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Depression is a disorder that if not treated can hamper the quality of life. EEG has shown great promise in detecting depressed
individuals from depression control individuals. It overcomes the limitations of traditional questionnaire-based methods. In this
study, a machine learning-based method for detecting depression among young adults using EEG data recorded by the wireless
headset is proposed. For this reason, EEG data has been recorded using an Emotiv Epoc+ headset. A total of 32 young adults
participated and the PHQ9 screening tool was used to identify depressed participants. Features such as skewness, kurtosis,
variance, Hjorth parameters, Shannon entropy, and Log energy entropy from 1 to 5 sec data fltered at diferent band frequencies
were applied to KNN and SVM classifers with diferent kernels. At AB band (8–30Hz) frequency, 98.43± 0.15% accuracy was
achieved by extracting Hjorth parameters, Shannon entropy, and Log energy entropy from 5 sec samples with a 5-fold CV using
a KNN classifer. And with the same features and classifer overall accuracy = 98.10± 0.11, NPV= 0.977, precision = 0.984,
sensitivity = 0.984, specifcity = 0.976, and F1 score = 0.984 was achieved after splitting the data to 70/30 ratio for training and
testing with 5-fold CV. From the fndings, it can be concluded that EEG data from an Emotiv headset can be used to detect
depression with the proposed method.

1. Introduction

Depressive disorder is a highly prevalent mental illness.
Sadness, loss of interest or enjoyment, feelings of guilt or low
self-worth, interrupted sleep or food, fatigue, and difculty
concentrating are some characteristics of depression. It may
afect a person’s capacity to operate in daily life or at work or
school. According to the World Health Organization
(WHO) back in 2015, almost 4.4% of the world’s population
was sufering from depression [1]. Because of the COVID-19
pandemic, many people sufered from depression due to job
loss, study hampering, losing close relatives, staying indoors,
etc. A study showed 19.3% increase in depression symptoms
among people after COVID-19 in the United States [2]. A
study has shown the changes in obsession, depression, and
quality of life in schizophrenia patients before and after
COVID-19 [3]. When depression is severe it can lead to

suicide. Every year around 800 thousand people die because
of suicide [1]. In 2017, 13.2% of young adults (aged 18–25) in
the U.S. sufered from depression which was 5.1% less in the
year 2009 [4]. Of the deaths of young people, around 9.1%
are due to suicide [5]. In most suicide cases, people had
psychiatric disorders where depression is the most common
disorder among others [6]. According to a recent study,
insecure attachment styles are linked to greater problems
such as depression, social anxiety, and suicidal thoughts [7].
So, depression is a major issue that should be diagnosed and
treated at an early age to prevent suicide and for the bet-
terment of the quality of life.

Tere are various screening tools to detect depression.
Tere are chronic social defeat stress models of depression
such as the Morris water maze test and T-maze test to learn
about the cognitive functions [8]. Traditionally, clinical
questionnaire-based diagnoses are used to detect depression,
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where medical professionals (psychologists, psychiatrists,
counselors, and physicians) interview and observe patients’
behavior to determine depression [9]. TeMultiple Sclerosis
Depression Rating Scale (MSDRS) is a screening tool to
evaluate depression in multiple sclerosis (MS) patients and
may make fatigue and depressive symptoms more distin-
guishable [10]. Adjustment disorders with depressed mood
are diagnosed using the Diagnostic and Statistic Manual of
Mental Disorders, Fourth Edition, Text Revision (DSM-IV
TR), published by the American Psychiatric Association
(APA) [11]. Te Beck Depression Inventory-II (BDI-II),
a 21-item self-report questionnaire, is frequently used to
assess the severity of depression in adults and adolescents. To
be more congruent with DSM-IV depression criteria, the
BDI-II was redesigned in 1996 [12]. Te Center for Epi-
demiologic Studies Depression (CES-D) Scale, a commonly
used self-report depression symptom scale, was given to
convenience samples of high school and college students
[13]. Te most popular tool for patient selection and follow-
up in research studies on depression treatments is the
Hamilton Depression Rating Scale (HDRS, often known as
HAM-D) [14]. Te Depression Anxiety Stress Scales 21
(DASS-21) is reliable and can easily be used by the patient to
understand their symptoms of depression, anxiety, and
stress. It is based on 21 questionnaires, where 7 is for de-
pression, 7 for anxiety, and 7 for stress [15]. Te In-
ternational Classifcation of Diseases 10th Revision (ICD-
10) is authorized by theWHO.Te ICD-10 Symptom Rating
(ISR) is a brand-new 29-item self-rating questionnaire
containing scales for evaluating eating disorders, OCD,
depression, and anxiety [16]. Te three-page Patient Health
Questionnaire (PHQ9) is completely self-administered by
the patient. Te PHQ evaluates eight diagnoses, broken
down into subthreshold disorders (disorders whose criteria
encompass fewer symptoms than are required for any
specifc DSM-IV diagnoses: other depressive disorder,
probable alcohol abuse/dependence, somatoform, and binge
eating disorder) and threshold disorders (disorders that
correspond to specifc DSM-IV diagnoses: major depressive
disorder, panic disorder, other anxiety disorder, and bulimia
nervosa) [17]. Sometimes depressed individuals are not
willing to provide reliable information due to the nature of
the disorder which can lead to inaccurate diagnosis. So, it is
essential to fnd more efective methods to diagnose
depression.

Tere are also other methods to detect depression ef-
fectively. Studies indicate that depressed individuals have
abnormal brain activity compared to depression control
individuals. Functional magnetic resonance imaging (fMRI)
is an imaging technique to investigate brain functionality
and structure. Yang et al. has shown results that depression
can be identifed using fMRI [18]. Electroencephalography
(EEG) is a noninvasive technique for evaluating brain
function. Using electrodes attached to the scalp, EEG ana-
lyzes the electrical activity of sizable groups of synchro-
nously fring neurons in the brain [19]. EEG is used to detect
electrical activity of the brain which is being used as a di-
agnostic biomarker for depression. Depression creates
emotional variation and unusual brain activity which can be

detected by EEG; thus, EEG can identify depression [20].
MRI can provide more accurate results, but it is not a very
practical way of detecting depression. MRI is expensive, can
cause claustrophobia, is not portable, and is not easy to use
[21]. On the other hand, EEG is portable, noninvasive, easy
to use, gives higher temporal resolution, and is less expensive
than other brain monitoring methods [22]. With the help of
machine learning (ML) and deep learning, the electrical
signals recorded from the EEG can be used to classify de-
pressed and depression control individuals. Tere are
existing studies that have shown great promise to diagnose
depression using ML. So, ML can diagnose depression by
using the EEG signal.

1.1.RelatedWorks. In recent years, a lot of research has been
conducted to detect depression using EEG signals. Various
methods have been proposed for depression detection using
EEG signal properties. Various researchers used various
screening tools or clinical methods to identify depression
among participants.

