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Abstract

Inflation dynamics are investigated by estimating a generalized version of the New

Keynesian Phillips curve (NKPC) of Gaĺı and Gertler (1999) using Bayesian GMM.

US macroeconomic data suggests that the generalized NKPC (GNKPC) performs best

in terms of quasi-marginal likelihood among those considered both during and after

the Great Inflation period. The estimated GNKPC indicates that when trend inflation

fell after the Great Inflation period, the probability of price change decreased and the

GNKPC flattened, which is in line with findings by previous studies.
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1 Introduction

The dynamics of inflation have long been the subject of intense investigation in macroe-

conomics. To describe inflation dynamics, the New Keynesian Phillips curve (NKPC) is

often derived by assuming either zero trend inflation or price indexation to trend and lagged

inflation.1 However, these assumptions in the canonical NKPC are at odds with empirical

observations. Recent studies thus examine the effect of nonzero trend inflation on the NKPC,

particularly without the indexation.2 The studies have shown that such a generalized NKPC

(GNKPC) has substantially distinct features from the canonical NKPC, thereby generating

important implications for policy and welfare. This finding raises the question as to which

is a more plausible description of inflation dynamics, the GNKPC or the canonical NKPC.

This paper estimates and evaluates the GNKPC using a novel model selection proce-

dure under the framework of limited-information Bayesian estimation. In the empirical

literature on NKPCs, two main approaches have been adopted: limited-information (or

single-equation) methods and full-information (or system) methods. For example, the GMM

estimation of the NKPC in Gaĺı and Gertler (1999) and the minimum distance estima-

tion of the GNKPC in Cogley and Sbordone (2008) can be classified as limited-information

methods. On the other hand, NKPCs in the estimated dynamic stochastic general equi-

librium (DSGE) models of Christiano et al. (2005) and Smets and Wouters (2007) can be

categorized as full-information methods. In a recent paper, Hirose et al. (2020) conduct

a full-information Bayesian analysis to compare a GNKPC and an NKPC in an otherwise

identical DSGE model, and show that the model with the GNKPC outperforms that with

the NKPC in terms of marginal likelihood. However, as Mavroeidis et al. (2014) emphasize

in their review of the empirical literature on NKPCs, “By imposing a theoretical model

1See, e.g., Woodford (2003), Christiano et al. (2005), and Smets and Wouters (2007).

2See, e.g., Alves (2014), Ascari (2004), Ascari and Ropele (2009), Coibion and Gorodnichenko (2011),

Coibion et al. (2012), Kurozumi and Van Zandweghe (2016, 2020, 2023), and Shirota (2015). For a review

of the literature, see, e.g., Ascari and Sbordone (2014).
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on all the variables in the system, full-information methods have the potential to improve

estimator precision, but they also introduce the risk of misspecification in other equations,

inducing bias or inconsistency of the NKPC parameters of interest (p. 125).” In contrast, the

limited-information methods, including the single-equation GMM used by Gaĺı and Gertler

(1999), are much less subject to such a misspecification issue. Yet the GMM estimation

of NKPCs has been known to suffer from a weak-identification problem, especially when

NKPCs are nearly flat, or when the variation of inflation expectations is small as a result of

successful monetary policy in anchoring the expectations (Mavroeidis et al., 2014, p. 139).

To circumvent the weak-identification issue, our paper estimates the GNKPC with Bayesian

GMM and evaluates its empirical performance using the quasi-marginal likelihood (QML)

proposed by Inoue and Shintani (2018), who theoretically show that the model selection

consistency of QML is robust to the presence of weakly identified parameters.3

To reconcile NKPCs with the inflation data that exhibit persistence, previous studies have

suggested introducing backward-looking price setting because it generates inflation inertia

in NKPCs. Such an empirically plausible version of the NKPC is often called the hybrid

NKPC. In a Calvo (1983) staggered price model, Gaĺı and Gertler (1999) incorporate rule of

thumb (ROT) price setters, while Woodford (2003) embeds dynamic price indexation (DPI)

to lagged inflation. In the ROT specification, the hybrid NKPC is based on the presence

of two types of firms, optimizing and ROT firms. In each period, both types of firms set

prices using (full) indexation to trend inflation with a certain probability, while with the

remaining probability, optimizing firms choose prices optimally and ROT firms adjust prices

using a backward-looking ROT. In the DPI specification, the hybrid NKPC arises from the

price-setting behavior of firms that adjust prices using (full) DPI to an average of lagged and

trend inflation with a certain probability and optimize prices with the remaining probability

3This result does not necessarily imply that Bayesian GMM inference is valid for weakly identified

parameters. However, Kleibergen and Mavroeidis (2014) point out that Bayesian methods can mitigate

the weak-identification issue and be considered as an alternative to the weak-identification robust GMM

approach employed by Kleibergen and Mavroeidis (2009).
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in each period. Inoue and Shintani (2018) estimate these two types of the hybrid NKPC using

Bayesian GMM and show that the Gaĺı-Gertler NKPC outperforms the Woodford NKPC in

terms of QML.4 In light of this empirical result, our paper employs the Gaĺı-Gertler NKPC

as the baseline NKPC to be compared with the GNKPC.

As our primary specification of the GNKPC, we consider a generalized version of the Gaĺı-

Gertler NKPC in which all types of firms with a certain probability keep prices unchanged

instead of setting prices with the indexation. This small change gives rise to two notable

features of the resulting GNKPC that are substantially different from those of the Gaĺı-

Gertler NKPC. First, the driving force of inflation in the GNKPC includes not only the real

marginal cost, which further consists of the real unit labor cost and relative price distortion,

but also the expected growth rates of future demand and the expected discount rates on

future profits under nonzero trend inflation. Second, and more importantly, the GNKPC

slope and inflation-inertia coefficients depend on the level of trend inflation, as well as the

probability of price change and the fraction of ROT firms. These two features hold even for

a Gaĺı-Gertler GNKPC in which all types of firms with a certain probability set prices using

partial indexation to trend inflation, called the Gaĺı-Gertler GNKPC with indexation.

In addition to the Gaĺı-Gertler GNKPC, we also consider a generalized version of the

Woodford NKPC in which firms with a certain probability set prices using partial DPI to

an average of lagged and trend inflation instead of the full DPI. This Woodford GNKPC

also has two features similar to those of the Gaĺı-Gertler GNKPC and includes as a special

case a simple variant of the GNKPC of Cogley and Sbordone (2008) in which trend inflation

is constant.5 Moreover, we consider a GNKPC that (theoretically) nests both Gaĺı-Gertler

and Woodford GNKPCs.

The main findings of the paper are twofold. First, US macroeconomic data suggests

that the Gaĺı-Gertler GNKPC outperforms the baseline (Gaĺı-Gertler) NKPC, the Gaĺı-

4The latter NKPC is referred to as the NKPC of Smets and Wouters (2007) in Inoue and Shintani (2018).

5The GNKPC of Cogley and Sbordone (2008) features time-varying trend inflation and partial DPI only

to lagged inflation.
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Gertler GNKPC with indexation, the Woodford and the Cogley-Sbordone GNKPCs, and

the GNKPC that nests both Gaĺı-Gertler and Woodford GNKPCs, in terms of QML, both

during and after the Great Inflation period. Second, the estimated Gaĺı-Gertler GNKPC

indicates that when trend inflation fell after the Great Inflation period, the probability

of price change decreased and the GNKPC flattened. Therefore, the Phillips curve Alan

Greenspan (and Ben Bernanke) faced is not the same as the one Paul Volcker had faced, as

conjectured by Ball et al. (1988).6

These findings are comparable to empirical evidence reported in previous studies. Our

finding that the Gaĺı-Gertler GNKPC empirically outperforms the Gaĺı-Gertler NKPC coin-

cides with the result of Hirose et al. (2020), which is based on the full-information Bayesian

method.7 Since the Gaĺı-Gertler and the Woodford GNKPCs are generalizations of their

NKPC counterparts, our finding that the Gaĺı-Gertler GNKPC outperforms the Woodford

GNKPC is analogous to the result of Inoue and Shintani (2018) on the NKPC counterparts.

