given dataset
for these classifiers are given in Table 2. The results indicate that the
performance of LR classifier is better than other classifiers in term of
5

accuracy, sensitivity, and precision for classification of glaucomatous
retinal images.

The testing of the proposed system is done using high resolution
fundus (HRF) retinal images dataset [50]. This database contains 15
glaucomatous retinal images and 15 normal retinal images. The per-
formance results of proposed system for predication of glaucomatous
retinal images and normal retinal images are given in Table 3. The re-
sults in table show that this proposed system successfully distinguishes
and predicated these two types of retinal images.

4.2. Performance of proposed system using ORIGA dataset

4.2.1. Information of ORIGA dataset
ORIGA dataset was created by trained professionals from Singapore

eye research institute [51]. This dataset has a total 650 images in
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Table 1
Deep features for proposed system.

Image category Width Height n0 n1 n2 n3 n4 n5 n6

Glaucoma_1 2049 1751 0.000 0.027 0.000 0.000 0.000 0.000 0.534
Glaucoma_2 2045 1752 0.000 1.455 0.000 0.000 0.000 0.000 0.968
Glaucoma_3 2047 1759 0.000 1.016 0.000 0.000 0.000 0.314 0.900
Glaucoma_4 2049 1762 0.000 0.571 0.000 0.000 0.000 0.000 0.000
Normal_1 2049 1757 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Normal_2 2049 1755 0.000 0.867 0.000 0.000 0.000 1.073 0.000
Normal_3 2048 1754 0.000 2.191 0.000 0.000 0.000 0.654 0.000
Normal_4 2463 1759 0.000 0.000 0.000 0.000 0.000 0.000 0.888
Table 2
Training performance matrices of proposed system using DRISTHI-GS dataset.

Classifier Confusion matrix Area Under
Curve (AUC)

Classifier
Accuracy (CA)

F1 Precision Recall

kNN
[

70 0
21 10

]

0.942 0.792 0.870 0.769 1.000

Decision Tree
[

69 1
3 28

]

0.996 0.960 0.972 0.958 0.986

SVM
[

70 0
27 4

]

0.946 0.733 0.838 0.722 1.000

Random Forest
[

69 1
4 27

]

0.995 0.950 0.965 0.945 0.986

Naïve Bayes
[

38 32
3 28

]

0.836 0.653 0.685 0.927 0.543

Logistic Regression
[

70 0
1 30

]

1.000 0.990 0.993 0.986 1.000
Table 3
Testing performance matrices of proposed system using HRF dataset.

Classifier Confusion matrix Classifier
Accuracy (CA)

F1 Precision Recall

kNN, Decision Tree, SVM,
Random Forest, Logistic
Regression

[

15 0
15 0

]

0.500 0.333 0.250 0.500

Naïve Bayes
[

3 12
2 13

]

0.533 0.475 0.560 0.533
Fig. 6. Confusion matrix for proposed system.

hich 168 images are the glaucomatous image and 482 images are
ormal images. For performance analysis of proposed system, we spit
hole dataset into training dataset (80%) and testing dataset (20%).
he sample retinal images from this dataset are given in Fig. 8.

.2.2. Performance evaluation of classifiers using ORIGA dataset
The confusion matrices obtained for the ORIGA dataset for various

achine learning classifiers are given in Table 4. The results indicate
hat the performance of LR classifier is better than other classifiers in
erm of accuracy, sensitivity, and precision for classification of glauco-
atous retinal images. The performance results of proposed system for
redication of glaucomatous retinal images and normal retinal images
sing testing dataset are given in Table 5. The results in table show that
6

this proposed system successfully distinguishes and predicated these
two types of retinal images.

4.3. Comparison with existing work

A comparison of the proposed triage system for classifying glau-
comatous retinal image with the existing triage systems is given in
Table 6. Most of the existing systems tested their methods on 50/101
images of DRISTHI-GS dataset, and have used texture features, CDR
features, and hybrid features. The comparison of systems is performed
using various parameters such as AUC, recall, precision, F1 and accu-
racy. This is shows that proposed system classified input color fundus
image in correct way.

The effectiveness the various features is also compared with existing
triage systems in Table 7. The existing systems are used features
like texture, cup to disk ratio, hybrid features while proposed system
used deep features for classifying retinal images and resulted in better
accuracy and performance than existing systems for classifying glauco-
matous retinal images. Also, the maximum training accuracy achieved
in existing system is around 0.990 while proposed system provides
maximum training accuracy up to 1.000.

