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Abstract 

 

Developing a design philosophy to reduce carbon emissions from the built environment 

is a major motivator for the formation of the net zero energy concept. For net zero 

energy buildings to be widely adopted, a deeper understanding of the drivers of their 

success is needed, as well as their comparative differences and similarities to buildings 

of more conventional design. This thesis investigates the effects of different building 

design and operation principles in relation to net zero energy buildings. Simulations of 

three case study buildings (two of which are designed to be net zero energy) were 

performed to identify the building design and operation elements which contribute most 

to energy efficiency.  

Through development and validation of building models of both net zero and 

conventional designs in this thesis, it was found that validation of smaller, more energy 

efficient building models can present challenges less commonly encountered in models 

of more conventional buildings. An understanding of the sensitivities of net zero energy 

buildings to alterations in design and specification were gained. Results show that net 

zero energy buildings are more sensitive to changes such as glazing type, and HVAC 

setpoint based on the case studies presented. 

This thesis has looked at quantifying the contribution of different building elements and 

systems to overall energy savings via simulation. The net impact of different glazing 

types, lighting control methods, window shading schedules, and HVAC set points on 

overall building energy consumption were examined. 

This thesis also reports on the net zero energy balance for one case study building. 

Results show that the building was net positive for the 12-month period considered. 

Both energy imported/exported and energy generated/consumed were considered, as 

well as the load matching, grid interaction, and some preliminary analysis of power 

quality factors. These power quality factors and their relationship with net zero energy 

buildings must be understood before the net zero concept can be widely adopted. 
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Chapter 1 Introduction 

1.1 Statement of the problem 

With increasing average temperatures and more frequent extreme weather events as a 

result of anthropogenic climate change, there is increased pressure on maintaining a 

comfortable environment for building occupants while minimising building energy use. 

In a study of the relationship between climate change, indoor thermal environment, and 

building energy use, it was found that based on 2070 global warming predictions, 

building energy use could be expected to rise by a range between 0.4% and 15.1% 

depending on future climate scenarios and building location and design [1]. The studies 

on Australian buildings predicted that temperate climates such as Sydney are likely to 

be most sensitive to climate change, with cooling loads of buildings increasing by up to 

101% [2].  

The development of a new energy neutral, comfortable building design philosophy is 

necessary to mitigate – and adapt to – the effects of climate change. Net zero energy 

buildings are a way of meeting this new challenge.  

Meeting the Net Zero Energy (NZE) requirements in Australian buildings is an 

opportune area of research, with the goal of achieving net zero energy consumption 

becoming more achievable due to the ongoing development of small scale solar and 

wind technologies, and the emerging development of off-grid energy storage.  

 

1.2 Research aim and objectives 

The aim of this research is to evaluate the impact of existing building designs, 

components, and operational parameters on fulfilling net zero energy requirements of 

the University of Wollongong’s (UOW) Sustainable Buildings Research Centre (SBRC) 

facility and Technical and Further Education TAFE Illawarra’s Transformational 

Technical Training (TTT) building as part of the Living Building Challenge [3]. The 

overall aim of the project is to address the following objectives: 

1. Conducting a comprehensive literature review of current and past studies on the 

building sustainability and net zero energy fields; 

2. Development of building simulation models of the case study buildings using 

DesignBuilder building performance simulation software for evaluating the 
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impact of building design, components and operational parameters on the overall 

building energy use; 

3. Validation of building models using real data collected from the case study 

buildings; 

4. Perform building simulations to evaluate the effectiveness of various designs 

and operation strategies for each case study building and identify the most 

effective ways of achieving net zero energy in a building; 

5. Collect electricity consumption and generation data from case study buildings 

and report on its progress in achieving net zero energy over its lifetime; 

6. Report on load match and grid interaction factors, as well as basic power quality 

considerations in net zero energy buildings through a case study building. 

In addition to the two energy efficient case study buildings of the SBRC facility and 

TTT building, an additional modern commercial building was also selected for 

comparison against the net zero test cases. 

 

1.3 Research methodology 

In order to improve understanding of building operation and energy use, simulation 

models of the case study buildings were developed in DesignBuilder. The 3D geometry 

of each building comes from the as-built architectural drawings, while HVAC and 

lighting specifications are sourced from the operation manual, as well as mechanical 

and electrical drawings of the buildings. 

Validation of the building models was carried out to ensure the models are appropriately 

representative of the real buildings. To do this, historical weather data sourced from the 

Bureau of Meteorology and the buildings’ own weather stations was coupled with 

historical energy consumption and temperature data sourced from each building. By 

performing benchmark simulations with the real weather data, the behaviour of the 

simulated building was able to be compared to that of the real building with a common 

weather input.  

Once the benchmark model had been validated using historical weather data, it was then 

modified according to different scenarios in order to determine the contribution of each 

energy-saving technology to the overall performance of the building. The intended 
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outcome of these experiments was to understand some of the contributing factors to 

energy efficiency in buildings.  

The real weather data used for validation was sometimes not complete and/or not 

always appropriate for the simulations. Accordingly, Typical Meteorological Year 

(TMY) weather data was used. The reason for this is that TMY data is an amalgamation 

of many years of weather data from the particular location in question, averaged out into 

a year of representative data. This eliminates any extreme weather events and 

unseasonable weather which may bias simulation results.  

The collection of consumption and generation data for the test cases was mainly sourced 

via the Building Management Systems (BMS) of the respective buildings’. The SBRC 

BMS has a comprehensive data trending ability and electrical metering is available 

down to a high level of detail for both loads and generators.  

 

1.4 Publications related to this thesis 

• J. Anderson, D. A. Robinson, and Z. Ma, “Energy Analysis of Net Zero Energy 

Buildings: A Case Study,” in 12th REHVA World Congress CLIMA 2016, 

2016. 

Accepted for publication, and presented in May, 2016. 

 

1.5 Thesis structure 

The current chapter outlines the aims and objectives of this thesis. It presents the key 

research methodologies employed. The subsequent chapters are organised as follows:  

• Chapter 2 presents a comprehensive review of the literature relating to net 

zero energy buildings; 

 

• Chapter 3 gives a description of the buildings used as case studies in this 

thesis as well as the building simulation and model validation 

methodologies.  
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• Chapter 4 provides background of the development of each case study 

building model and the planned outcomes of the simulations. The validation 

process of each model is documented including quantification of associated 

errors.  

 

• Chapter 5 presents the results of the building simulations on each test case 

and discusses the results and their implications for NZEBs.  

 

• Chapter 6 is a presentation of the energy balance of a case study building 

based on measured energy consumption and generation data. An analysis of 

the load matching and grid interaction factors of the case study building, as 

well as some power quality factors and implications of these for the utility 

grid is carried out.  

 

• Chapter 7 details the conclusions that can be drawn from research presented 

in this thesis and outlines the potential for future work in this field. 
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Chapter 2 Literature Review 

2.1 Background 

The exponential growth, both in terms of economy and population throughout the 

world, especially in developing countries, has resulted in dramatic increases in global 

primary energy consumption. The demand for energy in recent decades has been met 

overwhelmingly by fossil fuel resources. A side-effect of this is the onset of significant 

climate change that will affect life on planet Earth for all living species.  

For the human race, significant climate change means that urgent changes need to be 

made to the way we live, and where we live, with increased pressures on our built 

environment coming over time from a warming climate and more extreme weather 

events. These changes give rise to the need for us to change the way our built 

environment works; our building designs and codes, our energy consumption, how we 

source our energy, as well as our own personal behaviour and living habits.  

A focus on energy efficiency in our buildings is needed. Building performance 

certification schemes are promising ways of ensuring buildings deliver meaningful 

energy reduction in a structured and certified way. To enable effective implementation 

of these performance targets, consistent methodologies need to be developed to ensure 

reliable verification is able to take place. In addition to energy efficiency measures, it is 

important that buildings are able to offset the reduced amount of energy that they 

consume. On-site renewable generation is the best way of achieving this through 

rooftop solar in most cases, though other methods such as the purchase of Renewable 

Energy Certificates (REC) are also feasible for buildings where on-site renewable 

generation is not possible. 

2.1.1 The growth of global energy consumption 

In their review of the sustainable development implications of zero energy buildings, Li 

et al. [4] noted that during the rapid growth of the Chinese economy over the past few 

decades, primary energy consumption increased from 0.57 billion tonnes of oil-

equivalent in 1978 to 3.25 billion tonnes in 2010 – growth of 470% and overtaking the 

US as the world’s largest energy producer in 2009. 

Through review of building energy consumption information, Pérez-Lombard et al. [5] 

observed that global primary energy consumption grew by 49% between 1984 and 
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2004, attributing this to the rapid growth of developing economies and their resulting 

improved living conditions. They concluded that current energy and socio-economic 

systems are unsustainable. 

Global energy demand is predicted to continue its growth trajectory onwards to 2035 

according the International Energy Agency (IEA) in their World Energy Outlook report 

for 2013 [6]. The report noted however that government policies during this time will 

likely have significant impact on the consumption trend. The IEA’s ‘new policies’ 

scenario forecasted that all sources of energy will continue to grow during the period to 

2035, but that renewable energy will grow by the greatest margin of 77% worldwide. 

The consequence of this increased energy demand is that CO2 emissions are predicted to 

increase by 20%. 

2.1.2 Impacts of climate change on the built environment 

With increased average temperatures as a result of anthropogenic climate change, there 

is an increased pressure on our buildings to maintain a comfortable environment for 

occupants. In a study of the relationship among climate change, the indoor thermal 

environment and building energy use, Guan [1] found that building energy use could be 

expected to rise by 0.4-15.1% depending on future climate scenarios and building 

location and design, based on global warming predictions to the year 2070. Various 

adaptation strategies were examined and it was suggested that the required heating and 

cooling loads, and ultimately the overall energy use, could be reduced if the internal 

load density of the building was reduced. These internal loads were defined as those 

loads which generate heat and come from within the building envelope (e.g lighting and 

plug loads). Further research into a ranking system of the viability of different 

mitigation and adaptation strategies was suggested to enable optimising retrofit and 

design projects. 

A similar study into the relationship between buildings and climate change was 

performed by de Wilde and Coley [7]. The authors warned that existing rules and 

regulations in the building sector are based on historical climate data and are therefore 

not necessarily well suited to the future in a warmer climate. They also suggested that 

existing performance metrics should be considered carefully to account for human 

perception of thermal comfort and their adaptation to wider temperature bands. 

Performance metrics are methods by which the success and performance of a building is 
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measured over a variety of categories such as energy consumption or thermal comfort 

surveys. 

The potential impact of climate change on the energy requirements associated with 

heating and cooling in five residential buildings throughout Australia was examined by 

Wang et al. [2]. A major finding was that a significant impact on the heating and 

cooling energy requirements may occur within the lifetime of the existing building 

stock – highlighting that more research is required on retrofitting to mitigate these 

potential impacts. Depending on the climate zone in which the building is situated, it 

was predicted that by 2050, the total heating/cooling requirements of a newly 

constructed 5-star house (NABERS rating) would vary within the range of -26% (where 

the warming climate would reduce the heating load of a building in a location with a 

traditionally high heating requirement) to 101% for more cooling dominated climates. 

Temperate climates such as Sydney, where heating and cooling loads are relatively 

balanced, are likely to be most sensitive to climate change, although Wang et al. [2] 

noted that further studies are needed to investigate the implications of different types 

and sizes of buildings. In addition, the thermostat settings used in this analysis were 

those specified in current Australian building codes and did not consider the future 

alterations of these codes, or future occupant behavioural adaptation. 

Simulations were performed by Ren et al. [8] on existing and new residential buildings 

in eight varying climate zones throughout Australia and identified potential adaptation 

pathways to mitigate the effects of climate change and maintain current cooling/heating 

energy requirements. It was concluded that a good level of adaptive capacity was 

possible through energy efficiency measures for heating dominated buildings. For 

cooling dominated buildings, additional measures are needed such as renewable energy 

to offset the energy required by the larger cooling load. 

Climate change’s impact on the built environment will manifest itself through increased 

energy use due to the increased HVAC capacity required to cope with a warming 

outside climate. It is clear that building codes must be updated to address the future 

impacts on the built environment from climate change. The introduction of energy 

efficiency measures and renewable energy resources make it possible for buildings to 

adapt to these changes, maintaining a comfortable environment for occupants, whilst 

dramatically reducing the energy required. 
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2.1.3 The need for net zero energy buildings 

To mitigate the impact of climate change on the built environment, it is necessary to 

develop a new design philosophy for our buildings that enable occupants to remain 

comfortable in a warming climate, as well as reduce the environmental footprint and 

emissions intensity of our structures. 

Wilkinson et al. [9] argued that by decarbonising the built environment through 

strategic changes to the way we use building elements such as insulation, ventilation, 

fuel switching, and behavioural change, there is potential to prevent 5500 premature 

indoor environment related deaths every year, as well as save 41 Mt of CO2 emissions.  

Whilst there may be many benefits to rethinking how we design our built environment, 

Pérez-Lombard et al. [5] suggested that it will be business as usual despite an increased 

emphasis on energy efficiency minimum requirements, unless regulation steps in to 

both raise social awareness of sustainability issues, and to enable new technologies for 

energy production and energy conservation to enter the market. 

In a review of the current status and future potential of the building sector in the UK, 

Clarke et al. [10] highlighted the fact that many buildings have very poor energy 

performance due to being constructed before building energy standards were developed. 

This, combined with increases in electrical energy use, leads to the potential for 

significant improvements in the efficiency of current building stock. The need for 

upskilling in the industry to cope with new building technologies is identified by the 

authors. 

The proliferation of low energy intensive buildings which meet their own energy needs 

through renewable means has great potential to minimise the effects of climate change, 

and provide many public health benefits as a result. Whilst some regulation and industry 

training incentives may be required to encourage the take-up of such changes, there is 

huge potential in retrofitting existing building stock to minimise and perhaps eliminate 

their net energy use. 

 

2.2 Net zero energy building definitions 

In principle, the concept of a Net zero Energy Building (NZEB) is relatively simple – a 

building that produces at least as much energy as it consumes. However there are many 
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potential ways to define the ‘zero’ balance. Depending on the objective of the building 

in question, and the regulatory environment in its jurisdiction, the specific definition of 

‘net zero’ may vary. 

Torcellini & Pless [11] studied four of the more common definitions in the literature 

and discussed their applications, advantages, and disadvantages. They stated that a good 

NZEB definition must first prioritise energy efficiency over renewable energy capacity. 

A reduced load will lead to reduced required installed capacity of renewable energy, 

leading to significant cost savings and making the NZEB goal more achievable. 

The definitions studied in Torcellini & Pless [11] use the utility grid as a means of 

accounting for net use. The four definitions discussed are net-zero site, net-zero source, 

net-zero costs, and net-zero emissions: 

• Net zero site – a NZEB that produces at least as much energy on site, as it 

consumes in a year, accounted for at the site; 

• Net zero source – a NZEB that produces at least as much energy as it uses in 

a year, accounted for at the source. Source energy considers the primary 

energy used to generate and transport the energy to the site. This is important 

when accounting for energy consumed from the grid, where a significant 

portion of energy is lost during transmission from generator to site, and in 

thermal generation efficiency losses; 

• Net zero cost – this balances the costs rather than the units of energy. So the 

amount of money paid to the building owners/tenants by the utility for the 

energy it exports, is at least equal to the amount spent by the building 

owners/tenants for energy imported from the grid; 

• Net zero emissions – again, a different metric is used to define the balance: 

this time, emissions. The building produces at least as much emission-free 

energy to offset the emissions intensive energy imported from the grid. Here, 

non-energy differences between fuels such as carbon emissions, and other 

types of pollution are accounted for. This makes it a more comprehensive 

definition than the others but as a result, it is more difficult to implement. 

The authors argued that the definition influences the design of the building and vice 

versa. Depending on the definition, the emphasis can be placed on energy efficiency, 

energy supply strategies, or a number of other factors which in turn influence practical 
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aspects of the building’s design and operation. Table 2-1 summarises the advantages 

and disadvantages of the four definitions discussed. 

Table 2-1 NZEB definitions and advantages/disadvantages from [11]. 

 

In a similar fashion to Torcellini & Pless [11], the understanding of a lack of consistent 

international definition of NZEB was addressed by Sartori et al. [12]. It was recognised 

that different definitions were possible to describe NZEBs depending on their purpose 

and regulatory targets. A framework by which to set definitions was proposed according 

to 5 criteria as described below and a methodology around this was developed to enable 

setting of NZEB definitions in a systematic way. The NZEB framework criteria is a 

refined version of Sartori et al. [13] and is organised as follows: 

1. Building system boundary – energy flows that cross the defined system 

boundary are considered in the NZEB analysis. Those energy flows that 

don’t, are disregarded; 
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2. Weighting System – the weighting of different energy sources allows the 

comparison of different sources throughout the energy chain on a normalised 

basis. This allows for comparison of factors such as site and source energy, 

and fuel switching (e.g. PV generation in summer, biomass generators in 

winter), as well as cost and emissions metrics where there are differences 

between energy sources in terms of generation and transmission costs, and 

emissions per unit of energy supplied; 

3. NZEB Balance – a number of factors influence the outcome of the NZEB 

balance such as the time period over which the balance is calculated, the type 

of balance, and whether there are minimum energy efficiency requirements 

that must be met before NZEB status can be achieved. The balance period is 

typically taken to be a year, as this will account for seasonal cycles. A 

building that may not produce enough energy in winter may still generate a 

large surplus in summer from its PV system and as such compensates for the 

winter deficit. Some argue that a longer period closer to the building’s total 

lifespan should be taken to account for the embodied energy of the building. 

However it is possible to annualise the contribution of the embodied energy 

so that this can still be considered using an annual balance period. The type 

of balance has a significant influence on the achievability of the NZEB goal;  

4. Temporal Energy Match Characteristics – in addition to a NZEB being able 

to achieve balance over the balance period, there are other factors to be 

addressed concerning the building’s interaction with the grid, as well as its 

potential to produce enough energy at times of peak consumption;  

5. Measurement and Verification – in order to check that the building is 

complying with NZEB requirements, the authors argue that a proper 

measurement and verification process be put in place. This process would be 

dependent on the rest of the criteria discussed previously. It is argued that a 

measurement and verification process should at least keep track of the 

energy import/export balance, but it is recommended that further detail such 

as temporal load characteristics be considered, as well as occupant comfort. 

Two key challenges have been identified by Marszal et al. [14] that require attention 

before the proper integration of NZEBs into national and international building codes 

can occur. These include the need to adapt a common and unambiguous definition, and 

to determine a standard methodology for calculating the energy balance. The metric of 
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the energy balance is recognised as being the most important point to address. The 

authors state that while the delivered energy metric is the most easy to implement, it 

does not account for primary energy losses and different types of energy. As such, the 

primary energy metric is recommended. 

A classification system based around the type of renewable energy resource use was 

created by Pless & Torcellini [15]. The system ranges from NZEB:A to NZEB:D as 

shown in Table 2-2. NZEB:A is a building that offsets all of its energy use from the 

renewable energy available within the building footprint, whilst NZEB:D is a building 

that achieves balance through a combination of on-site renewable energy and the 

purchasing of renewable energy credits from an outside source. The aim of this 

classification system is to encourage designers to first implement significant energy 

efficiency measures before sizing an appropriate renewable energy system in order to 

keep required capacity down as much as possible. 

Table 2-2 NZEB classification by [15]. 

 

A summary of findings by Griffith et al. [16] from research conducted at the American 

National Renewable Energy Laboratory concluded that the net zero site definition was 

preferred for analysis due to ease of verification and does not require conversion factors. 