While Cogley and Sbordone (2008) reach the conclusion that there is no need for backward-

looking price setting in their GNKPC once drifting trend inflation is incorporated in it, our

finding suggests that their conclusion may depend on the specification of backward-looking

price setting (i.e., DPI to lagged inflation), in addition to the drifting trend inflation. In our

estimated Gaĺı-Gertler GNKPC, the probability of price change decreased after the Great

Inflation period, in line with the micro evidence of Nakamura et al. (2018) that the frequency

of regular price change declined after that period. The flattening of the estimated GNKPC

is consistent with the empirical results of Benati (2007), Ball and Mazumder (2011), and the

6The concurrence of the fall in trend inflation, the decrease in the probability of price change, and the

flattening of the slope in the estimated GNKPC coincides with the theoretical prediction in the literature

on endogenous price stickiness, such as Ball et al. (1988), Levin and Yun (2007), and Kurozumi (2016).

7Restricting attention to a post-Great Inflation period, Ascari et al. (2011) estimate three DSGE models

with distinct NKPCs: an NKPC with (full) DPI to lagged inflation as in Christiano et al. (2005), a GNKPC

with partial DPI to lagged inflation as in Cogley and Sbordone (2008), and a GNKPC with partial price

indexation to trend inflation. Their model selection based on marginal likelihood shows that the latter

GNKPC performs best, while the NKPC performs worst.
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International Monetary Fund (2013), among others.

The remainder of the paper proceeds as follows. Section 2 presents our main specification

of the GNKPC. Section 3 explains our method and data for estimating and evaluating it.

Section 4 shows the results of the model selection and accounts for the estimation results of

the selected model. Section 5 concludes.

2 Generalized New Keynesian Phillips Curve

This section presents a generalized version of the hybrid NKPC of Gaĺı and Gertler (1999).

2.1 Main specification: Gaĺı-Gertler GNKPC

Our main specification of the GNKPC is derived from a Calvo (1983) staggered price model

in which there are two types of firms, optimizing firms and rule of thumb (ROT) firms,

and ωr ∈ [0, 1) denotes the fraction of ROT firms, as in Gaĺı and Gertler (1999). In each

period, both types of firms keep prices unchanged with probability λ ∈ [0, 1), while with the

remaining probability, optimizing firms choose prices optimally and ROT firms set prices

using a backward-looking ROT. As shown in Appendix, the GNKPC can be obtained as

π̂t = γbπ̂t−1 + γfEtπ̂t+1 + κ m̂ct + κf

∞∑
j=1

ρjf
(
Etĝyt+j + θEtπ̂t+j − Etr̂t+j−1

)
(1)

under the assumption

λπθ < min (1, π) , (2)

where hatted variables denote log-deviations from steady-state values, Et is the expectation

operator conditional on information available in period t, πt is the inflation rate, mct is

the real marginal cost, gyt is the output growth rate, rt is the nominal interest rate, π

is the trend inflation rate, and θ > 1 is the elasticity of substitution between individual
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differentiated goods.8 The reduced-form coefficients are given by γb ≡ ωr/φ, γf ≡ βλπθ/φ,

κ ≡ (1−λπθ−1)(1−βλπθ)(1−ωr)/φ, κf ≡ (π−1)(1−λπθ−1)(1−ωr)/φ, φ ≡ λπθ−1 +ωr[1−

λπθ−1(1− βπ)], and ρf ≡ βλπθ−1, where β ∈ (0, 1) is the subjective discount factor.

In the GNKPC (1), two points are worth noting. First, the driving force of inflation in

the GNKPC includes not only the real marginal cost mct but also the expected growth rates

of future demand Et[ĝyt+j + (θ − 1)π̂t+j] and the expected discount rates on future profits

Et[r̂t+j−1 − π̂t+j] under nonzero trend inflation, i.e., π 6= 1. Furthermore, the real marginal

cost consists of the real unit labor cost ulct and the relative price distortion ∆t:

m̂ct = ûlct − ∆̂t, (3)

since the distortion has a first-order effect in the GNKPC under nonzero trend inflation.

Then, the law of motion of the distortion is given by

∆̂t = ρ∆∆̂t−1 + κ∆π̂t = κ∆

∞∑
j=0

ρj∆π̂t−j, (4)

where ρ∆ ≡ λπθ and κ∆ ≡ θλπθ−1(π − 1)/(1− λπθ−1).

Second, both the slope κ and the inflation-inertia coefficient γb in the GNKPC depend

not only on the probability of no price change λ and the fraction of ROT firms ωr but also

on the level of trend inflation π and the elasticity of substitution θ.9 Table 1 summarizes

how the slope κ and the inflation-inertia coefficient γb are related to the model parameters

λ, ωr, π, and θ. As shown on the second line of the table, a flatter slope κ is caused by a

8Note that assumption (2) does not depend on the fraction of ROT firms ωr.

9The slope κ and the inflation-inertia coefficient γb depend on the subjective discount factor β as well. As

β decreases, the slope κ steepens and the inertia coefficient γb increases. This property arises because only

optimizing firms take into account the discount factor β. A decrease in β makes optimizing firms myopic,

so they respond more to the current real marginal cost and less to the expected future one. Their increased

sensitivity to the current real marginal cost steepens the slope κ, while their comparative indifference to the

expected future one reduces the inflation-expectation coefficient γf and increases the inertia coefficient γb.

7



Table 1: Relationships between model parameters and reduced-form coefficients of GNKPC

λ ωr π θ (if π > 1) θ (if π < 1)
slope κ − − − − +
inflation inertia γb − + − − +

Note: The model parameters λ, ωr, π, and θ denote the probability of no price change, the fraction of ROT

firms, trend inflation, and the elasticity of substitution, respectively.

higher probability λ, a larger fraction ωr, or higher trend inflation π. It is also generated by

a higher elasticity θ if trend inflation is positive (i.e., π > 1) and by a lower elasticity θ if

trend inflation is negative (i.e., π < 1). These factors, except for a larger fraction ωr, give

rise to a lower inflation-inertia coefficient γb, and so does a smaller fraction ωr, as seen on

the last line of the table.

To understand the relationships presented in Table 1, the following log-linearized aggre-

gate price equation is particularly helpful:

0 = (1− ωr)(1− λπθ−1) p̂ot + ωr(1− λπθ−1) p̂rt + λπθ−1 (−π̂t) .

This equation shows that the steady-state contributions of optimizing firms (p̂ot ), ROT firms

(p̂rt ), and non-adjusting firms (−π̂t) to the aggregate price are given by (1− ωr)(1− λπθ−1),

ωr(1 − λπθ−1), and λπθ−1, respectively. The slope κ flattens when the contribution of op-

timizing firms declines, since only these firms respond (directly) to the real marginal cost.

The inflation-inertia coefficient γb decreases when the contribution of ROT firms declines.

Because a higher probability of no price change λ reduces the contributions of both types of

firms, it flattens the slope and decreases the inflation-inertia coefficient. A smaller fraction of

ROT firms ωr reduces the contribution of such firms while raising that of optimizing firms,

thus decreasing the inertia coefficient and steepening the slope. Higher trend inflation π

flattens the slope and decreases the inertia coefficient, since it reduces the contributions of

both types of firms. Likewise, under positive trend inflation (i.e., π > 1), a higher elastic-

ity of substitution θ reduces them and thus generates a flatter slope and a smaller inertia
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coefficient. If trend inflation is negative (i.e., π < 1), a higher elasticity raises them, thus

inducing a steeper slope and a larger inertia coefficient.

