
Decision Analytics Journal 7 (2023) 100233

A
l
d
M
D

A

K
I
I
M
N
U

1

m
p
s
o
m
r
v
W
w
T
a

p
t
a
c
c
o
I
Z

h
R
A
2
(

Contents lists available at ScienceDirect

Decision Analytics Journal

journal homepage: www.elsevier.com/locate/dajour

new two-phase intrusion detection system with Naïve Bayes machine
earning for data classification and elliptic envelop method for anomaly
etection
onika Vishwakarma, Nishtha Kesswani ∗

epartment of Computer Science, Central University of Rajasthan, Ajmer, India

R T I C L E I N F O

eywords:
nternet of Things
ntrusion detection system
achine learning
aive Bayes classifier
nsupervised elliptic envelope

A B S T R A C T

Technology is pivotal in the rapid growth of services and intensifying the quality of life. Recent technology, like
the Internet of Things (IoT), demonstrates an impressive performance in fast-forward development. Intrusion
Detection System (IDS) is used as a lifeline to prevent attacks by classifying the activities as normal and
suspicious. In this paper, we propose a two-phase IDS for IoT. In the first phase, we categorize data into four
sections according to the data types (i.e., nominal, integer, binary, and float). We then classify them using
different versions of the Naive Bayes classifier. After that, we use majority voting to choose the final result of
the classification. In the second phase, we pass those data which behave normally or are benign in the first
phase and classify them using an unsupervised elliptic envelope. We validated our work using the standard
NSL-KDD, UNSW_NB15, and CIC-IDS2017 datasets. We found the proposed method more efficient than existing
IDS techniques and achieved reasonable accuracy in the first phase. Furthermore, the benign data is sent to
the second phase of the analysis. After the second phase, we achieved a 97% accuracy in the NSL-KDD dataset,
86.9% in the UNSW_NB15 dataset, and 98.59% accuracy in the CIC-IDS2017 dataset.
. Introduction

In the evolutionary era, the Internet has always been performing a
ost significant role. Globally, the total estimate of Internet users is
rojected to increase from 3.9 billion in 2018 to 5.3 billion by 2023, as
tated by Cisco Annual Internet Report [1]. Furthermore, the Internet
f Things (IoT) is becoming increasingly widespread. IoT integrates
any heterogeneous objects (such as in a smart home: intelligent bulbs,

efrigerators, fans, air conditioners, automated doors, and TVs.) with
arious connecting technologies such as Bluetooth Low Energy (BLE),
iFi, and ZigBee. There are also other domains and applications in
hich the IoT can play an important role and enhance our lives quality.
hese applications include smart transportation, industrial automation,
griculture, and healthcare [2].

The IoT model [3] has been emerging towards formulating a cyber–
hysical environment where everything can be found, operated, inves-
igated, and modernized. Because of being connected, the chances of
ttacks on the network increase. Many attacks and malicious incidents
an affect different layers of the IoT architecture, creating security
oncerns. Makhdoom et al. [4] discussed the commonly known attacks
n different layers, depending on the anatomy of the malware, and
oT-enabled cyber-attacks are also illustrated in a survey [5]. Similarly,
arpel et al. [6] elaborated on intrusion detection systems in IoT. They
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have classified IDS based on placement strategies, detection methods,
security threats, and validation strategies. Zargar et al. [7] explained
in detail about Distributed Denial of Service (DDoS) attacks and also
classified the countermeasures.

Intrusion Detection System (IDS) secures communication between
devices and detects intrusion on the IoT layers. Many IDS has been
launched for secure communication over the internet. It actively moni-
tors malicious activity on the network and sends an alert message to the
system administrator when attacks are detected. IoT devices are small
and can be easily deployed in remote areas. However, the computation
power is relatively low due to their small size and low battery capac-
ity. Moreover, they use lightweight protocols for communication. For
these reasons, the algorithms presented for attack detection should be
lightweight with low energy consumption.