Mumtaz et al. used DSM IV as the screening tool to
identify depression among the participants. Tey collected
EEG data from 64 participants (34 with MDD aged
40.3± 12.9 and 30 healthy aged 38.3± 15.6) using Brain
Master Discovery 24 device. Tey extracted wavelet, STFT,
and EMD features and applied logical regression to classify
the data, and acquired 90.5% accuracy with 10-fold CV [23].
Te same dataset was used by [24–33]. Here, Mahato and
Paul extracted band power, interhemispheric asymmetry,
relative wavelet energy, and wavelet entropy as features,
multilayered perceptron neural network (MLPNN), and
radial basis function network (RBFN) classifer which
similarly obtained 93.3% accuracy [24]. Ke et al. used CNN
classifer and achieved 98.81% accuracy [25]. Kang et al.
removed artifacts using ICA and achieved 98.85% accuracy
using CNN classifer at the alpha band [26]. Mahato and
Paul extracted band power and theta asymmetry and
achieved 88.3% accuracy using SVM [27]. Saeedi et al.
extracted band power, WPD, approximate entropy, and
sample entropy features and achieved 98.44% accuracy using
the Enhanced KNN classifer [28]. Dang et al. used multi-
variate pseudo-Wigner distribution (MPWD), novel
frequency-dependent multilayer brain (FDMB) features,
and CNN to achieve 97.27% accuracy [29]. Movahed et al.
extracted statistical and spectral wavelet functional con-
nectivity and nonlinear features and acquired 99% accuracy
using SVMwith RBF kernel [30]. Aydemir et al. extracted 25
features from the discrete wavelet transform coefcients and
applied neighborhood component analysis (NCA) for fea-
ture selection. Tey achieved 99.11% accuracy using
Weighted KNN and 99.05% accuracy using the Quadratic
SVM classifer [31]. Loh et al. applied CNN to achieve
99.25% accuracy [32]. Movahed et al. extracted critical
distance, synchronization likelihood features to achieve 99%
accuracy using the Label Consistent KSVD algorithm [33].
Li et al. used an EEG dataset consisting of 14 depressed and
14 healthy participants. Te DSM-IV was used as the
screening tool to identify depressed participants. Te EEG
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data were recorded using HydroCel Geodesic Sensor Net
(HCGSN) device. Tey have extracted power spectral
density (PSD), Hjorth activity, and azimuthal equidistant
projection (AEP) for image classifcation. Tey achieved
89.02% accuracy by extracting PSD features from the full
band with an SVM classifer. And they have achieved 84.75%
accuracy at the alpha band using CNN classifer [34]. Li et al.
in the year 2019 [35] and 2020 [36] used a dataset containing
EEG data of 24 depressed and 24 healthy participants. Te
depression detection was performed using the BID-II
screening tool and the EEG data was recorded using
HydroCel Geodesic Sensor Net (HCGSN) device. Li et al. in
year 2019 achieved 85.62% accuracy by fltering the data
from 1 to 40Hz and using computer-aided detection (CAD)
system using a convolutional neural network (ConvNet)
with 24-fold CV [35]. Li et al. in the year 2020 used 3
channels of data and fltered the data from 0.5 to 70Hz.Tey
achieved 80.74% accuracy using CNN classifer [36]. Akbari
et al. acquired data from 44 participants (22 depressed and
22 healthy) aged between 23 and 58 years. By extracting the
rhythm feature by empirical wavelet transform and centered
correntropy features with SVM classifer, 98.33% accuracy
was achieved using FP1-T3 channels data and 98.76% ac-
curacy was achieved using FP2-T4 channels data [37]. Ten,
using reconstructed phase space of the EEG and genetic
algorithm (GA) with SVM classifer, 97.74% accuracy was
achieved using FP1-T3 channels data and 99.3% accuracy
was achieved using FP2-T4 channels data [38]. Ten, they
collected fuctuation index as features and cascade forward
neural network (CFNN) as a classifer which achieved 99.5%
accuracry using FP1-T3 channels data and 100% accuracy
using FP2-T4 channels data [39]. Cai et al. used a dataset
containing EEG data of 92 depressed and 121 healthy
participants. PHQ9 was used as a screening tool to identify
depression among the participants. Tey extracted peak,
variance, Hjorth parameter, skewness, kurtosis, relative
centroid frequency, absolute centroid frequency relative
power, absolute power, Kolmogorov Entropy, Shannon
Entropy, co-complexity, correlation dimension, and power-
spectral entropy as features and achieved 79.27% accuracy
using KNN classifer [20]. Cai et al. used a dataset containing
EEG data of 152 depressed and 113 healthy participants aged
between 18 and 55 years. Tey extracted features such as
variance, peak, kurtosis, inclination, Hjorth parameter, co-
complexity, correlation dimension, power spectrum en-
tropy, Kolmogorov entropy, and Shannon entropy. For
classifcation, they used decision tree (DT) and achieved
76.4% accuracy [40]. Cai et al. in the year 2020 used a dataset
containing EEG data of 86 depressed and 92 healthy par-
ticipants aged between 18 and 55 years. Here, PHQ9 was
used as the screening tool. Tey extracted linear features
(band powers, center frequency, skewness, kurtosis, and
peak of the whole band) and nonlinear features (variance,
Hjorth’s activity, power spectral entropy, Kolmogorov en-
tropy, Shannon entropy, correlation dimension, and co-
complexity). Using the KNN classifer, they achieved 86.98%
accuracy [41]. Wu et al. used an EEG dataset consisting of
data from 24 depressed (aged 29.7± 10.9) and 31 healthy
(aged 29.75± 9.9) participants. Te BDI-II and DSM-IV