2.2 Gaĺı-Gertler NKPC and GNKPC with indexation

The GNKPC is a simple variant of the hybrid NKPC of Gaĺı and Gertler (1999). Indeed, the

NKPC can be obtained only by altering the model so that the prices that are kept unchanged

in the aforementioned model setting are instead adjusted using (full) indexation to trend

inflation.10 Then, the parameter λ represents the probability of trend inflation-indexed price

setting. Much more importantly, the level of trend inflation no longer influences the NKPC

coefficients and there is no first-order effect of the relative price distortion, ∆̂t = 0. In fact,

the NKPC coincides with the GNKPC (1) in which its coefficients are set at their values

under zero trend inflation (i.e., π = 1) and there is no distortion term:

π̂t = γb1π̂t−1 + γf1Etπ̂t+1 + κ1ûlct, (5)

where γb1, γf1, and κ1 correspond to γb, γf , and κ at π = 1, respectively. It is worth noting

that the GNKPC (1) and the NKPC (5) coincide only when trend inflation is zero.

We can also consider a GNKPC that nests both GNKPC (1) and NKPC (5). It can be

derived by generalizing the above model setting (for the NKPC) using partial indexation to

trend inflation with the degree ωi ∈ [0, 1], under the assumption

λπθ(1−ωi) < min
(
1, π1−ωi

)
, (6)

which generalizes assumption (2). This GNKPC with indexation takes the same form as

(1), but with the coefficients γb = ωr/φ, γf = βλπθ(1−ωi)/φ, κ = (1 − λπ(θ−1)(1−ωi))(1 −

βλπθ(1−ωi))(1 − ωr)/φ, κf = (π1−ωi − 1)(1 − λπ(θ−1)(1−ωi))(1 − ωr)/φ, φ = λπ(θ−1)(1−ωi) +

ωr[1 − λπ(θ−1)(1−ωi)(1 − βπ1−ωi)], and ρf ≡ βλπ(θ−1)(1−ωi). In addition, the law of motion

10For the NKPC (5), assumption (2) is redundant.
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of the relative price distortion is of the same form as (4), but with ρ∆ ≡ λπθ(1−ωi) and

κ∆ = θλπ(θ−1)(1−ωi)(π1−ωi − 1)/(1 − λπ(θ−1)(1−ωi)). The GNKPC with indexation includes

the GNKPC (1) and the NKPC (5) as the special cases of ωi = 0 and ωi = 1, respectively.

3 Estimation Method and Data

This section explains our method and data for estimating and evaluating the GNKPC and

the NKPC presented in the preceding section.

3.1 Bayesian GMM

Early empirical studies on NKPCs have extensively used GMM, which is classified as a

limited-information method. Moment conditions in GMM estimation are derived using

instruments that are orthogonal to expectation errors obtained from the forward-looking

variables of NKPCs being replaced with their realizations. This procedure is used by, for

instance, Gaĺı and Gertler (1999) and Gaĺı et al. (2005).11 An alternative popular limited-

information method is the two-step procedure that first derives the forward-looking variables

of an NKPC from a VAR and then conducts minimum distance estimation of model param-

eters using theoretical restrictions on the NKPC. This approach is adopted by, for example,

Sbordone (2002) and Cogley and Sbordone (2008).

The most distinctive feature of our paper from previous studies is that we utilize Bayesian

GMM in estimating the GNKPC and the NKPC instead of classical GMM. As in the early

empirical studies, we use moment conditions with the GNKPC’s and the NKPC’s forward-

looking variables being replaced by their realizations and with instruments orthogonal to

their expectation errors. We then conduct Bayesian GMM estimation of the single equation

(i.e., the GNKPC or NKPC) based on the moment conditions. A similar approach has been

taken by Lubik and Schorfheide (2007) for the estimation of monetary policy rules and by

11The procedure is sometimes referred to as the generalized instrumental variables (IV) estimation.
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Inoue and Shintani (2018) for the estimation of hybrid NKPCs. Within the framework of

Bayesian GMM, the classical GMM estimator can be viewed as a special case with flat priors.

The limited-information Bayesian GMM estimation of the GNKPC and the NKPC has at

least three advantages over the estimation procedures used in previous studies on NKPCs.

First, the limited-information method is much less subject to misspecification issues than

full-information methods, which have been widely used in most of the previous studies on

estimated DSGE models with an NKPC or GNKPC, such as Christiano et al. (2005), Smets

and Wouters (2007), Ascari et al. (2011), and Hirose et al. (2020). Bayesian GMM leaves

unspecified other equations in the model.

Second, Bayesian methods can mitigate the weak-identification issue that has been ex-

tensively discussed in the empirical literature on NKPCs, such as Mavroeidis (2005), Nason

and Smith (2008), Canova and Sala (2009), Kleibergen and Mavroeidis (2009, 2014), Mag-

nusson and Mavroeidis (2014), and Mavroeidis et al. (2014). As pointed out by Kleibergen

and Mavroeidis (2014), Bayesian methods can be considered as an alternative to the weak-

identification robust GMM approach employed by Kleibergen and Mavroeidis (2009).

Third, as shown by Inoue and Shintani (2018), the QML model selection criterion leads

to consistent model selection. In particular, model selection based on QML is theoretically

valid, even if some model parameters are weakly identified or set identified. Inoue and

Shintani (2018) use this property to compare alternative specifications of hybrid NKPCs.

This framework is useful for our analysis in comparing the performance of the GNKPC and

the NKPC presented in the preceding section.12

In the econometric literature, our estimator belongs to the class of limited-information

quasi-Bayesian estimators. Its asymptotic properties, such as consistency and asymptotic

normality, have been established by Kim (2002) and Chernozhukov and Hong (2003). The

latter study emphasizes a computational advantage of the Bayesian GMM estimator over the

classical one, since the Markov Chain Monte Carlo (MCMC) method can be utilized even if

12Christiano et al. (2016) also employ QML in the selection of DSGE models estimated with a minimum

distance approach for impulse response functions.
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GMM objective functions cannot be expressed in a simple form.

Let ϑ denote an m-dimensional vector of model parameters to be estimated and gt(ϑ)

be an n-dimensional vector of moment functions that satisfies E(gt(ϑ)) = 0 at a true value

of ϑ = ϑ0, where E is the unconditional expectation operator. In our estimation, trend

inflation π is assumed to meet the condition log π = E log πt, i.e., Eπ̂t = 0. Thus, gt(ϑ) is

defined as

gt(ϑ) = [ut ztut uπ,t ]′, (7)

where zt is an (n − 2)-dimensional vector of instruments and uπ,t = log πt − log π. As for

ϑ and ut, in the case of the GNKPC or that with indexation we have ϑ = [π θ λ ωr]
′ or

ϑ = [π θ λ ωr ωi]
′ and

ut = uπ,t − γbuπ,t−1 − γfuπ,t+1 − κ

(
ûlct − κ∆

∞∑
j=0

ρj∆uπ,t−j

)
− κf

∞∑
j=1

ρjf
(
ĝyt+j + θuπ,t+j − r̂t+j−1

)
,

which can be obtained by combining (1), (3), and (4). To approximate the infinite sums of

log-deviations of inflation, output growth, and the nominal interest rate from steady-state

values, we use their truncated sums, following Gaĺı et al. (2005).13,14 In the case of the

13For the quarterly model, this paper employs 16 lags of the log-deviation of inflation and 16 leads of the

log-deviations of inflation, output growth, and the nominal interest rate. We also experimented with 12 lags

and 12 leads, and with 20 lags and 20 leads, and confirmed that the empirical results presented in this paper

hold qualitatively.

14Taking second quasi-differences of the GNKPC, we can obtain a representation of it with no infinite

sums. However, we claim that such a representation of the GNKPC and the NKPC (5) are not comparable.

We took second quasi-differences of the NKPC in a similar manner and confirmed that such a representation

and the original one (5) of the NKPC lead to different quasi-posterior estimates of model parameters and

distinct values of QML. This finding implies that the GNKPC representation with no infinite sums and the

NKPC (5) are not comparable. Therefore, in the estimation of the GNKPC, we use a representation with

truncated sums, as in Gaĺı et al. (2005).
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NKPC (5), we have ϑ = [π θ λ ωr]
′ and

ut = uπ,t − γb1uπ,t−1 − γf1uπ,t+1 − κ1ûlct.