These heterogeneous networks are more prone to attacks like in-
formation leakage, service interruption, spoofing, etc., due to inade-
quate security measures and reliable intrusion detection systems. These
attacks can cause devastating effects, such as damaging hardware,
manipulating information, blocking system availability, and harming
people. Hence, this is evident that the range of the effect of attacks
on IoT networks varies greatly. For instance, a comparatively harmless
and straightforward attack may produce no severe damage. Still, it
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may cause a warning to social life. There is an attack on a device of
critical importance, such as loss of central control of the flight. The
article [8] highlights how crucial it is to build security into every layer
of the IoT system to guard against cyberattacks that might endanger the
health and safety of people. The paper compares the advantages and
disadvantages of signature-based, anomaly-based, specification-based,
and hybrid IDS techniques in the IoT. The paper also examines current
issues with IoT security and possible future trend orientations.

Limited computational capacity and equipment, software, and pro-
tocol variations are the major causes of vulnerable devices. Conse-
quently, an important gap exists between safety conditions and the
defense abilities of currently available IoT devices. In particular, IoT
equipment with limited computational capability, memory, and battery
resources cannot perform intensive computational and susceptive safety
tasks that produce large computation and communication loads [9].
Additionally, it is not reasonable to operate complicated and strong
security standards. As a result, given the heterogeneity of these devices,
it is quite challenging to develop and deploy a security tool that strikes
a balance between security and performance.

Most IDS detection strategies collect data and classify them based
on specific characteristics. However, when IoT devices communicate
with each other to share information in a real network, the probability
of variation in data also increases. Moreover, most existing approaches
classify the data using just one phase. Another problem is the imbal-
anced distribution of the available datasets. If we trained our model
with imbalanced datasets, the model performs bias toward the class
which has more samples. However, we have proposed a two-phase
approach that detects misclassified attacks as normal in the first phase.
We have also used the weight initialization method for each class to
overcome the imbalanced problem at the time of training. This makes
the proposed IDS more stronger as compared to the existing ones. The
main contributions of this paper are summarized as follows:

• The proposed IDS consists of two phases:

– The first phase involves categorizing data into four sections
based on data types and classifying them using different
versions of the Naive Bayes classifier, followed by majority
voting to choose the final result.

– The second phase involves passing benign data from the first
phase through an unsupervised elliptic envelope for further
classification.

• The proposed method is validated using three standard datasets:
NSL-KDD, UNSW_NB15, and CIC-IDS2017.

• The proposed method achieves higher efficiency and accuracy
than existing IDS techniques.

• The model achieves 97% accuracy in NSL-KDD, 86.9% in
UNSW_NB15, and 98.59% in CIC-IDS2017.

In this paper, we have proposed machine learning-based IDS. The
rest construction of this paper is arranged as follows. Section 2 illus-
trates the related work. Section 3 discusses the proposed work in detail,
divided into two subsections corresponding to the classification’s two
stages. Section 4 shows the experimental setup and results. Section 5
summarizes the paper.

2. Related work

In this section, we have discussed the literature associated with IDS
in IoT. This section classifies existing IDS according to the technologies
used in it. The following subsections are discussed: machine learning

and deep learning-based IDS, blockchain-based IDS, and rule-based IDS.

2

2.1. Machine Learning and deep learning based IDS

In the trending era of Machine Learning (ML) techniques, ML algo-
rithms such as KNN, Random Forest, and Naive Bayes perform very well
with low complexity and reasonable computation time. Anthi et al. [10]
proposed three-layer IDS for smart homes IoT devices. They performed
a testbed experiment by deploying 8 IoT devices in a network and
continuously monitoring the network traffic. They performed several
attacks on the network and saved the log files. After the data collection,
all the attacks are categorized into four main attack categories: DoS,
Man In The Middle, Reconnaissance, and Replay attack. The first layer
identifies connected IoT tools via a scanning network. The second layer
classifies the packets as malicious or normal. The third layer distributes
spiteful packets into one of the four attacks using nine machine-learning
classification schemes and selects the best one. However, they did not
clearly define the data features. Wenjuan Li et al. [11] suggested a
disagreement-based semi-supervised training mechanism that works for
both labeled and unlabeled. They used outdated DARPA (KDD99) data
for the model evaluation.