However as discussed previously, this does not provide the most comprehensive 

account of the overall energy balance of the building. 
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2.3 Useful data and reporting methods 

In order to ensure the NZEB goal is achieved and maintained through the life of the 

building it is important that data is easily obtained and shown through a sound 

methodology, whether balance is achievable or not. A number of parameters need to be 

defined depending on the type of NZEB building in question, and suitable reporting 

methods must also be developed. 

In a review of definitions and calculation methodologies by Marszal et al. [14], it is 

argued that before a consistent definition can be developed, a number of factors need to 

first be considered: 

• The metric of the energy balance 

• Balance period 

• Type of energy to be included in balance 

• Type of energy balance 

• Accepted renewable energy supply options 

• Grid connection 

• Energy efficiency requirements 

The study showed that these factors were of particular importance for designers and 

operators. Possible solutions for the implementation of the above factors were discussed 

however no recommendations were proposed. Rather, the aim was to give an overall 

understanding of the various considerations in NZEB design and definition. 

2.3.1 Balance metric 

There are a number of different possible metrics used to define ‘zero’. Marszal et al. 

[14] considered these metrics and found that the most favoured metric is primary energy 

because this is quite comprehensive, considering different kinds of energy, as well as 

the transmission losses from the grid. However the consideration of different kinds of 

energy becomes complicated due to the underestimation of renewable energy resources. 

For example, it requires 2-3 units of primary energy to produce 1 unit of delivered 

energy from coal, while renewable energy sources require 1 unit of primary energy to 

deliver 1 unit of energy. This means that a suitable conversion factor needs to be 

adopted. However this factor is not static, as the percentage of renewable energy 

penetration in the utility grid changes over time. 
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As well as the primary energy metric, the authors discuss the relevance of using CO2 

emissions as the balance metric, given the global focus on emissions reduction. 

However the point was made that buildings are commonly evaluated on their energy 

performance as specified by building codes, rather than their emissions performance 

which would make implementation of this metric difficult. 

2.3.2 Balance period 

The period of balance can have an impact on the achievability of the goal given the 

seasonal variability of renewable energy resources. Sartori et al. [12] argued that a 

yearly balance covering all seasonal conditions is most suitable. Longer periods in the 

order of decades may be selected to account for embodied energy; however it is possible 

to annualise this contribution to retain a yearly balance period. These findings are 

generally in keeping with those found by Marszal et al. [14]. 

2.3.3 Type of balance 

Marszal et al. [14] argued that for a grid connected NZEB, there are two possible types 

of balance: energy use/renewable generation, and energy delivered from grid/energy fed 

into grid. It was stated that energy use/renewable energy generated is more applicable 

for the design phase of a building while the delivered/exported balance should be used 

in operational monitoring. Despite this, it was concluded that the most popular balance 

in the literature at the time was energy use/renewable energy generated. Sartori et al. 

[12] concurs with the study by Marszal et al. [14].  

2.3.4 Measurement and verification 

To ensure proper compliance with the applied NZEB definition, a comprehensive 

measurement and verification methodology should be implemented. Sartori et al. [12] 

argued that as a bare minimum, this methodology should assess the energy 

import/export balance, but that it would be beneficial to go further and assess the 

temporal load match and grid interaction characteristics, as well as occupant comfort 

and Indoor Environmental Quality (IEQ).  

A Microsoft Excel based tool was developed by Belleri et al. [17] which assessed the 

balance, operating costs, and load match index for NZEBs base on a set of pre-defined 

definitions. It is suitable for designers, managers and policy makers in gauging the 

potential success of an NZEB, as well as monitoring the building during operation. 
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The pre-defined definitions are decided by the tool through user input of a number of 

parameters. The monthly or yearly energy supply/demand is able to be entered, and 

desired weighting factors specified. The analysis period can be either yearly or monthly 

and a number of different metrics are able to be chosen. The authors performed a case 

study on a planned office building in Italy. The use of the tool enabled designers to 

assess the predicted success of the building according to different definitions of NZEB.  

A standardised monitoring and verification procedure was developed by Noris et al. 

[18] to assist in planning, installation, and operation. They noted that several common 

strategies already exist: 

• Whole building approach – measures energy flow to/from entire building; 

• Sub-metering approach – measurements of isolated energy uses are carried out; 

• Indoor comfort – comfort parameters are measured to assess occupant comfort 

and identify any system malfunctions. 

The steps to be considered in the three phases of NZEB monitoring as proposed by 

Noris et al [18] are summarised below: 

Planning: 

• Set monitoring objective and goals – determine any desired indices such as load 

match and heating demand as well as IEQ; 

• Collect building data – consider the energy flow present throughout the building 

according to a standard format; 

• Identify monitoring boundaries – these boundaries depend very much on the 

definition being used and it is important that these are identified early and are 

consistent with the definition chosen; 

• Select metrics – different levels of monitoring may be considered based on the 

monitoring goals chosen. It is stated that the minimum requirement is to obtain 

the data required for balance verification. But further information regarding IEQ 

and the delivered/exported balance would be beneficial; 

• Perform data reduction – if possible, dependent metrics should be evaluated 

according to their relationships to independent metrics. This ensures the size of 

the data required is diminished, saving monitoring costs. This strategy can 
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reduce data reliability so close attention should be paid to the implications of 

this strategy specific to each case; 

• Define data collection frequency and duration – this factor depends highly on 

the balance period selected in most cases. Monthly data is adequate for most 

cases such as energy balance, however higher resolution data in the order of 

hourly or sub-hourly is beneficial for the monitoring of load match and grid 

interaction characteristics; 

• Identify suitable sensors and data acquisition – with the necessary metrics 

having been defined and the required data needed to assess them, it is possible 

now to identify the specific sensors needed to measure the data. Factors such as 

measurement duration, sample rate and desired accuracy must be considered.  

Installing: 

• Assess technical feasibility – it must be verified whether the selected equipment 

is able to be installed in the building satisfactorily;  

• Recognise and solve metering gaps – proper measures should be identified to 

overcome any technical issues that result from the technical feasibility 

assessment. This step must also consider the possible implications for the data 

quality;  

• Final plan and install; 

• Commissioning – all components of the monitoring system must be set up to 

give accurate and reliable service and tested extensively. This is a complex but 

necessary task. 

Operation: 

• Define data quality assurance procedures – it is necessary to define quality 

assurance protocols during operation for all data acquired and develop 

contingencies for when data may be missing due to instrument breakdown, as an 

example. In this case, an estimation procedure based on historical data may be 

necessary; 

• Post processing – raw data must be processed to calculate the balance and other 

indicators of building performance. A standard procedure for this step should be 

developed to ensure consistency through the life of the building; 
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• Reporting – a report will need to be delivered at the end of each balance period. 

The authors of [18] recommend that a standard reporting procedure be 

developed that contains the following three sections: 

▪ A description of the building and its monitoring system including design 

data and monitoring system specification. This section remains static and 

constant throughout all reports in most cases, unless upgrades or 

modifications are performed 

▪ The results of the current year with easy to understand standardised 

diagrams and explanations of the results (climate conditions, occupancy 

rates etc.) 

▪ Elaboration on all the data in the second section, and of observed trends 

throughout previous reports. 

• Planning and implementation of operational maintenance – this is needed to 

ensure the monitoring system works consistently across all balance periods and 

remains accurate and reliable. Maintenance activities should be planned at 

appropriate intervals to check instrument calibration and data storage integrity. 

A report by Marszal & Bourrelle [19] aimed to understand the differing approaches that 

currently exist to calculate the energy balance of NZEBs. The importance of variable 

selection is highlighted and the gap between the suggested methodology and European 

building codes is examined to highlight the areas that need improvement in building 

codes to bring them up to the standard of NZEB requirements. The most favoured 

methodology was found to be the balance between energy use and renewable energy 

generation. However, the ambiguity of ‘energy use’ shows that further definition is 

needed to refine what is meant (calculated energy demand or actual measured 

consumption). As well as this, the type of energy used in the analysis must also be 

specified. 

Measurement and verification tools and methodologies are essential in ensuring energy 

flows within a building can be accounted for and comprehensively documented in order 

to ensure NZEB status is attained and maintained. The data required must be identified 

and obtained through the installation of suitable instrumentation. Depending on the 

definition of NZEB that is being used, decisions must be made on the type of metric, the 

period of balance, and types of energy to be included in the balance. 
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2.4 Certification schemes 

A number of organisations, both government and non-government, have responded to 

the increased awareness of building sustainability by developing codes, standards, and 

rating systems designed around a framework of sustainability factors such as energy 

use, water use, and building materials. These schemes are designed to assist owners, 

designers, builders, and managers in developing their buildings according to an 

established standard. A few of the main certification schemes that are in operation 

worldwide are discussed below. 

2.4.1 Description of certification schemes 

2.4.1.1 BREEAM 

The Building Research Establishment Environmental Assessment Methodology 

(BREEAM) has been operating since 1990 and is widely considered to be the world’s 

most popular scheme [20]. BREEAM was developed by the Building Research 

Establishment (BRE). It enables developers, designers, and building managers to 

improve the environmental performance of their buildings through a rating system that 

considers energy and water use, occupant health, pollution, transport implications, 

building materials, and building waste, as well as the environmental ecology impacts 

and building management processes [21].  

BREEAM claims to be the most widely used scheme in the UK and also operates in 

several other countries including Germany, The Netherlands, Norway, Spain, Sweden, 

and Austria. Several variations of the BREEAM scheme exist depending on the 

regulatory environment of the country in which it operates, as well as the type of 

building and its use (new or existing construction, community or stand-alone building, 

residential or commercial)[22]. 

2.4.1.2 LEED 

Leadership in Energy and Environmental Design (LEED) is a certification scheme 

developed by the US Green Building Council (USGBC) that considers the design, 

construction, operation, and maintenance of green buildings. Similar to the BREEAM 

system, LEED is flexible to different project development and delivery processes by 

having different rating systems depending on the type of project being considered. 

LEED’s five rating system groups include Building Design and Construction; Interior 
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Design and Construction; Building Operations and Maintenance; Neighbourhood 

Development; and Homes [23]. 

2.4.1.3 NABERS 

The National Australian Built Environment Rating System (NABERS) provides a 

comparison of the environmental performance of different Australian buildings. The 

energy efficiency, water use, waste management, IEQ, and environmental impacts are 

measured and a ‘Star’ rating is applied to show relative operational performance 

compared to pre-defined benchmarks [24].  

Rating system 

As with the previous certification schemes discussed, the NABERS scheme includes 

slightly different versions of the tools for the specific project being considered. There 

are different variations of the tool for offices, hotels, shopping centres, data centres, and 

homes. Twelve months of measured performance data is used to come up with a star 

rating from zero to six. The measured performance data includes usage figures for 

aspects such as electricity, gas, and water. Performance is compared to building 

benchmarks that represent the performance of nearby buildings of a similar design.  

In order to ensure performance data is comparable to the benchmarks, adjustment 

factors may be used to account for the buildings climatic conditions, occupancy hours, 

level of amenities, energy sources, and size. The star rating awarded is an indication of 

its relative performance to the defined benchmark. It is not an indication of absolute 

building performance, but rather a measure of how it compares to what is considered to 

be the current standard. 

2.4.1.4 Green Star 

Green Star is a voluntary scheme launched by the Green Building Council of Australia 

(GBCA) in 2003. It offers a “framework of best practice benchmarks for sustainability” 

for building owners, operators, and occupants [25]. The key objectives of Green Star are 

“to drive the transition of Australia’s property industry towards sustainability by 

promoting green building programs, technologies, design practices and operations as 

well as the integration of green building initiatives into the mainstream design, 

construction and operation of buildings and communities” [26]. 
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A number of different rating tools are available under the Green Star banner for 

different building types. These are Design and As-Built, Interiors, Communities, and 

Performance. The rating tools assess performance based on the following categories: 

• Management 

• Indoor Environment Quality 

• Energy 

• Transport 

• Water 

• Materials 

• Land Use & Ecology 

• Emissions 

• Innovation 

These categories are then quantified by being divided into credits in order to award 

points when a particular aspect of improvement is achieved.  

Green Star and net zero energy 

Whilst there is no requirement in the Green Star process that buildings must be net zero, 

and net zero energy or carbon neutrality is not specifically rewarded, the achievement of 

net zero has substantial benefits for the standard certification process in the categories 

of operating emissions and energy use. 

2.4.1.5 Living Building Challenge 

The Living Building Challenge is an initiative of the Living Future Institute to advocate 

for the highest level of building sustainability. It promotes itself as a philosophy before 

a certification program. The mission of the Living Building Challenge is “To encourage 

the creation of Living Buildings, Landscapes and Communities in countries around the 

world while inspiring, educating and motivating a global audience about the need for 

fundamental and transformative change” [3]. The challenge exists in three ‘typologies’; 

Buildings, Renovations, and Landscape & Infrastructure. Seven categories make up the 

challenge, and these categories are further broken down into 20 imperatives. In order to 

achieve Living Building status, it is necessary to accomplish all requirements of each 

applicable imperative (this means all 20 for buildings, 15 for renovations, and 17 for 

landscape and infrastructure).  
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Of relevance to this project, the energy under version 3.0 of the LBC requires net-

positive energy. This implies a surplus of energy is required with 105% of the 

buildings’ energy needs to be met by on-site renewables. As well as this, on site storage 

is also required as part of a focus on resiliency. At least 10% of lighting load and 

refrigeration is required to be met for a minimum of one week by back up battery 

storage. 

2.4.2 Comparison of certification schemes 

Roderick et al. [27] found, through computational simulation of an open-plan Dubai 

office building, that building energy performance and rating obtained depends greatly 

on the scheme used. The aim of the study was to show how building energy 

performance is assessed and rated under different schemes with the hope that a good 

basis would be formed, from which a generic and universal assessment framework 

could be developed in the future.   

The study found that when compared to the simulated benchmark, a 7.8% improvement 

in energy performance was computed for the LEED scenario. This is less than the 

required 10.5% threshold as specified by LEED requirements and thus the building 

failed to be certified under LEED. For the BREEAM scheme, the simulated building 

scored 2 credits out of a possible 15. The results in the BREEAM scheme therefore 

were better than LEED but still cannot be considered a good performance. Under Green 

Star, a 65% reduction in energy use was predicted. This figure is significantly lower 

than the other cases and it is speculated that the cause of this is the calculation 

methodology of the Green Star scheme. The total points scored for Green Star was 11 

out of a possible 20. This result is far better than LEED and BREEAM. Results are 

summarised below in Table 2-3. 

Table 2-3 Results of energy rating comparison. From [27]. 

 

From the results, it was seen that the building energy performance rating is highly 

dependent on the scheme used to rate the building. Each scheme operates on different 
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calculation and assessment methodologies and their respective credit scores reflect that. 

For this reason, an argument could be made that a universal and consistent assessment 

methodology should be developed to eliminate the inconsistencies between current 

schemes which provide such varying ratings. However, this study only examined one 

building in a location that was outside of the originating jurisdiction of all the three 

schemes. A larger number of studies from different locations around the world, 

especially Australia, the UK, and the USA would allow for a stronger conclusion about 

the comparative outcomes of the three schemes. 

A comparative review of five rating systems was performed by Nguyen & Altan [28]. 

The schemes reviewed were BREEAM, LEED, CASBEE, Green Star, and HK-BEAM. 

CASBEE (Comprehensive Assessment System for Building Environmental Efficiency) 

is a Japanese scheme developed in 2001. HK-BEAM was developed by Hong Kong’s 

BEAM society in 1996. The review comprised nine criteria which considered factors 

such as popularity and influence, methodology, data collection processes, user-

friendliness, and accuracy and verification, among others. Results showed that 

BREEAM and LEED scored the highest based on the criteria in the study due to their 

well-established status and popularity, as well as proven results. The other three 

schemes all scored lower due mostly to their lower popularity and influence.  

Whilst all building certification schemes share common aims and objectives, not all are 

equal in their methodologies or applications. When venturing to certify either a planned 

or existing building, it is important to choose a certification scheme that matches the 

overall aim of the buildings’ application, and also agrees well with the building codes 

and regulations in the location. There exists a potential need to develop a universal and 

consistent rating scheme that is able to assess all buildings across a range of locations 

according to a single methodology in order to make comparisons between buildings.  

Of all schemes considered, only one requires that the building be net zero energy. The 

Living Building Challenge exists as a design and operation ‘philosophy’. It does not 

have rating criteria like all others. All 20 imperatives of all seven categories must be 

met in order to achieve Living Building certification. Running the scheme in this way 

eliminates any complications concerning points scoring and weighting factors that 

complicate the methodologies of other ratings systems, as was observed by Roderick et 

al. [27]. Of course with absolute goals as set out in the LBC, achieving Living Building 

certification is often more difficult than achieving a rating from any other scheme but 
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LBC aims to be the pinnacle of sustainability in the built environment. As such, it 

would not be in keeping with the philosophy of the challenge to make concessions on 

difficult aspects of achieving sustainability. 

 

2.5 Demand-side factors in net-zero energy buildings 

Whilst the overall goal of a NZEB is to produce at least as much energy as the building 

consumes, it is critical to note that the energy consumption of the building plays a major 

part in this balance. By reducing energy use as much as possible, it then becomes an 

easier goal to achieve NZEB status due to minimizing the renewable energy 

requirement, saving both required installation space and, of course, cost. 

Energy consumption can be reduced through a range of measures. Implementation of 

efficient appliances, such as lighting and mechanical systems and the passive design of 

a building to work with the climatic conditions of the site, as well as the behaviour of 

the building occupants, can all contribute to the overall reduction in energy consumed 

by the building. 

2.5.1 Energy efficiency 

In a review of NZEB definitions and calculation methodologies, it was suggested that 

reduction of energy demand should come before renewable energy technology is 

considered, and that energy reduction should be a pre-requisite to NZEB development 

[14]. This is a recommendation shared by Pless & Torcellini [15]. Another 

recommendation was that EE measures should be checked periodically throughout the 

building’s operation to ensure efficacy [14]. 

It has been noted that Australian residential building codes have contributed to an 

improvement in building shell efficiency of 29% between 1990 and 2005. This 

improvement, however, has been negated by the fact that average house sizes have 

increased and that, in absolute terms, annual energy use for space conditioning grew by 

18% per household [29]. In NSW, 88% of residential dwellings use some form of 

heating. Bambrook et al. [29] aimed to eliminate the need for space heating and cooling 

systems in residential dwellings in a Sydney climate. Through simulations, it was 

shown that heating/cooling requirements could be reduced by 94% for a typical Sydney 

house built to BASIX standards. This was achieved through a combination of 
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minimizing unwanted heat flows through building elements such as walls and windows, 

as well as installing appropriately placed shading around the building. 

In a similar study, Griffith et al. [16] found that energy efficiency improvements in 

commercial buildings in the US can on average reduce consumption by 43%. This 

agrees with the previous trend in the literature that buildings with the greatest potential 

for energy conservation and efficiency improvements are the most likely to achieve 

NZEB status. One of the major factors in a building not achieving NZEB status is that 

the required roof area for an adequately sized PV system was too small. Through energy 

consumption reduction, the required PV capacity becomes smaller, reducing the 

required roof area. 

2.5.1.1 Building envelope 

The building envelope is defined as the barrier that separates the indoor space from the 

outdoors and is considered critical to the comfort of occupants, and to energy and 

thermal efficiency. The envelope varies significantly based on the climatic conditions of 

the site. A non-engaging envelope maintains a solid, separate barrier between internal 

and external environments. This is used where the outdoor climate is typically not 

hospitable such as in very low or high temperatures. An engaging envelope is one which 

allows interaction between occupants and the outdoors, such as operable windows and 

doors when the climate is comfortable. An engaging envelope typically results in a 

more efficient building, with reductions in HVAC loads [30], [31]. 