This paper employs the efficient two-step GMM estimator.15 This estimator maximizes

the objective function q̂(ϑ) = −(1/2)g(ϑ)′ Ŵ g(ϑ) with regard to ϑ ∈ Θ, where g(ϑ) =

(1/
√
T )
∑T

t=1 gt(ϑ) and Ŵ is a consistent estimator of an n×n positive semidefinite optimal

weighting matrix based on the HAC estimator of Newey and West (1987). The matrix

Ŵ is calculated as Ŵ = [Γj(ϑ̃) +
∑J

j=1(j/J)(Γj(ϑ̃) + Γj(ϑ̃)′)]−1, where Γj(ϑ) = [1/(T −

j)]
∑T

t=j+1 gt(ϑ)gt−j(ϑ)′, ϑ̃ is a first-step consistent estimator of the true value ϑ0, and the

lag length J is set by the automatic bandwidth selection method of Andrews (1991).16

Next, Bayesian methods are applied to the GMM estimation. Following Chernozhukov

and Hong (2003), the quasi-posterior distribution of ϑ is defined as

exp(q̂(ϑ)) p(ϑ)∫
Θ

exp(q̂(ϑ)) p(ϑ) dϑ
,

where p(ϑ) is the prior distribution for ϑ. The mean and credible interval of the quasi-

posterior distribution can be computed using the MCMC method.17

15Following most of the previous studies, such as Gaĺı and Gertler (1999) and Gaĺı et al. (2005), our paper

uses the two-step GMM estimator rather than the continuous updating GMM estimator proposed by Hansen

et al. (1996).

16The HAC covariance matrix estimator of the moment functions (7) is employed for two reasons. First,

the inflation gap uπ,t = log πt − log π in (7) is possibly serially correlated. Second, the use of the HAC

estimator makes the resulting estimation valid not only for the exact specifications of the GNKPC and the

NKPC but also for the case in which a disturbance (e.g., cost-push shock) is incorporated in them.

17In our estimation, 210, 000 MCMC draws that meet assumption (6) were generated, and the first 10, 000

draws were discarded as a burn-in. The random-walk Metropolis–Hastings algorithm was applied to generate

draws from the quasi-posterior distribution. The scale factor for the jumping distribution in the algorithm

was adjusted so that an acceptance ratio of around 25 percent is obtained.
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3.2 Quasi-Bayesian model selection

For the model selection, this paper follows Inoue and Shintani (2018) in using the QML

defined as ∫
Θ

exp(q̂(ϑ)) p(ϑ) dϑ.

As with the model selection based on marginal likelihood in full-information Bayesian esti-

mation, a model with higher QML is regarded as superior.18

The QML is calculated using the modified harmonic mean method. This method com-

putes the QML as the reciprocal of

E

[
w(ϑ)

exp(q̂(ϑ)) p(ϑ)

]
,

which is evaluated using MCMC draws, given a weighting function w(ϑ). This paper con-

siders two alternative choices for the weighting function proposed in the literature. The first

choice is suggested by Geweke (1999), who sets w(ϑ) to be the truncated normal density

w(ϑ) =
exp[−(1/2)(ϑ− ϑ̄)′V̄ −1

ϑ (ϑ− ϑ̄)]

(2π)m/2|V̄ϑ|1/2
1{(ϑ− ϑ̄)′V̄ −1

ϑ (ϑ− ϑ̄) ≤ χ2
m,τ}

τ
,

where ϑ̄ is the quasi-posterior mean, V̄ϑ is the quasi-posterior covariance matrix, π in this

subsection is the circular constant, 1{·} is an indicator function, χ2
m,τ is the 100τth percentile

of the chi-square distribution with m degrees of freedom, and τ ∈ (0, 1) is a constant.19 The

second choice is proposed by Sims et al. (2008). They argue that the choice of Geweke

(1999) may not work well when the posterior distribution is non-elliptical, and suggest the

18Theoretically, the model selection is said to be consistent if the probability of selecting the true model

approaches one as the sample size goes to infinity. The consistency of the model selection based on the QML

has been shown by Kim (2014) for nested models and by Inoue and Shintani (2018) for nonnested models.

19Recall that m denotes the number of model parameters to be estimated.
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weighting function given by

w(ϑ) =
Γ(m/2)

2πm/2|V̂ϑ|1/2
f(r)

rm−1

1{q̂(ϑ) + log p(ϑ) > L1−q}
τ̄

,

where V̂ϑ is the second moment matrix centered around the quasi-posterior mode ϑ̂, f(r) =

[vrv−1/(cv90/0.9 − cv1)] 1{c1 < r < c90/(0.9)1/v}, v = log(1/9)/ log(c10/c90), r = [(ϑ −

ϑ̂)′V̂ −1
ϑ (ϑ− ϑ̂)]1/2, cj is the jth percentile of the distance r, L1−q is the 100(1−q)th percentile

of the log quasi-posterior distribution, q ∈ (0, 1) is a constant, and τ is the quasi-posterior

mean of 1{q̂(ϑ) + log p(ϑ) > L1−q}1{c1 < r < c90/(0.9)1/v}.

The ensuing analysis calculates QML using various values of the truncation parameters,

τ in the estimator of Geweke (1999) and q in that of Sims et al. (2008), for robustness.

Following Herbst and Schorfheide (2015), this paper chooses τ = 0.5 and 0.9 for the former

estimator and q = 0.5 and 0.9 for the latter.

3.3 Data

The primary data for the estimation of the GNKPC consists of four U.S. time series on the

quarterly frequency: inflation πt, the real unit labor cost ulct, output growth gyt, and the

nominal interest rate rt. As for instruments zt in (7), this paper follows Gaĺı et al. (2005) in

choosing four lags of inflation and two lags of wage inflation and the other three variables

that appear in the GNKPC, i.e., ulct, gyt, and rt.

As in Gaĺı and Gertler (1999) and Gaĺı et al. (2005), the data on πt is the inflation rate

of the GDP implicit price deflator, and that on ulct is the labor income share in the nonfarm

business sector. Those on gyt and rt are the per-capita real GDP growth rate and the three-

month Treasury bill rate, respectively.20 The wage inflation data is based on the hourly

compensation in the nonfarm business sector. To take into account a possible shift in trend

inflation, the estimation is performed separately for the Great Inflation period (1966:Q1–

20The empirical results presented in this paper using the GDP and its deflator hold qualitatively even

when the PCE and its price index are instead employed.
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1982:Q3) and the period thereafter (1982:Q4–2015:Q4), as well as for the full sample period

since 1966:Q1.21

For the real unit labor cost, output growth, and the nominal interest rate, the time series

of their log-deviations from steady-state values {ûlct, ĝyt, r̂t} are constructed separately for

each sample period; they are all demeaned using their respective sample period averages.

3.4 Prior distributions

In each estimation, the subjective discount factor β is fixed at 0.995. All the remaining

model parameters are estimated. The prior distributions for the parameters are presented

in Table 2.

Table 2: Prior distributions for model parameters to be estimated

Model parameter Distribution Mean Std. dev. 90% interval
π̄ annualized trend inflation rate Normal 3.53 1.50 [1.06,6.00]
θ elasticity of substitution Gamma 9.32 1.00 [7.74,11.02]
λ probability of no price change Beta 0.50 0.10 [0.34,0.66]
ωr fraction of ROT firms Beta 0.50 0.10 [0.34,0.66]
ωi degree of indexation to trend inflation Uniform [0, 1] 0.50 0.29 [0.05,0.95]

Notes: π̄ ≡ 400 log π. In the Gaĺı-Gertler NKPC and GNKPC with indexation, λ represents the probability

of trend inflation-indexed price setting.