Horng et al. [12] presented clustering and SVM-based IDS. Birch
clustering algorithm has been used for the relevant feature selection for
each type of attack from the primary KDD Cup 99 dataset. For each type
of attack, an SVM classifier is used separately and combined with all
four classifiers or building an IDS. Similarly, Eesa et al. [13] introduced
a novel feature separation technique based upon a cuttlefish algorithm,
and a decision tree classifier has been used to classify the intrusion.
The article [14] discusses the challenges of constructing data mining
systems with intelligence to detect intrusion attacks due to the large
datasets employed in the learning phase. The article proposes a fea-
ture selection algorithm called ‘‘the Highest Wins’’ (HW) to determine
the suitable set of characteristics present in the training datasets. Li
et al. [15] performed a two-step software-defined technique-enabled,
AI-based intrusion detection. They used a weighted voting system with
a random forest within an adaptive modification of the samples’ weight
to categorize the flow.

An anomaly-based IDS model was proposed by Aljawarneh et al.
[16]. Initially, the data were filtered using a voting system incorporat-
ing information gain to select the essential attributes. They performed
binary and multiclass classification using different machine learning
techniques on a 20% NSL-KDD train dataset. And got high accuracy
and low false-positive, but the method was assessed using only the
NSL-KDD dataset. Similarly, Moustafa et al. [17] presented an IDS by
implementing the AdaBoost ensemble method using Decision Tree (DT)
techniques, Naive Bayes, and Artificial Neural Network to enhance the
overall achievement in terms of precision and detection rate. They
identify spiteful functions that endeavor to breach network applica-
tions. Similarly, Article [18] offers a distributed ensemble design-based
IDS that uses fog computing by combining k-nearest neighbors, Naive
Bayes, and XGBoost, as first-level individual learners. Random Forest
uses the first level’s prediction results at the second level to determine
the final classification.

Prabavathy et al. [19] proposed IDS by implementing fog comput-
ing. They performed IDS at fog junctions using an online sequential
extreme technique to detect the incoming attacks and send them to
the cloud server. A new feature selection metric system called Cor-
rAUC has been proposed by Shafiq et al. [20], which is based on the
wrapper method to separate the characteristics and preferred relevant
characteristics for the machine learning algorithm by applying the
area under the curve (AUC) metric. They implemented the combined
TOPSIS and Shannon entropy on a bijective simple set to verify chosen
characteristics for malicious traffic classification in the IoT network.
Hussain et al. [21] systematically examines the security conditions,
current security solutions, and the attack vectors for the IoT networks
to analyze the gap among IoT security requirements.

Like machine learning, deep learning (DL) techniques are also very

effective. It takes more time to train a model but gives better results
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with high accuracy. Shone et al. [22] use the DL approach for intru-
sion detection. They proposed a Non-Symmetric Deep Auto-Encoder
(NDAE) based IDS. The proposed architecture applied the Random
Forest classifier with stacked NDAEs to distribute network traffic into
malicious incidents and normal behavior. Tian et al. [23] proposed a
web attack detection system based on distributed DL. They applied
several concurrent models to increase the stability of the detection
system. To effectively identify any potential intrusions and unusual
traffic behavior, this study [24] suggests a CNN-based technique for
anomaly-based intrusion detection systems in the Internet of Things.

For dynamic and heterogeneous networks like IoMT (Internet of
Medical Things), the proposed [25] framework employs a deployment
architecture of software as a service (SaaS) in the fog and infrastructure
as a service (IaaS) in the cloud. The study suggests a cyber-attack
detection system for IoMT networks based on ensemble learning and
fog–cloud architecture. Zhao et al. [26] proposed a hybrid intrusion
detection system to boost classification performance utilizing a CFS-
DE (Correlation-based feature Selection-Differential Evolution) method
to reduce feature dimension and a weighted Stacking classification
technique to raise the weights of base classifiers upon successful train-
ing. Similarly, In this research [27], an intelligent IDS is described
that can defend IoT devices against cyber threats. The system employs
a conditional generative adversarial network and a lightweight CNN
model to produce attack data and address the lack of training data.

2.2. Blockchain based IDSs

Wenjuan Li et al. [28] proposed blockchain signature-based IDS that
targets insider attacks. They performed experiments on Both Simulation
and IoT real-world environments and mainly targeted worm and flood-
ing attacks. The rule-based database auto-updates in a collaborative IoT
environment. Alexopoulos et al. [29] presented a blockchain-based ar-
chitecture, where they examined a collection of warnings generated by
several IDS. All nodes operated consent rules to assure the transactions’
legality before adding them to a block. Kumar et al. [30] served two
modules as the foundation of the suggested framework. Initially, a se-
curity and privacy module for large-scale C-ITS (Cooperative Intelligent
Transport System) data was created using blockchain technology and
smart contracts. The second module used a deep learning approach.