A study of a hotel building in the Mediterranean by Sozer [32] found that 

heating/cooling energy savings of 40% could be achieved by applying passive design 

principles such as appropriate thermal insulation, glazing and shading elements. The 

effectiveness of shading was examined in Pacheco et al. [33]. A disadvantage 

highlighted was that they limit the availability of daylight, increasing the need for 

artificial lighting. An increase in artificial light leads to an increase in heat generation 

within the building. It is important that these implications are considered when 

designing shading elements for the building envelope to ensure that excessive shading 

doesn’t have detrimental effects on the building energy efficiency, or occupant comfort. 

For a Sydney specific climate, Bambrook et al. [29] recommended high levels of 

insulation in the building envelope, as well as low U-values in window assemblies to 
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minimize heat transfer. Windows should also be sized to suit their orientation and have 

appropriate shading. 

Pacheco et al. [33] was able to conclude that the factors that had the most influence on 

the final energy demand of a building are the orientation, the shape, and the 

compactness of the building (the ratio between external surface area and building 

volume). It was also found that design measures that may contribute to benefits in one 

season may be detrimental in another season. More research was recommended into the 

estimation of solar radiation in urban areas due to influences of surrounding buildings. 

2.5.1.2 HVAC & mechanical systems 

With a properly designed passive building envelope, heating and cooling loads, and 

therefore HVAC equipment requirements, should be able to be kept to a minimum [34]. 

Indeed in some moderate climate zones, HVAC systems can be entirely unnecessary 

[29]. However, the requirement for some form of heating and cooling still exists in 

many applications. 

It has been suggested that in developed countries, HVAC accounts for half the energy 

use in the built environment and 20% of national overall energy use. This is seen by 

some as an emerging trend. In many countries, installed HVAC capacity has been rising 

with the desire for thermal comfort by increasingly affluent building inhabitants [5]. It 

is due to this growing demand for energy from the HVAC sector that significant 

efficiency measures need to be developed to address this. First and foremost, the system 

requirement should be reduced as much as possible through passive design principles as 

previously discussed. Secondly, the HVAC system installed should be one of energy 

efficient design. 

2.5.1.3 Lighting 

It is claimed that around 30% of a buildings’ energy use can be attributed to artificial 

lighting. One important consideration with regards to lighting is the influence that it has 

on the thermal load of the building. Artificial lighting generates heat which then creates 

follow-on effects for the HVAC system in the building. Whilst this thermal load effect 

may be of benefit in winter, it will come as a disadvantage during hot periods [35].  

One way to reduce the thermal effects of artificial lighting is to introduce more daylight. 

It has been suggested through simulation in Bodart & De Herde [36] that through 

optimizing the amount of daylighting in the building, the artificial lighting required can 
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be reduced by 50 to 80%. Introducing daylighting eliminates the electrical energy 

required to power the light, as well as the additional energy required to remove waste 

heat generated by the light. The effect of daylighting on building energy savings was 

investigated in Krarti et al. [37]. It was found that the daylighting aperture (the product 

of window visible transmittance and window-perimeter floor area ratio) had a 

significant impact on energy savings. Increasing the daylighting aperture leads to 

increased energy savings. A point of diminishing returns was identified as being a 

daylight aperture of 0.3, and that results seem to be fairly consistent across varying 

geographical locations. Another study concluded that a Window-to-Wall ratio of no 

more than 30%-40% would also improve energy use. However above this level, the 

building risks overheating and glare [38]. 

A review of energy saving potential of electric lighting found that a reduction in 

lighting intensity of 50% is feasible and that for a low energy office building, a lighting 

intensity of 10kWh/m2 is a realistic target to adopt [38]. This study focussed on a 

Northern European situation; but, it seems feasible that this target could be broadly 

adopted in a southern hemisphere situation. It was noted however, that this figure would 

be variable with room type. 

Strategies discussed by Dubois & Blomsterberg [38] regarding the reduction in lighting 

energy use were concerned mostly with new technology, for instance; installing low 

energy fluorescent and LED lamps, new efficient ballasts, and improved luminaires.  

2.5.2 Occupant behaviour 

How the inhabitants of a building behave is considered crucial to the energy 

performance of the building. Their habits concerning lighting operation, ventilation 

preferences, and their perception of a comfortable inside environment all have a bearing 

on the energy used to maintain the building within preferred performance bands. With 

the drive towards more energy efficient buildings, occupant behaviour presents greater 

influence on the success of the building [39]. 

Hoes et al. [39] showed that user behaviour is an often neglected, yet important factor in 

the performance assessment of a building. A similar study was performed by Yu et al. 

[40] to examine the influence of occupant behaviour on energy consumption. A 

methodology based on cluster analysis to examine the effects of different occupant 

behaviour was developed by grouping similar buildings together based on four 
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influencing factors (climate, building characteristics, number of occupants, building 

services and operations) that are unrelated to user behaviour. Grouping similar buildings 

this way ensures the separate effects of occupant behaviour are more easily identified.  

Using this analysis, it was shown that in the case study, annual mean air temperature has 

more of an effect over building energy use intensity than mean wind speed, relative 

humidity, and mean global solar radiation. It was also found that occupancy numbers 

and heat loss coefficients of the building envelope have significant effect on energy 

performance and it was recommended that more attention be paid to these factors in 

building design. 

In a survey of occupant behaviour and the control of indoor environment, Andersen et 

al. [41] found that the outdoor temperature had a significant impact on the opening of 

windows by occupants, while wind speed did not appear to affect this activity. Andersen 

et al. [41] noted that this finding is inconsistent with previous studies which have found 

that high wind speeds decreased window opening activity. This may be explained by the 

geographical location of the study and the complications of local wind effects not being 

consistent with local weather station data. 

Energy audits performed in Botswana and South Africa found that the majority of a 

commercial building’s energy use was consumed outside official office hours with the 

largest sources of consumption coming from HVAC systems and equipment such as 

computers and lighting being left on unnecessarily overnight [42].  

It was suggested by Klein et al. [43] that there is potential for efficiency gains by 

controlling the building according to actual building occupancy, rather than the assumed 

design occupancy schedules that Building Management Systems typically operate from. 

This is especially appropriate given that it has been shown that actual building 

occupancy is on average found to be only one third of the design occupancy even at 

peak times during the day. By implementing reliable and accurate occupancy sensing 

equipment, great improvements could be made in building control according to the 

exact number of people in the building. Through real-time simulation it has been shown 

that HVAC consumption can be reduced by up to 20% and lighting by 30% when actual 

real-time occupancy data is used. 

Central to the idea of sustainable buildings is the idea that buildings are low energy 

users. Where possible, all efforts to implement energy efficiency and conservation 
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measures should be made before the installation of renewable generation technology. 

This has the benefit of saving costs in renewable energy equipment and reduces the 

space required to accommodate them. With studies showing that absolute energy use for 

space conditioning in Australian residential buildings has grown, the need for dramatic 

cuts in energy use is imperative. Simulations have shown that it is possible to eliminate 

almost completely the heating/cooling requirement for a typical Sydney dwelling 

through passive design principles aimed at reducing heat transfer across the building 

envelope.  

The building envelope serves as the interface with the outside environment. It controls 

the physical factors such as temperature, humidity, and lighting. A high performance, 

engaging building envelope is central to the comfort of its occupants and the overall 

energy use of the building. An efficient building envelope should allow natural 

ventilation when outside conditions are conducive to occupant comfort. Natural lighting 

helps to reduce energy use, as well as contributing to occupant comfort; however, a 

balance between natural lighting, shading, and artificial lighting must be found. Too 

much natural lighting and the building may overheat – requiring HVAC systems to 

consume energy. Too much shading to prevent overheating, and more artificial lighting 

is needed. 

The behaviour of occupants is one aspect of building performance that is often 

neglected in the literature. The way occupants interact with the building envelope by 

opening windows and doors, the amount of artificial lighting they feel they require, and 

the clothing they wear, are all elements of behaviour that contribute to the overall 

energy performance of a building. These are factors that require consultation during the 

design of the building to ensure that users of the building remain comfortable. Often, a 

building management system is designed to control the building according to the 

designed occupancy of the building. As some studies have shown, actual building 

occupancy is frequently as low as one third of the design occupancy. With the advent of 

intelligent sensing technology, it may be possible to design building management 

systems to control the building according the actual number of people in the building as 

measured by reliable occupancy sensors. This reduces the lighting and HVAC loads. 
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2.6 Supply-side factors in net-zero energy buildings 

The other side of the equation of energy balance comprises energy supply. A building 

with greatly reduced energy demands as discussed in Section 2.5 requires the sourcing 

of renewable energy in order to meet its demands. Ideally this is supplied from 

renewable energy sources installed on site and within the building footprint. However, 

some high-density buildings, such as high rise commercial and residential buildings, 

and hospitals, have a high energy intensity compared with their building footprint. This 

makes on-site renewable generation difficult in many cases even with dramatic and 

effective demand reduction programs in place. For this reason, off-site generation 

options, although less than ideal, are a viable solution to aid in achieving NZEB status 

for all building types [15].  

2.6.1  On-site renewable generation 

The most commonly used and commercially feasible source of on-site renewable energy 

is Solar Photovoltaic (PV). Other sources of energy such as wind are also possibilities. 

2.6.1.1 Solar PV 

Given the ubiquity and abundance of sunlight in most locations on earth and 

historically, the rapid simultaneous increase in performance and decrease in cost of 

solar PV modules, achieving the NZEB goal has become more and more viable in 

recent years. When considering the total amount of energy reaching the earth from the 

sun, as well as the efficiency of solar arrays and inverters, a rule-of-thumb is that 

11.25 W/ft2 of power supplied to the building can be achieved. This is 46% larger than 

the average energy use intensity of a commercial building [31]. Given this fact, on-site 

solar PV is seen as a very attractive way of offsetting energy use in NZEB buildings. 

Design and installation considerations for roof -mounted PV arrays 

The major factors to be considered when designing a solar PV system for a building 

roof are the system size and position. The energy output of a solar PV system is largely 

dependent on the climatic and weather conditions that have a bearing on the amount of 

irradiance striking the surface of the solar panel. Irradiance is defined as the amount of 

power striking a surface. The units are commonly W/m2. During a given time, the solar 

insolation may be described as the amount of energy that falls on the specified surface 

during that given time period. This is in often in units of kWh/m2/time period. Often it is 

useful to express the time period of the insolation as a day [44], [45].  
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As well as the absolute irradiance reaching the surface of the earth, the position of the 

solar panel must be such that the irradiance reaching the panel itself is maximised. 

Panels should be placed in an area with minimum shading. If shading is unavoidable, it 

should be minimised during times of peak performance. There are two angles that must 

be considered in the installation of a solar array. The first is the solar azimuth angle and 

the second is the array inclination. 

Solar azimuth angle 

This determines which compass direction the solar array is facing. Gevorkian [45] 

defines it as “the angle measured clockwise from the true north of the direction facing 

the PV array. For fixed PV arrays, facing south, the azimuth angle is therefore 180 

degrees clock-wise from the north”. In the southern hemisphere, the optimal azimuth 

angle is generally 0° i.e. facing true north. The reason for this is that in southern 

latitudes, the sun is always to the north of the due east-west line. In northern latitudes, 

the sun is always south of this line. The maximum irradiance takes place when the solar 

panel surface is perpendicular to the sun. For fixed panels, tilting towards the equator 

(north in southern latitudes, south in northern latitudes) gives the best results [45], [46]. 

Refer to Figure 2-1 for a visual representation of the solar azimuth angle. 

 

Figure 2-1 Angular relationship between the sun and a tilted flat plane [46]. 

 

Array inclination angle 

The inclination angle is the angle between the horizontal and the plane of the solar 

array. A general rule of thumb is that this angle should be approximately equal to the 

latitude of the installation location [47]. The latitude in Sydney is 34° south. It is 
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recommended that panels be installed at 34° ± 10°. Since a common residential roof 

pitch in Sydney homes is around 25°, it is acceptable in many cases to simply mount the 

solar panels flat onto the roof of the dwelling. If the main loads of the building occur in 

winter months, it may be appropriate to increase the panel inclination to the location 

latitude + 15° in order to increase exposure from the winter sun which is typically lower 

in the sky than the summer sun. By the same token, if main loads occur in summer, 

decreasing the angle by 15° may be of benefit [47]. 

Embodied Energy and Lifecycle Analysis  

For every renewable energy component that is produced, an amount of energy is needed 

in order to manufacture that component. This amount of energy is known as the 

embodied energy of the product. For solar PV technologies, a life-cycle analysis (LCA) 

was done by Sherwani & Usmani [48] to assess the embodied energy payback time 

(EPBT) and the GHG emissions created in their manufacture.  

Final conclusions of Sherwani & Usmani [48] were that for mono-crystalline solar 

panels, the EPBT was in the range of 3.2 to 15.5 years. For poly-crystalline panels, the 

EPBT ranges from 1.5 to 5.7 years. The GHG emissions produced in mono-crystalline 

panel manufacture is 44 to 280 g-CO2/kWhe while for poly-crystalline panels, emissions 

ranged from 9.4 to 104 g-CO2/kWhe.  

It must also be noted that the studies examined in this review ranged over a number of 

years. In the rapidly advancing sector of solar PV, this is an important factor to note. As 

cell efficiencies and manufacturing techniques improve each year, so too does the EPBT 

and the GHG emissions produced. In fact, as time goes on and renewable energy 

penetration increases, there is a positive feedback effect on the GHG emissions 

produced in manufacturing as fewer fossil fuel resources are being used to power 

manufacturing processes. 

2.6.1.2 Wind 

Whilst large centralised wind farms have reached the point of technological maturity in 

the past few decades, the notion of small-scale wind energy is very much an emerging 

technology. Small turbines of less than 10kW installed in the built environment are 

classified as microgeneration [49], [50]. The challenge presented by wind generation in 

the built environment is that the wind resource is unpredictable and highly variable. 

Obstructions from surrounding structures are known to greatly diminish the potential 
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output for a wind turbine due to the turbulence generated and reductions in local wind 

speed [51], [52]. Since every building and its surrounding structures are different, it is a 

difficult task to assess the feasibility of a small-scale wind turbine installation following 

a consistent methodology.  

Bahaj et al. [50] addressed feasibility assessment issues using a modelling tool 

developed specifically for studying energy yield potential and financial payback 

periods. The typical wind resource characteristics of the geographical location are 

considered, along with a model of wind turbine performance which considers aspects 

such as wind speed correction factors for certain terrains, as well as the complication of 

wind shadow from surrounding structures and vegetation. Electricity demand for the 

application as well as financial and emissions considerations are used to determine the 

potential for monetary savings and emissions abatement. It was concluded that good 

high resolution wind data is necessary for an accurate assessment. Results show that 

wind shear and shadow effects in the built environment can reduce output by up to 50%. 

It is suggested that buildings situated on sea fronts and in other large, open spaces 

would be most suitable for micro wind generation. In addition to this though, it was 

suggested that it may be feasible to install wind generation capacity on large, tall 

buildings in urban centres due to the wind resource being stronger at increased height 

above ground level, as well as larger rotor diameters being possible due to the increased 

building size. 

The feasibility of micro wind generation in New Zealand was addressed in Mithraratne 

[53]. Size limitations and the assurance of structural stability of installations are 

recognised as factors contributing to the failure of wind turbines being able to solely 

meet building demand. A comparison of capacity factor between centralised large scale 

wind farms and microgeneration wind farms highlights the reduction in potential due to 

interference effects. The capacity factor is defined as the measured output from a device 

as a percentage of its maximum theoretical output. The average capacity factor in New 

Zealand of a commercial, large scale wind farm is quoted as being around 45%. 

Through studies of urban houses in the US, UK, and Europe, rooftop wind generation 

capacity factors lie in the range of 4% to 6.4%. Recommendations to improve 

performance were to select sites with a minimum average wind speed of 5.5 m/s, and a 

building roof 50% higher than surrounding objects. 
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Overall conclusions from Mithraratne [53] were that small scale wind generation in 

New Zealand is suitable only in selected sites and will make only a small contribution to 

meeting overall electricity demands. It is recommended that conventional energy 

reduction and efficiency measures be implemented first to reduce demand, and that 

wind turbines be installed in conjunction with roof top solar in order to meet overall 

electricity demand. It was estimated that large scale wind farms have 11 times the 

generating capacity than that of small scale wind energy. However, a life cycle analysis 

has shown that the energy and carbon intensity of small scale wind turbines are less than 

grid electricity if supply chain and recycling measures are carefully considered. When 

considered in these terms, small scale wind technology could be of benefit to New 

Zealand as part of a holistic strategy of energy conservation and other small scale 

renewable technologies. 

2.6.2 Load Matching and Grid Interaction 

Given that renewable energy (most often solar PV) is a variable resource, it is not 

always the case that the energy supply generated by the building is able to meet 

requirements, since solar only generates energy during the day and wind only generates 

during times of adequate wind speed and direction. Ensuring that on-site generation 

matches up with on-site consumption and that energy exported to the grid is done so at a 

time that does not create grid stability issues due to oversupply, are factors to be 

considered if the NZEB concept is to be widely adopted. Matching on-site generation 

with on-site demand is known as load matching (LM), whilst grid interaction (GI) 

concerns the matching of grid export, and grid quality & stability requirements [12], 

[54], [55]. 

Load Matching 

Matching the building load to the building’s own generation profile ensures that NZEBs 

are reliant on grid electricity as little as possible. This reduces costs associated with 

building grid infrastructure according to peak requirements. Load matching should be 

considered on daily and seasonal time scales.  

Daily timescales show how well the peak loads and generations match up. For a solar 

PV system in a residential dwelling, load and generation may not match up very well, 

given that typical peak loads in a house occur in the early morning when residents start 

their day and the early evening when residents return home. During these times, solar 
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output is low. A typical load and generation profile is shown in Figure 2-2, which 

illustrates this point. For a commercial building, it may be a better situation. Occupants 

arrive for work mid-morning and leave mid-afternoon, with peak energy demand being 

within the profile of peak solar output. 

 

Figure 2-2 Typical load/gen profile for residential building with solar PV - [55] 

Seasonal timescales provide an insight into how the load and generation profiles match 

between summer and winter. For the case of a solar PV system, energy demand is 

typically higher than summer due to the need for space heating. In addition to this, 

lower solar insolation means that energy generation is also lower. Seasonal load 

matching is therefore typically worse in winter than in summer. 

A Load Match Index (LMI) is typically used to quantify the degree of load-match that is 

achieved in a specific case. It is defined in [55] as the average value over a time period 

of how well on-site generation matches the load. The load is better matched to the 

generation profile at a higher index. LMI is defined mathematically as follows [56]:  

𝑓𝑙𝑜𝑎𝑑,𝑇 = 𝑚𝑖𝑛 (1,
𝐺(𝑖) − 𝑆(𝑖) − 𝐿0(𝑖)

𝐿(𝑖)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.1) 

Where: 

▪ G = Generation 

▪ S = Net energy exchange with Storage (if installed) 

▪ L0 = Energy losses 

▪ L = Building load 

▪ i = time interval (hour, day, month, year etc.) 

It is noted that the LMI requires high resolution data to be accurate in order to capture 

the full variability of a load/generation profile [54]. 
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Measures to improve the LMI are strategies of Demand Side Management (DSM) as 

well as careful design of generation capacity. By moving the time of some energy 

intensive activities to time of the day where generation output is at its peak, a better 

match between load and generation is possible. Introducing on-site storage will greatly 

improve the flexibility of the building to load-match, while reducing reliance on the grid 

in times of low generation [54]. 