The prior for the annualized trend inflation rate π̄ (≡ 400 log π) is centered around the

full sample period average inflation rate of 3.53 with standard deviation 1.5. That for the

elasticity of substitution θ is set to be the gamma distribution with mean 9.32 and standard

deviation 1. The value of 9.32 is the estimate of Ascari and Sbordone (2014). For the priors

for the probability of no price change (or trend inflation-indexed price setting) λ and the

fraction of ROT firms ωr, the beta distributions are chosen with mean 0.5 and standard

deviation 0.1. The prior for the degree of price indexation to trend inflation ωi is set to be

21In estimating the GNKPC with the quarterly data, this paper uses 16 leads of inflation, output growth,

and the nominal interest rate, so the second subsample and the full sample periods end in 2015:Q4 by taking

into account the COVID-19 pandemic since 2020.
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the uniform distribution between 0 and 1, because the GNKPC with indexation includes the

GNKPC (1) and the NKPC (5) as the special cases of ωi = 0 and ωi = 1, respectively.

4 Empirical Results

This section presents the results of the model selection and accounts for the estimation results

of the selected model.

4.1 Comparison of Gaĺı-Gertler GNKPC, NKPC, and GNKPC

with indexation

We begin by comparing the empirical performance of the GNKPC (1), the NKPC (5),

and the GNKPC with indexation. As noted in the preceding section, the performance is

evaluated in terms of QML, which is computed with the two alternative modified harmonic

mean estimators proposed by Geweke (1999) and by Sims et al. (2008). For each of the

three, Table 3 reports log QML using the truncation parameter values of τ = 0.5, 0.9 for the

estimator of Geweke (1999) and q = 0.5, 0.9 for that of Sims et al. (2008).

The third to fifth columns of Table 3 show that the GNKPC has higher QML than

the NKPC and the GNKPC with indexation in all the three estimation periods for both

estimators with both truncation parameter values. This result indicates that the GNKPC

describes inflation dynamics better than the NKPC and the GNKPC with indexation both

during and after the Great Inflation period as well as the full sample period. Moreover, the

absence of the indexation, that is, retaining some unchanged prices in each quarter in line

with micro evidence improves the GNKPC’s fit to the macroeconomic data. These findings

coincide with those of Hirose et al. (2020). They conduct a full-information Bayesian analysis

to compare a Gaĺı-Gertler GNKPC and NKPC in an otherwise identical DSGE model, and

show that the model with the GNKPC outperforms that with the NKPC during both the

Great Inflation and Great Moderation periods in terms of marginal likelihood. As noted in

Introduction, recent studies have pointed out that GNKPCs possess substantially distinct
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Table 3: QML for Gaĺı-Gertler GNKPC, NKPC, and GNKPC with indexation

No restriction No inertia: ωr = 0

GNKPC NKPC
GNKPC with

GNKPC NKPC
Period Estimator indexation
Great Inflation G, 0.5 −7.48 −8.56 −7.85 −8.89 −12.58
(1966:Q1–1982:Q3) G, 0.9 −7.46 −8.56 −7.80 −8.88 −12.58

S, 0.5 −4.39 −5.51 −4.72 −5.85 −9.76
S, 0.9 −5.16 −6.27 −5.42 −6.63 −10.49

Post-Great Inflation G, 0.5 −16.52 −20.44 −17.64 −22.69 −27.88
(1982:Q4–2015:Q4) G, 0.9 −16.51 −20.43 −17.58 −22.68 −27.87

S, 0.5 −13.28 −17.18 −14.17 −19.41 −24.74
S, 0.9 −14.03 −17.93 −14.91 −20.16 −25.47

Full sample G, 0.5 −17.28 −20.18 −18.29 −20.38 −26.84
(1966:Q1–2015:Q4) G, 0.9 −17.27 −20.18 −18.24 −20.35 −26.84

S, 0.5 −14.39 −17.33 −15.22 −17.57 −24.25
S, 0.9 −15.12 −18.07 −16.00 −18.26 −24.95

Notes: The table reports log QML for the Gaĺı-Gertler GNKPC (1), NKPC (5), and GNKPC with indexation,

as well as the GNKPC and NKPC with no inflation inertia, i.e., ωr = 0. In the second column, “G” and

“S” represent the modified harmonic mean estimators proposed by Geweke (1999) and by Sims et al. (2008),

respectively, and 0.5 and 0.9 are values of the truncation parameter for each estimator.

features from canonical NKPCs, thereby generating important implications for policy and

welfare. Therefore, our findings suggest that GNKPCs should be preferred to canonical

NKPCs for the analysis of the Federal Reserve’s monetary policy.

Before proceeding to the next model selection, we examine whether the presence of ROT

price setters could improve the performance of the GNKPC. Comparing the third and sixth

columns of Table 3 shows that the GNKPC with ROT price setters has higher QML than

that without ROT price setters (i.e., ωr = 0) in all the three estimation periods.22 This result

indicates that the presence of ROT price setters has played a nonnegligible role in accounting

for inflation dynamics both during and after the Great Inflation period as well as the full

sample period. Therefore, to better describe inflation dynamics, such a backward-looking

component needs to be included in the GNKPC, along with some unchanged prices in each

22The NKPC with ROT price setters also performs better than that without ROT price setters, as shown

by comparing the fourth and last columns of Table 3.
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quarter.

4.2 Comparison of Gaĺı-Gertler and Woodford GNKPCs

In addition to the Gaĺı-Gertler NKPC analyzed above, there are more widely used hybrid

NKPCs in previous studies. The NKPCs introduce dynamic price indexation (DPI) to lagged

inflation as in Woodford (2003). Thus we examine a generalized version of the Woodford

NKPC to compare it with the Gaĺı-Gertler GNKPC.

The Woodford GNKPC is derived from a Calvo staggered price model in which firms

set prices using DPI to an average of lagged and trend inflation with probability λ ∈ [0, 1)

and optimize prices with the remaining probability in each period. Consequently, all prices

change in every period. This feature contrasts sharply with that of the Gaĺı-Gertler GNKPC

in which some prices remain unchanged in each period in line with micro evidence. The

Woodford GNKPC can be obtained as

π̂t = γb,wπ̂t−1 + γf,wEtπ̂t+1 + κw

[
ûlct − κ∆,w

∞∑
j=0

ρj∆,w (π̂t−j − ωiw π̂t−j−1)

]

+ κf,w

∞∑
j=1

ρjf,w
(
Etĝyt+j + θEtπ̂t+j − ωiw (θ − 1)Etπ̂t+j−1 − Etr̂t+j−1

)
(8)

under the assumption λπθ(1−ωi) < min (1, π1−ωi), where ωi ∈ [0, 1] denotes the degree of

price indexation, w ∈ [0, 1] is the weight on lagged inflation relative to trend inflation in the

indexation, and the reduced-form coefficients are given by γb,w ≡ ωiw/φw, γf,w ≡ βπ1−ωi/φw,

κw ≡ (1 − λπ(θ−1)(1−ωi))(1 − βλπθ(1−ωi))/(φwλπ
(θ−1)(1−ωi)), κ∆,w ≡ θλπ(θ−1)(1−ωi)(π1−ωi −

1)/(1−λπ(θ−1)(1−ωi)), ρ∆,w ≡ λπθ(1−ωi), κf,w ≡ (π1−ωi−1)(1−λπ(θ−1)(1−ωi))/(φwλπ
(θ−1)(1−ωi)),

φw ≡ 1 + ωiwβπ
1−ωi , and ρf,w ≡ βλπ(θ−1)(1−ωi).

