2023 11th International Conference on Information and Education Technology (ICIET) | 978-1-6654-6548-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICIET56899.2023.10111422

2023 11th International Conference on Information and Education Technology

An Implementation of Java Programming Learning

Assistant System 1n University Course

Xiqgin Lu, Nobuo Funabiki, Soe Thandar Aung, Yanhui Jing

Department of Information and Communication Systems
Okayama University, Okayama, Japan
pch55zhl@s.okayama-u.ac.jp, funabiki@okayama-u.ac.jp
soethandar @s.okayama-u.ac.jp, pokn4s4h@s.okayama-u.ac.jp

Shingo Yamaguchi
Department of Information Science and Engineering
Yamaguchi University, Ube, Japan
shingo@yamaguchi-u.ac.jp

Abstract—Nowadays, Java programming is used in a variety
of application systems as a highly portable object-oriented
programming language. To assist its self-studies by novice
students, we have developed the Java programming learning
assistant system (JPLAS), and implemented the personal answer
platform on Node.js. JPLAS offers several types of exercise
problems at different learning levels, including the grammar-
concept understanding problem (GUP), the value trace problem
(VTP), the mistake correction problem (MCP), the element fill-in-
blank problem (EFP), the code completion problem (CCP), and the
phase fill-in-blank problem (PFP). Any answer is automatically
marked by string matching with the correct one on the platform.
In this paper, we present an implementation of the six problem
types in a Java programming course in Okayama University.
We generated 109 problem instances by following its curriculum
and assigned them to 58 third-year students as homework before
the final examination. Their solution results reveal the difficulty
difference among the problem types and confirm the validity in
the Java programming course.

Index Terms—Java programming, JPLAS, exercise problem,
self-study, university course

1. INTRODUCTION

Java is a powerful, general-purpose object-oriented pro-
gramming language. Java was created in 1995, and is running
on more than three billion devices worldwide as one of
the most popular programming languages. Nowadays, Java
is used in a variety of application systems, such as web
applications, mobile applications, desktop applications, games,
IoT application systems, and cloud service systems, as a highly
portable object-oriented programming language. Thus, many
universities and professional schools are offering the courses
to cultivate Java programming engineers.

To assist self-studies of Java programming by novice stu-
dents, we have developed the Java programming learning as-
sistant system (JPLAS) and implemented the personal answer
platform on Node.js that will be distributed to students on
Docker [1].

JPLAS offers several types of exercise problems at different
learning levels for different goals, to cover step-by-step self-
study of Java programming by novice students. They include
the grammar-concept understanding problem (GUP) [2], the
value trace problem (VTP) [3], the mistake correction problem
(MCP) [4], the element fill-in-blank problem (EFP) [5], the

978-1-6654-6548-9/23/$31.00 ©2023 IEEE

code completion problem (CCP) [6], and the phase fill-in-
blank problem (PFP) [7].

In these problem types, one problem instance consists of
a source code, a set of questions, and their correct answers.
The correctness of any answer from a student is automati-
cally marked through string matching with the stored correct
answer. The common answer interface for them has been
implemented on a web browser, where the marking function
was implemented by JavaScript that runs on the web browser
[8].

The description and the learning goal of each problem are
listed:

In a GUP instance, each question describes a basic grammar
concept on a reserved word or a common library function as
keyword in Java programming, and requests to answer the
corresponding element appearing in the source code. GUP
aims the basic grammar study.

In a VTP instance, the given source code contains several
standard output statements for important variables or output
messages, and each question requests to answer the output
value. VTP aims the code reading study [9].

In an MCP instance, the source code contains several mis-
taken elements of reserved words or common library functions
in Java programming, and requests to answer any mistaken
element and its correction in the source code. MCP aims the
code debugging study.

In an EFP instance, the source code contains several blank
elements while specifying their locations. A blank element can
be a reserved word, an identifier, an operator, and a control
symbol. It requests to fill in every blank by the original element
in the source code. EFP aims the first-step code writing study.

In a CCP instance, the source code contains several blank
elements like EFP, but does not specify their locations. Then,
it requests to find the location of every missing element in the
source code and fill in it with the original one. CCP aims the
code reading & writing study.