In addition to battery storage, the placement and orientation of solar panels can also 

have effects on load matching. Salom et al. [55] recommends that for a net-metered 

residence, solar panels should be oriented east-west instead of north-south in order to 

take advantage of morning and afternoon sun since this coincides with times of peak 

demand. An office building on the other hand would orient panels north-south to catch 

peak midday generation potential. It is recommended that for a gross metered system, 

array orientation should always be so that maximum production can be achieved at all 

times. 

An alternative to the LMI is recommended by Salom et al. [55]. The load cover factor is 

defined as “the percentage of the electrical demand covered by on-site electricity 

generation”. Whilst both factors express the same thing, there is a technical 

mathematical difference between the two which results in a small numerical difference.  

Grid Interaction 

Grid interaction refers to the variability of energy exchanged between the building and 

the grid. A method of indicating this is the grid interaction index. It is a measure of 

energy exchange variability within a year, normalised on the highest absolute value 

[12], [55]. The equation for the grid interaction index is given as follows [56]: 

𝑓𝑔𝑟𝑖𝑑 = 𝑆𝑇𝐷 [
𝐸(𝑖)

max⁡(|𝐸(𝑖)|)
] (2.2) 

Where: 

▪ E = net energy exported to the grid  

▪ i = time interval 

When compared with the load match index, the grid interaction index is the ratio of net 

grid metering over a given time period, to the maximum or minimum in the annual 

cycle [57]. If the index is positive, it describes a net positive energy building, while a 

negative index signifies a net negative energy building. It is a measure of the fluctuation 
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of energy exchange between building and grid and has nothing to do with the amount of 

grid electricity required by the building [54], [55]. 

The grid interaction index is said to be sensitive to time intervals. High resolution data 

should be used where possible in analysis of grid interaction [12]. In Salom et al.[56], it 

is argued that NZEBs at high penetration levels may have detrimental impacts on the 

grid at small timescales by contributing to peak grid loads when on-site generation 

becomes insufficient. High resolution data is also useful for making forecasts of 

building energy use and generation in order to predict the grid interaction index. 

Through forecasting this, grid stability and power quality issues can be anticipated and 

planned for in advance of complications occurring [55].  

2.6.3 Off-site Renewable Generation 

Buildings with high energy intensity such as hospitals and shopping centres may not 

have the ability to install sufficient renewable energy capacity on the building site to 

meet all demands. In this case, renewable energy must be generated off-site and 

transported from the grid to the building. Pless & Torcellini [15] recommends that 

energy intensive buildings still install as much on-site capacity as possible, but that the 

balance may be made up through the purchase of Renewable Energy Credits (REC). It 

is stressed that just purchasing REC’s to offset all building energy demand is not an 

acceptable strategy for NZEBs. All efforts must be first made to reduce consumption 

and introduce efficiency measures [11]. 

A lifecycle financial comparison of on-site and off-site supply options found that annual 

costs of on-site supplies decrease when higher energy efficiency measures are 

implemented. In the case of off-site options, annual costs increase. It can be concluded 

from this that energy efficiency should take priority over on-site energy generation 

capacity in order to achieve the cost-optimal scenario. For the case of off-site generation 

however, it was found to be most cost effective to invest in generation capacity than in 

energy efficiency [58]. This finding is at odds with the definition philosophy defined by 

Torcellini & Pless [11] as the overall objective of a NZEB is not only to offset all 

energy demand with renewables, but to reduce overall demand and encourage a less 

energy intensive built environment. 
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2.6.4 Distributed Generation & Microgrids 

The general concept of distributed generation (DG) is to locate the generating 

infrastructure close to the load, often on the consumer side of the grid. Whilst there are 

many varied definitions of DG currently in the literature [59], the underlying concept is 

one of direct relevance to NZEBs. It is recognised that as NZEB penetration becomes 

larger, there will be power quality implications for the grid. Salom et al. [55] state that 

at low penetration, NZEBs can be of benefit to the utility grid because they decrease 

losses and smooth out voltage profiles. However, at higher penetration, large reverse 

power flows may occur due to surplus energy exports from NZEBs as well as increased 

local losses. This causes the overloading of grid components and necessitates the need 

for the grid specification to be increased. Since grid planners need to design for the peak 

grid load, rather than the average, steps must be taken to ensure large scale export 

events from a number of NZEBs do not contribute to increased peak loads on the grid 

[55], [60]. 

A way of managing the potential implications of DG is to approach it from a systems 

perspective. Generation and loads can be broken down into sub-systems called 

microgrids [61]. By taking this approach, it is possible to control DG on a local level. 

Microgrids can be isolated through intentional islanding from the main utility grid 

during times of disturbance in order to be able to supply the microgrid using its own 

resources [62].  

Implications of Intermittent Resources at High Penetrations  

The flexibility and rapidly declining cost of solar PV means that in many cases, they 

can be constructed very close to the load without the stringent and time consuming 

process that is associated with large centralised power generating facilities. This makes 

for a more efficient system by cutting down on transmission losses. However, their 

intermittency due to diurnal cycles and weather variations means that solar poses new 

challenges to grid operators. Large reverse power flow patterns spell changes for the 

grid protection and control strategies [63]. Intermittency requires more regulation of 

ramping requirements for the grid. As wind and solar resources depend on highly 

variable weather conditions, they sometimes experience sudden changes in power 

output due to wind speed and irradiance changes. Impacts on distribution networks from 

solar PV DG resources are described in Katiraei & Aguero [64]. These impacts include 

voltage rise and unbalance, equipment and component overload, and increased losses 
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from reverse power flow. The extents of these impacts are expected to increase with the 

rise in penetration levels, as well as grid specification in the installed location. It is 

suggested that new generations of solar inverters would have the capability to address 

many of the challenges discussed by regulating voltage and having ramp-rate control. 

 

2.7 Building Performance Modelling Options 

Building performance models are a valuable tool that can be used to evaluate the effects 

of different building designs, technologies, and control strategies before the 

construction of a building. With the aid of a model, important decisions can be made 

early in a project which can increase building performance, reduce costs, and save time 

[65].  

Several techniques are available to engineers for building modelling. Physical 

modelling techniques can be broken down into several categories. The Computational 

Fluid Dynamics (CFD) approach is arguably the most comprehensive method but is 

complex and requires significant computational resources and a highly skilled operator. 

The zonal approach is a simplification of the CFD method. It divides the building into 

different ‘zones’ where one cell is a division of a room. Physical equations are solved 

for each zone rather than for each element of the mesh as with the CFD approach. 

Whilst not as accurate or comprehensive as CFD, the zonal approach gives good results 

when calculating air temperature, pressure, and velocity distributions within each zone 

whilst still retaining more manageable computing requirements. The multi-zone or 

nodal approach is a further simplification of the zonal approach. It assumes that each 

room is one cell and is a homogeneous volume with uniform state variables. 

Advantages of this technique are that it is able to compute simulations over very large 

time periods within a minimum of computation time. The estimation of energy 

consumption and space temperature are well suited to this technique [66]. Table 2-4 

gives a summary of the different physical modelling techniques showing applications, 

as well as advantages and disadvantages. 
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Table 2-4 Summary of physical modelling techniques from [66] 

 

It can be seen from Table 2-4 that the most useful technique for a study of NZEB’s is 

the multizone/nodal technique. This is because the focus of the modelling is on energy 

consumption and thermal loads. Therefore more detailed and intensive analysis such as 

that provided by CFD is unnecessary. Similar reasoning is given in [67] regarding the 

use of simplified modelling tools. The study of long term trends and system 

comparisons are well suited to the nodal method. It has been determined from the 

literature that the most common tools for energy modelling are DOE-2, eQUEST, 

BLAST, and EnergyPlus. These are described and compared below. 

2.7.1 DOE-2 

DOE-2 is an energy analysis program for whole-buildings. It can be used to analyse 

energy consumption and efficiency of each building zone on an hourly basis. It 

considers the building layout, construction, operating schedules, and building systems 

combined with weather data to perform hourly simulations. However, a high degree of 

computational knowledge is required to operate effectively given there is no graphical 

user interface. Many third party interfaces have been developed to work with the DOE-2 

simulation engine [68]–[70]. One of these interfaces is eQUEST. 

2.7.2 eQUEST 

This tool utilises the DOE-2 simulation engine to perform comparative analysis of 

different building designs. A building creation wizard allows the user to create a 

building model with guidance from the program. The graphical user interface aids the 

user both in development of the model, as well as display of results. The results display 

module allows the user to view the results of multiple simulations side-by-side [68], 

[69].  
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2.7.3 BLAST 

Building Loads Analysis and System Thermodynamics (BLAST) is another hourly 

simulation tool that offers analysis of buildings and HVAC systems, and provides 

results regarding energy use and efficiency. Detailed heat balance algorithms allow for 

the assessment of thermal comfort; however a high level of expertise is required to 

operate it. BLAST first predicts the hourly space conditioning loads within the building 

based on the weather data, temperature control strategy, and the heat transfer 

interactions throughout the building envelope [69], [70]. 

2.7.4 EnergyPlus 

Arguably the most advanced of all tools discussed; EnergyPlus was developed from a 

combination of the best features from BLAST and DOE-2, whilst including the addition 

of a range of unique new features. Like BLAST and DOE-2, EnergyPlus is primarily a 

simulation engine with little in the way of a graphical user interface. However third 

party GUI’s such as DesignBuilder have been developed to take advantage of 

EnergyPlus’s capabilities.  

One feature of EnergyPlus that was lacking in both BLAST and DOE-2 was the ability 

for the simulation to provide feedback between the HVAC module and the load 

calculations module. This lack of feedback leads to inaccurate temperature prediction 

which has a large influence over HVAC systems sizing, occupant comfort, and energy 

use [71]. 

The basic assumptions in the underlying thermal zone calculation are that the air in each 

room is modelled as being of uniform temperature, and that surfaces in the room are of 

uniform temperature, and have internal heat conduction. Time steps of less than an hour 

are possible with the default being 15 minutes.  

Whilst there are many advantages to EnergyPlus such as its potential for more detailed 

simulation methods to be integrated where necessary, and its CAD interfacing 

capabilities to allow geometry to be easily developed, it is difficult to use without a 

graphical use interface. Third party GUI’s such as DesignBuilder make EnergyPlus a 

much more versatile tool. 
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2.7.5 DesignBuilder 

DesignBuilder (DB) is a modular graphical user interface utilizing the EnergyPlus 

simulation engine. The modules available are: 

i. 3D modeller – to enable fast construction of geometric and physical attributes of 

the building 

ii. Visualisation – enables designers to produce rendered images of the model 

iii. Certification – DB generates Energy Performance Certificates and building 

regulations compliance checks in accordance with UK regulations 

iv. Simulation – the EnergyPlus simulation engine used for energy and comfort 

analysis. It is able to provide data such as energy consumption, carbon 

emissions, room comfort, and temperature distribution on sub-hourly time steps. 

v. Daylighting – DB is able to report on daylight factors and illuminance data to 

assess the natural light levels and visual comfort within the building.  

vi. HVAC – the HVAC capability of EnergyPlus is expanded into a graphical 

environment in DB. Large libraries of HVAC components and systems are 

available to choose from or systems are able to be specified from scratch. 

vii. Cost – building construction and operating costs can be estimated based on a 

range of assumptions within DB 

viii. LEED – DB is able to assess the building model against LEED requirements and 

give a summary report providing the data required for LEED energy credit 

submissions 

ix. Optimisation – identification of design options based on criteria of cost, energy, 

and comfort performance are possible 

 

 

2.8 Summary 

Given the accelerating impacts of human induced climate change being observed 

worldwide, it is crucial that decarbonisation of the built environment happens quickly. 

Net zero energy buildings provide a promising solution to decarbonisation of both the 

built environment and our transport sector, with personal electrical vehicles becoming 

more commonplace. Our buildings can provide surplus energy to charge electric 

vehicles. Meaningful cuts to emissions are possible through the widespread adoption 

and development of net zero energy buildings. 
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A Net Zero Energy Building (NZEB) is simply one that produces at least as much 

energy as it consumes. There are many ways to define the ‘zero’ balance, depending on 

the objective of the building under study and the regulatory environment in which it is 

built. Four common definitions studied in the literature are site, source, cost, and 

emissions. 

Several factors such as balance metric and reporting period must be considered in order 

to define which kind of NZEB the building is. This definition has a bearing on the data 

required for reporting and will also affect the final outcome determining the success or 

failure of the NZEB. 

A need exists to better understand how best to achieve NZEB status in buildings, both 

new buildings and retrofits. A number of organisations, government and non-

government, have responded to the increased awareness of building sustainability by 

developing codes, standards, and rating systems designed around a framework of 

sustainability factors such as energy use, water use, and building materials. Whilst all 

schemes share similar objectives and methodologies, minor differences in 

implementation exist and are a reflection of the regulatory environments in which they 

were designed. No scheme apart from the Living Building Challenge requires that 

buildings be net zero energy. However, significant benefits would be achieved for all 

schemes as a side effect of being a NZEB in terms of energy performance. 

By reducing energy use as much as possible, achieving NZEB status becomes easier 

due to minimization of the renewable energy requirement, saving both required 

installation space, and of course, cost. Energy demand can be reduced through a range 

of measures. Installation of efficient appliances such as lighting and mechanical systems 

and the passive design of a building to work with the climatic conditions of the site, as 

well as the behaviour change of the building’s occupants, can all contribute to the 

overall reduction of energy consumed by the building. 

The most commonly used and commercially feasible source of on-site renewable energy 

is solar photovoltaic (PV). Fossil fuel driven micro-turbines and cogeneration plants are 

also options, but are less attractive when the motivation is to reduce the overall 

environmental impact. Other sources of energy such as wind are also possibilities. 

Given the ubiquity and abundance of sunlight in most locations on Earth and 

historically, the rapid simultaneous increase in performance and decrease in cost of 
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solar PV modules, achieving the NZEB goal has become more and more viable in 

recent years.  

Buildings with high energy intensity such as hospitals and shopping centres may not 

have the ability to install sufficient renewable energy capacity on the building site to 

meet all demands. In this case, renewable energy must be generated off site and 

transported from the grid to the building. Guidelines recommend that energy intensive 

buildings still install as much on-site capacity as possible, but that the surplus may be 

made up through the purchase of Renewable Energy Credits (REC).  

From reviewing the literature concerning net zero energy building definitions, reporting 

strategies, certification schemes, and demand and supply side factors, a number of areas 

have been identified which warrant further research.  Primarily, the overall consensus in 

the literature is that for a building to succeed in achieving net zero, it must reduce its 

demand as much as possible to have the best chance. The practical barriers to installing 

sufficient generating capacity in a building are much larger when little effort has been 

made to reduce demand. Improvements to the building envelope of some commercial 

buildings around the world have been found to reduce energy demand significantly. 

Improvements such as upgrades to thermal insulation and glazing, as well as the 

introduction of shading elements can improve energy efficiency. It is noted however 

that the net benefit of some of these measures may not be positive due to seasonal 

effects. Careful design and planning would ensure that a net benefit is achieved. 

A case study of net zero energy buildings and their energy sensitivity to different 

building technologies is an area of research that would be of interest. Currently case 

studies of net zero buildings are not common, especially in the context of an Australian 

climate. Quantification of the contribution of energy efficiency technology and 

strategies through building modelling would provide valuable insight into meeting net 

zero energy in existing buildings. These factors are worthy of investigation. 
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Chapter 3 Methodology and Description of Case Studies 

3.1 Introduction 

With net zero energy buildings being seen as a promising solution to emissions 

reduction in the built environment, it is important to be able to design and construct a 

cost effective and higher performing net zero energy building. To achieve this, a greater 

understanding of the design and operation of high efficiency buildings is required, 

especially the interaction between different building elements and their overall net 

impact on energy use. The differences between efficient buildings and more 

conventional designs should also be understood, to be able to quantify their comparative 

potential benefits and disadvantages. 

Three buildings studied here (two of which are recently completed net zero energy 

buildings) provide an opportunity to study these new types of buildings and provide 

comparisons to the energy use of more typical commercial buildings at similar 

locations. Building performance simulation provides a means to better understand these 

issues. By modelling all three buildings and comparing simulation results to real 

weather and energy data collected over a period of time, the models are able to be 

validated and considered to be of practical significance. Undertaking simulations of all 

building models while implementing varying degrees of energy efficient building 

technology and operating strategies will provide an understanding of the influence of 

these technologies and strategies, relative to each other, as well as on each buildings 

overall performance. This chapter provides a detailed view of the modelling and 

simulation methodology, as well as an introduction and background to each of the three 

test cases used for simulation. 

 

3.2 Uncertainties in building energy modelling 

A common problem encountered in building performance simulation is that of a gap 

between simulated performance and measured real performance. There can be many 

contributing factors to this ‘performance gap’ but most commonly, the source of error 

stems from inaccuracies associated with assumptions used in place of hard-to-measure 

building inputs.  

Many existing buildings lack detailed information in a number of areas: 
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• Complete as-built construction drawings from which a detailed and accurate 

geometrical model can be developed. Many buildings undergo a multitude of 

façade and structural alterations of varying significance throughout their lives 

and quite often as-built drawings are either not comprehensively updated, or 

they are not kept on file by facilities managers. This can make modelling of the 

building difficult and the modeller must rely on certain assumptions and default 

values, e.g. the type and extent of building insulation or glazing performance 

figures where exact glass specification is unknown; 

• Sub-metering capabilities with which to assess the baseline energy consumption 

of building services are often lacking. Depending on the size and complexity of 

the building’s electrical infrastructure, it may be possible for the modeller to 

install temporary metering equipment in order to obtain consumption data of 

selected electrical circuits with which to validate the building model. Where this 

is not feasible, simulation assumptions based on building code guidelines may 

be used, but there is little certainty that this assumption would be accurate in the 

specific case; 

• Occupant behaviour is possibly the largest source of uncertainty in building 

performance simulation due its stochastic nature and large influence over energy 

consumption, particularly in smaller buildings. Building occupancy and 

equipment usage schedules are highly individual factors and are often very 

specific to the building tenant. Building occupancy is also one of the most 

difficult variables to measure. Occupancy sensors in buildings are able to tell a 

modeller if a room is occupied, but not by how many people or what their 

activities are. Depending on the type of building, occupancy may be highly 

variable throughout the working week or even work day. Because of this, 

developing a ‘typical’ occupancy schedule to use in a building performance 

simulation can be very difficult and is a major source of uncertainty. 

A poorly commissioned or maintained building will also contribute to modelling 

inaccuracies. If the building is not operating according to designed performance levels, 

then certain assumptions used in the model which are typically drawn from technical 

specifications will not accurately reflect the reality. 
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3.2.1 Weather data in model validation 

For a building model to be useful and provide a meaningful contribution, it must be 

validated to best represent the real operation of the building. Simulation of a building 

should be performed according to a Typical Meteorological Year (TMY) [72]. A TMY 

is a year of weather data at hourly intervals, collated from a dataset of many years to 

best represent a typical year of data for the specified location. TMY data does not 

include extreme weather events as it is intended to best represent the building under 

normal operating conditions. TMY data is not suited to validating a building model. For 

validation, the model must use actual historical weather data in order to match the 

response of the model to the response of the real building data during a particular time 

period. By comparing the internal temperature profile of the building to that of the 

model on the same day using recorded weather data as a model input, it is possible to 

tune the building model to best match that of the real building without uncertainty due 

to weather factors. 