In the special case of ωi = 1, the Woodford GNKPC is reduced to its NKPC counterpart

π̂t = γb,w1π̂t−1 + γf,w1Etπ̂t+1 + κw1ûlct, (9)
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where γb,w1, γf,w1, and κw1 correspond to γb,w, γf,w, and κw at π = 1, respectively. This type

of hybrid NKPCs is employed in many previous studies, such as Christiano et al. (2005)

and Smets and Wouters (2007). Moreover, the Woodford GNKPC includes a constant trend

inflation version of the GNKPC of Cogley and Sbordone (2008) as the special case of w = 1:

π̂t = γb,csπ̂t−1 + γf,csEtπ̂t+1 + κcs

[
ûlct − κ∆,cs

∞∑
j=0

ρj∆,cs (π̂t−j − ωiπ̂t−j−1)

]

+ κf,cs

∞∑
j=1

ρjf,cs
(
Etĝyt+j + θEtπ̂t+j − ωi(θ − 1)Etπ̂t+j−1 − Etr̂t+j−1

)
, (10)

where γb,cs, γf,cs, κcs, κ∆,cs, ρ∆,cs, κf,cs, ρf,cs, and φcs correspond to γb,w, γf,w, κw, κ∆,w, ρ∆,w,

κf,w, ρf,w, and φw at w = 1, respectively.23

In addition to the Gaĺı-Gertler and the Woodford GNKPCs, we can consider a GNKPC

that nests both of them. Such a GNKPC can be derived by introducing ROT firms in the

above model setting (for the Woodford GNKPC). The nested GNKPC can be obtained as

π̂t = γb1,ggwπ̂t−1 + γb2,ggwπ̂t−2 + γf,ggwEtπ̂t+1 + κggw

[
ûlct − κ∆,ggw

∞∑
j=0

ρj∆,ggw (π̂t−j − ωiw π̂t−j−1)

]

+ κf,ggw

∞∑
j=1

ρjf,ggw
(
Etĝyt+j + θEtπ̂t+j − ωiw (θ − 1)Etπ̂t+j−1 − Etr̂t+j−1

)
(11)

under the same assumption as above, where ωr ∈ [0, 1) is the fraction of ROT firms and the

reduced-form coefficients are given by γb1,ggw ≡ [ωr+ωiwλπ
(θ−1)(1−ωi)(1+ωrβλπ

θ(1−ωi))]/φggw,

γb2,ggw ≡ −ωrωiwλπ(θ−1)(1−ωi)/φggw, γf,ggw ≡ βλπθ(1−ωi)/φggw, κggw ≡ (1− λπ(θ−1)(1−ωi))(1−

βλπθ(1−ωi))(1−ωr)/φggw, κ∆,ggw = κ∆,w, ρ∆,ggw = ρ∆,w, κf,ggw ≡ (π1−ωi−1)(1−λπ(θ−1)(1−ωi))(1−

ωr)/φggw, φggw ≡ λπ(θ−1)(1−ωi) +ωr[1− λπ(θ−1)(1−ωi)(1− βπ1−ωi)] +ωiwβλπ
θ(1−ωi)[1−ωr(1−

λπ(θ−1)(1−ωi))], and ρf,ggw = ρf,w. This GNKPC contains the second lagged inflation as well

as the first one through the combined effect of the two specifications of backward-looking

23The GNKPC of Cogley and Sbordone (2008) features time-varying trend inflation, which is modeled as

a random walk under the assumption of subjective expectations based on the anticipated utility model of

Kreps (1998).
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price setting: DPI to lagged inflation and ROT price setters. The nested GNKPC (11)

includes the Gaĺı-Gertler GNKPC (1) and the Woodford GNKPC (8) as the special cases of

w = ωi = 0 and ωr = 0, respectively.

We compare the empirical performance of the Woodford GNKPC (8) and NKPC (9),

the Cogley-Sbordone GNKPC (10), and the nested GNKPC (11), as well as the Gaĺı-Gertler

GNKPC (1). To this end, we set the priors for the degree of price indexation ωi, the relative

weight on lagged inflation w, and the fraction of ROT firms ωr to be beta distributions with

mean 0.5 and standard deviation 0.1. Table 4 reports log QML for each of the five.

Table 4: QML for Gaĺı-Gertler GNKPC, Woodford GNKPC and NKPC, Cogley-Sbordone
GNKPC, and their nested GNKPC

Gaĺı-Gertler Woodford Woodford Cogley-Sbordone Nested
Period Estimator GNKPC GNKPC NKPC GNKPC GNKPC
Great Inflation G, 0.5 −7.48 −11.42 −10.47 −9.18 −8.46
(1966:Q1–1982:Q3) G, 0.9 −7.46 −11.42 −10.46 −9.17 −8.46

S, 0.5 −4.39 −8.41 −7.45 −6.17 −5.41
S, 0.9 −5.16 −9.14 −8.20 −6.93 −6.14

Post-Great Inflation G, 0.5 −16.52 −24.65 −25.10 −22.09 −19.06
(1982:Q4–2015:Q4) G, 0.9 −16.51 −24.65 −25.11 −22.09 −19.06

S, 0.5 −13.28 −21.42 −21.92 −18.86 −15.85
S, 0.9 −14.03 −22.16 −22.67 −19.62 −16.59

Full sample G, 0.5 −17.28 −22.18 −26.20 −23.00 −19.24
(1966:Q1–2015:Q4) G, 0.9 −17.27 −22.18 −26.19 −23.00 −19.24

S, 0.5 −14.39 −19.35 −23.40 −20.16 −16.43
S, 0.9 −15.12 −20.09 −24.14 −20.92 −17.16

Notes: The table reports log QML for the Gaĺı-Gertler GNKPC (1), the Woodford GNKPC (8) and NKPC

(9), the Cogley-Sbordone GNKPC (10), and the nested GNKPC (11). In the second column, “G” and “S”

represent the modified harmonic mean estimators proposed by Geweke (1999) and by Sims et al. (2008),

respectively, and 0.5 and 0.9 are values of the truncation parameter for each estimator.

In Table 4, two findings can be detected. First, the Cogley-Sbordone GNKPC has higher

QML than the Woodford GNKPC and NKPC both during and after the Great Inflation

period. That is, in the Woodford GNKPC (8), the case of w = 1 is better than the cases of

no restriction and ωi = 1 in terms of QML during both periods. This finding points to the

importance of DPI only to lagged inflation in the Woodford GNKPC when a shift in trend
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inflation is allowed around the time of the Volcker disinflation.

Second, and more importantly, the Gaĺı-Gertler GNKPC has higher QML than the Wood-

ford GNKPC and NKPC, the Cogley-Sbordone GNKPC, and the nested GNKPC in all the

three estimation periods. This finding indicates that the Gaĺı-Gertler GNKPC describes in-

flation dynamics better than other NKPCs both during and after the Great Inflation period

as well as the full sample period. The result that the Gaĺı-Gertler GNKPC has higher QML

than the Woodford GNKPC both during and after the Great Inflation period is analogous to

the result of Inoue and Shintani (2018) on the NKPC counterparts. Their result is confirmed

by comparing the fourth column of Table 3 and the fifth column of Table 4. As they point

out, while the number of model parameters is the same between the Gaĺı-Gertler NKPC (5)

and the Woodford NKPC (9), the joint restrictions on the range of model parameters are

different. For example, the ratio of the reduced-form coefficients on expected future infla-

tion and on lagged inflation in the Gaĺı-Gertler NKPC (i.e., γf1/γb1 = βλ/ωr) depends on

the three model parameters β, λ, and ωr, whereas the ratio in the Woodford NKPC (i.e.,

γf,w1/γb,w1 = β/w) depends only on the two model parameters β and w. Such a tighter

restriction in the Woodford NKPC can make the difference in the empirical performance of

the two NKPCs. An analogous argument could apply to the Gaĺı-Gertler and the Woodford

GNKPCs, and it might coincide with the argument that the Gaĺı-Gertler GNKPC involves

the three possible price-setting stances (i.e., optimizing prices, setting prices with the ROT,

and keeping prices unchanged), while the Woodford GNKPC has only the two possible ones

(i.e., optimizing prices and setting prices with the DPI), so the Gaĺı-Gertler GNKPC is more

flexible in fitting to the data.

