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Abstract—Electroencephalography (EEG), which tracks the
brain waves that contain the brain's neural activity, plays an
essential role in detecting human motion and treating
neurological diseases. In the Artificial Intelligence (AI) era, deep
learning algorithms are widely used in human action recognition
and classification. Various convolutional neural networks that
process this signal are also being born. This paper provides a
detailed survey of the application of deep learning to EEG signals
and outlines the research process when classifying EEG signals.
At the same time, this paper reviews the relevant research on the
classification of human action EEG signals in recent years.
Human motion signals usually use different deep learning
algorithms and convolutional neural network architectures in the
EEG signal analysis task. This article will discuss the advantages
and challenges of each method in other studies. Finally, the paper
discusses future directions for deep learning-based EEG signal
classification.
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L INTRODUCTION

Deep Learning (DL) networks have recently achieved
significant breakthroughs in applications such as image
recognition, text classification, audio conversion, and video
processing. Electroencephalography (EEG) is an imaging
technique that scans the brain's electrical activity to track the
brain's neural activity and acquire relevant features [1, 2]. EEG
signals are generally obtained by wearing special EEG
acquisition equipment, such as EEG caps, that meet the
standards of the International Leading Group [3, 4]. This
method of collection is non-invasive and has no risks or
limitations. Compared with the intrusive collection, its safety
factor is higher [5]. Compared to electromyography (EMG)
(used for muscle contraction), electrocardiogram (ECG) (used
for heart waves), and electrooculogram (EOG) (used to record
dipole fields in the eye), EEG provides a visual representation
of the brain. The electrical activity has reasonable objectivity
and explanatory character. Therefore, after the EEG data are
decoded, it is more suitable for studying human cognitive tasks
and human action detection, such as hand movement detection
[6-9], spelling, and cursor control [10, 11]. At the same time,
this research can allow people to understand the detected
object's potential physical and psychological state, which plays
a vital role in neurological disease treatment. Such as the
detection of epilepsy patients [12, 13] and the rehabilitation
treatment of Parkinson's patients [14, 15].
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This paper surveys the literature of the past five years and
introduces methods for EEG signal classification and feature
extraction based on deep learning. At the same time, the
technologies of different models are compared, and the relevant
advantages and disadvantages are summarized. The paper
concludes by addressing future research challenges for more
accurate classification.
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Figure 1 Some EEG features require mathematical superposition methods

II. METHOD AND ACHIEVEMENTS

The most critical part of the feature extraction and
classification tasks of EEG signals is to build effective
recognizers and classifiers. The recognizer needs to convert the
input EEG signal accordingly for the classifier to recognize.
The classifier takes the feature values as input and predicts the
correct class. The essential features of EEG signals are time-
domain features, frequency-domain features, features based on
statistical superposition, etc.

Next, this paper will list some EEG signal feature extraction
and classification models. These models have been screened in
the past five years and are the mainstream models for EEG
signal classification based on deep learning.

A. EEGNet

Brain-computer interfaces (BCls) use the neural activity as
control signals and can communicate directly with a computer.
The neural signal is usually selected from various well-studied
electroencephalogram (EEG) signals. In performing a detection
task for a given BCI paradigm, feature extractors and classifiers
typically need to be specially customized according to the
characteristics of the actual EEG. Otherwise, it is difficult to
limit the scope of their application to the signal under study. In
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previous studies on BCI, a BCI design can usually only solve a
single-track BCI task and cannot be used for other BCI
classifications. Therefore, the design and restrictions of
architecture are traditionally extensive, and it isn't easy to
promote. Based on the above difficulties, someone proposed
EEGNet, a compact convolutional neural network. This model
mainly encapsulates the feature extraction architecture of BCL.
In the experimental session, they classified the collected data
according to the experiments, including experiments within the
same subject and experiments across multiple issues, and then
compared EEGNet with the current state-of-the-art methods of
several BCI paradigms: P300 visually evoked potentials, error-
related negative responses (ERN), motor-related cortical
potentials (MRCP), and sensorimotor rhythms (SMR). Due to
the collection of EEG data sets, the data sets are usually small,
and it is challenging to feed huge data for results. Experiments
show that when the data set size is minimal, EEGNet can better
obtain paradigm features, and its performance is not weaker
than traditional models. This study also shows that EEGNet can
be generalized to ERP and oscillation-based BCI. Afterward,
they offer different ways to visualize the content of the trained
EEGNet model, which helps a lot in obtaining interpretable
features. It can be concluded that EEGNet is a powerful and
efficient general-purpose BCI model that can learn
corresponding interpretable features in a series of different BCI
tasks. It also can be shown that the results are not affected to
artifacts or sources of noise in the data [16].
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Figure 2 EEGNet Model Structure