Once validation has been achieved using real weather data, TMY data should be used to 

carry out the overall intended objectives of the building model. Using real weather data 

for this purpose will only provide results specific to the weather that was experienced 

over the period for which data is available. Typical representative results for the 

building can only be achieved using TMY or other weather data created from averages 

of long-term historical data. 

3.2.2 Model validation methodology 

To validate a building model, several aspects of it should be compared to real data taken 

from the building. For this study, model validation was completed using internal 

temperature profiles and daily energy use of various loads, as indicated in Figure 3-1. 

With accurate historical weather data available, uncertainties surrounding weather 

conditions can be more or less eliminated, making for a valid comparison between the 

identified parameters. 

Temperature profiles for building modes  

Historical periods representing each of the three building modes (cooling, heating, and 

natural ventilation) were selected where data was available and simulations were run for 

those times. The actual indoor temperature profile was compared with that generated by 

the simulation. A match between the measured temperature profile and that of the model 
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should provide an indication of how well the model represents the thermal performance 

of the real building.  

Daily energy use 

Due to stochastic factors such as occupancy which are difficult to model accurately, the 

energy use of building elements such as lighting is unlikely to match actual usage 

profiles of the building over a short timescale. However, a properly calibrated model 

should exhibit similar daily energy use when compared to the buildings’ measured 

energy use. Daily lighting and IT loads were compared to the model for periods where 

data from the building was available.  

 

Figure 3-1 Model validation methodology. 

Error Quantification 

Error quantification for temperature profiles was completed using the Normalised Mean 

Bias Error (NMBE) and the coefficient of determination, R2. NMBE is a measure of 

how close the modelled data fits the measured data and is expressed as a percentage. An 

NMBE close to zero is desirable. It is the ratio of the sum of the residuals to the sum of 

all measured data points. NMBE is given by equation (3.1) from [73]: 
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𝑁𝑀𝐵𝐸 = ⁡
∑(𝑦⁡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦⁡𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)

∑ 𝑦⁡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

⁡×100 (3.1) 

Where: 

▪ ymeasured = measured data point 

▪ ymodelled = modelled data point  

A maximum NMBE of 15% was considered as satisfactorily accurate for the thermal 

validation of the model. As thermal accuracy of the model is secondary to that of energy 

and serves only to confirm the correct behaviour of the building model, there are no 

specific acceptability criteria being followed for the thermal model. An NMBE of 15% 

was chosen as this corresponds to an average residual of around 1-2°C, which is within 

the margin associated with measurement error such as calibration or position of 

measurement. Regardless of the allowable error selected the model will always be more 

accurate in some sections of data than others owing to unpredictable events such as 

occupant override of building HVAC systems or equipment malfunction. Additionally, 

the coefficient of determination, R2, was calculated from a scatter graph between 

measured and modelled temperature variables. This helped to quantify the degree of 

correlation between the model and the real building and aided in setting levels of 

confidence in the model. 

The error associated with the energy models was quantified according to the method 

outlined in ASHRAE Guideline 14-2002 [73]. This method relies on measured energy 

data being compared to the model output using both the NMBE and the Coefficient of 

Variation of the Root Mean Squared Error (CVRMSE). The CVRMSE is a measure of 

how well the model fits the data. A lower CVRMSE value suggests that the model is a 

better fit. It is the ratio of the square-root of the Mean Bias Error to the average of all 

measured data points. 

CVRMSE is given by equation (3.2): 

𝐶𝑉𝑅𝑀𝑆𝐸 = ⁡
√(𝑦⁡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦⁡𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⁡

𝑦̅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

×100 
(3.2) 

Where: 

▪ ymeasured = measured data point 

▪ ymodelled = modelled data point  

▪ ӯmeasured = average of all measured data points 
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The CVRMSE is used in conjunction with NMBE to eliminate the fact that NMBE may 

be influenced by offsetting errors. ASHRAE Guideline 14 states that an energy model 

may be declared valid if the NMBE is ±10% and the CVRMSE within ±30% when 

using hourly data or 5% to 15% when using monthly data. Although daily data is being 

used here, the 15% limit was chosen for the selected case study simulations. The 

building models developed in this study are intended to be generally representative of 

the real buildings so that general behaviour can be simulated.  

 

3.3 Simulation methodology 

Development of a simulation methodology must reflect the overall objectives of the 

project. As whole-building energy use was of particular focus here, overall energy 

consumption is the main metric to be used to indicate results of different simulations. 

However a deeper understanding may be gained by looking at a system or sub-system 

level. In a system as complex as a building, there are many combinations of variables 

that may have an effect on energy use. It would be impractical to investigate all of them 

for the purposes of this thesis. Five building elements were selected to be investigated in 

terms of their technology and their implementation. The proposed simulation 

methodology is outlined in Figure 3-2. 
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Figure 3-2 Proposed building simulation methodology. 

In some cases, it is necessary to maintain a constant level of certain parameters in the 

interests of occupant comfort. It would not be acceptable for a building to achieve large 

energy savings if this comes at the expense of occupant comfort and building 

functionality. For the case of lighting, it is necessary to keep an adequate and reliable 

standard of illuminance. Where shading is concerned, both lighting and IEQ are 

influenced and thus must be maintained where different shading technologies and 

control strategies are investigated. In some cases, occupant comfort and functionality 

are the variables being tested, rather than maintained. For the investigation of HVAC, 

the temperature bands are to be varied to determine the amount of energy that could be 

saved if occupants were willing to tolerate slightly warmer conditions in summer and 

cooler conditions in winter. 

The following figures outline the procedures followed for the simulations of each 

building model.  

Validated Building Model TMY weather data 

C. Window Shading 
-Time of day/Seasonal 
-Maximum outside 

Temperature 

D. HVAC Set Point Control 
-Heating ±1°C increments 
- Cooling ±1°C increments 

A. Glazing type 
-Single/Single LowE 
-Double/Double LowE 
-Triple/Triple LowE 

B. Lighting Output Control 
-Control on 
-Control off 

Simulation Scenarios 

C. Window Shading 
-Total yearly HVAC energy (kWh) 
- Total yearly lighting energy (kWh) 
-Total yearly building energy (kWh) 
  

A. Glazing type 
-Total yearly HVAC energy (kWh) 
-Total yearly lighting energy (kWh) 
-Total yearly building energy (kWh) 

D.  HVAC Set Point Control 
-Total yearly HVAC energy (kWh) 
-Total yearly building energy (kWh) 
  

B. Lighting Output Control 
-Lighting energy intensity (kWh/m

2
) 

-Total building energy intensity (kWh/m
2
) 

Scenario Performance Indicators 
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3.3.1 Glazing 

Changing the type of glazing is likely to have an impact on the solar heat gains in the 

building throughout the year. Single glazed or poor performance double glazed 

windows are likely to introduce more heat to the building throughout summer, driving 

up cooling loads. Figure 3-3 outlines the simulation process to be carried out. 

 

Figure 3-3 Glazing simulation procedure. 

The overall annual impact on HVAC energy use will be tested here as well as the 

impacts on other related electrical systems such as lighting. It is hoped that the outcome 

will be a quantification of any benefits of high quality double glazing and whether triple 

glazing could extend those benefits in any significant way. 

3.3.1.1 A description of glazing types 

It is important to outline the different types of glazing examined in this study to give 

some background and insight into why these building elements are being simulated. 

Single Glazing 

A conventional single pane of glass mounted in a frame typically constructed of timber 

of aluminium. 

Single LowE Glazing 

Similar to a single glazed window, but using low emissivity glass (LowE). LowE glass 

has a thin coating deposited on its surface. Different coatings can have different effects 

Set model 
parameters

•Set model lux levels and temperature set points to be maintained throughout all 
simulations

•Set window shading to zero

Run 
simulations

•Single/Single LowE

•Double/Double LowE

•Triple/Triple LowE

Analyse 
results

•Compare results to single glazed benchmark using the following metrics:

•HVAC energy use

•Lighting energy use

•Overall energy use
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but typically, all coatings cut down on the amount of infrared light being transmitted 

through the pane. This has the effect of reducing radiant heat transfer. 

Double Glazing 

A window system consisting of two panes of glass mounted in a frame typically 

constructed of timber of aluminium. The gap between each pane of glass is commonly 

filled with air. Argon can also be used to provide improved insulative properties 

Double LowE Glazing 

Similar to conventional double glazing, but using LowE glass as previously described 

for one or both panes. 

Triple Glazing 

Similar to a double glazed window unit, however three panes are used instead of two. 

Triple LowE Glazing 

Similar to conventional triple glazing, but using LowE glass as previously described for 

one or all three panes. 

3.3.2 Lighting 

Whilst there are many different types of lighting technology available, their impacts on 

electrical loads are relatively easy to calculate without the need for modelling given that 

their electrical inputs are generally proportional to their light outputs. Instead, the 

operation and control of lighting will be simulated as this relies on many different 

variables. Daylight control involves the use of a photosensor to detect the amount of 

natural light in the room. The lighting control system interprets the reading given by the 

photosensor and decides how much artificial light is necessary based on preset lighting 

level requirements.  

Occupancy also plays an important role in lighting operation. A modern controlled 

lighting system will be occupancy-driven. Passive Infrared (PIR) sensors will detect 

occupancy and automatically turn on artificial lights if they are necessary. An additional 

simulation scenario of determining the energy savings due to automatic lighting control 

would be of great interest. However occupancy can be difficult to predict in many 

situations (especially for sparsely populated buildings) and the models presented here 

do not have the capability to model stochastic factors such as occupancy. For the 
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purposes of this study, lighting operation is driven by a predetermined occupancy 

schedule. Figure 3-4 outlines the simulation and analysis procedure to be followed. 

 

Figure 3-4 Lighting simulation procedure. 

 

The lighting schedules for each building model are shown below in Figure 3-5.  

 

Figure 3-5 Building model lighting schedules 

 

The occupancy schedules for each building model are shown below in Figure 3-6. 

Occupancy and building systems schedules have significant influence over the results of 

a simulation and are key factors in developing an accurate and validated model. 

Set model 
parameters

•Set model lux levels to be maintained throughout all simulations

Run 
simulations

•Perform simulations comparing non-controlled lighting to 
proportionally controlled lighting through the use of daylight sensors

Analyse 
results

•Compare results using the following metrics:

•Lighting energy use intensity

•Overall energy use intensity
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Figure 3-6 Building model occupancy schedules 

 

3.3.3 Window Shading 

Local shading of windows using architectural elements, such as side fins, overhangs, 

and louvres is driven by well researched architectural design and depends heavily on the 

building site location and orientation. This would be a challenging building element to 

model and drawing general conclusions from the results would be problematic. 

However, window shading in the form of blinds or curtains can be modelled with 

expected conclusive outcomes. 

 

Figure 3-7 Window shading simulation procedure. 

 

Set model 
parameters

•Set model lux levels and HVAC setpoints to be maintained 
throughout all simulations

Run 
simulations

•Slatted blind - high reflectivity

•Summer day/night

•Winter day/night

•Temperatures above 25/28/30/32°C

Analyse 
results

•Compare results to benchmark of no shading using the following metrics:

•HVAC energy use

•Lighting energy use

•Overall energy use
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Rather than simulation of the best type of shading, which could have many 

combinations, the operation of the window shading has been chosen for modelling 

instead, as outlined in Figure 3-7. A consistent shading type has been chosen as a slatted 

blind with high reflectivity slats. The reason for this is that this type of shading is 

common in many commercial buildings. The scenarios to be tested are based both on 

the season and time of day, as well as the outdoor temperature. The results will be 

compared on a whole building energy use level, as well as the impacts on lighting 

energy use (with less natural light in summer, this will increase lighting loads) and 

HVAC use. 

3.3.4 HVAC 

Since detailed HVAC systems in DesignBuilder are quite complex to model, a 

simplified model will be developed for the case study buildings. A result of this is that 

the HVAC energy consumption of the model is likely to be only nominally comparable 

to that of the real system. However, the relative performance effects of the model 

system amongst the simulated scenarios will still be valid and conclusions about energy 

consumption changes may still be drawn back to the real system. 

 

Figure 3-8 HVAC simulation procedure. 

Keeping HVAC simulations independent of equipment specifics enables general 

conclusions to be made about potential energy consumption in buildings. Varying the 

HVAC setpoints is often quoted as an effective way of reducing energy consumption 

[74]. Simulations performed in this study will aim to quantify this effect for the net zero 

energy test cases as well as more generally. Figure 3-8 outlines the simulation process 

Set model 
parameters

•Set model lux levels to be maintained throughout all simulations

Run 
simulations

•Cooling setpoint variation: ± 1.0°C increment

•Heating setpoint variation: ± 1.0°C increment

Analyse 
results

•Compare results to each buildings real HVAC settings using the following metrics:

•HVAC energy use

•Lighting energy use

•Overall energy use
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to be carried out. The HVAC operation schedules used in each building model are 

shown in Figure 3-9. 

 

Figure 3-9 Building model HVAC schedules 

 

 

3.4 Sustainable Buildings Research Centre – University of 

Wollongong 

The University of Wollongong’s Sustainable Buildings Research Centre (SBRC), 

shown in Figure 3-10 was designed to bring together a range of disciplines with the goal 

of addressing the challenge of making Australian buildings more sustainable. The 

location of the 8,000 m2 site of the building is at the Innovation Campus of the 

University of Wollongong. It is a 2,600 m2 double story research building with 

exhibition spaces, education and training centres, as well as academic offices and high-

bay laboratories. With the building axis running east-west and separation between the 

two main wings, maximum passive ventilation and natural light are utilised. The first of 

the two wings is a 1,700 m2 building housing academic offices, education and training 

spaces, as well as a flexible working space and public exhibition centre. The second 

wing is a 900 m2 structure housing high-bay laboratories and much of the HVAC plant 

used in the building.   
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Figure 3-10 Sustainable Buildings Research Centre (SBRC). 

3.4.1 Building façade 

Key features of the building façade of the SBRC building are the reverse brick veneer 

construction, which differs from conventional brick veneer construction by placing the 

thermal mass on the inside of the building, within the insulated envelope. This provides 

a more stable indoor temperature [75]. A mixture of timber and steel cladding is used on 

the exterior of the building. An example of the insulated timber and steel façade section 

is shown in Figure 3-11. 
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Figure 3-11 SBRC building façade section example [76]. 

The building is insulated to a high degree. Concrete slabs are insulated to a minimum R-

value of 3.2 m2K/W. External walls are insulated typically with 90 mm thick polyester 

batts with a minimum R-value of 2.8 m2K/W. Roof insulation is specified as a 

minimum R-value of 3.2 m2K/W. 

Primarily, high performance double glazing is used for all external windows, glazed 

doors, and curtain walls. Windows are fitted with actuators controlled by the BMS when 

natural ventilation is deemed necessary.  

3.4.2 Energy efficiency 

The SBRC achieves its high level of energy efficiency thanks to a range of design 

choices and cutting edge technologies. 

The building is laid out in an H-configuration. This helps to optimise natural ventilation 

and maximises natural light throughout the building. A mixed-mode ventilation system 

utilizing a ground heat exchanger and in-slab hydronics system reduces the HVAC 

energy intensity significantly over a more conventional system. Low energy lighting 

systems with intelligent controls are used where daylight levels are insufficient. PIR 

sensors detect if a room is occupied and photoelectric light sensors detect whether 

daylight levels are low enough to warrant the use of artificial lighting. 
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3.4.3 Local generation 

Solar PV arrays are installed on both north and south wings of the SBRC providing a 

total capacity of 163 kWp. The south wing rooftop holds most of the installed capacity 

with 120 kWp whilst 43 kWp is installed on the north wing of the building in two 

different inclinations – 30° and 70°. 

In addition to the conventional PV installed at the SBRC, an experimental array of 

Building Integrated Photovoltaic Thermal (BIPVT) panels has been installed. Ducts 

installed beneath the panels harvest the heat absorbed by the PV panels. This not only 

increases the efficiency of the panels, but the collected heat can also be put to use 

elsewhere in the building for space heating if required. 

The Illawarra Flame, the University of Wollongong’s winning entry in the 2013 Solar 

Decathlon, is also situated nearby on campus. It is fitted with both conventional PV and 

BIPVT and is also connected via the SBRCs electricity distributions system, providing 

additional generating capacity to the precinct on top of that provided by the SBRC. 

3.4.4 Description of Building Systems 

3.4.4.1 HVAC 

The HVAC system at the SBRC is able to operate in three modes – natural ventilation, 

heating, or cooling. Natural ventilation is implemented through the use of automated 

windows and louvres on the building envelope. It is designed to be the primary space 

conditioning mode for maintaining the building within 20°C and 24°C. Outside of this 

comfort band, mechanical heating and cooling modes are used. The main mechanical 

plant equipment are as follows; 

• One air cooled heat pump; 

• Two water-cooled heat pumps; 

• Six variable speed water pumps; 

• One ground loop header pump; 

• Supply and return water temperature sensors; 

• Eighteen motorized flow diverting or control valves; 

Ground-source heat exchange loops are used to exchange heat with the stable 

temperature of the ground. A variable speed water pump is fitted to the ground loop to 

maintain constant pressure to the system. 
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Operation preference is given to the Ground Source Heat Pumps (GSHP) as they are 

generally more efficient over the air source heat pump (which is used only to meet peak 

loads or in the event of GSHP equipment malfunction or servicing) due to its use of 

ground heat exchangers where the temperature is more suitable than the atmosphere for 

use as a heat source or sink. 

3.4.4.2 IT system 

Low energy Virtual Desktop Infrastructure (VDI) is used at the SBRC instead of 

traditional separate PC terminals. Each desk has only a display monitor, keyboard, and 

mouse, all powered over Ethernet connection with processing hardware located off site 

in a concentrated server configuration. A thin-client VDI terminal consumes around 8-

20 W of energy compared to an average of 150 W for a traditional PC [77]. A VoIP 

phone system is used in place of traditional phone systems, further cutting down on 

energy use.  

3.4.4.3 Lighting 

Low energy lighting systems are used at the SBRC with occupancy sensors and daylight 

harvesting strategies implemented. Lights only operate once occupants are sensed or if a 

manual input is received from a lighting control panel. Lights remain on for a 

programmed amount of time after sensed occupancy ceases. Photoelectric sensors 

control lighting fixture output according to natural lighting levels in the zone. 

The lighting system is designed to reduce general ambient lighting intensity in favour of 

more concentrated task-based lighting. Main office spaces may be lit to a lower level 

than that of a more conventionally lit office, however more focussed task lighting 

makes up for this at work surfaces. This reduces the amount of wasted light by 

supplying it only where needed. 

3.4.5 Energy monitoring 

A number of energy monitoring systems are employed at the SBRC: 

Building Management System 

The Tridium Niagara Building Management System monitors and records a number of 

electrical meters in the building at 15-minute time intervals. This data is logged and can 

be accessed at any time from the BMS server. Some meters of note are: 

• Main Supply 
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• PV North array 

• PV South array 

• Mechanical services 

• BIPVT 

Remaining meters measure the plug, lighting, and IT loads which are separated into 

ground floor, first floor, laboratory, and high bay zones. 

Meters are also placed on individual items of HVAC equipment such as heat pumps, 

fans, and water pumps. Provision is also made for future installations such as wind 

turbines, electric vehicle charging stations, and other experimental distributed 

generation. These meters are capable of measuring active, reactive, and apparent power, 

as well as the current, voltage and frequency of all phases and some power quality 

parameters such as total harmonic distortion and power factor. 