In a PFP instance, the source code contains several blanks
of phrases, or sets of multiple elements, and requested to fill
in each blank by the original set of elements or the message in
the source code. Unlike EFP where one blank can substitute
only one element, one blank in PFP can substitute any number
elements or text messages in the source code. This flexibility

215
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

can increase the candidates for blanks in the source code and
enhance the difficulty level of problem solutions by novice
students. PFP aims the code writing study.

Unfortunately, JPLAS has not been implemented in a Java
programming course in a university with the designated exer-
cise problems for the course. Thus, the validity and effective-
ness of JPLAS in the course application need to be verified.

In this paper, we present an implementation of the six
problem types in JPLAS in a Java programming course in
Okayama University. In this implementation, we generated a
total of 109 problem instances by following its curriculum.
Specifically, they include 28 for GUP, 15 for VTP, 12 for
MCP, 26 for EFP, 13 for CCP, and 15 for PFP. We assigned
them to 58 third-year students in the course as homework, and
asked them to submit the answer text files at the e-learning
system Moodle before the final examination. The answer text
file contain every answer submission record including the date
and time, the instance number, and the student answer and
its marking result for each question. In each class, at least
three teaching assistants helped the students for installing the
personal answer platform and solving the problems.

After the final examination, the answer results of the stu-
dents are analyzed by running the answer analyzer with the
submitted answer text files from the students. The answer
analyzer was implemented by Java. It selects the final answers
of the students to each instance, calculates the average correct
answer rate and the number of submission times for each
problem and for each student, and outputs the results into
an Excel file. Their answer results reveal that the solution
performance is low at CCP and PFP. We also analyze the
correlation between the average correct answer rate of JPLAS
and the final examination. The correlation coefficient between
them is 0.75. It means if students can understand exercise
problems in JPLAS well, they can have good grades in the
final examination. Thus, the validity of the application in the
Java programming course was confirmed.

The rest of this paper is organized as follows: Section II
discusses related works in literature. Section III reviews our
preliminary works on JPLAS. Section IV presents the imple-
mentation of the generated exercise problems. Section V shows
the implementation results to novice students and discussions.
Finally, Section VI concludes this paper with future work.

II. RELATED WORKS

In this section, we discuss related works in literature.

In [10], Okimoto et al. developed an educational support
system that can automatically generate a source code to
facilitate the programming instruction through code reading.
The system requires a learner to answer the value of a variable
after the execution of the code. They applied this system to 108
first-year students in a programming course, and found that
the code reading comprehension is difficult for programming
beginners.

In [11], Suzuki et al. proposed a web-based learning support
system for classroom teaching called ClassCode. It provides an
environment where students can follow tutorials of interactive

coding exercises that are intertwined with their learning paces,
while teachers can outline how they are learning.

III. Review or JPLAS

In this section, we review our preliminary works on JPLAS.

A. Personal Answer Platform

JPLAS is a web application system that allows a teacher to
offer programming exercises to students, and allows a student
to solve them by himself/herself with the automatic marking
function. Node.js [12] is used for the web application platform,
and JavaScript and Java are used in the application programs,
and the data is stored in the file system. Docker [13] is used to
distribute the system to students. We prepared the manual to
explain the installation of the system into a PC and the usage
instructions of solving problems and submitting answer text
files.

B. Exercise Problems in JPLAS

JPLAS offers several exercise problem types to cover self-
study of Java programming at different levels by novice
students. In this paper, the six types of GUP, VTP, MCP, EFP,
CCP, and PFP are considered in the course implementation.
Basically, the difficulty level increases by this order.

1) Grammar-concept Understanding Problem: GUP re-
minds the knowledge and concepts of reserved words and
common library functions. Each question describes the concept
of one keyword appearing in the source code. GUP is the
easiest problem in JPLAS, since a student only needs to
find the corresponding keyword in the source code to each
question. As an example GUP instance, TXT1 shows the
source code and the six questions with six answer forms.

TXT1: Example GUP instance.

1 public class FirstProgram {
2 public static void main(String[] args) {

3 System.out.print ("HelloJava");

4 3

51

Question:

Ql. What is access modifier in Line 17
1T7HD7 7k REMiF L @FITFr? 1.