B. LSDD-EEGNet

Depression is a mood disorder that negatively impacts
people and is a significant health burden worldwide. But
effective and low-cost depression detection remains a great
challenge. EEG is one of the essential indicators for depression
assessment so it can be used in the research of depression
rehabilitation treatment. An efficient end-to-end framework
named LSDD-EEGNet was proposed for EEG-based
depression detection. It has two salient features in depression
recognition: First, it considers the advantages of the
Convolutional Neural Network (CNN) in feature extraction and
the Long Short-Term Memory (LSTM) for time series signals.
This model combines the two as the extractor of LSDD-
EEGNet to extract EEG features. Second, a domain
discriminator is used to modify the data representation space
and eliminate the difference between training and testing
datasets, which has achieved good results in classification
experiments. In the experimental example, they evaluate the
performance of the proposed deep framework for depression
detection through the data of 80 volunteers. Of these 80
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volunteers, 40 were EEG signals from depressed patients (DP),
while the other half were EEG signals from healthy controls
(HC). Compared with other typical models, LSDD-EEGNet
achieves high performance on agent-independent evaluation.
At the same time, the results show that LSDD-EEGNet is a
promising method for depression detection [17].

C. TSGL-EEGNet

In addition to being applied to various classification tasks,
extensive attempts have also been made in the brain-computer
interface (BCI) field. Although the accuracy of detection tasks
of deep learning-based motor imagery (MI) systems has been
greatly improved compared with some traditional algorithms,
clearly interpreting deep learning models remains a
considerable challenge. To solve the above problems, they
compared the EEGNet model. Experimental results show that
the 1D convolution of EEGNet can be explained by a special
Discrete Wavelet Transform (DWT). In contrast, the depthwise
convolution of EEGNet is like the Common Spatial Pattern
(CSP) algorithm. Therefore, they use the algorithm Temporal
Constrained Sparse Group Lasso (TCSGL) to improve EEGNet
to enhance its performance and propose a new model TSGL-
EEGNet. The model is tested on the BCIC.IV.2a and
BCIC.IILIIIa datasets, which are 4-category MI tasks. The test
results show that the proposed model achieves an average
classification accuracy of 78.96% and a kappa index of about
0.7194 on the dataset BCIC.IV.2a. This metric is higher than
the results of previous models such as EEGNet, C2CM, FBCSP,
MB3DCNN, and SS-MEMDBEF, especially in insensitive
classification topics. At the same time, the model also achieved
an average classification accuracy of 85.30% and a kappa index
of about 0.8040 on the BCIC.IIL.IITa, which is higher than the
experimental results of EEGNet, MFTFS, and other models.
Finally, they use average validation and stacking to enhance the
model further. In the BCIC.IV.2a and BCI C.II1.II1a datasets,
the average accuracy of 4 classification tasks reached 81.34%
and 88.89%, while the kappa index reached 0.7511 and 0.8519,
respectively [18].

D. Q-EEGNet

The Moving Image Brain-Machine Interface (MIBMI)
guarantees communication access between the human brain
and machines by analyzing brain activity recorded using
Electroencephalography (EEG). However, due to the high
requirements of MIBMI for reliability, timeliness (delay), and
privacy, it is not suitable to put the calculation of collected data
into the cloud operation and return it when performing related
signal processing. When used in a natural environment,
installing the trained MIBMI into a wearable device is usually
necessary. These devices are usually battery-powered and have
a low average power consumption so that the device can be
used effectively for a long time. In recent research, many
complex algorithms for classifying EEG have emerged.
Although MIBMI processing based on deep learning models
can achieve high accuracy, these models tend to easily exceed
the limits of devices due to their memory and computational
requirements. They present the algorithm and implementation
optimizations for EEGNet. First, they quantize weights and
activations to 8-bit for hyperparameter configuration, an
operation with negligible loss of accuracy of no more than
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0.4% at level 4 MI. And demonstrated an energy-efficient
hardware-aware implementation on a chip (SoC) on the Mr.
Wolf PULP system, utilizing its custom RISC-V ISA
extensions and 8-core computing cluster. The above
optimization steps can achieve a 64x overall speedup and 85%
reduction in memory footprint compared to the single-core
layer-by-layer baseline implementation. At the same time, it
takes only 5.82 milliseconds to implement a single task and
only consumes 0.627mJ for each inference. With 21.0
GMAC/s/W, it is up to 256 times more energy efficient than
the EEGNet [19].

E. S-EEGNet

Traditional models are difficult to capture the
characteristics of EEG signals. Because EEG signals are more
comprehensively from the time and space dimensions. It
usually requires the average of time and space dimensions or
compound extraction features. Therefore, a single feature
extraction will specifically impact the accuracy of EEG
classification. To solve the issue, they improve classification
accuracy through end-to-end learning of EEG temporal and
spatial dimensions. In this model, they propose a novel EEG
classification network, Separable EEG Network, based on
Hilbert-Huang Transform (HHT) and Separable Convolutional
Neural Networks with Bilinear Interpolation (S-EEGNet). In
this model, HHT first converts the EEG signal into a time-
frequency representation so that EEG can get a better
description in the time domain. Then, feature maps are
extracted by combining the depth and point-wise elements of
the network. Next, they need to use the separable structure of
the CNN to add displacement variables to the convolutional
layers of the separable CNN through bilinear interpolation,
allowing the sampling grid to deform freely. To demonstrate
the accuracy, they tested the model on three different types of
EEG public datasets. One is a motor imagery signal dataset,
and the other is a different emotion classification dataset. The
results showed an accuracy rate of 77.9% in the motor imagery
classification task. The accuracy of sentiment classification
tasks reached 89.91% and 88.31%. Compared with the
traditional model based on the same data set, the classification
accuracy of S-EEGNet increased by 3.6%, 1.2%, and 1.3%,
respectively [20].