Solar-Log 

Additional metering of the solar arrays is possible through the online monitoring 

services provided by the solar installer. Energy production is logged at 5-minute 

intervals and can be broken up into contributions from the north and south arrays. 

Monthly and yearly summaries are also prepared automatically. In addition to energy 

production, the condition of the inverters can also be assessed through this service with 

the temperature and efficiencies of each inverter being logged. Inverter input voltage is 

also measured. 

Portable IEQ and PQ meters  

Where more in-depth metering capabilities may be needed, or if metering is not 

available on a specific component, portable power quality meters are also available to 

connect to the SBRC circuits on a rotational basis. These are capable of providing high 

resolution, detailed data and can be interfaced in a variety of ways including LAN for 

remote meter reading.   

 

3.5 Transformational Technical Training Building – TAFE NSW 

The TTT building, shown in Figure 3-12, is located at the Yallah campus of TAFE 

NSW was built as part of the joint funding initiative which also funded construction of 
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the SBRC. The TTT building is designed as a net zero energy and water building and 

aims to achieve Living Building Challenge certification much like the SBRC. The 

building is used for educational, training, and demonstration purposes by the TAFE 

Illawarra Institute, as well as the surrounding civic and business communities.  

 

Figure 3-12 Transformational Technical Training (TTT) building. 

The TTT building is a 1,020 m2 facility featuring 500 m2 of teaching space including 

185 m2 of practical laboratory training space on the 800 m2 first floor. 100 m2 of 

administration office space and reception is located on the ground floor.  

3.5.1 Building façade 

Much like the SBRC building, a high level of insulation is present at the TTT building. 

Block-type wall construction is used on the ground floor where the building is cut into 

the slope of the ground. Steel framed external walls, clad in fibre cement panels are 

used on the first floor. Minimum R2.5 insulation is used in external walls. 

External windows and glazed doors consist of a combination of double glazing and high 

performance single glazing. 

3.5.2 Energy efficiency 

As a net zero energy building, a number of energy efficient design features are present. 

Large north-facing windows with high performance glazing are used to maximise the 
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amount of natural lighting. Artificial lighting is all LED and is controlled by occupancy 

sensors.  

The building is north facing and has large roof overhangs to reduce summer solar heat 

gains but allow winter solar gains into the building. A solar hot water system is 

installed, significantly reducing loads associated with DHW heating.  

3.5.3 Local generation 

A solar PV system is installed with capacity of 28 kWp. Approximately 40 MWh of 

energy is generated annually. 

3.5.4 Description of Building Systems 

HVAC services include a 60 kW GSHP system supplying heating and cooling to 

teaching spaces on the first floor. The common area and horticulture labs on that floor 

are both naturally ventilated. On the ground floor, a separate conventional ASHP 

system services the office and reception areas. Refer to water and air schematics of TTT 

in Figure 3-13 and Figure 3-14, respectively.



 

64 

 

 

 

 

Figure 3-13 TTT building HVAC water services schematic [78]. 

 

Figure 3-14 TTT building HVAC air services schematic [78].
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3.5.5 Energy monitoring 

Energy monitoring is capable through the Delta Controls BMS. Sub metering is 

available for electrical circuits as outlined below in Figure 3-15 using EP&T G3 

intelligent meters connected to the BMS. 

 

Figure 3-15 TTT electrical meters and sub-meters. 

The ‘Hydraulics’ meter includes all energy involved with pumping and treating of the 

rainwater supply, as well as pumping of ground heat exchanger fluid for the GSHP 

system.  

 

3.6 Enterprise 1 – University of Wollongong  

Enterprise 1, another building situated at the University of Wollongong’s Innovation 

Campus, is a commercial office building whose tenants include multinational 

corporations and UOW research institutes. It is a three-story building with a total floor 

size of around 10,000 m2 and was opened in 2011.  

3.6.1 Building façade 

The building consists of a concrete framed shell with lightweight curtain wall cladding. 

Operable slatted timber louvres (shown in Figure 3-16) provide shade at the east and 

west ends when needed. External windows are double glazed with aluminium frames. 

The insulation installed in the external cladded walls achieves an R-value of 2.5. 

TTT Main Incomer

HVAC 1

HVAC 2

HVAC 3

Lift

L00 Power L01 Power

L00 Lighting L01 Lighting

Hydraulics
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Figure 3-16 Enterprise 1 building east/west timber louvres [79]. 

 

3.6.2 Energy efficiency 

The building has been designed to achieve a minimum 5 star NABERS base-building 

rating. A base-building rating concerns the greenhouse gas emissions associated with 

energy consumed by core building services such as common area lighting, lifts, HVAC 

central plant (not including supplementary HVAC used by tenants), and exterior 

lighting. The base building assessment does not consider energy consumed by tenancy 

activities.  

The 5-star base-building rating means the building can be considered as state-of-the-art 

for a building of its type and one which is a good candidate to be compared against net 

zero energy buildings. Occupancy controls on office lighting systems aim to reduce 

unnecessary lighting use, as well as in bathroom areas where lights are switched off 

after a 1 hour period with no detection. Low energy compact fluorescent downlights are 

used, along with T5 linear fluorescent fittings in offices. This gives a resulting overall 

lighting power density of 9.4 W/m2, which can be calculated from electrical plans and 

equipment schedules in the operation and maintenance manuals for the building 
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3.6.3 Description of building systems 

Mechanical HVAC equipment installed in the Enterprise 1 building includes 2 x 

600 kW chillers. These are designed so that either of the two chillers is able to provide 

50% of maximum demand. 2 x 202 kW gas fired boilers are installed to meet heating 

demand. All of the 13 Air Handling Units (AHU’s) are equipped with variable speed 

drives. The measured total yearly HVAC energy consumption of the building for 2014 

was approximately 373,000 kWh. 

The lighting system as previously described is metered in combination with general 

plug loads. The combined yearly energy consumption of light and power was 

approximately 1,082 MWh. It was estimated that the contribution of lighting to this 

combined load is 492 MWh, based on the model developed for this research which uses 

lighting specification inputs described above. Two lifts operate between the three 

above-ground floors and the basement carpark. These contribute around 8,000 kWh per 

year to overall energy consumption. 

3.6.4 Energy monitoring 

Less data is available for the building loads in Enterprise 1 as this is a much more 

conventional building and metering is less extensive. However, due to the NABERs 

rating requirement, electrical, gas, and water metering is required for key building 

systems so that consumption of these sources can be factored in the annual NABERS 

assessment. The electrical meters of interest in this study are: 

• Incoming mains 

• 3 HVAC meters measuring water pumps, cooling towers, pumps, chillers, 

AHU’s, and other ventilation fans 

• Base-building light and power 

• Tenant light and power 

 

3.7 Summary of building features 

A brief summary of the key building features for all case study buildings is given in 

Table 3-1. These features may have a significant bearing on the overall energy 

performance of the building and the benchmark model for each case study will be 

constructed around these features. 
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Table 3-1 Summary of building features 

 TTT SBRC Enterprise 1 

Occupancy Type Education and Training Education, Research and Training Commercial 

Approx Number of Occupants 150 50 900 

Number of Floors 1 2 4 

Total Floor Area 1 021 2 600 11 874 

Wall Type Combination of concrete 

blockwork and metal 

clad/steel frame 

Combination of concrete and steel 

framing, with recycled brick and 

timber cladding facade 

Concrete with curtain 

wall cladding 

Wall Area 813 2 261 3 730 

Glazing Type Combination of double 

glazing and high-

performance single 

glazing 

Double glazing Double glazing 

Glazing Area 218 652 2 261 

Lighting Type LED LED T5 Fluorescent T-Bar 

Troffer in office spaces 

Lighting Control Motion sensor & PE cell Motion sensor & PE cell Control schedule and 

motion detection after 

hours 

Average Lighting Level 193 213 320 

Lighting Power Density 4.75 1.60 9.40 

HVAC Type 3x Reverse cycle 

geothermal heat pumps 

(total cooling capacity 

45 kW) 

1x water-cooled VRF-

type heat pump (total 

cooling capacity 27 kW) 

1x Air-cooled reverse cycle 

chiller (total cooling capacity 

110 kW) 

2x Reverse cycle geothermal heat 

pumps (total cooling capacity 

34 kW) 

Central chilled water 

system (total cooling 

capacity 1200 kW) 

Central gas-fired hot 

water system (total 

heating capacity 

400 kW) 

Cooling Setpoint 24.5 24.5 24.0 

Heating Setpoint 19.5 19.5 21.0 

    

3.8 Summary 

In this chapter, the purpose and methodology for simulation of the case study buildings 

has been presented, as well as details on the buildings themselves. The uncertainties that 

may cloud simulation results such as unpredictable weather conditions and occupant 
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behaviour were considered and a validation methodology was presented to account for 

these uncertainties.  

The schedule and methodology of simulations was outlined for glazing, lighting control, 

window shading, and HVAC setpoint. Case study buildings to be simulated were 

introduced with a description of their construction and features, including energy 

efficient building technology and energy monitoring equipment that may be installed.  
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Chapter 4  Model Validation & Performance Simulation 

4.1 Purpose of building simulation 

The work in this chapter focusses on modelling and simulation of energy consumption 

related to different building scenarios for the three test cases introduced in Chapter 3. 

Through simulation, it is possible to investigate the impact on energy consumption 

caused by utilising different construction materials, appliances, lighting systems, etc. in 

the building design as well as how occupants interact with a building which might 

otherwise be impractical or impossible to investigate in reality. Verification of the three 

case study building models is an essential step towards having confidence in the results 

of the simulations performed in the next chapter. The outcomes of these simulations 

will demonstrate the effects on whole-building energy consumption that different 

building elements or parameters may have had and how this may impact the future 

design of net zero energy buildings. 

4.1.1 Relevance to net zero energy 

When considering net zero energy building principles, reduction of energy requirements 

is at the forefront of objectives. Simulating different building technologies, operating 

parameters and usage schedules enable a designer to optimise the design of a building to 

use the least amount of energy possible, reducing the capacity or operation time of 

renewable energy required to achieve net zero.  

In such a complex system as a building, altering one parameter to achieve a positive 

outcome in one aspect may have a detrimental effect on other aspects. One example of 

this is to introduce a window shading solution such as blinds or curtains. In summer, 

shading the windows during the day likely diminishes the effect of solar gains on the 

building, potentially lowering the cooling load and hence the electricity required by the 

HVAC system. However, a consequence of covering windows during the day is that the 

amount of daylighting is reduced, therefore requiring an increase in interior artificial 

lighting and hence an increase in the electricity required to light the building to a 

comfortable level. To complicate matters further, whilst the HVAC loads are reduced by 

implementing window shading, the increase in artificial lighting required as a result 

generates heat and potentially increases HVAC loads in some situations.  
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Building modelling and simulation provides a way of quantifying the effects of such 

interdependent systems. In the above case, simulation would enable the designer to 

decide whether or not window shading would be the most effective approach to 

improving energy efficiency, or whether the added lighting energy required and the 

potential cooling load increase from waste heat has a negative impact on the overall 

energy consumption of the building. 

In this project, several interdependent scenarios similar to the example above will be 

investigated using building simulation. DesignBuilder [80] is chosen for this given that 

it is readily available, user friendly, and crucially, provides a demonstrable level of 

accuracy. It is necessary to determine the sensitivity of the building to changes such as 

type of window shading, lighting, HVAC system, and construction materials used, as 

well as the way in which the various technologies are implemented. The aim of 

simulating these scenarios is to minimise the overall building energy consumption with 

a view to achieving net zero energy status when all factors of the different building 

systems are considered, as well as to determine the contribution that energy efficient 

technology may make to overall energy savings to a building in a broader sense. 

 

4.2 Planned outcomes of simulations 

The application of the simulation methodology described in Section 3.3 was planned for 

implementation to each of the three test cases. The planned outcomes of the simulations 

were as follows (noting that it was anticipated that the outcomes would have relevance 

beyond the case study buildings, i.e. would be applicable to efficiency improvements in 

the built environment in general): 

• Gain an understanding through simulation of how different building elements 

interact through a variety of scenarios and what consequences this interaction 

may mean for whole-building energy intensity in a broader context; 

• Make comparisons between benchmark and simulated scenario data to 

determine the overall contribution to energy savings that each energy efficient 

technology makes; 
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• Enable discussion on the potential for improvement of current building codes 

and operating procedures concerning the energy efficiency of building 

components. 

 

4.3 Background of models 

The case study buildings include two net zero energy buildings and one modern 

commercial building. The two net zero buildings are small educational facilities – one 

approximately 1,000 m2 and the other approximately 3,000 m2. The commercial 

building is approximately 10,000 m2. 

Despite the differences in purpose and size between the net zero educational buildings 

and the commercial building, meaningful conclusions were expected to be drawn from 

the comparisons made between simulation results for the three buildings. 

4.3.1 TTT  

The DesignBuilder model of the Transformation Technical Training (TTT) building at 

TAFE Illawarra’s Yallah Campus in NSW, Australia, was developed using 

architectural, mechanical, and electrical drawings sourced from the project manager of 

the building construction. The building floor plan was modelled as specified in the 

drawings, as were all glazing elements and lighting specifications. Some simplifications 

were made to the model where deemed either too complicated to model, or would have 

had little bearing on the simulation results, such as the finer details of the roof design in 

some areas. 

As the DesignBuilder library has an extensive, but not exhaustive library of building 

materials, good approximations were found for wall, roof, and floor construction 

materials, as well as insulation and window glass. A visualisation of the TTT building 

model developed in DesignBuilder is provided in Figure 4-1, illustrating the external 

layout of the building. 
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Figure 4-1 TTT building model physical geometry as modelled in DesignBuilder. 

The lighting specifications and the required lighting intensity levels for each building 

zone were included in the provided design details, so it was relatively straightforward to 

enter this data into the model to provide the specific lighting output. The design level of 

lighting output was adjusted to suit the DesignBuilder requirement of specifying 

lighting units in W/m2/100 lx. Using these units allows for variation between the 

different case study buildings. Each building has varying lighting requirements and 

comparing them on a lighting power density basis alone would not provide a fair 

comparison. Introducing the lux levels in the lighting specification allows for fair 

comparison between buildings.  

For example, Building 1 has an installed lighting power density of 5 W/m2 and is 

required to achieve an overall lighting level of 100 lx. This results in a lighting 

specification of 5 W/m2/100 lux. Building 2 has a lux level of 240 and a lighting power 

density of 6.5 W/m2. The lighting specification for Building 2 is 2.71 W/m2/100lx. It is 

illustrated that although the lighting power density in Building 2 is higher than that of 

Building 1, the lux level required is also higher. Building 2 is more efficient at 

achieving its required lux level than Building 1.  

As lighting in the building is controlled primarily by zone occupancy, lighting operation 

schedules were assumed to closely align with building occupancy schedules. These 

were both approximated based on the energy use data, which tends to be indicative of 

building occupancy and occupant behaviour to some degree, and were also correlated 

with anecdotal evidence from staff occupying the building of general occupancy 

periods. Additionally, daylight lighting control was used to adjust the output depending 

on the amount of natural light entering the room.  
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The HVAC system was modelled using the Simple mode in DesignBuilder. This 

reduces the complexity of the model by eliminating the requirement to specify every 

element of the HVAC system – a complex and intensive process. Instead, Simple mode 

uses an idealised load calculation method which utilises constant coefficients of 

performance as specified by the modeller [80]. It is possible to specify the energy 

associated with pumps and fans separately which can be determined using BMS energy 

data. Because Simple mode is used, the energy model for HVAC is not expected to be 

as accurate as other aspects of the model when compared to the real building, however 

relative changes in energy use should still be valid across model results since the HVAC 

model specification will be consistent. 

The natural ventilation mode during simulation was Scheduled as opposed to the more 

complex alternative of allowing DesignBuilder to determine through calculation (i.e. 

Calculated mode). Scheduled sets a nominal air flow rate for the zone and is controlled 

by an operation schedule. Natural ventilation can occur if zone temperatures and outside 

temperatures are within the prescribed temperature bands and as long as the schedule 

allows. This is different to the Calculated mode which, instead of using a nominally 

specified air flow rate, calculates the flow rate based on outside conditions such as wind 

direction and velocity, and window design. As sufficient results were achieved using 

scheduled natural ventilation, Calculated mode was not necessary and further model 

simplification was achieved.  

Air infiltration was left at the default constant value of 0.7 air changes per hour (ac/h) as 

specified by the standard DesignBuilder modelling template. This value was left at the 

default as no measured data from air permeability tests was available to better inform 

the model. It was assumed that air infiltration was constant at all times due to it being 

infeasible to test for this. A constant infiltration rate was assumed across all three 

buildings being studied. 

As little data was available about electrical equipment in the building, assumptions had 

to be made based on the small amount of energy data which was available. This energy 

data included HVAC loads, lighting loads, and general purpose outlet (GPO) loads for 

the first three months of 2015; two summer months and the first month of autumn. 

Generic loads were then specified in the model with the intention to represent all 

general electrical equipment such as computers, desk lamps, kitchen appliances, etc. 
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Once all model input requirements had been satisfied, many simulations were run in 

order to fine-tune the benchmark model against the available measured data. This was to 

ensure a properly validated starting point. It was found that much of the uncertainty of 

the model came from approximations of operation and occupancy schedules. Using the 

available data, it was possible to tune much of this uncertainty out during the validation 

simulations. Some uncertainty remained as stochastic factors such as occupant 

behaviour and weather events will always ensure some degree of uncertainty. 

4.3.2 SBRC 

The Sustainable Buildings Research Centre (SBRC) model was based on one developed 

previously by another researcher [51]. As this model was developed for different 

purposes, its physical accuracy was not as high as the TTT model and some adjustments 

were required to get the model representative of the physical building. Glazing 

specifications were not according to the architectural drawings, and other elements such 

as skillion roof overhangs were not accurate. Some simplifications were also made such 

as the omission of exterior balustrades and stairways, and complex slatted sunshades at 

the east and west of the building. The geometry of the SBRC model from DesignBuilder 

is illustrated in Figure 4-2. 

 

Figure 4-2 SBRC building model physical geometry as modelled in DesignBuilder. 

Once again, knowing the lighting specifications and the required lighting intensity 

levels for each building zone, data was entered into the model to provide the specific 

lighting output. The design level of lighting output was adjusted to suit the 

DesignBuilder requirement of specifying lighting units in W/m2 per unit 100 lx. 
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Lighting schedules were determined from BMS lighting energy use data. It was possible 

to develop a schedule to follow the underlying trends present in the energy data for the 

interior and exterior lighting of the building. Lighting daylight control during the day is 

also used to adjust the output depending on the amount of natural light entering the 

room.  

Like the TTT, the HVAC system for the SBRC was modelled using the Simple mode in 

DesignBuilder. Energy associated with pumps and fans is specified separately and is 

informed from viewing BMS energy data.  

The natural ventilation mode used was ‘Scheduled’. Air infiltration was applied 

building-wide at 0.3 ac/h in accordance with the targeted infiltration rate being less than 

0.5 as specified in the SBRC building users guide. It was assumed that air infiltration 

was constant at all times. 

Generic loads in the model were specified based on BMS electrical data. These are 

intended to represent all general electrical equipment such as computers, desk lamps, 

kitchen appliances etc.  

As with the TTT building model, benchmarking simulations were performed in order to 

establish model validation against measured data. Uncertainties associated with 

operation schedules were eliminated as much as possible, and window shading detail 

was added to cut down on solar gains into the building which appeared to give 

unrepresentative temperature results due to the large glazed curtain walls on the western 

end. 