Q2. What is class name?
7 IABLIMTTR? 2.

Q3. Which keyword allows the method to run
without creating an object?
FTV 2T PEERETIIAY v FEFETTES LT
52F%F—U—RNiIfceHr? _3_

Q4. Which keyword describes no returning data
in Line 27
21fTHTTF =& ZRE RV e il Twa F—v—F
EMTITe? _4_

Q5. Which data type is used in Line 27
2fTHTHHZ ATV S 77— BUNIfMTcTr? _5_

Q6. What will be displayed as the output?

HAe LT RREINZDTL I ? _6_

216
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

2) Value Trace Problem: VTP questions the values of
important variables and output messages in the source code.
To prevent a student from running the source code to know the
outputs by copying it into a text file, the code in the HTML
file cannot be copied in VTP. As an example VTP instance,
TXT2 depicts the source code and the three questions with
seven answer forms. This instance is made for studying the
for loop and if statement.

TXT2: Example VTP instance.

import java.io.*;
class Sample{
public static void main(String[] args){

boolean bl = false;
for(int i=0; i<5; i++){
for(int j=0; j<5; j++){
if(bl == false){
System.out.print("*");
bl = true;
}
else{
System.out.print("-");
bl = false;
}
}
System.out.print("\n");
}
}
}
Question:
Ql:If bl is true, what will be outputted?
1
Q2:if bl is false, what will be outputted?
2
Q3:What is the standard output?
3
4
5
6
7

3) Mistake Correction Problem: MCP requests to answer
every mistaken element and its correction in the given corrupt
source code. The hint function is implemented here to avoid
easily giving up solving the instance. When a student clicks
the hint button, the first character of the correct answer for
each question will appear. Besides, to prevent the easy use
of the hint function, the button can be clicked only when
the answering time exceeds five minutes and the number of
answer submission times exceeds five. As an example of MCP
instance, TXT3 depicts the source code and the questions with
six answer forms.

TXT3: Example MCP instance.

1:import java.io.;
2:class Sample{

3: public static void main(String[] args)
throws IOException{

4: System.out.println("fJFEHDI—RIZLET
»?N);

5: System.out.println ("EBEHEANLTLEEX W,

6: " BufferedReader br = native
BufferedReader (new InputStreamReader (
System.in));

7: String str = br.readlLine();

8: int res = Character.parselnt(str);

9: char ans = (res = 1) ? A’ : ’'B’;

10: System.out.println(ans+"a2—X%FENLE L
2o ")

11: }

12:}

Question:

line#: incorrect -> correct

70 _1_ -> _2_

8: _3_ -> _4_

9: 5. -> _6

4) Element Fill-in-blank Problem: The source code in an
EFP instance is not a complete one, unlike the code for
the three types of problems introduced before. It requests to
answer the blank elements in the source code by understanding
syntax and semantics. As an example EFP instance, TXT 4
depicts the source code and the questions with 13 answer
forms. It was made for studying the for loop.

TXT4: Example EFP instance.

1_ java.io.*;

2 Sample{
public _3_ void _4_(String[] args) _5_
IOException{
System.out.println ("W D*EHALETH?");
BufferedReader _6_ =

7 BufferedReader (_8_
InputStreamReader (System.in));
String _9_ = br.readLine();
10 num = Integer.parselInt_11_ str);
12(int i = 1; _13_ <= num; i++){
System.out.print("*");
}

5) Code Completion Problem: CCP requests to answer the
blank elements in the given source code like EFP. However,
CCP does not show the blank locations in the code. As an
example CCP instance, TXT 5 depicts the uncompleted source
code. It was made for studying the switch loop. A students
needs to add the missing element at the proper location in the
code.

TXT5: Example CCP instance.