In the review paper, Meng et al. [31] discussed IDS with blockchain
technology. They believed blockchains could positively influence intru-
sion detection by facilitating alarm exchange, data co-operative, and
estimation. Shah et al. [32] examines the IoT security risks and weak-
nesses and suggests a system architecture based on artificial intelligence
to overcome them. The suggested model aims to distinguish harm-
ful and non-malicious smart contracts using deep learning methods
and identifying malicious people trying to breach the IoT ecosystem.
For non-malicious IoT data, tamper-proof storage using blockchain
technology is provided.

2.3. Rule based IDSs

Raza et al. [33] proposed the first real-time IDS by deploying a
distributed mini-firewall protected from an external host. The IDS is
easy to Extend to detect a large number of attacks and is suitable
for resource-constrained devices. Sadikin et al. [34] introduced rule-
based IDS in the Zigbee IoT system. They define some rules, such as
the Received Signal Strength Indication (RSSI) pattern, frame counter,
traffic rate, and packet frame format. Eskandari et al. [35] Passwan IDS
is constructed to be hosted and fulfilled by a competitive IoT gateway.
Passban is administered as a distinct add-on device autonomously
connected to the network it is supposed to protect. Nonetheless, ad-
ditional training sessions might be necessary in case of alterations to
the underlying network topology.

The article [36] explains how the increased connection of modern

human life through the Internet of Things (IoT) has increased the
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Fig. 1. The Proposed IDS.

risk of cyberattacks on typical home appliances. The article suggests
a method for managing rules dynamically to improve defenses against
cyberattacks. Tests reveal that the suggested technique significantly
decreases CPU and Memory usage, increases the number of packets
handled per second, and significantly improves security. Mamvong
et al. [37] explained an effective safety algorithm for constrained IoT
tools. They presented a numerical justification for diminishing the
AES-128 algorithm’s complexity using the standard algorithm’s core
algebraic qualities.

The above literature and summary in Table 1 has explained the
existing IDS, which has many issues that can affect performance. When
IoT devices communicate through data sharing in an IoT environment,
there is also the possibility of variation in data types failing to detect
attacks. Most of the existing IDS do not examine all the features,
and some classifiers may behave differently according to the data
types. To address these issues, we proposed a model by considering
all the features, dividing them into parts based on their data type, and
processing them in parallel, reducing the computation time.

3. Proposed work

This paper has proposed a two-phase IDS to optimize efficiency
without losing any relevant information related to the data. Fig. 1
shows the workflow of the proposed model.

3.1. First phase analysis

Before diving deep into the proposed method, we introduce the pro-
posed approach briefly. We distributed our workflow of the proposed
solution into five steps. The first step is to separate features into sub-

parts according to the data type and then apply a suitable preprocessing
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Table 1
Summary of existing work on IDS.

References Experiments
performed

Datasets Advantages Disadvantages

Anthi et al. [38] Real-time Benign Network
Data

Real-time detection of fraudulent
packets on networks.

Insufficient facts on the data
characteristics.

Eskandari et al.
[35]

Testbed Generated IoT gateway software solution with a
minimal resource consumption.

If the underlying network topology is
altered, it is possible that further
training sessions may be necessary.

Wenjuan Li
et al. [39]

Simulation and
real-world

DARPA (KDD99) It automatically takes advantage of
unlabeled data.

Older data were utilized in the
evaluation of the model.

Raza et al. [33] Simulation
(Contiki-Cooja)

– Might detect unknown attacks. The proposed model was not
evaluated using real-world
networking data.

Pajouh et al.
[40]

– NSL–KDD The model suggested that it is
effective for targeted assaults on
minorities.

The accuracy as a whole is not up to
the standard.

Hong et al. [41] – NSL-KDD The article evaluates the quality of
algorithms using confusion matrix,
ROC curve, and AUC area.

Model was evaluated using only the
NSL-KDD dataset.

Sun et al. [42] Real-time Network Data Improved precision in detecting
intrusions.

Detects a minimal number of
assaults.

Liu et al. [43] Simulation – A higher degree of precision in the
identification of intrusions.