Our second finding also implies that ROT price setters (in the Gaĺı-Gertler GNKPC and

NKPC) provide a better specification of backward-looking price setting for the GNKPC (and

the NKPC) than DPI to lagged inflation (in the Woodford counterparts). In this context,

Cogley and Sbordone (2008) reach the conclusion that there is no need for backward-looking

price setting in their GNKPC once drifting trend inflation is incorporated in it. Even in the

absence of such drifting trend inflation, comparing the second to last columns of Tables 3
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and 4 shows that the Cogley-Sbordone GNKPC (10) has higher QML in the absence of DPI

to lagged inflation than in its presence during the Great Inflation period (because the Cogley-

Sbordone GNKPC without the DPI, i.e., ωi = 0, coincides with the Gaĺı-Gertler GNKPC

without ROT price setters, i.e., ωr = 0). Moreover, when we estimate the Gaĺı-Gertler

GNKPC (1), the Cogley-Sbordone GNKPC (10), and the GNKPC with no inflation inertia

(i.e., ωr = 0 in (1) or ωi = 0 in (10)) during the period from 1982:Q4 until 2003:Q4, which is

the end of the sample period in Cogley and Sbordone (2008), Table 5 demonstrates that the

GNKPC with no inflation inertia has higher QML than the Cogley-Sbordone GNKPC, even

after the Great Inflation period as well as during that period.24 The table also indicates that

the Gaĺı-Gertler GNKPC (with ROT price setters) has higher QML than the GNKPC with no

inflation inertia and the Cogley-Sbordone GNKPC (with the DPI) in all the three estimation

periods. These results suggest that the DPI to lagged inflation played no role in the Cogley-

Sbordone GNKPC both during and after the Great Inflation period (at least within the

sample period of Cogley and Sbordone, 2008), even in the absence of the drifting trend

inflation (introduced by them), and that their conclusion may depend on the specification of

backward-looking price setting, that is, the DPI, in addition to the drifting trend inflation.

4.3 Quasi-posterior estimates of selected model

The preceding subsections have shown that the Gaĺı-Gertler GNKPC is the best descrip-

tion of inflation dynamics both during and after the Great Inflation period among those

considered. This subsection thus analyzes the GNKPC in detail.

For each of the model parameters and reduced-form coefficients of the GNKPC, its quasi-

posterior mean and 90 percent highest quasi-posterior density interval are reported in Table 6.

The quasi-posterior mean estimates show that when the annualized trend inflation rate

π̄ (≡ 400 log π) fell from 5.74 percent during the Great Inflation period to 2.23 percent during

24In Table 5, the Great Inflation period starts from 1960:Q1, which is the beginning of the sample period

in Cogley and Sbordone (2008). In the estimation, we set the prior mean of the annualized trend inflation

rate π̄ at the average inflation rate of 3.68 over their sample period 1960:Q1–2003:Q4.
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Table 5: QML for Gaĺı-Gertler and Cogley-Sbordone GNKPCs

Gaĺı-Gertler Cogley-Sbordone GNKPC with
Period Estimator GNKPC GNKPC no inertia
Great Inflation G, 0.5 −8.88 −12.97 −9.97
(1960:Q1–1982:Q3) G, 0.9 −8.88 −12.97 −9.96

S, 0.5 −6.16 −10.27 −7.17
S, 0.9 −6.92 −11.02 −7.94

Post-Great Inflation G, 0.5 −12.34 −19.59 −18.13
(1982:Q4–2003:Q4) G, 0.9 −12.33 −19.59 −18.13

S, 0.5 −9.12 −16.51 −15.04
S, 0.9 −9.87 −17.26 −15.80

Full sample G, 0.5 −13.53 −20.26 −18.34
(1960:Q1–2003:Q4) G, 0.9 −13.52 −20.24 −18.33

S, 0.5 −10.67 −17.44 −15.75
S, 0.9 −11.41 −18.19 −16.48

Notes: The table reports log QML for the Gaĺı-Gertler GNKPC (1), the Cogley-Sbordone GNKPC (10), and

the GNKPC with no inflation inertia, i.e., ωr = 0 in (1) or ωi = 0 in (10). In the second column, “G” and

“S” represent the modified harmonic mean estimators proposed by Geweke (1999) and by Sims et al. (2008),

respectively, and 0.5 and 0.9 are values of the truncation parameter for each estimator.

the Post-Great Inflation period, the probability of no price change λ increased from 0.61 to

0.85,25 while both the fraction of ROT price setters ωr and the elasticity of substitution

θ remained roughly unchanged. Then, the GNKPC slope κ diminished from 0.04 to 0.00,

whereas its inflation-inertia coefficient γb remained roughly unchanged. These evolutions are

also detected in the quasi-posterior distribution of the model parameters and reduced-form

coefficients of the GNKPC illustrated in Figure 1.

In the estimated Gaĺı-Gertler GNKPC, two points are worth noting. First, the increase

in the probability of no price change λ, that is, the decrease in the probability of price change

25The estimated probability of no price change of λ = 0.85 during the period 1982:Q4–2015:Q4 implies

an average duration of 19.6 months, which is comparable to the micro evidence provided by Kehoe and

Midrigan (2015), who report an implied average duration of regular price changes of 14.5 months during the

period 1988–2005. Although this duration is somewhat longer than those of Klenow and Kryvtsov (2008)

and Nakamura and Steinsson (2008), who point to a figure of 7 to 11 months, the difference is ascribed

to the fact that the latter two studies identify temporary price increases as regular price changes, which

unsurprisingly shortens the duration.
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Table 6: Quasi-posterior estimates and priors of model parameters and reduced-form coeffi-
cients of selected model (Gaĺı-Gertler GNKPC)

Great Inflation Post-Great Inflation Full sample Prior
(1966:Q1–1982:Q3) (1982:Q4–2015:Q4) (1966:Q1–2015:Q4)
Mean 90% interval Mean 90% interval Mean 90% interval Mean 90% interval

π̄ 5.74 [5.08, 6.39] 2.23 [2.03, 2.44] 3.21 [2.77, 3.66] 3.53 [1.06, 6.00]
λ 0.61 [0.54, 0.68] 0.85 [0.80, 0.89] 0.84 [0.80, 0.88] 0.50 [0.34, 0.66]
ωr 0.51 [0.39, 0.63] 0.56 [0.42, 0.70] 0.59 [0.46, 0.72] 0.50 [0.34, 0.66]
θ 9.37 [7.81, 11.07] 9.60 [7.98, 11.34] 9.66 [8.06, 11.39] 9.32 [7.74, 11.02]
γb 0.42 [0.35, 0.50] 0.38 [0.31, 0.45] 0.39 [0.33, 0.45] 0.48 [0.36, 0.60]
γf 0.58 [0.51, 0.65] 0.62 [0.55, 0.69] 0.61 [0.55, 0.67] 0.52 [0.40, 0.64]
κ 0.04 [0.02, 0.06] 0.00 [0.00, 0.01] 0.00 [0.00, 0.00] 0.12 [0.03, 0.27]
κf 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]
κ∆ 0.31 [0.20, 0.46] 0.45 [0.26, 0.73] 0.77 [0.43, 1.31] 0.11 [0.02, 0.27]

Note: π̄ ≡ 400 log π.

1− λ in the estimated GNKPC after the Great Inflation period is consistent with the micro

evidence reported by Nakamura et al. (2018) that the frequency of regular price change

decreased after that period. Moreover, the increased probability of no price change flattens

the GNKPC.26 The flattening of the estimated GNKPC is consistent with the empirical

results of Benati (2007), Ball and Mazumder (2011), and the International Monetary Fund

(2013), among others.

Second, the estimated GNKPC indicates that when trend inflation fell after the Great

Inflation period, the probability of price change decreased, thereby flattening the GNKPC.

The concurrence of the fall in trend inflation, the decrease in the probability of price change,

and the flattening of the slope in the estimated GNKPC coincides with the theoretical pre-

diction in the literature on endogenous price stickiness, initially started by Ball et al. (1988)

and recently developed by Levin and Yun (2007) and Kurozumi (2016). Therefore, as con-

jectured by Ball et al. (1988), the Phillips curve Greenspan (and Bernanke) faced is not

identical to the one Volcker had faced.