were used as screening tools for depression detection and
HydroCel Geodesic Sensor Net (HCGSN) device was used
for EEG recording. Tey extracted spectral power density
(SPD) and the band power (BP) and achieved 83.64% using
conformal kernel SVM (CK-SVM) as a classifer [42].
Acharya et al. used a dataset that contains EEG data from 15
depressed and 15 healthy individuals aged between 20 and
50 years. Tey applied CNN classifer and achieved 93.54%
accuracy using FP1-T3 channels (left hemisphere) data and
95.49% accuracy using FP2-T4 channels (right hemisphere)
data [43]. Kim et al. used 30 depressed (aged 42.5± 16.96)
participants’ EEG data and 37 healthy (aged 29.75± 9.9)
participants’ EEG data for their research.Tey extracted four
types of electrodermal activity features (dMSCL, dSDSCL,
dSKSCL, and dNSSCR). Tey achieved 74% accuracy by
applying the extracted features to a support vector machine
recursive feature elimination (SVM-RFE) for feature se-
lection and decision tree (DT) classifcation [44]. Bachmann
et al. used an EEG dataset of 26 participants (13 depressed
and 13 healthy) aged between 18 and 66. Te ICD-10
screening tool was used to identify depression among
participants and Neuroscan Synamps2 was used to record
EEG signals.Tey used alpha band power variability, relative
gamma power, spectral asymmetry index, Lempel-Ziv
complexity, detrended fuctuation analysis, and Higuchi’s
fractal dimension as features which they applied to the lo-
gistic regression classifer and achieved 92% accuracy [45].
Arora et al. used EEG data from 25 participants aged be-
tween 16 and 60 years. Te DSM-IV was used as the
screening tool. For features, they measured correlation di-
mension and co-complexity then applied the features to an
SVM classifer with RBF kernel and got 91% accuracy [46].
Ay et al. used a dataset containing EEG data from 15 de-
pressed and 15 healthy participants aged between 20 and
50 years. Tey applied CNN classifer to achieve 97.66%
accuracy using FP1-T3 channels (left hemisphere) data and
99.12% accuracy using FP2-T4 channels (right hemisphere)
data [47]. Peng et al. worked with a dataset with 27 depressed
(aged 31.67± 10.94) and 28 healthy (aged 31.82± 8.76)
participants with EEG data. Te PHQ9 was used as
a screening tool for depression detection and HydroCel
Geodesic Sensor Net (HCGSN) device was used for EEG
recording. Tey extracted phase lag index (PLI) and high
discriminative power features. Tey achieved 92% accuracy
by applying SVM with the linear kernel as a classifer [48].
Mohammadi et al. worked with EEG data from 60 partic-
ipants (aged 32.4± 10.5).Te participants were evaluated for
depression using DSM-IV and BDI-II screening tools. Tey
extracted fuzzy entropy, Katz fractal dimension, and fuzzy
fractal dimension features, and then achieved 90% accuracy
using fuzzy function based on neural network (FFNN) [49].
Wan et al. worked with 2 datasets. Te frst dataset contains
EEG data from 35 participants aged between 20 and 56 years
and the second dataset contains EEG data from 30 partic-
ipants aged between 24 and 55 years. Te DSM-IV and
HAM-D were used as screening tools to evaluate depression
among participants. For the features, they extracted wavelet
features, power spectral entropy, co-complexity, approxi-
mate entropy, and wavelet entropy. Using the KNN classifer
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with a genetic algorithm for feature selection, they achieved
94.29% accuracy for the frst dataset and by using the re-
gression trees classifer with a genetic algorithm, they
achieved 86.67% accuracy for the second dataset [50]. Zhu
et al. used a dataset with EEG signals from 19 depressed
(aged 21.1± 1.95) and 20 healthy (aged 20.11± 2.07) par-
ticipants. Te BDI-II was used as the screening tool and the
data was recorded using HydroCel Geodesic Sensor Net
(HCGSN) device.Tey extracted variance, maximum power,
sumpower, approximate entropy, Kolmogorov entropy,
permutation entropy, Lempel–Ziv complexity, correlation
dimension, Lyapunov exponent, singular-value deposition
entropy, min-entropy, Shannon entropy, spectral entropy,
Hartley entropy, co-complexity as features with BestFirst
algorithm for feature selection. Tey achieved 83.42% ac-
curacy by using an SVM classifer with a linear kernel [51].
Toduparambil et al. worked with a database taken from the
Public Domain Dedication and License (PDDL) v1.0; the
data was recorded using a Neuroscan Synamps2 system.
Tey applied CNN classifer and achieved 98.84% accuracy
from the channels located at the left part of the brain and
99.07% accuracy from the channels located at the right part
of the brain [52]. Čukić et al. used EEG data collected from
21 depressed and 20 healthy participants aged from 24 to
68 years. Te depression was identifed by ICD-10 screening
tools and EEG was recorded using NicoletOne Digital EEG
Amplifer. Tey extracted Higuchi’s Fractal Dimension
(HFD) and Sample entropy. Tey achieved 97.57% accuracy
using multilayer perceptron, logistic regression, decision
tree, and Naı̈ve Bayes classifer [53]. Mahato et al. worked
with EEG data collected from 24 depressed (aged 35± 5.9)
and 20 healthy (aged 36± 4.2) participants. Te DSM-V and
HAM-D were the screening tools used to identify de-
pression. Tey extracted band power, interhemispheric
asymmetry, paired asymmetry, sample entropy, and
detrended fuctuation analysis as features and achieved
96.02% accuracy with SVM as a classifer [54]. Liu et al.
worked with a dataset containing EEG data from 20 de-
pressed and 19 Healthy participants aged between 23 and
65 years. For screening depression among participants,
HAM-D was used, and EEG data were recorded using
a Neuroscan Quik-cap device. Tey measured quantifed
infuence, phase synchronization, and functional in-
tegration, including degree, functional segregation, clus-
tering coefcient, and characteristic path length, and did
statistical analysis from the data and used PCA for feature
selection. Tey achieved 89.7% accuracy for the beta band
using the SVM classifer [55]. Bai et al. used a dataset
containing EEG data from 142 depressed and 71 healthy
participants. Tey extracted absolute centroid, variance,
relative power, absolute power, power spectral density, ac-
tivity, skewness, kurtosis, spectral entropy, Higuchi’s fractal
dimension, Hjorth parameters, and detrended fuctuation
analysis as features and achieved 81.16% accuracy using tree-
based feature selection and random forest classifer [56].
Uyulan et al. used EEG data collected from 46 depressed and
46 healthy participants aged between 20 and 51 years. Te

HAM-D was used as the screening tool to identify de-
pression among participants and Neuroscan/Scan LT was
used to record EEG data. Using CNN with MobileNet ar-
chitecture, they achieved 89.33% from the left hemisphere
and 92.66% from the right hemisphere. Tey have also
achieved 90.22% accuracy in the delta band using CNN with
ResNet-50 architecture [57]. Avots et al. used EEG data
collected from 20 participants (aged between 24 and
60 years) using the Cadwell Easy II EEG device.Te HAM-D
was used for screening purposes.Tey extracted alpha power
variability, relative band power, spectral asymmetry index,
Lempel–Ziv complexity, Higuchi fractal dimension, and
detrended fuctuation analysis as features. Using ReliefF for
feature selection, they achieved 95% accuracy with both
KNN and decision tree classifer [58]. Lei et al. worked with
EEG data collected from 101 depressed participants, 82
participants with bipolar disorder, and 81 healthy partici-
pants using the Brain Products GmbH device. Using the
CNN classifer, they achieved 96.88% accuracy with de-
pressed vs. healthy and 97.3% accuracy with bipolar vs.
healthy [59]. Zhao et al. used EEG data collected from 40
depressed participants and 38 healthy participants (aged
18.72± 0.36) using a device fromNeuroscan.Te BDI-II was
used for screening depression. Microstate and Omega
complexity features were extracted and using SVM and they
achieved 76% accuracy [60]. Liu et al. worked with 2
datasets. Te frst dataset contains EEG data collected from
24 depressed and 29 healthy participants using HydroCel
Geodesic Sensor Net (HCGSN) and the second dataset
contains data collected from 16 depressed and 16 healthy
participants. For the frst dataset, PHQ9 was used for
screening, and for the second dataset, BDI was used for
screening. Tey achieved 89.63% accuracy from the frst
dataset and 88.56% accuracy from the second dataset using
CNN classifer with gated recurrent unit (GRU) [61]. Nassibi
et al. worked with EEG data collected from 42 depressed
(aged 18.64± 1.12) and 42 healthy (aged 19.04± 1.16) par-
ticipants using Neuroscan Synamps2. Te screening was
performed using BDI-II.Tey extracted band power, relative
band power, maximum Power spectral density, power
spectral density, median frequency, relative median, mean
frequency, Shannon entropy, Hjorth parameters, root-
mean-square, kurtosis, skewness, variance, and singular
value as features and neighborhood component analysis
(NCA) for feature selection. Using the Näıve Bayes classifer,
they achieved 91.8% accuracy [62]. Seal et al. used EEG data
collected from 46 depressed and 46 healthy participants
(aged between 20 and 51 years) using EEG Traveler Brain-
tech 32+ CMEEG-01. Te PHQ9 was used for screening.
Tey extracted band power, mean, median, mode, mean
cube, standard deviation, frst diference, normalized frst
diference, second diference, normalized second diference,
mobility, Pearson’s coefcient of skewness, Shannon en-
tropy, Alpha asymmetry 1, and Alpha asymmetry 2 as
features and ANOVA test and correlation analysis for fea-
ture selection. Tey achieved 87% accuracy using the
XGBoost classifer [63].
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1.2. Contribution and Objectives. We can observe that
previously multiple research work has been performed using
both machine learning and deep learning algorithms. We
have noticed that over the years most of the datasets that
have been created had participants of all ages. No dataset was
created using young adults (aged 18–25 years). And if we
investigate the depression screening tools, we can see that
there is a hand full of work which has been performed with
PHQ9 which is a very good self-administrable screening
method for depression. In previous works, the EEG re-
cording devices that have been used were bulky, wired, and
not easy to use, which may not serve as an ideal alternative
for depression diagnosis from traditional methods. EEG-
based depression detection should provide a better andmore
accurate diagnosis and also should be easy to use, so that the
patients who are not willing to face questioner/interview
base diagnosis can have a better, more reliable, and easy
solution.