Identifying possible intrusions
becomes less accurate as the amount
of data grows.

Al et al. [44] – CICIDS2017 and
UNSW-NB15

The article addresses the common
issue of class imbalance in datasets.

The article does not discuss the
limitations.

Engelen et al.
[45]

– CICIDS2017 The article highlights the
effectiveness of machine learning
techniques in network intrusion
detection and the challenges
associated with their adoption in
large-scale network environments.

The article focuses only on the
CICIDS2017 dataset and does not
discuss other benchmark datasets.

Yin et al. [46] – UNSW-NB15 Hybrid feature selection method that
combines filter and wrapper methods
to manage the influence of less
important features effectively.

The classification result using
Multilayer Perceptron is not up to
the standard.
technique in the second step. During the third step, compute weight
based on the class (attacks) distribution. After the weight estimation,
we classify sub-parts using different versions of Naive Bayes.

3.1.1. Feature separation based on their data type
In the internet era, heterogeneous devices are connected, share

information, and communicate with each other. In the same way,
the form of data on a network may be different. So the employed
algorithms might have unusual behavior according to the fluctuations
in the data set. Before classification, most scholars select features using
techniques such as Information Gain (IG), Filter, and Wrapper. It is
a great way to reduce the computation complexity, but somehow, we
might be losing some important information related to the data. First,
we have separated the incoming data features on their data types
(i.e., object, binary, integer, float) to overcome this situation. This is
essential to know the data behavior, what value is used to determine
features, and how many unique values are stored in the features. For
instance, the protocol_type feature has three nominal values, i.e., TCP,
UDP, and ICMP.

3.1.2. Preprocessing of data
Preprocessing is another crucial step for better classification results,

wherein data can be analyzed and transformed effectively. We have
divided data into four categories based on their data types under the
feature separation step. These data features have independent proper-
ties, like the object category containing nominal values. The binary
category contains either zero or one value, and the integer category
contains integer type values, the same as float having floating values.

However, before preprocessing, we need to check the feature value
and range to apply the best method to transform the data without losing
information.
4

Object features encoding. In this paper, we have used label encod-
ing [47] techniques to transform the object-type data into numeric
form. Label encoder converts all the given feature’s nominal values
into the numeric positive integer ranging from 0 to up to the feature’s
unique values; for example, protocol_type has three different values
ICMP=0, TCP=1, and UDP=2. Eq. (1) shows the normalization of the
data within the range of 0 to 1.

𝑋𝑖_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =
𝑋𝑖 −𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚
(1)

𝑋𝑖 is the feature input value, 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚 are the feature’s
minimum and maximum value respectively.

3.1.3. Weight initialization
Data have various properties; Somehow, the class label distribution

of the data might be imbalanced. That is the most challenging task
to predict the actual value with a lower false-positive rate. Sometimes
accuracy is high, although the false alarm rate is also high. If the false
rate of IDS is high, it means the system is not performing well, and this
causes significant damage to the system or the user’s privacy. So, we
calculate weight based on class label distribution to reduce bias towards
imbalanced data. The computed weight is as follows.

𝑊𝑐 =
𝑁

𝑁𝑐 ∗ 𝑁𝑠
(2)

𝑊𝑐 = Weight of the class
𝑁 = Total number of samples in the data set
𝑁𝑐 = Total number of classes in the data set
𝑁𝑠 = Total number of samples in each class
Adding weight to the classifier gives priority to the class with fewer

samples. So we can improve the accurate prediction rate with a low
false rate.
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3.1.4. Analysis methods
There are many machine learning algorithms for data classification

for desired output. However, all the time, data does not have the same
properties, and algorithms also behave individually depending on the
data. Sometimes the same algorithm gives good results for one data and
bad for another. This paper has used different versions of Naive Bayes;
we have split data based on this. These separated data and weights are
sent to the classifier to classify the intrusion and normal behavior.

Naive Bayes is a supervised classification method based on the
Bayes theorem derived from conditional probability [48]. In this, we
calculate the probability of an event when some information is already
given. Here, Eq. (3) shows the probability of each class with respective
features given, which is directly proportional to the product of the
probability of each feature; when the class is 𝐶𝑖 to the probability of
a class, and this is divided by the product of the probability of each
feature.