4.3.3 Enterprise 1 

The Enterprise 1 model was built from scratch using the architectural drawings. The 

building façade has been simplified due to the high number of windows resulting in an 

unacceptable simulation time. The total window area however has been accurately 

represented. Glazing type for the model was specified as double glazed clear. Figure 4-3 

shows the model geometry of the Enterprise 1 building model. 
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Figure 4-3 Enterprise 1 model physical geometry as modelled in DesignBuilder. 

The air infiltration rate assumed for the Enterprise 1 model is 0.7 ac/h, and this is 

assumed to be constant at all times. Simple HVAC mode is used here to reduce 

modelling complexity, with the auxiliary loads being specified separately, just as they 

are done with the other two models. 

Lighting densities for the model were specified according to those outlined in the 

Enterprise 1 building construction documentation. An average base lighting power 

density of 9.4 W/m2 was calculated based on the primarily 28 W T5 fluorescent lighting 

fixtures installed throughout the majority of spaces in the building.  

4.3.4 Summary 

With the models being created to the highest level of accuracy according to the details 

available, there are still unknowns and assumptions made which may affect the 

behaviour and results of the models. To reduce errors associated with these 

assumptions, it is necessary to perform a validation process for each of the models to 

ensure they will give reliable and representative results. 

 

4.4 Validation of models 

To ensure that building models are an accurate representation of reality and that their 

data outputs are reliable, it is critical that they are properly validated and verified so that 

they can be relied on to give useful conclusions about net zero energy buildings. By 

comparing the data generated by the models with analogous data measured from the real 

buildings, and coupling this with a weather file in the model created from actual 

measured data from a site nearby to the building, errors in the model can be identified 
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and tuned out to a point where the building model can be said to be a satisfactory 

representation of the real building. Errors associated with random events and behaviours 

in the building must be identified and discounted during the validation process. It is 

very difficult for the model to be able to consider these random events and thus care 

should be taken to ensure they do not influence the validation process. This may result 

in the building being tuned for the specific behaviour observed during the validation 

time period, but then the model would cease being properly representative outside of the 

validation period. The desired result is a model that can represent the building over any 

given year with reasonable accuracy. 

4.4.1 TTT 

The data available for validating the TTT building model was limited. Whilst the TTT 

BMS has the capabilities of storing large amounts of energy and temperature data, a 

BMS computer failure had resulted in a malfunction with data being written to storage. 

As a result, energy meter data was only available for the first three months of 2015, 

covering a seasonal transition period of summer to autumn. Temperature data from the 

BMS was also unavailable. This challenge was overcome by using data sourced from 

iButton temperature sensors installed at the TTT as part of research being carried out by 

another researcher from the SBRC. This data, combined with a weather file assembled 

using a combination of data measured at the TTT and also from the SBRC weather 

station (about 20 km north of the TTT), enabled the thermal response of the model to be 

validated against measured data – albeit for only a winter heating case between 20/7/15 

and 27/7/15. As outlined in Section 3.2.2, ideally temperature data for both summer 

cooling, winter heating, and natural ventilation would be used to be able to ensure 

comprehensive validation. However, in this case the data simply did not exist to be able 

to make this possible, and waiting for summer in order to capture the data was 

unfeasible due to time constraints. Nonetheless, a good result was observed when the 

temperature profiles of the model were compared with those of the measured data in the 

selected rooms of the building. The rooms chosen for validation were selected for their 

positioning in the building and their types of use. This is summarised in Table 4-1. 
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Table 4-1 TTT representative zones for temperature validation. 

Room Reason for selection Position in building 

Ground floor 

office 

Representative of the ground floor of the TTT in both type of use, 

and intype of climatic conditions 
Ground floor – SE side 

Seminar 
Typical classroom on northern side of the building with high 

levels of solar gain 
Level 1 – NW side 

Building 

simulation 

room 

Classroom and large meeting room. Chosen in addition to the 

Seminar room due to being in different location and experiencing 

lower solar gains 

Level 1 – SE side 

Gallery 
Large common area. Naturally ventilated only. All other rooms 

chosen for validation have heating and cooling available 
Level 1 – Spanning E-W 

The period chosen for validation of temperature profiles was 20/7/15 to 27/7/15. This 

was chosen primarily because it was the week with the most complete weather dataset 

and temperature data, however it is also a good representation of a typical Winter 

operating week at the TTT. Figure 4-4 shows the comparison between measured 

temperature and simulated temperature for the ground floor office. A sound match is 

observed between the two profiles. The model appears to overestimate the peak 

temperatures of the room over the two weekend days when no HVAC is operating in the 

space.  

 

Figure 4-4 TTT Ground floor office temperature profile comparison. 

The NMBE is calculated as -1.1%. The negative sign indicates that the model over 

predicts the temperature on average, and by a magnitude of 1.1%. The highest levels of 

error are observed to be in the mornings where HVAC does not commence operating at 

the exact same times in reality as in the model. Error during this stage of the day can be 

more readily discounted as the factors influencing it (variations in occupancy-driven 
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HVAC operation) are difficult to predict and thus build into the model. This error can 

be reduced by matching simulation schedules to occupancy data; however, this would 

greatly increase modelling time and complexity, and could never be robust enough to 

exactly match energy/temperature profiles in all situations. Finding an exact match of 

energy/temperature profiles is not the intention here, rather finding a model that is able 

to represent the real building in general terms, without considering the randomness 

associated with buildings such as the weather and human factors, is the main aim. The 

most important sections of Figure 4-4 are how the building cools down at the end of the 

day once occupancy has ceased and artificial heating has ended. As can be seen, the 

model behaviour compares well to that of the real building during these periods. Having 

plotted the model values and measured values on a scatter graph, the coefficient of 

determination can give an indication of how well the model fits the measured data. This 

is shown below in Figure 4-5. 

 

Figure 4-5 R2 for ground floor office temperature comparison. 

A good correlation is observed showing an R2 value of 0.8556 meaning 85.6% of 

variance is explained by the model. The horizontal streak of off-trend data points on the 

upper right hand side are due to the model heating the building in an ideal manner such 

that the temperature in the zone is held at exactly the heating setpoint. This would not 

be true of the real building which is permitted to vary within the comfort band and in 

some cases heating is not present at all in the real building over the sample validation 

period. 

Figure 4-6 shows the results of the same comparison for the seminar room at the north 

western area of the first floor. Again, a sound visual comparison is observed. The 
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NMBE in this case is -0.5%; a close match, with the model on average slightly 

overpredicting temperatures.  

 

Figure 4-6 TTT Seminar room temperature profile comparison. 

As in the gound floor office case, the building model responds very well during the 

unoccupied ‘cooling down’ overnight period,  indicating that the thermal response of 

the building model is sufficiently accurate. Observable differences once again appear to 

come from the model’s inability to predict random HVAC activity which deviates from 

the general schedule. The temperature profiles for the two weekend days show a good 

match, with minor notable differences being a slight delay in the temperature peak of 

the model on Saturday 25/7/15 and the model taking longer to cool down overnight on 

both days. 

The temperature profile comparison for the building simulation room is shown in Figure 

4-7. Here the match is not as good as those seen previously, however a broad correlation 

is still observed. The NMBE is -7.6%. Whilst this error is higher than those seen 

previously, it is still well within the acceptable 15% limit specified in Section 3.2.2, and 

general behaviour of the model remains reasonably consistent with actual.  
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Figure 4-7 TTT Building simulation room temperature profile comparison. 

Figure 4-8 shows the scatter graph calculating the coefficient of determination. An R2 

value of 82.6% shows good correlation between the model prediction and the measured 

data. 

 

Figure 4-8 R2 for building simulation room temperature comparison. 

The model in this case appears to overestimate the temperature during overnight 

periods. This is the area where previous comparisons have performed best. However, 

taking a look at the comparison for the Sunday 26/7/15, the comparison is much better 

than the previous weekdays. It may be possible that the poorer comparison during the 

week was due to occupancy factors involving the HVAC system. It appears as though 

the heating was activated in the mornings on Monday and Tuesday, but that this heating 

was not sustained throughout the day. The building then started cooling from an earlier 

time than that of the model. The similar (but offset) cooling gradient most notably on 

the Monday certainly suggests that this may have been the case. As this room is used for 

larger meetings, sometimes involving important guests, the facilities manager tends to 

intervene in the HVAC settings occasionally. This may help to at least partly explain 
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what appears to be an erratic temperature profile for this room, leading to discrepancies 

with the model. 

Figure 4-9 shows the comparison for the gallery. As this zone is natural ventilation 

only, it is representative of the rest of the building when it operates under mixed-mode 

natural ventilation conditions as it often would during autumn and spring periods. It is 

therefore important that this comparison be a good match in order to give confidence in 

the overall building mode performance whilst in natural ventilation mode. A generally 

favourable comparison is observed with a NMBE of -10.07%. This is the highest error 

of all building zones examined, but still within the 15% limit.   

 

Figure 4-9 TTT gallery temperature profile comparison. 

The model performs well in following the correct trends throughout the period, although 

it does overestimate the temperature in the gallery by 1-2 °C in parts.  

It should be noted that some of the automatically actuated horizontal external louvers 

installed on the western side of the gallery have been stuck in the open position for an 

extended period of time due to equipment failure. It would be difficult to quantify the 

effect that this would have on the internal temperature of the space, although it must be 

assumed that this would go some way to explaining the overestimation of the 

temperature in the model.  

Overall, the temperature profiles generated by the model compare well with those 

measured in the building. As mentioned above, a common discrepancy was that the 

model tended to overestimate the temperature to a minor degree. A possible reason for 

this in the gallery is given above but this does not explain the other zones. One factor 

that might have some bearing on this is the solar heat gain. An assumption was made in 
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generating the weather file for this validation that the solar insolation data at the TTT 

building site would be close enough to that of Wollongong. Solar data measured by the 

SBRC weather station was subsequently used owing to the fact that the TTT weather 

station data was inaccessible. A smaller than assumed solar heat gain into the building 

would certainly explain some of the difference in temperature. Many other factors may 

also contribute. The physical model of the building is a simplified representation. Not 

all walls, internal and external, are exactly as constructed in reality. Assumed insulation 

performance specifications are used in the model which may not match those of the real 

building exactly. Occupancy also may play a role. As this is an educational building, 

occupancy rates fluctuate throughout the year and are difficult to both predict and 

survey at times. The modeller must make a reasonable assumption in regard to this. 

Follow-on effects from occupancy which are difficult to account for in the model, such 

as manual window operation or HVAC setpoint adjustment may also contribute to 

temperature differences.   

Having taken all of these contributing factors into account, the thermal performance of 

the model was considered a sufficiently accurate representation of the real building for 

it to be considered valid. 

The second stage of validating the model as outlined in Section 3.2.2 was a comparison 

of energy use. Here, it must be noted that energy use is more sensitive to stochastic 

influences than temperature profiles. Whilst the temperature profiles of the building will 

generally follow broad patterns with minor variations as a result of occupant behaviours 

or other random changes in behaviour, energy use can exhibit more significant changes 

depending on the size of the electrical equipment and its frequency of use. Lighting 

loads for example are generally constant and follow a regular pattern most of the time. 

Higher than normal use may come from occupants working late hours or poor weather 

leading to reduced daylighting levels. Both of these will lead to short term increases in 

lighting energy consumption. The same can be said for general equipment power loads. 

This category includes any equipment plugged into a regular 230 V single phase general 

purpose outlet such as computer and office equipment, microwaves in kitchens, etc. 

Fluctuations in general energy use should be expected to correspond with changes in 

building occupancy rates, such as holiday periods.  
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Figure 4-10 shows the comparison of lighting electrical energy consumption at the TTT 

for the first three months of 2015. The data is in daily totals (kWh) as this is what was 

available from the limited range of data from the BMS. Each peak and trough on the 

chart represents a full week (consumption over the two weekend days is significantly 

lower than on weekdays). The NMBE is calculated as 12%, indicating that the model 

under predicts the lighting energy use in the building. This NMBE is slightly outside of 

the acceptable range as outlined by ASHRAE Guideline 14. As well as this, the 

calculated CVRMSE of 38% is also outside the range of acceptable error. 

 

Figure 4-10 TTT lighting electrical use comparison. 

It is important to note that lighting and equipment use is heavily influenced by human 

behaviour, a factor which is difficult for the model to predict in such an unconventional 

and non-commercial building. A higher sample size of data may have improved the 

correlation, as would higher resolution data. Visual inspection of Figure 4-10 indicates 

that the lighting model is generally representative of the TTT lighting system when 

unforeseen increases or decreases in use attributable to human behaviour are discounted. 

It must be noted that at the start of the graph, summer holidays are underway for the 

month of January and thus building occupancy is low at this time. This explains why the 

model is overestimating lighting use at this time. The first two weeks in March 

experience a large spike in lighting use which was not predicted by the model. Reasons 

for this could be a combination of overcast weather and the return of classes to the 

building for the new semester, resulting in longer occupied periods for that fortnight due 

to orientation proceedings.  

The comparison of general equipment power loads is shown in Figure 4-11. Here, three 

distinct levels of general power use are observed in the BMS data. Logical speculation 
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may explain this as follows: the first stage spanning from the start of January to the end 

is the summer holiday period where all students and staff are away; the second stage, 

which sees an increase of around 40% corresponds with the return of staff to work; and 

the third stage which is a further increase of around 25%, and coincides with the return 

of classes and student occupancy. Without a full year of data, it is difficult to make 

accurate enough assumptions about general power use to be able to build a model fully 

able to predict it. This is further complicated by the timetabling methods used to 

schedule classes in the building as they will vary from year to year and are somewhat 

sporadic due to the remoteness of the campus on which TTT is situated. 

 

Figure 4-11 TTT equipment power electrical use comparison. 

Because of these complications and unknowns, the model has been developed to best 

suit the data available. The NMBE for general equipment loads is 6% and the CVRMSE 

is 18%. While the NMBE is within acceptable limits, the CVRMSE for general power is 

slightly outside the 15% limit.  

Whilst electrical loads may vary slightly throughout the week, the model is not detailed 

enough to factor in these random variations, thus distinct linear patterns are seen 

throughout the scatter graphs presented in this chapter, where the model output will stay 

relatively constant while the measured load profile experiences some variation. Again, 

higher resolution data for a longer period would possibly help to mitigate this effect. 

An assumption is made, in lieu of the rest of the year’s data, that the general power 

usage continues on at the same level seen at the end of the available data until the winter 

holidays, where it steps back down to a staff-only level. It will then step back up once 

classes return and then finally step down to the lowest level around December.  
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The HVAC model comparison is shown below in Figure 4-12. As can be seen, the 

model is not as successful at predicting HVAC use as it is in other respects, with a 

calculated NMBE of 12% and a CVRMSE of 50%. Nonetheless, the model does follow 

the measured patterns, and peak energy use in most cases compares well, with the 

exception of periods in late January and early February. The ‘Simple’ HVAC model 

setting in DesignBuilder was used in this scenario which assumes a nominal COP for 

equipment and constant loads for system pumps. It is possible that with more time, a 

detailed model could be developed to simulate a more representative HVAC model, 

however detailed HVAC modelling requires a higher degree of technical proficiency 

and more detailed system information than was available. 

 

Figure 4-12 TTT HVAC electrical use comparison. 

For the purposes of this study, a Simple HVAC model will be sufficient to measure the 

relative impacts on HVAC loads that each scenario will generate. Overall, the HVAC 

model exhibits the correct general behaviour, so it can be said to be moderately 

representative of that of the building. 

Having simulated the TTT building using historical weather data and compared results 

to measured temperature and energy data, an assessment must be made as to whether 

the model is sufficiently representative of the real building. Whilst the model failed in 

parts to meet the acceptable limits as prescribed by ASHRAE for energy modelling, it 

did perform well in thermal modelling.  

Much of the source of error in energy modelling can be put down to unpredictable 

behaviours and events for which the model has no way of factoring in. A larger building 

with a higher number of occupants and more regular operating hours would not be as 

sensitive to these issues as this building is, where anomalous events and behaviours are 
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much more significant due to much smaller base building energy loads. With these 

elements considered, and given that the building thermal model behaves well, the 

overall building model can be considered a valid representation of the real building 

when stochastic influences are ignored. Other minor possible sources of error may have 

come from slight differences between the measured solar insolation data measured by 

the SBRC weather station as data measured at the TTT building was not available. 

However, this will not affect the final results of building modelling given that TMY 

weather data will be used. 

4.4.2 SBRC 

Although the SBRC has extensive data storage capabilities, commissioning issues in the 

first full year of the buildings’ operation meant that complete energy data was not 

available. Fortunately, temperature data representing all three building modes was 

available and thus the building’s thermal response could be validated more extensively 

than the TTT building model, where only winter heating data was available.  

While energy data was also available for summer and winter periods, it was not as 

comprehensive as that available for the TTT building, with general equipment loads not 

available. HVAC and lighting load data was available for the periods of 1/1/14 to 

31/3/14 (two months of summer plus one month of autumn) and 1/5/14 to 31/7/14 (one 

month of autumn and two months of winter). 

Temperature data sourced from the BMS, combined with a weather file assembled using 

Bureau of Meteorology data, enabled the thermal response of the model to be validated 

against measured data for a summer and winter week. Three rooms of the building were 

chosen to be representative of the building’s thermal performance in consideration of 

their position, the architectural elements present in the room, and their use. The rooms 

chosen are summarised in Table 4-2. 
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Table 4-2 SBRC representative zones for temperature validation. 

Room Reason for selection Position in building 

Flexi lab 3 – 

Energy lab 

Ground floor room with small north and south facing 

windows. Large solar inverters are installed here, 

giving high waste heat output. 

Ground Floor, SW side 

Flexi office 1 – 

Water lab office 

A central ground floor room on the western side with 

small south facing windows only. 
Ground Floor, SW/central 

Office East Large open plan area with large amounts of glazing Level 1, E side 

 

The periods chosen for validation of temperature profiles are outlined below in Table 

4-3. 

Table 4-3 SBRC model thermal validation periods. 

Season Start Date End Date 

Winter 14/7/14 21/7/14 

Summer 15/12/14 22/15/14 

 

The following graphs show the comparison between the modelled and measured 

temperature profiles for the rooms chosen in Table 4-2 for the winter and summer 

periods. Figure 4-13 shows the temperature profile comparison for the energy lab in 

winter. This room is situated on the ground floor of the building and houses laboratory 

equipment for thermodynamics and electrical technology. It is also the location of seven 

solar PV inverters, six of which are large 20 kW 3-phase units. A relatively poor 

comparison is observed between the model and the measured data for both winter and 

summer periods, with summer being shown in Figure 4-14. The NMBE for the winter 

and summer periods are 6.8% and 8.2% respectively. This means that the model under-

predicts the temperature in the energy lab by an average of 7.5%.  
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Figure 4-13 SBRC energy lab temperature profile comparison – winter. 

The indication of degree of correlation, R2, shows a poor result, with a very low 

correlation between the model and the measured data for this room across both periods. 

The scatter graph of the energy lab for the summer period is shown in Figure 4-15. 

 

Figure 4-14 SBRC energy lab temperature profile comparison – summer. 

The measured data for this room during both winter and summer periods appears to be 

very erratic when compared to data from the other rooms considered here. One possible 

cause of this may be due to the temperature sensor for the zone being located next to the 

entrance door. An air exchange with the adjacent space, as well as possible air flow 

across the temperature sensor caused by motion nearby each time the door is used may 

be the cause of the erratic temperature behaviours seen here. The weekend period in 

Figure 4-13 (from the 19/7/14) shows a moderately good correlation, albeit with some 

offset error. The weekend period is one where very little activity takes place in this 

room and thus the door is not used. This observation supports the theory that erratic 
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readings are caused by human movement between zones. This is one aspect that cannot 

be considered by the model for two reasons: 

i. The prediction of human behaviour is naturally very difficult to model 

effectively due to its random nature. Long term surveys of every 

entry/exit into and out of the zone may provide some insight that would 

enable basic modelling of characteristic behaviour but this would be 

beyond the scope of the modelling performed here; 

ii. The temperature data output from the model is the average space 

temperature recorded during the specified time interval. This makes it 

impossible to detect the specific temperature recorded next to the 

doorway as recorded by the sensor installed in reality. 