We want to create an EEG-based depression detection
technique that will be reliable and easy to use. For this, we
want to target young adults aged between 18 and 25 years
(University students). Use the PHQ9 screening tool for
a depression diagnosis. Use the Emotiv EPOC+ EEG headset
which is wireless and easy to use for data recording. Create
a machine learning model which will be reliable and will give
the best results.

2. Materials and Method

In this section, we will discuss the proposed method. Te
proposed method can be divided into a few parts. Te
fowcharts of the proposed method are shown in the fol-
lowing fgures from Figures 1–9.

2.1.DatasetAcquisition. Te target of this work is to identify
depression among young adults. Initially, there was a survey
to identify depressed and depression control participants
aged between 18 and 25 years. Over 500 students partici-
pated in the initial survey. All the participants were uni-
versity students from Independent University, Bangladesh
(IUB). Te Patient Health Questionnaire (PHQ9) was used
in the initial survey to select depressed and depression
control individuals. After the survey, 82 participants were
selected to record EEG data. But only 64 participants were
willing to give consent for EEG recording.Te recording was
performed a few weeks after the survey. All participants
signed consent forms for the recording. For labeling pur-
poses, the participants were asked to fll up the PHQ9
questionnaires before the EEG recording. During the re-
cording, participants were sitting in a comfortable chair and
were asked to sit still and to keep their eyes closed during the
EEG recording. Figure 1 shows the fow chart for data ac-
quisition. Te recordings were 5min long for each partic-
ipant. Figure 2 shows the timeline of each recording session.
Tis shows that a total of 20min (Approx.) was required for
every session for each participant. Depending on the PHQ9
score 32 participants (16 males and 16 females, aged between
18 and 25 years) recordings were chosen for this work.

Among the 32 participants, 19 were identifed as depressed
(age 21.6± 1.98) and 13 were identifed as depression control
participants (age 21.3± 2.06). Here, we have observed that
among the depressed group, 74% were female participants.
Tis also supports the WHO report that depression is more
common among females than males [1].

Psychiatrists or mental health care centers typically favor
the PHQ9-based depression screening approach. Te entire
exercise takes between two and fve minutes to complete.
Table 1 displays the severity measuring score and its ac-
companying labels.

For this study, we have only considered the participants
who scored between 20 and 27 were selected as the depressed
group, and the participants who scored between 0 and 4 were
selected as the control group. Te information on the
participants is given in Table 2.

Te dataset was recorded using Emotiv EPOC+ 14-
channel EEG Device and the sampling frequency was
128Hz. Emotiv is a low-cost, wireless, and portable device.
Te channels are placed according to the 10–20 system.
Tere are eight frontal electrodes (AF3, F3, F7, FC5, AF4, F4,
F8, and FC6), two temporal electrodes (T7 and T8), two
parietal electrodes (P7 and P8), two occipital electrodes (O1
and O2), and two reference channels (P3 and P4). Figure 6
shows the channel locations, Emotiv Eopc+ headset, and the
list of channels located at diferent brain regions.

Tere are 14 EEG signals (From each channel) collected
from each participant. 266 EEG signals from depressed
participants (19 Participants× 14 Channels) and 182 EEG
signals from depression control participants (13 Partic-
ipants× 14 Channels). Here, a total of 448 EEG signals have
been recorded for this work. Figure 4 shows EEG data
collected from depression control and depressed partici-
pants. Figure 5 shows the brain maps of the depression
control and depressed participants at 2Hz, 6Hz, 10Hz,
22Hz, and 40Hz. Each of the frequency points represents
a single point of diferent sub-bands (Delta, Teta, Alpha,
Beta, and Gamma). And a signifcant diference can be
observed from the Brain Maps.

2.2. Segmentation. From each subject, 5min of data was
recorded. So, we collected 32 samples which were not
enough for machine learning. Terefore, segmentation was
required. Segmentation helps create smaller samples from

EEG RecordingScreening tool

Emotiv 
Headset

Labels 
from Score

PHQ9
Questioner

Labeled 
Dataset

PHQ-9

Raw 
EEG 
Data

Figure 1: Data acquisition using Emotiv Epoc+ and PHQ9
screening tool.
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a big sample. We carefully divided the raw data of each
participant into multiple nonoverlapping data with their
corresponding channels. Each 5min data was segmented
into 1, 2, 3, 4, and 5 seconds creating 5 datasets with diferent
sample lengths. Each segment contains an EEG signal from
14 channels. Table 3 contains the total number of samples
and the group-wise number of the sample after dividing the
raw data into diferent segments.

If we consider P equal to the total number of samples
collected from participants, i represents the number of
participants, T is the total number of samples in each

recording, S is the segment length, C is the number of
channels, and N is the number of samples after segmen-
tation, then

N �
T

S
, (1)

P(i) � T × C � N × S × C,

where,
i � 1, 2, . . . 32.

(2)

Instructions Are 
Given to the 
Participants

Participants 
Filled up The 

PHQ 9 
Questionnaire 

An Assistant 
Helped put on 
the Wireless 
EEG Headset

Participants Were 
Sitting Relaxed 

During 
Recording

EndStart

Timeline

5 Minute 5 Minute 5 Minute 5 Minute

Figure 2: Timeline for each recording session.

Brain Region Channels

Whole Brain
AF3, AF4, F3, F4, F7, 
F8, FC3, FC4, T7, T8, 

P7, P8, O1, and O2

Left Hemisphere AF3, F3, F7, FC5, T7, 
P7, and O1

Right Hemisphere AF4, F4, F8, FC6, T8, 
P8, and O2

Frontal Channels AF3, AF4, F3, F4, F7, 
F8, FC3, and FC4

Temporal Channels T7, and T8
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Figure 3: Channel locations, Emotiv headset, and channels at diferent regions of the brain.
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We have a total of 5min data equivalent to 38400
samples (sampling 128Hz); now if we follow equation (2),
we can calculate the total number of samples we can get from
each recording for desired segment length. Now if we chose
5 sec (640 samples) as segment length, then we will get 60
samples after segmentation. So, from each participant’s
5mins data of 38400×14 samples, we will be equal to
60× 640×14 samples for choosing a 5-sec segment length by
following equations (1) and (2).