𝑃 (𝐶𝑖|𝑓1, 𝑓2,… , 𝑓𝑛) ∝
𝑃 (𝐶𝑖) ×

∏𝑛
𝑗=1 𝑃 (𝑓𝑗 |𝐶𝑖)

𝑃 (𝑓1) × 𝑃 (𝑓2)... × 𝑃 (𝑓𝑛)
(3)

𝐶𝑖 = 𝑖th class value from the no. of classes C
𝑓𝑗 = 𝑗th feature of the data set.
To find the output of the particular record, we need to add argmax,

hich will give us the highest probability of the class as shown
n Eq. (4), which is most likely.

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,2,..𝑘𝑃 (𝐶𝑖) ×
𝑛
∏

𝑗=1
𝑃 (𝑓𝑗 |𝐶𝑖) (4)

aive Bayes categorical classification. We have done features encoding
n a preprocessing step to convert the nominal value into that form
n which the classifier can easily analyze the data. In the Naive Bayes
ategorical classification, all the data must be distributed in a discrete
ormat, referring to nominal values. To calculate the 𝑃 (𝑓𝑗 |𝐶𝑖) in Eq. (4)
or the category l in the feature j given class c is estimated as:

(𝑓𝑗 = 𝑙|𝐶𝑖 = 𝑐; 𝛼) =
𝑁𝑙𝑗𝑐 + 𝛼
𝑁𝑐 + 𝛼𝑛𝑟

(5)

here 𝑁𝑙𝑗𝑐 = |𝑠 ∈ 𝑆|𝑓𝑗𝑠 = 𝑙|𝐶𝑖 = 𝑐| is the number of times to appears
n the feature 𝑓𝑖 that is belongs to class c.

𝑆 = is the number of samples.
𝛼 = is the smoothing parameter, here it is zero.
𝑁𝑐 = Number of samples in the class c.
𝑛𝑟 = Number of categories in feature j.

aive Bayes binary classification. In binary classification, data must
e either 0 or 1. The Naive Bayes classifier calculates the likelihood
robability by using the Bernoulli theorem.

(𝑓𝑗 |𝐶𝑖) = 𝑃 (𝑗|𝐶𝑖)𝑓𝑗 + (1 − 𝑃 (𝑗|𝐶𝑖)𝑓𝑗 )(1 − 𝑓𝑗 ) (6)

Naive Bayes integer and float classification. For the integer and float type
feature, we have implemented a Gaussian Naive classifier to classify
the data to the desired output. To calculate the likelihood of 𝑃 (𝑓𝑗 |𝐶𝑖)
is described in Eq. (7).

𝑃 (𝑓𝑗 |𝐶𝑖) =
1

√

2𝜋𝜎2𝑦
𝑒
− (𝑥𝑖−𝜇𝑦)

2

2 𝜎2𝑦 (7)

After the training phase, we predicted the probability of the testing
data. Calculated probability is classified into normal and anomaly
by a selected threshold value, which defines the incoming event’s
probability as normal or anomaly.

3.1.5. Voting technique
As we applied different versions of the Naive Bayes classification

algorithm based on the features data types. All the collected predictions
must be arranged in that format to choose the appropriate predicted
data. So we apply here the voting technique. It means we selected those
predicted data that have the highest vote for belonging to a particular
5

class. Let us suppose 𝑝1, 𝑝2, 𝑝3, and 𝑝4 are the predicted values of the
data types nominal, binary, integer, and float, respectively. Then for
each record, we calculate the final prediction 𝑃 as follows:

𝑃 = 𝑚𝑜𝑑𝑒(𝑝1, 𝑝2, 𝑝3, 𝑝4) (8)

Algorithm 1: First stage of classification
Input : Class: Labeled data set; LA: Learning algorithm
Output: Normal = 0; Anomaly = 1

1 for 𝑖 = 1 to 𝑛𝑐 ; // 𝑛𝑐: no. of classes
2 do
3 𝑤𝑖 = ( 𝑛𝑠

𝑛𝑐×𝑛𝑠𝑖
);

/* 𝑤𝑖: weight of 𝑖𝑡ℎ class; 𝑛𝑠: total no. of
samples; 𝑛𝑠𝑖: no. of samples in 𝑖𝑡ℎ class */