26Recall that, as shown in Table 1, the theoretical factors behind a flattening of the GNKPC are a higher

probability of no price change, as well as a larger fraction of ROT price setters, higher trend inflation, and

a larger elasticity of substitution under positive trend inflation.
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Figure 1: Quasi-posterior and prior distributions of model parameters and reduced-form
coefficients of selected model (Gaĺı-Gertler GNKPC)

Note: π̄ ≡ 400 log π.

5 Concluding Remarks

This paper has investigated inflation dynamics by estimating the Gaĺı-Gertler GNKPC dur-

ing and after the Great Inflation period using Bayesian GMM. US macroeconomic data has

suggested that the Gaĺı-Gertler GNKPC outperforms the Gaĺı-Gertler and the Woodford

NKPCs, the Gaĺı-Gertler GNKPC with indexation, the Woodford and the Cogley-Sbordone

GNKPCs, and the GNKPC that nests both Gaĺı-Gertler and Woodford GNKPCs, in terms

of QML. The estimated Gaĺı-Gertler GNKPC then indicates that when trend inflation fell
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after the Great Inflation period, the probability of price change decreased in line with the

micro evidence reported by Nakamura et al. (2018). This decrease in the probability of price

change in turn flattened the GNKPC. The concurrence of the fall in trend inflation, the

decrease in the probability of price change, and the flattening of the slope in the estimated

GNKPC coincides with the theoretical prediction in the literature on endogenous price stick-

iness, including Ball et al. (1988). Moreover, the flattening of the estimated GNKPC after

the Great Inflation period is consistent with the empirical results of Benati (2007), Ball and

Mazumder (2011), and the International Monetary Fund (2013), among others.

In the GNKPC, we have considered ROT price setters as the source of inflation inertia and

have shown that such backward-looking price setters played a nonnegligible role in inflation

dynamics both during and after the Great Inflation period. However, ROT price setters are

an ad hoc assumption that relies on non-optimizing price-setting behavior.27 To incorporate

inflation inertia in a theoretically coherent manner, existing studies suggest introducing

sticky information (Dupor et al., 2010), an upward-sloping hazard function (Sheedy, 2010),

and a positive superelasticity of demand (Kurozumi and Van Zandweghe, 2023) in staggered

price models. Empirical investigation of GNKPCs augmented with these sources of inflation

inertia is left as a possible agenda for future research.

27Gaĺı and Gertler (1999) suggest that “it is worth searching for explanations of inflation inertia beyond

the traditional ones that rely heavily on arbitrary lags” (p. 219).
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Appendix

This appendix presents the derivation of the Gaĺı-Gertler GNKPC (1). This GNKPC is

derived from a Calvo staggered price model with a representative composite-good producer

and two types of firms, optimizing and ROT price setters.

The composite-good producer combines the output of a continuum of firms f ∈ [0, 1]

using the CES aggregator Yt =
[∫ 1

0
(Yt(f))(θ−1)/θ df

]θ/(θ−1)

, where Yt is the output of the

composite good and Yt(f) is firm f ’s output of an individual differentiated good. Given the

composite good’s price Pt and individual goods’ prices {Pt(f)}, the producer maximizes its

profit PtYt −
∫ 1

0
Pt(f)Yt(f) df subject to the CES aggregator. The first-order condition for

profit maximization yields the demand curve for each individual good

Yt(f) = Yt

(
Pt(f)

Pt

)−θ
, (A1)

and thus the CES aggregator leads to the composite good’s price equation

Pt =

[∫ 1

0

(Pt(f))1−θ df

] 1
1−θ

. (A2)

Each firm f produces one kind of differentiated good Yt(f) using the Cobb–Douglas

production technology Yt(f) = At (Kt(f))α (lt(f))1−α, where At is total factor productivity

(TFP), Kt(f) and lt(f) are firm f ’s capital and labor inputs, and α ∈ (0, 1) is the capital

elasticity of output. The TFP is assumed to follow the nonstationary stochastic process

log (At)
1

1−α = log gy + log (At−1)
1

1−α + εt, (A3)

where gy is the steady-state rate of technological change (At/At−1)1/(1−α), which coincides

with the steady-state rate of output growth gyt = Yt/Yt−1, and εt is an i.i.d. technology

shock. In the presence of the economy-wide factor markets with the capital rental rate Ptrk,t

and the wage rate PtWt, the firm minimizes its production cost Ptrk,tKt(f) + PtWtlt(f)
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subject to the Cobb–Douglas production technology. Combining the first-order conditions

for cost minimization shows that all firms face the same real marginal cost mct, and thus

aggregating the labor input condition Wtlt(f) = (1 − α)mctYt(f) over firms f ∈ [0, 1] and

using the demand curve (A1) lead to

mct =

∫ 1

0
Wtlt(f) df

(1− α)
∫ 1

0
Yt(f) df

=
Wtlt

(1− α)Yt∆t

=
ulct

(1− α)∆t

, (A4)

where the labor market clearing condition lt =
∫ 1

0
lt(f) df is used, ulct ≡ Wtlt/Yt is the

composite-good-based real unit labor cost, and

∆t ≡
∫ 1

0

(
Pt(f)

Pt

)−θ
df (A5)

is the relative price distortion. It is worth noting that the marginal cost equation (A4) shows

that each firm’s real marginal cost mct is equal to the individual-good-based real unit labor

cost
∫ 1

0
Wtlt(f) df

/∫ 1

0
Yt(f) df divided by the labor elasticity of output 1 − α. Therefore,

the role of the distortion ∆t in (A4) is to merely shift the basis of unit labor cost from

individual-good to composite-good production.

Firms set their product prices, as in Gaĺı and Gertler (1999). There are two types of firms,

optimizing and ROT firms, and ωr ∈ [0, 1) denotes the fraction of ROT firms. Both types of

firms keep prices unchanged with probability λ ∈ [0, 1). With the remaining probability, opti-

mizing firms choose prices given the demand curve (A1) and the real marginal cost (A4), while

ROT firms adjust prices using a backward-looking ROT. Specifically, optimizing firms set

prices to maximize the relevant profit Et
∑∞

j=0 λ
jMt,t+j (Pt(f)− Pt+jmct+j)Yt+j (Pt(f)/Pt+j)

−θ,

where Mt,t+j is the nominal stochastic discount factor between period t and period t + j,

which satisfies Mt,t+j =
∏j

k=1 Mt+k−1,t+k. The first-order condition for profit maximization

can be written as

Et

∞∑
j=0

λj
j∏

k=1

Mt+k−1,t+k πt+k gyt+k (pot )
−θ πθt+k

(
pot

j∏
k=1

π−1
t+k −

θ

θ − 1
mct+j

)
= 0, (A6)
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where pot ≡ P o
t /Pt, P

o
t is the price chosen by firms that optimize prices in period t, and

πt ≡ Pt/Pt−1. On the other hand, ROT firms adjust prices according to the backward-

looking ROT

P r
t = P a

t−1πt−1, (A7)

where

P a
t ≡ (P o

t )1−ωr (P r
t )ωr . (A8)

Under the aforementioned price setting, the composite good’s price equation (A2) and

the relative price distortion equation (A5) can be reduced to, respectively,

1 = λπθ−1
t + (1− λ)

[
(1− ωr)(pot )

1−θ + ωr (prt )
1−θ
]
, (A9)

∆t = λπθt∆t−1 + (1− λ)
[
(1− ωr)(pot )

−θ + ωr (prt )
−θ
]
, (A10)

where prt ≡ P r
t /Pt.

In the presence of one-period nominal bonds, the nominal interest rate rt satisfies

1 = Et(Mt,t+1rt). (A11)

Let βt,t+1 ≡ Mt,t+1 πt+1 (At+1/At)
1/(1−α). Then, log-linearizing (A3), (A6)–(A9), and

(A11) under assumption (2) and combining the resulting equations give rise to the Gaĺı-

Gertler GNKPC (1). In addition, the marginal cost equation (3) can be obtained from (A4),

and the law of motion of the relative price distortion (4) can be derived from (A9) and (A10).
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