2.3. Preprocessing. We applied IIR Butterworth flters to all
the channels for preprocessing the data. To fnd the optimal
frequency band for the best result, we have fltered the raw
data intomultiple sub-bands.Te signal-processing steps are
shown in Figure 6. We have fltered the raw data to acquire
0.5–64.0Hz for the full band, 0.5–4.0Hz for the Delta band,
4.0–8.0Hz for the Teta band, 8.0–12.0Hz for the Alpha
band, 12.0–30.0Hz for the Beta band, 30.0–64.0Hz for
Gamma band, and some additional fltering by excluding
one or few frequency bands. We have fnally acquired

0.5–30.0Hz (ABDT) excluding Gamma, 4.0–64.0Hz
(ABTG) excluding Delta, 4–30.0Hz (ABT) excluding Delta,
and Gamma, 8.0–30.0Hz (AB) excluding Delta, Teta, and
Gamma, 8.0–64.0Hz (ABG) excluding Delta and Teta as
diferent frequency bands for further analysis. Figure 7
shows the fltered data.

2.4. Feature Extraction. Depending on the characteristics of
EEG signals, linear or nonlinear features can be extracted.
For this study, we have extracted features such as variance,
Hjorth activity, Hjorth mobility, Hjorth complexity, kur-
tosis, skewness, Shannon entropy, and Log energy entropy to
create feature matrixes (shown in Figure 8). Te features
were applied to the classifer individually and combined to
get the best possible features.

2.4.1. Variance. Basically, variance is a statistical term that
describes how data are distributed relative to their mean or
expected value. It is the only kind of probability distribution
that accounts for the degree of dispersion of a set of data.

Depressed Participant

Control Participant

2.0 6.0 10.0 22.0 40.0 Hz
+

-

2.0 6.0 10.0 22.0 40.0 Hz
+

-

Figure 5: Brain maps of control and depressed participants at diferent frequency points.
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Table 1: PHQ9 scores and their corresponding severity levels.

PHQ9 score Depression level
0–4 No depression
5–9 Mild depression
10–14 Moderate depression
15–19 Moderately severe depression
20–27 Severe depression

Table 2: Participant’s information about gender, age, PHQ9 score, and group.

Subject ID Gender Age (yr.) PHQ9 score Group
1 F 24 23 Depressed
2 F 23 21 Depressed
3 F 24 23 Depressed
4 F 23 23 Depressed
5 M 25 24 Depressed
6 F 23 22 Depressed
7 M 20 23 Depressed
8 F 21 25 Depressed
9 F 23 26 Depressed
10 M 21 21 Depressed
11 M 20 23 Depressed
12 F 20 22 Depressed
13 F 22 23 Depressed
14 M 24 22 Depressed
15 F 21 23 Depressed
16 F 19 23 Depressed
17 F 20 21 Depressed
18 F 18 22 Depressed
19 F 20 20 Depressed
20 M 24 5 Control
21 F 22 5 Control
22 M 21 4 Control
23 M 21 2 Control
24 M 25 0 Control
25 M 24 3 Control
26 M 20 3 Control
27 M 22 4 Control
28 M 20 5 Control
29 M 19 4 Control
30 M 21 5 Control
31 F 20 4 Control
32 M 18 5 Control

Table 3: Number of samples after segmentation at diferent lengths.

S/N Each segment length Total no. of sample Total sample no.
for depressed group

Total sample no.
for control group

1 1 sec (128 samples) 9600 5700 3900
2 2 sec (256 samples) 4800 2850 1950
3 3 sec (384 samples) 3200 1900 1300
4 4 sec (512 samples) 2400 1425 975
5 5 sec (640 samples) 1920 1140 780
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2.4.2. Hjorth Parameters. Hjorth parameters consist of ac-
tivity, mobility, and complexity. Hjorth parameters are
linear features that are obtained in the time domain by
applying various signal-processing methods.

(i) Hjorth activity: Tis represents the variance of
a time function as well as the signal power. Te
activity provides a measurement of the squared
standard deviation of the time domain signal’s
amplitude. Tis may represent the frequency do-
main power spectrum’s surface. Te activity will be
depicted by the following equation, where x is
a signal and t is the time:

HjorthActivity � Var(x(t)). (3)

(ii) Hjorth mobility: Te mobility parameter represents
the power spectrum’s mean frequency or standard
deviation as a percentage. Equation (4) represents
Hjorth mobility, where it is determined by dividing
the square root of the variance of the signal’s x (t)
frst derivative by the variance of the signal x (t).

HjorthMobility �

������������
Var(dx(t)/dt)

Var(x(t))



. (4)

(iii) Hjorth complexity: Complexity provides an estimate
of the signal’s bandwidth and shows how a signal
resembles a pure sine wave in terms of shape.
Equation (5) represents Hjorth mobility. It is de-
scribed as the proportion of the time derivatives of
the mobility of the signal x to the mobility signal x at
time t.

HjorthComplexity �
Mobility(x(t)/dt)

Mobility(x(t))
. (5)

2.4.3. Entropy. A random process’s degree of uncertainty
can be gauged using entropy. It represents the signal’s
unpredictability. Without failure, rolling element equipment
often produces a more random signal, but machines with
failure typically produce a more predictable signal. Entropy
is thought to be a powerful characteristic for identifying
emotions in EEG signals. In this study, Shannon entropy and
Log energy entropy were used.

(i) Shannon entropy: Shannon Entropy is a metric for
the unpredictability of a random variable and
a random signal. Te uncertainty and randomness
increase with increasing entropy. It can be repre-
sented by the following equation:

ShnEn � − 
N

i�1
p xi( log p xi( ( , (6)

where p(xi) is the probability of i number sample of
the signal x and N denotes the length of the signal.

(ii) Log energy entropy: Log energy (LogEn) entropy is
related to the energy of the signal. It is similar to
wavelet entropy, but only uses the summation of
logarithms of the probabilities. It is used to analyze
the EEG signal’s complexity. It can be defned by the
following equation.

LogEn � 
N

i�1
log x

2
i . (7)

Here, xi is the i number sample of the signal and N

denotes the length of the signal.

2.4.4. Kurtosis. Kurtosis can measure the peakedness of an
EEG signal. When the signal has a normal distribution, the
kurtosis will be three and when the signal will not have
normal distribution the kurtosis will be higher than three
(for heavier peak) or less than three (for lighter peak). If the
signal is x, the mean of the signal is x, and length is N, then
kurtosis can be defned by the following equation:

Kurt �
(1/N) 

N
i�1 xi − x( 

4

(1/N) 
N
i�1 xi − x( 

2
 

2 − 3. (8)

2.4.5. Skewness. Skewness is a metric for a distribution’s
asymmetry. When the left and right sides of a distribution
are not mirrored, the distribution is said to be asymmetrical.

Skew �
(1/N) 

N
i�1 xi − x( 

3

(1/N) 
N
i�1 xi − x( 

2
 

(3/2) . (9)

Here, xi is the i th number sample of the signal, x is the mean
of the signal, and N denotes the length of the signal.