4 endfor
5 for 𝑖 = 1 to 𝑛𝑓 do
6 if type(𝐹𝑖) == "object" then
7 𝐶𝑓 = 𝐹𝑖
8 end

/* 𝐶𝑓 is the categorical classification */
9 else if type(𝐿𝑖) == "boolean" then

10 𝐵𝑓 = 𝐹𝑖
11 end

/* 𝐵𝑓 is the Bernoulli classification */
12 else if type(𝐿𝑖) == "integer" then
13 𝐺𝑓 = 𝐹𝑖
14 end
15 else
16 𝐺𝑓 = 𝐹𝑖
17 end

/* 𝐺𝑓 is the Gaussian classification */
18 endfor
19 D[4] = [𝐶𝑓 ,𝐵𝑓 ,𝐺𝑓 ,𝐺𝑓 ]; 𝜆 = [0.3𝑡𝑜0.5]
20 for 𝑘 = 1 to 4 do
21 𝑃𝑘 = 𝐿𝐴(𝐷𝑘, 𝑤);

/* 𝑃: Predicted probability */
22 if 𝑃 < 𝜆 then
23 𝑃𝑘 = 0;
24 end
25 else
26 𝑃𝑘 = 1;
27 end
28 endfor
29 𝑝 = 𝑚𝑜𝑑𝑒(𝑃1, 𝑃2, 𝑃3, 𝑃4) /* 𝑝 is the final predicted

values 0 and 1 */

3.2. Second phase of analysis

Sometimes an attack is detected as normal due to the model’s
training over the unbalanced data. This can be challenging as it can
affect the entire network or the user’s privacy. We have implemented
the second analysis phase to only those mimicking normal for accurate
detection.

3.2.1. Linear discriminant analysis (LDA)
LDA [49] reduces the dimension by forming new features, a linear

combination of original features using Eigen-decomposition. LDA is
supervised; it reflects the class labels and finds components that depart
the classes most. E.g., 𝑁𝑐 is the number of classes, and then it converts
into the 𝑁𝑐 − 1 feature components. It gets optimality by minimizing
the variance within the class and maximizing the variance between the
classes. LDA diminishes the features into a single feature for the second
stage of the classification. As a result, the computation complexity is
significantly less.
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Fig. 2. Elliptic Envelope.

Table 2
NSL–KDD and UNSW_NB15 data set distribution.

NSL–KDD UNSW_NB15

Train dataset Test dataset Train 20%
dataset

Train dataset Test dataset

Normal 67343 9711 13449 56000 9711
Anomaly 58630 12833 11743 37000 45332

3.2.2. Elliptic envelope classification
Elliptic Envelope [40] is an unsupervised learning technique that

fits well if data has a Gaussian distribution. The Elliptic Envelope
method is an outlier identification technique predicated on specific
data points in the center of a dense elliptical area as shown in Fig. 2.
However, outliers are placed distant from this region. An elliptical
envelope is fitted to the data points that are thought to be normal for
the technique to function. The mean and covariance matrices of the
normal data points are estimated, and the Mahalanobis distance of each
data point from this elliptical area is computed. Outliers are defined
as data points with a high Mahalanobis distance. The elliptic envelope
approach has the benefits of being resilient to outliers, handling data
with several dimensions, and being effective for massive datasets. In
our case, we use data that comes into doubt due to its behavior in the
first analysis phase as normal.

4. Experimental setup and results

4.1. Dataset

The experiments were performed on NSL-KDD and UNSW_NB15
datasets. The NSL-KDD data set [50] is an evolved version of the KDD
99 data set, which removes many issues related to KDD data. There
is no duplication in the data set, and data recorded in the train and
test sets are in the relevant numbers. The data set is divided into three
distinct categories: Train, Test, and Test_20%, as shown in Table 2. NSL-
KDD data contains 39 different types of attacks. Test data includes 17
attacks that are unknown for the train data.

UNSW_NB-15 data set [51] was formed in the Cyber Range Lab of
the Australian Centre for Cyber Security (ACCS) by the IXIA Perfect-
Storm tool. The data set is mainly split into two distinct categories:
Train and Test, as shown in Table 2.

All the labeled records are divided into two classes, one for normal
behavior of the data and the second class for all the attacks named
anomaly for the binary classification. The accuracy, precision, recall,
and f–score of different approaches on NSL–KDD data set are shown in

Fig. 3
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Table 3
Binary classification comparison result in percentage using NSL-KDD data set.