_

java.io.*;
:class Sample{

N

3: public static void main(String[]) throws
IOException{

4: .out.println("Please enter a or b.");

5: BufferedReader br = new
BufferedReader (new (System.in));

6: String str = .readlLine();

7: res = str.charAt(0);

8: switch(res){

217
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

9: 'a’:

10: System.out.println("a was
entered.");

11: break;

12: case 'b’:

13: System.out.println("b was
entered.");

14: H

15: :

16: System..println("Please enter a
or b.");

17: break;

18: }

19: }

20:}

6) Phase Fill-in-blank Problem: PFP requests to answer
the blank elements in the source code like EFP. However,
differing from EFP where one blank consists of only one
element, one blank in PFP can substitute any number elements
or text messages in the source code. To guide the correct
answer, the necessary descriptions such as the inputs and
outputs are given together for each PFP instance. Since the
correct answer for one blank may not be unique, the answer
platform for PFP can handle up to two correct answers. As
an example PFP instance, TXT 6 depicts the source code and
the questions with 10 answer forms. It was made for studying
input data from keyboard.

TXT6: Example PFP instance.

import _1_ ;
class Sample{
public _2_ {
System.out.println(_3_);
BufferedReader br = new _4_ ;

String strl = _5_ ;
String str2 = _6_ ;
int numl = _7_ ;
int num2 = 8_ ;

System.out.println(_9_);
System.out.println(_10_);

C. Answer Analyzer

After a student completes answering the given exercise
problems, he/she will submit the answer text file to the teacher.
This file contains the submission date and time, the instance
ID, and the answer and its marking result of each question at
every answer submission by this student. After collecting the
answer files from the students by emails or a file server, the
teacher can calculate the average correct answer rate and the
average number of submission times by running the answer
analyzer.

IV. GENERATED EXERCISE PROBLEMS

In this section, we present the generated exercise problems
in JPLAS for the course implementation.

A. Generated Exercise Problems

A total of 109 problem instances for the six types were
generated for JPLAS by following the curriculum of the
Java programming course. The original sources codes for the
instances were selected from the sample source codes provided
with the textbook used in the class [14]. Table I shows
the topics of 16 chapters in the textbook, the corresponding
instance number of each problem type for each chapter, and
the number of instances for each problem type with the total.

TABLE I: Generated problem instances.

GUP | VTP | MCP [EFP | CCP [PFP
corresponding instance ID

topic in textbook

1: standard output 1 1 - 1 1 1
2: basic of Java 2 2 1 2 - 2
3: variable 3-6 3 2 34 2 3
4: expression 7.9 4 3 5.6 3 4
and operator
5: if-else and switch 10,11 5 4 10 4 5
6: do-while and for 12,13 6 5 8,9 5 6
7: array 14 7 - 11,12 6 7
8: basic of class
and method 15,16 8 6 13,14 7 8
9: function of class 17 9 7 15.16 3 9
and structure
10: use of class 18 10 8 17,18 9 10
11: inheritance 19 11 - 19,20 10 11
12: interface 20 12 9 21 11 12
13: import and 2124 13 10 2))
package
14: exceptions and 25.28 14) 23 12 13
1/O processing
15: thread - 15 | 11| 24 | 13 | 14
manipulation
16: graphical - - 1212526 | - | 15
application

of instances 28 [15 [12] 26 | 13
total # of instances 109

B. Generation of Instance

An instance in JPLAS can be generated by the following

procedure:

1) To select a proper source code,

2) To generate the text file as shown in TXT 1 - TXT 6
by running the corresponding generators that we have
implemented.

3) To generate the CSS/HTML/JavaScript files for the
answer interface on the web browser by running the gen-
erator with this text file that we have also implemented,

4) To install the generated instances to the answer platform.

C. Use of JPLAS

A student can solve the JPLAS instances by the following
procedure:

1) Download and install Docker in the PC.

2) Download the JPLAS Docker image from Docker hub.

3) Run the JPLAS Docker image in the PC by using the
Docker run command.

4) Open the browser and type localhost:4000 to access to
the JPLAS platform.

218
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

V. EvaLuATION

In this section, we present the implementation results of
the 109 instances to 58 third-year students taking a Java
programming course in Okayama University.