2.5. Classifcation. For classifcation, we used support
vector machine (SVM) algorithms and K-nearest
neighbor (KNN) algorithms (shown in Figure 9). Lin-
ear, quadratic, cubic, and Gaussian radial basis are the
kernels we used for SVM, and fne KNN, medium KNN,
coarse KNN, cosine KNN, cubic KNN, and weighted
KNN are the diferent types of KNN classifers we used to
identify the best option for the project. Te description
of the classifers is provided in Table 4. It is difcult to
know which classifer will give the best outcome as not
all data are the same. Our dataset is new and recorded
using an Emotiv EPOC+ headset, unlike other
depression-related datasets. So, we decided to apply
multiple classifers to fnd out which classifer will be the
best for our dataset.

2.6.Experiments. We conducted several experiments for this
research work. First, we extracted all the features from the
full band (0.5–64Hz) of diferent sample lengths and fetched
the features to the classifers separately and combined them
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to fnd the best features and sample length. After selecting
the sample length and the features, we extracted those
features from diferent frequency bands and fetched them to
the classifers with 25 iterations to select the frequency range
and the best classifer for this work. We used fve-fold cross-
validation for the validation. Cross-validation is very im-
portant as it tests the performance of a machine learning
algorithm to classify new data and prevents problems such as
overftting.

After that, we extracted features from diferent channels
located at the diferent regions of the brain (left hemisphere,
right hemisphere, frontal lobe, parietal lobe, temporal lobe,
and occipital lobe) from the selected frequency range and
classifed the data using the selected classifer to determine
which channels give the best outcome. For this part, we used
70 percent of the data for training, for validation we used
fve-fold cross-validation on 70 percent of the data, and the
remaining 30 percent of the data for classifcation (shown in
Figure 10). We used 10 iterations for all classifcations and
each time the training testing data were selected randomly.

2.7.PerformanceEvaluation. To evaluate the performance of
the proposed experiments we considered several perfor-
mance parameters. We have considered accuracy, precision,
negative predictive value (NPV), sensitivity, specifcity, and
F1 score.

2.7.1. Confusion Matrix. In the feld of machine learning
algorithms, a confusion matrix is a matrix or table that helps
summarize and visualize the performance of a classifcation
algorithm. It is an n-by-n matrix where we can see the true
and false predictions of a classifcation algorithm.We can get
the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) from the confusion
matrix (FN). Here, TP stands for the correct forecasts of the
positive class, TN for the accurate predictions of the negative
classes, FP for the positive class’s incorrect predictions, and
FN for the wrong predictions of the negative classes (shown
in Figure 11).

2.7.2. Accuracy. It gives us an idea that how many times the
classifcation algorithm was able to predict correctly. It can
be calculated using the following equation:

Accuracy �
TP + TN

TP + TN + FP + FN
. (10)

2.7.3. Precision. Precision is also known as the positive
predictive value (PPV). It is a performance parameter of an
ML algorithm that tells us the performance of a positive
prediction made by the algorithm. Te precision is calcu-
lated by equation (11). Here, the total number of true
positives is divided by the sum of true positives and false
positives.

Precision �
TP

TP + FP
. (11)

70% 30%

Training 
Data

Testing
Data

5-fold 
CV

Training

Training

Testing

Testing

Figure 10: Data splitting and cross-validation.

TP

TN

FN

FP

Predicted Value

Actual
Value 

Positive Class Negative Class

Positive Class

Negative Class

Figure 11: Confusion matrix.

Table 4: Description of diferent KNN and SVM classifers.

KNN SVM

S/N Type No of
neighbors S/N Type Kernel

1 Fine KNN 1 1 Linear SVM Linear
2 Medium KNN 10 2 Quadratic SVM Quadratic
3 Coarse KNN 100 3 Cubic SVM Cubic polynomial
4 Cosine KNN 10 4 Gaussian SVM Radial basis function
5 Cubic KNN 10
6 Weighted KNN 10
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2.7.4. Negative Predictive Value. Negative Predictive Value
(NPV) represents the possibility of negative predicting being
negative. Te NPV is calculated by equation (12). Here, the
total number of true negatives is divided by the total number
of negative predictions.

NPV �
TN

TN + FN
. (12)

2.7.5. Sensitivity. It is also known as recall or true positive
rate (TPR). When the classifcation is binary, the sensitivity
is known as recall. It represents how well a classifcation
algorithm can predict truly positive cases. It is calculated by
dividing the total number of true positives by the sum of all
true positives and false negatives, as follows:

Sensitivity �
TP

TP + FN
. (13)

2.7.6. Specifcity. It is also known as selectivity or true
negative rate (TNR). It represents how well a classifcation
algorithm can predict truly negative cases. It is calculated as
the total number of true positives divided by the total
number of true positives and false negatives (shown in
equation (14)).

Specificity �
TN

TN + FP
. (14)

2.7.7. F1 Score. It is a measure of the classifcation accuracy
of a binary classifer. By utilizing equation (15), F1 score is
calculated. Te harmonic mean of sensitivity and specifcity
is the F1 score.

F1 �
2TP

2TP + FP + FN
. (15)

2.7.8. Implementation. Te experiments were conducted
using MATLAB (2020A). MATLAB was installed on a lap-
top with Intel (R) Core (TM) i7 CPU with 16GB RAM and
NVIDIA GeForce GTX 1650 GPU.

3. Results and Discussion

First, we fltered the raw data at 0.5–64Hz (full-band) from
the diferent segments (1–5 sec data). Ten, we extracted the
features to create the feature matrix. Te feature matrix then
was fetched to the classifers for classifcation. In this part, we
used a 5-fold CV. Te fndings from diferent feature ma-
trices can be seen in “Figures 12–20.” Here we can observe
that the individual fgures represent the accuracy level of
diferent feature combinations from diferent classifers at
diferent sample lengths. Figures 12 and 13 are showing
results for skewness and kurtosis features. Both features have
poor results at diferent sample lengths and with all the
classifers. But Hjorth parameters (Figure 14), variance
(Figure 15), and entropy (Figure 16) show better results. And
Hjorth parameters gave the best accuracy of 94% with Fine
KNN classifer and 5-sec sample length.

Now, we combined the Hjorth parameters and entropy
(Figure 17), variance and entropy (Figure 18), skewness and
kurtosis (Figure 19), and all the features except variance
(Figure 20) and observe the accuracy at diferent sample
lengths using the classifers. We did not include the variance
when we combined all the features (Figure 20) because the
variance is the same as the frst Hjorth parameter (Hjorth
activity). After investigating all the results, we can see in
Figure 17 that the Hjorth parameters and entropy gives the
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Figure 12: Classifcation accuracies at diferent sample lengths using skewness feature.
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best results among all other combination of features. Here,
the highest accuracy is 96.5% using the 5-sec sample length
and with quadratic SVM, cubic SVM, and fne KNN clas-
sifers. From all these fndings, we can decide that by
extracting the Hjorth parameters (activity, mobility, and
complexity) and the entropies (Shannon and Log energy)
from 5-sec segments, we can achieve the highest accuracy

To further analyze, we extracted the Hjorth parameters
and the entropy features from diferent frequency sub-bands
(delta, theta, alpha, beta, and gamma) with 5-sec sample
lengths from all channels. Ten, we classifed the features
using all the classifers with a 5-fold CV and 25 iterations.