Models Detection rate False alarm rate

Proposed 97 5.34
TIDS [52] 86.46 –
TDTC [40] 84.82 5.83
Two-tier [53] 83.24 4.83
fuzziness [54] 84.12 –
Multi_CNN [55] 86.95 –

Table 4
Binary classification comparison result in percentage using CIC IDS2017 data set.

Models Accuracy Precision Recall F-score

Proposed 98.59% 95.40% 97.51% 96.44%
[56] 81.83% – – 90.01%
[57] – 77% 84% 77%

Table 5
Comparison of the proposed model with existing approaches (NSL-KDD Dataset).

Models Normal DoS Probe U2L R2L

Proposed 94.65 93.05 87.69 40.29 58.40
TIDS [52] 92.1 92.3 90.5 52.2 49.2
TDTC [40] 94.43 88.20 87.32 70.15 42
DBN [22] 95.64 87.96 72.97 0 0
S-NDAE [22] 97.73 94.58 95.67 2.70 2.82
Two-tier [53] 94.56 84.68 79.76 67.16 34.81
Multi CNN [55] 91.19 86.63 82.73 23.5 35.15

4.2. Result analysis

The result analysis evaluated the proposed model using different
calculating performance measurements: accuracy, precision, recall, and
f–score. These are the standard measurement techniques that show
model performance. This section presents the overall performance of
the proposed work. Various versions of Naive Bayes have worked effec-
tively for their respective features in the first analysis phase. Following
that, the second phase of analysis applies only to those behaviors
which behave normally. Eventually, we got an overall 97% accuracy
in the NSL-KDD dataset, as shown in Table 3, 86.9% accuracy in the
UNSW_NB15 dataset, and 98.59% in CIC-IDS2017 dataset as shown in
Fig. 4 and Table 4.

The accuracy, precision, recall, and f–score of different ML ap-
proaches on the UNSW_NB15 data set are shown in Fig. 4.

4.3. Comparative analysis

We have applied the voting method for multiclass classification
after the all-learning Naive Bayes classifiers give a vote to a particular
attack class. The multiclass classification of the NSL-KDD dataset results
compared with the existing IDSs as shown in Table 5.

We evaluate the proposed model’s performance using NSL-KDD,
UNWS_NB15, and CIC-IDS2017 benchmark data sets and compare them
with the existing machine learning algorithms. We have also used
different machine-learning techniques to check the proposed model’s
performance. We trained these ML models using the training dataset
and computed the accuracy, precision, recall, and f-score by passing
the testing dataset to the trained model. After that, we compare our
proposed model’s performance with the different machine learning
models. Moreover, the results show that the proposed model recall is
99.1% of the NSL-KDD dataset, which is higher than the other models.
In the UNSW_NB dataset, we achieved higher accuracy of 86.9%, which
is comparatively reasonable. For the CIC-IDS2017 dataset, we compare

with research article [56,57].
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Fig. 3. Accuracy, precision, recall and f-score of different methods on NSL-KDD data set.
Fig. 4. Accuracy, precision, recall and f-score of different methods on UNSW_NB15 data set.
5. Conclusion

This paper presents a machine learning-based two-phase IDS. First-
ly, we categorize data into four sections according to the data types
(e.g., nominal, integer, binary, and float). Then classify them using
different versions of the Naive Bayes classifier. After that, with the help
of majority voting, we choose the final result of the classification. In
the second phase, we pass those data which behave like normal in the
first stage, and these data are classified using an unsupervised elliptic
envelope. It draws an imaginary envelope and assigns value 1, which
lies inside the Envelope, and −1 outside the Envelope. Our proposed
model is also performing very well in the imbalanced distribution of
the data by providing the weight initialization to each class. Finally,
we got an overall 97% accuracy with a meager false positive rate. The
drawback of this model is that it does not work pretty in multiclass
classification.

In future work, we will improve the multiclass classification and
feature engineering techniques model, expand this procedure in real-
time for network traffic analysis, and evaluate performance. We will
further attempt to capture network data by deploying IoT devices in the
real world. Moreover, the IDS system will detect malicious incidents in
real-time and immediately take appropriate action to prevent damage.
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