A. Solution Performances by Problem Types

First, we analyze differences of solution performances of the
students by the six problem types. Table II shows the number
of students who submitted answer files, the average correct
answer rate, and the average number of answer submission
times for each instance by them for each problem type. From
this table, it can be observed that GUP, VTP, MCP, and
EFP are easier for these novice students. The average correct
answer rate and the average number of answer submission
times are similar in them. CCP and PFP are harder for them,
where both the correct rate and the number of submission
times become worse. The average correct answer rate of two
CCP instances at ID = 8 and 10, and one PFP instance at
ID = 12 is less than 90%. According to Table I, they are on
override, overload, structure, inheritance, abstract
class, and interface, which can be difficult for novices to
understand. The hint function should be implemented for them,
which will be in future works.

TABLE II: Summary of solution results by problem types.

problem # of . # (.)f average average #of
type instances submitted correct submissions
students rate (%)

GUP 28 46 99.83 3.47
VTP 15 45 99.70 2.25
MCP 12 46 97.93 3.01
EFP 26 45 99.76 2.93
CCP 13 45 90.46 6.32
PFP 15 45 94.61 6.55
average 97.04 4.09

B. Solution Performances by Students

Next, we analyze differences of solution performances by 44
students who submitted answer files to all of the six problem
types to confirm the validity of the application in the Java
programming course. Figure 1 shows the average number of
answer submission times and the average correct answer rate
for the GUP, VTP, MCP, EFP, CCP, and PFP instances by
the individual students. Besides, Figure 2 shows the average
number of answer submission times and the average correct
answer rate among all the instances by the individual students.

From these results, 21 students among 44 at ID = 3, 4, 6, §,
11, 12, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 30, 31, 33, 35,
and 37, achieved the 100% correct rate in any instance. These
students well studied all the topics in the Java programming
course. Besides, among the 21 students, three students at ID
= 20, 30, and 33 also have low number of submission times,
which is less than two at any instance. They are excellent
students.

On the other hand, the average number of submission times
by three students at ID = 8, 19, and 31 are more than seven,
which means that they tried hard to reach the correct answers.

They are diligent students. 22 students among 44 achieved the
higher than 90% average correct rate. Only one student did not
reach 90%. These results suggest that the generated instances
in the six problem types are proper for novice students to solve
Java programming exercise problems as homework.

C. The correlation between JPLAS and final examination
results

To confirm the learning effectiveness and the suitability
of JPLAS for novice students, we calculate the correlation
coefficient of JPLAS and final examination results by students.

The final examination contains two code writing prob-
lem(CWP) assignments, which is one type of exercise problem
in JPLAS. One assignment in CWP consists of the statement
and the test code that should be prepared by a teacher. A
student is requested to write the Java source code that passes
every test case described in the test code. The correctness of
the source code written by the student is verified by running
the test code with the source code on JUnit for code testing
[15]. Thus, the CWP is more difficult than the six type of
exercise problems that introduced before.

The correlation coefficient is a measure of the strength of
the linear relationship between two sets of data. It takes values
in the range —17+1. If it is in the range of 0.771.0, there is a
strong correlation. if it is in the range of 070.2, there is almost
no correlation. The correlation coefficient between the average
correct answer rate of JPLAS and the final examination is 0.75.
From the result, we can observe that students who understand
exercise problems in JPLAS well can have good grades in the
final examination. Thus, the effectiveness of our proposal is
confirmed.

GUP results by each student

35.00
100.00%

30.00
80.00%
25.00

20.00 60.00%

15.00
40.00%

10.00
20.00%

5.00

0.00 0.00%
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time —Average Correct Rate

VTP results by each student

\/ 100%

80%

35.00

30.00
25.00
20.00 60%
15.00

40%
10.00

20%
5.00
0.00 0%

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time —Average Correct Rate

219
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

MCP results by each student
35.00

100%
30.00
80%
25.00
20.00 60%
15.00
40%
10.00
20%
5.00
0.00 0%

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time = —Average Correct Rate

EFP results by each student

35.00
100%

30.00

80%
25.00

20.00 60%

15.00
40%

10.00

20%
5.00

0.00 0%
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time = —Average Correct Rate

CCP results by each student
35.00 105%
25.00
65%
20.00

45%
15.00

25%
10.00
5.00 5%

0.00 -15%
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time —Average Correct Rate

PFP results by each student

35.00
100.00%

30.00
80.00%

25.00
20.00 60.00%

15.00
40.00%

10.00
20.00%

5.00

0.00 0.00%
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time —Average Correct Rate

Fig. 1: Results of each student for each problem type.