We calculated the average accuracy and the standard de-
viation to identify the best classifer and frequency band.
From Figure 21, we can observe that the Beta band gives
better classifcation accuracy than the other
frequency bands.

Table 5 shows the average accuracy and the standard
deviation results. From there we can observe that the beta
band with Cubic SVM 97.22± 0.21 accuracy and with
weighted KNN gives 97.213 ± 0.18 accuracy. Here, weighted
KNN is best as it has a lower standard deviation than Cubic
SVM although cubic gives 0.01% higher accuracy. Te
features of the Beta band give the best accuracy because this
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Figure 13: Classifcation accuracies at diferent sample lengths using kurtosis feature.
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Figure 14: Classifcation accuracies at diferent sample lengths using Hjorth parameters.
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band indicates logical thinking and thoughts, and it allows us
to focus. A depressed and depression control person will
have diferent thoughts and will have diferent levels of
focus. And therefore, features from the Beta band perform
better for depression classifcation.

After this, we wanted to see if fltering the signal at any
other frequency range will improve classifcation perfor-
mance or not. So, we fltered the data at diferent frequencies
in a way that the frequency range includes multiple bands.
After that, we extracted the features (Hjorth and entropy)
from all the fltered data and classifed them using all the
classifers. From Figure 22, we can observe the accuracy of

the classifers. Here, we can see that ABDT gives lower
accuracy than the others. So, we can exclude that frequency
range. But this fgure cannot give us a clear picture to choose
the best classifer and frequency band.

If we observe the average accuracy and the standard
deviation from Table 6, we can see all the bands give better
results with fne KNN. Here, ABT, AB, ABTG, and ABG
gave accuracy higher than 98% with lower standard de-
viation. From this experiment, we can decide that fne KNN
will perform better with ABT, AB, ABTG, and ABG.

To check the performance and reliability of ABT, AB,
ABTG, and ABG bands with the fne KNN classifer, we
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Figure 15: Classifcation accuracies at diferent sample lengths using variance feature.
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Figure 16: Classifcation accuracies at diferent sample lengths using Shannon entropy and log energy entropy features.
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measured accuracy, precision, NPV, sensitivity, specifcity, and
F1 score. For this part, we divided the dataset into a 70/30 ratio
for training and testing andwe applied a 5-fold CV for training
with 10 iterations. Figure 23 shows the training, testing, and
overall average accuracy of the 4 bands. Here, we can observe
that ABG gives better training accuracy and AB gives better
testing accuracy. And overall ABG accuracy is the highest.

If we observe Table 7, we can see that in terms of overall
accuracy, AB has a lower standard deviation (98.10± 0.11)
and ABG has better accuracy but a high standard deviation
(98.20± 0.30). Plus, the AB band with fne KNN gives better
NPV (0.977± 0.002), sensitivity (0.984± 0.002), and F1 score
(0.984± 0.001). And other parameters such as precision

(0.984± 0.003) and specifcity (0.976± 0.005) are also
satisfactory.

Finally, we can decide that by segmenting the dataset
into 5-sec epochs, then fltering the data from 8 to 30Hz
(AB) frequency, extracting the Hjorth parameters (activity,
mobility, and complexity) and entropy (Shannon entropy
and Log energy entropy) and using fne KNN algorithm, we
can create a classifer model that will give the highest ac-
curacy for the dataset we created.

So far, we have used features extracted from all channels
(whole brain) to train machine-learning models. Further-
more, we explored diferent regions of the brain. For this, we
created feature matrixes by extracting features from the
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Figure 17: Classifcation accuracies at diferent sample lengths using Hjorth parameters, Shannon entropy, and Log energy entropy features.

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0
Entropy (Shannon and Log Energy) And Varience

Linear SVM Quadratic
SVM

Cubic SVM Gaussian
SVM

FINE KNN Medium
KNN

Coarse
KNN

Cosine KNN Cubic KNN Weighted
KNN

1 sec
2 sec
3 sec

4 sec
5 sec
MAX

Figure 18: Classifcation accuracies at diferent sample lengths using Shannon entropy, Log energy entropy, and variance features.
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channels located on the left side of the brain (left hemi-
spheric data), from the channels located on the right side of
the brain (left hemispheric data), from the channels located
on the frontal lobe of the brain (frontal lobe data), from the
channels located on the temporal lobe of the brain (temporal
lobe data), from the channels located on the parietal lobe of
the brain (parietal lobe data), and from the channels located

on the occipital lobe of the brain (occipital lobe data). Ten,
we compared the classifer performance using those data
with data from the whole brain (all channels). Figure 24
shows the training testing and overall accuracies of the brain
regions. And it is clear from the bar chart that the whole
brain gives better accuracy compared to other regions of the
brain. From the chart, we can also observe that the left
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Figure 19: Classifcation accuracies at diferent sample lengths using skewness and kurtosis features.
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Figure 20: Classifcation accuracies at diferent sample lengths using all features.
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Figure 21: Classifcation accuracy using diferent sub-bands.

Table 5: Comparison of classifcation accuracy with standard deviation of beta band using all classifers.

Beta band

Results Linear
SVM

Quadratic
SVM

Cubic
SVM

Gaussian
SVM

Fine
KNN

Medium
KNN

Coarse
KNN

Cosine
KNN

Cubic
KNN

Weighted
KNN

Accuracy 88.02 96.89 97.22 96.96 96.89 96.63 87.39 94.79 95.46 97.21
SD 0.24 0.21 0.21 0.17 0.21 0.2 0.26 0.28 0.27 0.18
Table 5 shows the average accuracy and the standard deviation results. From there we can observe that the beta band with Cubic SVM 97.22± 0.21 accuracy
and with weighted KNN gives 97.213± 0.18 accuracy. Here, weighted KNN is best as it has a lower standard deviation than Cubic SVM although cubic gives
0.01% higher accuracy. So, the values are bold (having a lower STD represents better robustness of the classifer model) in the table.
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Figure 22: Classifcation accuracy using diferent combinations of sub-bands.

Computational Intelligence and Neuroscience 17



Table 6: Comparison of classifcation accuracy with standard deviation of diferent combinations of sub-bands using all classifers.

Classifer Results ABDT (0.5–30Hz) ABT (4–30Hz) AB (8–30Hz) ABTG (4–64Hz) ABG (8–64Hz)

Linear SVM Accuracy 79.66 85.14 85.42 85.67 86.76
SD 0.40 0.30 0.29 0.29 0.21

Quadratic SVM Accuracy 95.69 97.56 97.86 98.01 98.40
SD 0.37 0.22 0.16 0.27 0.17

Cubic SVM Accuracy 95.95 97.67 98.06 97.82 98.39
SD 0.30 0.23 0.17 0.18 0.22

Gaussian SVM Accuracy 95.13 97.45 97.96 97.26 97.77
SD 0.20 0.19 0.14 0.14 0.11

Fine KNN Accuracy 96.33 98.32 98.43 98.39 98.41
SD 0.25 0.13 0.15 0.14 0.17

Medium KNN Accuracy 94.67 97.11 97.57 97.35 97.63
SD 0.22 0.20 0.15 0.14 0.14

Coarse KNN Accuracy 77.96 76.85 83.38 79.77 81.08
SD 0.41 0.38 0.33 0.30 0.30

Cosine KNN Accuracy 94.53 97.09 96.95 97.08 97.15
SD 0.18 0.23 0.18 0.13 0.13

Cubic KNN Accuracy 92.91 95.78 96.71 95.93 96.51
SD 0.28 0.24 0.18 0.20 0.12

Weighted KNN Accuracy 95.40 97.77 98.23 97.74 98.22
SD 0.17 0.20 0.21 0.16 0.12

Te values in the table are bold because they are the best classifer model overall considering both accuracy and standard deviation.
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Figure 23: Training, testing, and overall accuracy of diferent combination of bands using fne KNN classifer.