5. Conclusion

In this paper, a deep neural network and machine learning based
computer-aided system for classification of the glaucomatous retinal
image is proposed. Here, 512 deep features of retinal images are
explored using DNN. The proposed system tested and analyzed all
images from the public datasets such as DRISTHI-GS1 and ORIGA. The
classification of the glaucomatous retinal image is performed using



R. Thanki Healthcare Analytics 3 (2023) 100140
Fig. 7. Sample retinal images from DRISTHI-GS dataset.
Fig. 8. Sample retinal images from ORIGA dataset.
Table 4
Performance matrices of proposed system using ORIGA training dataset.

Classifier Confusion matrix Area Under
Curve (AUC)

Classifier
Accuracy (CA)

F1 Precision Recall

kNN
[

73 62
32 353

]

0.894 0.819 0.811 0.810 0.819

Decision Tree
[

133 2
4 381

]

0.998 0.988 0.988 0.989 0.988

SVM
[

92 43
10 375

]

0.947 0.898 0.893 0.898 0.898

Naïve Bayes
[

90 45
114 271

]

0.735 0.694 0.710 0.749 0.694

Logistic Regression
[

132 3
0 385

]

1.000 0.994 0.994 0.994 0.994
7
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Table 5
Performance matrices of proposed system using ORIGA testing dataset.

Classifier Confusion matrix Area Under
Curve (AUC)

Classifier
Accuracy (CA)

F1 Precision Recall

kNN
[

7 26
16 81

]

0.598 0.677 0.656 0.642 0.677

Decision Tree
[

11 22
24 73

]

0.558 0.646 0.650 0.653 0.646

SVM
[

9 24
7 90

]

0.661 0.762 0.730 0.732 0.762

Naïve Bayes
[

23 10
38 59

]

0.697 0.631 0.655 0.734 0.631

Logistic Regression
[

14 19
26 71

]

0.610 0.654 0.664 0.677 0.654
Table 6
Performance comparison of various triage system for retinal image classification.

Triage System Classifiers AUC Recall Precision F1 Accuracy

Claro (2016) et al. [6] MLP, RC, RF and
SVM-RBF

NR 0.835 to 0.930 0.827 to 0.930 0.827 to 0.929 0.835 to 0.930

Zou (2018) et al. [16] SVM, RF 0.732, 0.733 NR NR NR 0.74, 0.78

Goel (2021) et al. [24] CNN 0.831 to 0.997 0.773 to 0.969 0.571 to 0.963 0.706 to 0.912 0.885 to 0.959

Jabbar (2022) et al.
[27]

ResNet, GoogleNet,
AlexNet and
VGGNet

0.924 to 0.971 0.854 to 0.953 0.937 to 0.990 0.918 to 0.967 0.924 to 0.966

Latha (2022) et al. [34] ANFIS NR 0.963 0.961 NR 0.962

Proposed kNN, SVM, DT, RF,
NB and LR

0.836 to 1.000 0.543 to 1.000 0.722 to 0.986 0.838 to 0.993 0.653 to 0.990

NR = Not Reported
Table 7
Comparison of various features of different Triage systems.

System Features Classifiers Image dataset No. of
images

Maximum
training
accuracy

Claro (2016) et al.
[6]

Texture MLP, RC, RF, and
SVM-RBF

DRISTHI-GS 50 0.930

Sevastopolsky
(2017) et al. [11]

Cup to Disk Ratio
(CDR)

NN DRISTHI-GS 50 NR

Nawaldgi (2018)
et al. [14]

Cup to Disk Ratio
(CDR)

Adaptive
Thresholding

DRISTHI-GS 101 0.990

Zou (2018) et al.
[16]

Hybrid Features SVM and RF DRISTHI-GS 101 0.780

Proposed Deep Features kNN, SVM, DT, RF,
NB, and LR

DRISTHI-GS 101 1.000
six machine learning-based classifiers: kNN, SVM, DT, RF, NB, and
LR. It is observed that the combination of DNN with LR based ma-
chine learning-based classifier outperforms all existing glaucomatous
screening systems, with improvement in classification accuracy and
sensitivity.

Future work will be focused on the assessment of deep learning-
based classifier combination for classification of glaucomatous retinal
images. The work may also focus on detection and screening of vas-
cular bleeding in the retina due to macular degeneration and diabetic
retinopathy (DR) using machine learning techniques. Also, experimen-
tal results particularly F1 score indicates that proposed system need to
test with more balance dataset to improve this score and acceptance
for practical implementation in future.
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