F.  NeuroGrasp

Designing MI-driven BCI systems relevant to achieving
natural hand-grasping tasks is challenging due to the high
complexity of BCIs. However, in the past, many related studies
have successfully decoded the movement intention of various
large body parts. However, MI decoding high-level and fine-
grained motor behaviors, such as grasping, is crucial to extend
the generality of Ml-based BCIs further. Therefore, in this
study, they proposed the NeuroGrasp model. NeuroGrasp is a
two-stage DL framework that decodes and classifies multi-
handed grasping tasks from EEG signals under the MI
paradigm. The method effectively uses the learning of EEG and
EMG, enabling EEG-based reasoning during the test phase.
EMG guidance during model training helped the BCI more
accurately predict the hand grasp type of motion based on the
EEG signal. NeuroGrasp not only improves the performance of
offline classification, but the online classification performance

is also stable. They recruited 12 subjects who met the
experimental requirements in the classification test task. They
conducted data collection for four types of grasping tasks.
Results show that the model achieves an average offline
classification accuracy of 68% (£9%) in the data classification
task. It performs a classification accuracy of 86% (£4%) for the
two-grasp tasks. Furthermore, we achieve average online
classification accuracies of 65% (+9%) and 79% (£9%) across
six high-performance subjects. Therefore, this model can be
concluded that the method can show stable classification
performance whether it is evaluated online or offline [21].

G. TinySleepNet

The quality of human sleep is related to whether the EEG
signal is standard. However, most existing models are
overdesigned to consist of many layers, leading to overfitting
the model. They need to be trained on large datasets to prevent
overfitting problems. Some studies introduce additional steps
and operations in the processing flow. But most sleep datasets
contain a limited amount of class-imbalanced data. Based on
the above reasons, it is tough to process sleep data sets, and
applying them to general scenarios isn't easy. Therefore, they
proposed an efficient deep learning model called TinySleepNet,
a classification model based on raw single-channel EEG.
Experimental results demonstrate that the proposed method is
effective for end-to-end model training and automatic sleep
stage scoring. Compared with the existing model, the model
contains fewer training parameters and hyperparameters, so the
model only needs less training data and computing resources,
and the performance has been improved. The training
technique also incorporates data augmentation processing,
which can make the model's movement on the time axis more
robust and prevent the model from remembering the order of
sleep stages. This operation can effectively enhance the
versatility of automatic sleep scoring. Evaluations of seven
public sleep datasets found that these datasets performed well
in terms of recording channels, and environments, and all
obtained different interpretable features. TinySleepNet
performs better, showing that the approach generalizes well to
the most extensive datasets. The model also has greater
possibilities for the research of general automatic sleep stage
scoring mechanisms [22].
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Figure 3 TinySleepNet Model Structure
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1.

The leading technologies and improvement effects of the
above models are shown in Table 1.

COMPARISON AND DISCUSSION

Table 1 Model Comparison

Models
Num.
Model Name Applications Results
1 EEGNet Depthwise and.separable AUC in Average:
convolutions 90.54%
ACC.:94.69%
. SPE.:97.55%
2 LSDD-EEGNet LSdTigNi S’Iﬁf;';a'" SEN.:90.96%
] PRE.:94.39%
F-S.:92.64%
ACC.:78.96%
R (BCI 1V 2a)
3 TSGL-EEGNet TCSGL ACC.:85.30%
(BCIII 3a)
4 Q-EEGNet Quant12§ we}ghts and 64x overall
activations speedup
. ACC.:77.90% (MI)
5 S-EEGNet Separable Convolutions ACC.-88.31%
and HHT transform .
(Emotion)
ACC.:86%
Two-stage deep learning (Offline)
6 NeuroGrasp framework ACC.:79%
(Online)
ACC.87.5%
7 TinySleepNet Representation Learning MF1:83.2%
K:0.82

The main classification methods of EEG are divided into
four categories: linear method, neural network method, nearest

neighbor method, and nonlinear Bayesian classification method.

Most of the EEG classification are revolved around EEGNet, a
compact neural network. At the same time, for different fields
and paradigms, some specialized enhancement techniques are
used to improve classification accuracy. The EEG signal
research is very accurate and highly reliable.

IV. CONCLUSIONS

This paper introduces the classification method of EEG
signal and feature extraction based on deep learning. At the
same time, the mainstream models in the past five years are
described in detail. With the development of Deep Learning,
more excellent EEG classification frameworks will appear, the
speed of classification tasks will be faster, and the results will
be more accurate. However, the larger dataset required to learn
various patterns is a challenge for deep learning methods.
Multi-channel and real-time EEG signals can be incorporated
into deep learning architectures for more applications.
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