VI. ConcLusIioN

This paper presented the implementation of GUP, VTP,
MCP, EFP, CCP, and PFP instances in Java programming
learning assistant system (JPLAS) to a Java programming
course in Okayama University. A total of 109 instances
were generated by following the course curriculum, and were
assigned to 58 third-year students as homework. The solution
results revealed the difficulty difference among the six problem
types and confirmed the validity in the course. In future works,

14.00 100.00%
12.00

95.00%
10.00

90.00%

6.00 85.00%

4.00
80.00%
2.00

0.00 75.00%
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Average Submission Time —Average Correct Rate

Fig. 2: Average solution results of each student among all
problem types.

we will implement the hint function for hard problem types,
generate new instances on other topics, and apply them to
students in various universities and departments.

REFERENCES

[1]1 S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S.
Sugawara, ”An implementation of Java programming learning assistant
system platform using Node.js,” in Proc. ICIET, pp. 47-52, April.2022.

[2] X.Lu, N. Funabiki, S. T. Aung, H. H. S. Kyaw, K. Ueda, and W-C. Kao,
”A study of grammar-concept understanding problem in C programming
learning assistant system,” ITE Trans. Media Tech. Appl., vol. 10, no.
4, pp. 198-207, Oct. 2022.

[3] X. Lu, N. Funabiki, H. H. S. Kyaw, E. E. Htet, S. L. Aung, and N. K.
Dim, ”Value trace problems for code reading study in C programming,”
Adyv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 7, no. 1, pp. 14-26, Jan.
2022.

[4] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H. S.
Kyaw, and W-C. Kao, ”A proposal of mistake correction problem for
debugging study in C programming learning assistant system,” Int. J.
Info. Edu. Tech. (IJIET), vol. 12, no. 11, pp. 1158-1163, Oct.2022.

[5]1 N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, ”A graph-
based blank element selection algorithm for fill-in-blank problems in
Java programming learning assistant system,” IAENG Int. J. Comp. Sci.,
vol. 44, no. 2, pp. 247-260, May 2017.

[6] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, A code
completion problem in Java programming learning assistant system,”
TAENG Int. J. Comp. Sci., vol. 47, no. 3, pp. 350-359, Aug. 2020.

[71 X.Lu, S. Chen, N. Funabiki, M. Kuribayashi, and K. Ueda, ”A proposal
of phrase fill-in-blank problem for learning recursive function in C
programming,” in Proc. LifeTech, pp. 127-128, March 2022.

[8] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W.-C. Kao, ”Offline
answering function for fill-in-blank problems in Java programming
learning assistant system,” in Proc. ICCE-TW, pp. 324-325, May 2016.

[9] Coder’s Cat, “Learn from source code (an effec-
tive ~way to grow for beginners),” https://medium.com/
better-programming/learn-from-source-code-an-effective- way-to- grow-
for-beginners-e0979¢9b5a84, Nov. 2019.

[10] K. Okimoto, S. Matsumoto, S. Yamagishi, and T. Kashima, “Developing
a source code reading tutorial system and analyzing its learning log data
with multiple classification analysis,” Art. Life Robot. vol. 22, pp. 227-
237, 2017.

[11] R. Suzuki, J. Kato, and K. Yatani, ”ClassCode: an interactive teaching
and learning environment for programming education in classrooms,”
arXiv:2001.08194 [cs.CY], Jan. 2020.

[12] D. Herron, Node.js web development, Packt Pub., 2016.

[13] R. McKendrick, Monitoring Docker, Packt Pub., 2015.

[14] M. Takahashi, Yasashii Java, ver. 7, SB Creative, 2019.

[15] K. H. Wai, N. Funabiki, S. T. Aung, K. T. Mon, H. H. S. Kyaw, and
W.-C. Kao, ”An Implementation of Answer Code Validation Program
for Code Writing Problem in Java Programming Learning Assistant
System,” in ICIET, March 2023.

220
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