Table 7: Comparison of overall accuracy, precision, NPV, sensitivity, specifcity, and F1 score of diferent combination of sub-bands using
fne KNN classifer.

Results Frequency range
ABT (4–30Hz) AB (8–30Hz) ABTG (4–64Hz) ABG (8–64Hz)

Accuracy Average 97.94 98.10 98.03 98.20
SD 0.33 0.11 0.26 0.30

Precision Average 0.985 0.984 0.986 0.985
SD 0.004 0.003 0.003 0.003

NPV Average 0.971 0.977 0.972 0.978
SD 0.004 0.002 0.007 0.005
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Table 7: Continued.

Results Frequency range
ABT (4–30Hz) AB (8–30Hz) ABTG (4–64Hz) ABG (8–64Hz)

Sensitivity Average 0.980 0.984 0.981 0.985
SD 0.003 0.002 0.005 0.004

Specifcity Average 0.978 0.976 0.979 0.978
SD 0.006 0.005 0.004 0.004

F1 score Average 0.983 0.984 0.983 0.985
SD 0.003 0.001 0.002 0.003

Te best performing values are shown in bold.
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Figure 24: Training, testing, and overall accuracy of diferent brain regions using fne KNN classifer.

Table 8: Comparison of overall accuracy, precision, NPV, sensitivity, specifcity, and F1 score of diferent brain regions using fne KNN
classifer.

Result Brain region
Whole brain Left hemisphere Right hemisphere Frontal lobe Temporal lobe Occipital lobe Parietal lobe

Accuracy Average 98.10 96.66 93.66 93.97 83.18 88.03 86.90
SD 0.11 0.45 0.35 0.40 0.53 0.35 0.51

Precision Average 0.984 0.973 0.941 0.948 0.857 0.892 0.884
SD 0.003 0.005 0.005 0.006 0.005 0.003 0.005

NPV Average 0.977 0.957 0.930 0.928 0.794 0.863 0.847
SD 0.002 0.007 0.007 0.005 0.009 0.010 0.008

Sensitivity Average 0.984 0.971 0.953 0.951 0.860 0.909 0.898
SD 0.002 0.005 0.005 0.004 0.008 0.008 0.006

Specifcity Average 0.976 0.961 0.912 0.924 0.791 0.839 0.827
SD 0.005 0.007 0.008 0.010 0.009 0.006 0.008

F1 score Average 0.984 0.972 0.947 0.949 0.859 0.900 0.891
SD 0.001 0.004 0.003 0.003 0.005 0.003 0.004
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hemisphere (96.66± 0.45) provides higher accuracy com-
pared to the right hemisphere (93.66± 0.35). And frontal
lobe (93.97± 0.40) gives better accuracy compared to the
temporal lobe (83.18± 0.53), occipital lobe (88.03± 0.35),
and parietal lobe (86.90± 0.51).

In Table 8, we can also observe that the whole brain gives
better results in terms of accuracy, precision, NPV, sensi-
tivity, specifcity, and F1 score. So, using whole brain region
(all channels data) for depression detection is the best ap-
proach for our work.

We can compare our work with the existing work and see
the signifcance of our research. Table 9 shows the existing
research that has been conducted with state-of-the-art
methods in recent years with our work.

4. Conclusion

In this work, we have recorded EEG data of young adults (19
depressed and 13 Control) evaluated by the PHQ9 screening
tool and proposed a machine learning approach to learn
about the EEG properties for depression detection.

We conducted multiple experiments with the reported
machine learning (SVM and KNN) classifers with our
recorded data. Te frst experiment we conducted was on
segmentation to fnd the better sample length suitable for
ML. From our experiments, we have identifed that 5-second
segments are suitable for our work. Ten, we have identifed
a suitable frequency range from various experiments that
improve performance using features that are related to
depression detection. We have found out that Hjorth pa-
rameters along with Shannon entropy and long energy
entropy provide better results among other reported features
and the beta band (12–30Hz) gives the highest accuracy of
97.21± 0.21% with 25 iterations and 5-fold CV using
weighted KNN compared to the other sub-bands. By
combining the sub-bands, we have also investigated some
other frequency ranges. We have found out that by taking
the range from alpha to beta 8–30Hz (AB), we can improve
ML performance and achieve 98.43± 0.15% accuracy with 25
iterations and a 5-fold CV with fne KNN classifer. Using
AB (8–30Hz), we can see a signifcant improvement of
1.22% accuracy and slandered deviation. To further in-
vestigate the reliability, we divided the dataset 70/30 for
training and testing with 5-fold CV and 10 iterations. In this
experiment, we have found out that the ML performance is
better by choosing the AB (8–30Hz) band with fne KNN
classifer with an accuracy of 98.10± 0.11%, precision of
0.984± 0.003, NPV of 0.977± 0.002, sensitivity of
0.984± 0.002, specifcity of 0.976± 0.005, and F1 score of
0.984± 0.001. Ten, we analyzed the ML performance in
diferent regions of the brain and concluded that using the
whole brain for depression detection will give the highest
accuracy. Te proposed method can detect depression
among young adults withminimum requirements compared
to other related works.

Our proposed work can aid as compliment to the tra-
ditional screening tool-based depression diagnosis. Tis
method will be able to help in treatments by cross checking
the condition before and after the treatment. Wired EEG

headsets are expensive, bulky, and are inconvenient to use
but a wireless EEG headset is less expensive and easy to use.
Using wireless EEG headset, multiple setups can be arranged
which will require less manpower and can automatically
screen depression among young adults.

4.1. Limitations and Future Work. We have faced a few
limitations/challenges during this work. In this work, we
have focused on very selective study population for example
the subjects are young adults who are private university
students from Bangladeshi urban culture belonging to
a specifc socioeconomical status. So, the study result may be
diferent if the study population belong to diferent age
group or public university going student or has diferent
socioeconomical status. During EEG recording, there were
participants with thick or long hair as a result it was difcult
for them to put on the headset for better connectivity. Few
participants were unable to sit still during EEG recording
which created artifacts, so we had to re-record their data.Te
dataset was imbalanced as the number of control and de-
pressed participants were not equal. We were able to con-
duct only one session of the EEG recording and because of
that we were unable to analyze in diferent period. So, in the
future, we will record the EEG data from the participants at
diferent periods to monitor and analyze the changes. In our
next work, we will explore the efects of artifact removal with
our dataset to improve the quality of the recorded signal. In
the future, we will explore more feature extraction and
feature selection methods to improve the performance of
ML algorithms. We will also analyze channel selection
methods to identify the best combination of channels to
improve our fndings. We will explore a deep-learning
models with our dataset. We will also investigate other
mental health issues such as anxiety and stress for screening
using EEG and machine learning.
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