A better outcome would be to change the way temperature is recorded in reality for this 

zone. An average zone temperature would provide a better, more appropriate 

comparison with the data output from the model, rather than the temperature at a single 

point in the room, being susceptible to local effects. 

 

Figure 4-15 R2 for energy lab room temperature comparison – summer. 

Despite the less than ideal way in which temperature is measured for the zone, this is 

unlikely to adversely affect the outcome of the modelling performed here. A visual 

comparison of the temperature profiles shows similar general behaviour and an 

acceptable NMBE for the periods examined. 

The next room at the SBRC chosen for validation is the office adjacent to the water 

laboratory on the ground floor. This room has east and south facing external walls and 
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is regularly occupied by two to three people. The temperature profile comparison is 

shown in Figure 4-16 for winter and Figure 4-18 for summer.  

 

Figure 4-16 SBRC water lab office temperature profile comparison – winter. 

When compared to that of the energy lab, the temperature profiles for this zone are 

much more predictable and thus the model does a better job of determining its thermal 

behaviour. The NMBE is calculated as 2.2% in winter and 4.1% in summer. The model 

appears to underestimate temperatures in this zone. This is most evident over the 

weekend, a time when no mechanical HVAC occurs, where a temperature difference of 

approximate 1.5°C can be observed. The zone appears to lose heat faster overnight than 

the real building once artificial heating has switched off. 

 

Figure 4-17 R2 for water lab office room temperature comparison – winter. 

The coefficient of determination of 64.3% is shown for the winter case in Figure 4-17. 

As was discussed previously with regards to Figure 4-5, the horizontal streak of off-

trend data is due to the way the model idealises the HVAC response by maintaining the 

zone at a constant setpoint. This is not the behaviour experienced in reality. 
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Figure 4-18 SBRC water lab office temperature profile comparison – summer. 

The zone behaviour in Figure 4-18 demonstrates that the building is in natural 

ventilation mode in both the model and reality for the summer period. This is evident 

through the fact that there are few rapid decreases in temperature that are consistent 

with artificial cooling. The natural ventilation system is able to meet the cooling loads 

for that particular week. Whilst the model does not follow the real data exactly, it is 

considered a good result due to the fact that natural ventilation is rather difficult to 

model with high accuracy. A 4.1% NMBE and an R2 value of 55.8% establishes a 

satisfactory level of representation of the real building zone. 

 

Figure 4-19 R2 for water lab office room temperature comparison – summer. 

The temperature profile comparison of the eastern office for the winter period is shown 

in Figure 4-20. This zone is at the eastern side of the building on the first floor. It is an 

open plan office space which is serviced by two Variable Air Volume (VAV) boxes, as 

well as a hydronic slab system. It is observed that the behaviour of the real building 
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does not follow that of the model, particularly during overnight periods. A NMBE of 

7.7% is calculated and R2 is found to be 32.9%, as shown in Figure 4-21. 

 

Figure 4-20 SBRC eastern office temperature profile comparison – winter. 

 

As with previous scatter graphs, the horizontal streak of data shown at the top of Figure 

4-21 is due to the way the model idealised HVAC performance and maintained 

temperature at a constant level. With these data points excluded, R2 improves to 39.2%. 

 

Figure 4-21 R2 for eastern office room temperature comparison – winter. 

One possible cause of the disparity between temperature profiles in this zone is the 

existence of the hydronic slab system. This system is scheduled to operate during the 

summer and winter months, between the hours of 4:00AM and 6:00AM. During winter, 

hot water is pumped through the slab, creating a slow release heat source designed to 

reduce heating loads during the day. Cold water is used during summer, creating a slow 

release heat sink. 
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The hydronic system installed at the SBRC was not included in this model due to the 

complexities of the HVAC system and the fact that the system in reality has not been 

properly commissioned at this stage (though it does still operate). This would make it 

difficult to model the system accurately when operating parameters (flow rates, fluid 

temperatures, etc.) have not been properly defined. The omission of this system from 

the model may explain why temperatures drop overnight by 3-4°C, while in the real 

building temperatures remain much more stable throughout the working week.  

The temperature comparison for the eastern office in summer is shown in Figure 4-22. 

A NMBE of 3.95% is calculated. Whilst this appears to be a good result, the R2 for this 

comparison is only 1%. There is almost zero correlation between the model and the 

measured temperature profiles of the week.  

 

Figure 4-22 SBRC eastern office temperature profile comparison – summer. 

A possible reason for this could be that the building was in natural ventilation mode for 

most of the week. Modelling of large, naturally ventilated spaces using this modelling 

technique is unpredictable given various local weather effects that are not considered by 

the weather file used in the simulations. Temperature profiles will not be a perfect 

match and thus the R2 value may not be the best indicator of model success for this 

case. A better result might have been achieved if the large open plan zone had been 

modelled as several discrete thermal zones. The most important thing to consider is that 

the model temperature profile remained within the comfort band of 20°C to 25°C during 

occupied periods, which is indeed the case as shown in the figure.  

Having compared the modelled temperature profiles for key building zones to the 

measured profiles for a summer and winter representative week, it can be concluded that 

the thermal performance of the building model is representative of the real building. 
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Whilst the model cannot fully represent in detail the temperature response of a zone in 

natural ventilation mode, the overall behaviour is considered to be accurate given that 

the zones do stay within the natural ventilation comfort band. The hydronic slab system 

has been ignored in this model due to it not being properly commissioned, as well as the 

complexity it would add to the model. Given that such little definite data is available, it 

would be very difficult to be able to quantify the energy implications of this system, 

both how much energy use can be attributed to the hydronic system, as well as how 

much of a net benefit it would have to HVAC energy consumption.  

The validation of the energy aspects of the SBRC building model was hampered to an 

extent by data availability. Data was available for the lighting, and IT systems up to 

August 2014, and HVAC data for the entirety of 2014, however general plug loads and 

building services loads are unavailable as these are metered separately and technical 

difficulties prevented these meters from recording data. Additionally, 2014 was the 

SBRC buildings first official year of occupation and thus commissioning processes to 

building systems occurred during the early months of 2014, notably the HVAC system. 

Nonetheless, enough data was available to provide some degree of confidence in the 

model given that the most dominant building loads are represented by a sufficient 

amount of data. 

The energy profile comparison of the modelled lighting system with the real building 

using daily lighting energy consumption is shown in Figure 4-23.   

 

Figure 4-23 SBRC lighting electrical use comparison. 

As described previously, the NMBE and the coefficient of variation of the root mean 

squared error (CVRMSE) are used to describe the accuracy of the energy models - in 

line with [73]. The NMBE and CVRMSE for the lighting model are -1.3% and 16.4%, 
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respectively. This means that the model has overestimated the lighting loads by 1.0%. 

The acceptable CVRMSE limit is set at 15% which suggests this model doesn’t quite fit 

the data available. As with the TTT building model, it should be noted that the lighting 

systems in these net-zero energy buildings are influenced by human behaviour and 

external weather conditions, with occupancy and daylight sensors controlling their 

operation. It is observed that on seven to ten occasions, the model underestimated the 

lighting energy use for the week. This may have been due to higher than normal 

occupancy or lower than normal natural light levels, perhaps caused by a run of days 

with inclement weather.  

Figure 4-24 shows the IT electrical load profile comparison for the SBRC building. A 

NMBE was calculated as -0.3%, showing the model only slightly overestimated the IT 

loads of the building. The CVRMSE is 3.7%, well below the 15% limit. This shows that 

the IT model for the SBRC building is a good match. IT loads are one of the most easily 

predicted, given the load profile is very flat and operates constantly. Since VDI 

infrastructure is used at the SBRC, on-site IT loads are not highly influenced by 

occupancy. Analysis of SBRC IT energy data reveals that IT loads increase by 

approximately 300 W only during week days (the effect of occupancy) on top of a 

1.5 kW base-load. The inaccuracies present in the model at the start of the validation 

period can be explained by the building being commissioned during the first month of 

2014.  

 

Figure 4-24 SBRC IT electrical use comparison. 

The HVAC profile comparison is shown below in Figure 4-25. The NMBE is calculated 

as 2.7%, an acceptable value. However, the CVRMSE is 45.8%. This is far higher than 

the 15% limit. 
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Figure 4-25 SBRC HVAC electrical use comparison. 

As with the TTT building HVAC model, the model for the SBRC did not consider 

detailed system specifications. Rather, nominal system COP’s and auxiliary loads are 

specified. The general operation of the HVAC system compares well on a larger 

timescale, with the model showing the winter period being the time of highest HVAC 

demand. The three peaks during the first three months of the year appear out of 

character and these can be explained by the building still undergoing commissioning 

during this time.  

Having used historical weather data to compare the SBRC model simulations with real 

measured temperature and energy data from the same period, it must be decided 

whether the model is a satisfactory representation of the real SBRC building. Some 

aspects of the model did not meet the error quantification metrics, particularly the 

HVAC energy consumption. The temperature comparisons were a good fit overall with 

the measured data, with inaccuracies coming from the complex and unpredictable 

dynamics involved with natural ventilation, as well as the simplification of the model 

HVAC system not incorporating the hydronic slab system. With these factors 

considered, the thermal behaviour of the building was generally a good representation 

of the SBRC building for the zones considered. 

The comparisons of energy aspects of the model were generally acceptable for the data 

that was available at the time. Whilst the HVAC model CVRMSE was three times 

higher than the acceptable level, the general long term behaviour of the system 

compared well with the measured data. There were too many unpredictable factors, as 

well as technical modelling difficulties associated with the HVAC model, to make it 

more accurate on shorter timescales. 
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The SBRC building model, despite the identified shortcomings, can be considered an 

acceptable representation of the real building for the purposes intended in this study. 

4.4.3 Enterprise 1 

Metering capabilities at the Enterprise 1 building are less extensive than at the SBRC. 

However, as the building has been operating for longer, more reliable data is available. 

For this reason, it is possible to validate the Enterprise 1 building model using a full 

year of energy data. Unfortunately, the energy model is only able to be validated against 

the HVAC system and the combined light and power loads, as the lighting system and 

all plug loads are metered together in the building. No separate data on IT is available.  

Furthermore, temperature data for Enterprise 1 is not available. This is one difficulty 

encountered when studying a more conventional commercial building. Due to the 

SBRC and TTT being educational buildings, they have provision for research to take 

place within them, meaning a deeper level of information is able to be obtained. 

Enterprise 1, being a fully functioning commercial building, does not have this kind of 

information available and organising to obtain it would require a potentially lengthy 

planning and consultation process which could not be afforded by the timeline 

constraining this research. However, that given the same modelling techniques were 

used on the previous two buildings and that a good result was observed in those two 

cases, it can be inferred with some confidence that the thermal behaviour of this 

building is also acceptable. 

The energy use comparison for the light and power systems is shown in Figure 4-26. 

The NMBE is 1.7%, and the CVRMSE is 5.9%. These numbers are well within the 

prescribed error limits. The model tends to reduce consumption from August onwards, 

while in reality, the opposite trend appears to occur. Apart from this discrepancy, the 

light and power comparison is a valid one. 
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Figure 4-26 Enterprise 1 light and power electrical use comparison. 

The energy use comparison for the HVAC system at Enterprise 1 is shown in Figure 

4-27. A good visual comparison is observed in general. A calculated NMBE of 2.8% 

and CVRMSE of 21.7% confirmed that the HVAC model is the best representation out 

of all three buildings. Reasons for this are that the Enterprise 1 HVAC system is more 

conventional compared to the experimental systems installed in the SBRC and TTT 

buildings. The occupancy of Enterprise 1 is also higher and steadier than at TTT and 

SBRC which are educational buildings. This makes all electrical load profiles much 

more predictable.  

 

Figure 4-27 Enterprise 1 HVAC electrical use comparison. 

Without a complete set of data for each separate building system, and temperature data 

to ensure thermal behaviour is correct, it is difficult to say that the Enterprise 1 model is 

a good representation of the real building. However, based on previous experience with 

the other two buildings which were modelled with the same techniques, we can assume 

with some confidence that the thermal behaviour of the Enterprise 1 model is accurate. 
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Not being able to separate lighting and plug loads, it is difficult to say whether the 

models for each individual building system are accurate on their own. It can be said 

however, that combined, the model does a good job of correctly representing these loads 

over an entire year. The same can be said for the HVAC system. Whilst the CVRMSE 

is higher than the prescribed limit, it is the best performing HVAC model of all three 

buildings. 

It is with these issues in mind, that the Enterprise 1 building model can be said to be 

valid for the purposes of the research conducted here. 

4.4.4 Model limitations 

Any model of an existing building can only be as good as the data and assumptions used 

to verify it. For the three building models presented in this chapter, none of them had 

complete energy data able to represent each typical season of the year. The TTT 

building model was only able to be verified against energy data for summer and 

autumn. Whilst the SBRC and Enterprise 1 models had the advantage of having a full 

year of mechanical HVAC data, other aspects of energy use were missing or were not 

individually metered in the first instance. Where incomplete data is a reality, reasonable 

assumptions must be relied on based on typical benchmark values and technical 

building information. While light and power were lumped into one meter at the 

Enterprise 1 building, making it difficult to validate the lighting model on its own, 

reviewing the technical documentation on the lighting system in the real building 

enabled correct sizing of the system in the model. Whilst simulation results cannot be 

directly compared to metered building data, the assumptions used are able to be relied 

upon. Some assumptions are more reliable than others and depend on the accuracy of 

the information upon which they are based. 

The validation process of efficient building models presents challenges less common for 

models of more conventional buildings. Highly automated systems associated with 

efficient buildings makes energy consumption less predictable as it is based on a higher 

number of variables not necessarily accounted for by the model. 
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4.5 Summary 

Simulations of all three case study buildings were carried out using the real weather 

data. The data generated from these simulations was compared to that measured from 

the real buildings for the same time period and an assessment was made as to whether 

these building models were sufficiently representative of their real versions in order to 

be able to generate reliable results for the purposes of the research presented here. The 

assessment of thermal behaviour of the building models was performed according to 

two error metrics, including the normalised mean bias error (NMBE) and the coefficient 

of determination, R2. These results are summarised in Table 4-4 where the RMSE and 

R2 are averaged across both summer and winter periods where both are available. As the 

thermal data was not available for Enterprise 1, no temperature profile comparisons 

were therefore performed. 

Table 4-4 Building model thermal behaviour error summary. 

Building Building Zone Average NMBE (%) Average R2 (%) 

TTT 

Ground floor office -1.1 85.6 

Seminar room -0.5 78.0 

Building simulation room -7.6 82.6 

Gallery -10.1 86.4 

SBRC 

Energy lab 7.5 8.20 

Water lab office 3.1 60.0 

Eastern office 5.8 17.0 

    

The assessment of the energy consumption was performed according to the NMBE, as 

well as the coefficient of variation of root mean square error (CVRMSE) as described in 

[73]. The results are summarised in Table 4-5. 
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Table 4-5 Building model energy use error summary. 

Building Building system Average NMBE (%) Average CVRMSE (%) 

TTT 

Lighting 12.5 38.4 

General Power 5.9 18.1 

HVAC 12.2 50.1 

SBRC 

Lighting -1.3 16.4 

IT -0.3 3.7 

HVAC 2.7 45.8 

Enterprise 1 

Lighting and power 1.7 5.9 

HVAC 2.8 21.7 

 

It was only possible to work with the datasets available and as such, although validated 

model summaries for each building appear together in the same tables, this should not 

be taken to mean that consistent and perfectly corresponding periods of data were used 

to validate each building. Data used (where it was available) came from varying time 

periods. It cannot be said that every building was validated according to data occurring 

at the same time. 

Overall, the Enterprise 1 building model appears to perform the best when viewing the 

numbers, however it is also the building with the least extensive metering and thus only 

two building systems were able to be assessed against the validation methodology. 

Building size has an effect on the accuracy of the models. A larger building is less 

sensitive to random events that may affect energy consumption. These events are those 

dictated by human activity such as an occupant opening a window or turning on lights. 

Each occupant has differing preferences for thermal and visual comforts. In smaller 

buildings which have less than 50 regular occupants, such as the SBRC and TTT 

buildings, random events linked to occupant behaviour have more influence on energy 

consumption of building systems. The effect of occupants preferring to have a window 

open in Enterprise 1 for example, will have lesser effect on overall HVAC energy 

consumption than it would at the SBRC. This is one reason why the Enterprise 1 model 

achieved a better validation result than the other smaller buildings. Other reasons for 

this may be that the occupancy rate and schedules are more regular due to Enterprise 1 

being a commercial building, whilst the other two buildings are for educational 
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purposes. These buildings have variable occupancy rates and times depending on 

timetabling and other special events. This makes the behaviour of Enterprise 1 much 

easier to predict in the model, thus further reducing error.  
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Chapter 5 Simulation Results and Discussion 

5.1 Simulation Results 

By performing simulations of all three buildings using the validated models in 

DesignBuilder, an understanding into the sensitivity of each building to changes in 

design and construction from the point of view of energy consumption can be gained. 

From this understanding, better informed decisions can be made when designing a 

NZEB or considering upgrades to existing buildings in order to improve energy 

efficiency. It is important when viewing the changes in energy consumption of one 

building system, that its contribution to overall building energy use is considered. After 

all, in most circumstances the end goal is to reduce overall building consumption, not 

just the consumption of one system if, consequently consumption by another system 

may rise. The energy use breakdown (EUB) for each building is shown below in Figure 

5-1. The data used to create these EUB’s is the data generated from the model outputs. 

Due to metering complications and inconsistencies between buildings, complete and 

consistent metered data could not be used to form real-world EUB’s. However, as the 

models are representative of the real buildings, the EUB’s generated are also 

representative of reality. Indeed, the data that was available compares well to the 

modelled EUB’s where comparison was possible. 

 

Figure 5-1 Energy Use Breakdown of three case study buildings. 

From Figure 5-1 it is observed that the two NZEBs are very similar in their EUB, with 

lighting being the smallest component, and HVAC being roughly 50% of overall loads. 

On the other hand, the HVAC load at Enterprise 1 is the smallest component, making up 

only one quarter of overall loads. This means that different outcomes will be expected 
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for overall energy use between the NZEB and conventional building when effects on 

HVAC energy use are significant. 

5.1.1 Glazing 

With the windows of a building needing to serve as both a visual connection to the 

outdoors, and an impermeable barrier to the outdoor elements, they form a critically 

important contribution to a well performing building envelope. The type of glazing used 

in a building can affect energy consuming building systems. Different window designs 

will let different amounts of sunlight into the building. This has consequences for how 

much artificial light is needed to sufficiently illuminate the building. Windows also 

allow heat to pass through them as well as visible light. Due to their transparent nature, 

high levels of conventional insulation are not possible in windows as they are with 

walls. The highest rates of heat transfer per m2 through a building envelope typically 

take place through the windows [34]. For a building with a high window to wall ratio, 

this can mean significant overall heat loss occurs through the building envelope. The 

result of this is that HVAC loads are increased and energy consumption is driven up. 

Whilst having more windows may mean that lighting energy consumption may come 

down, it is likely that HVAC energy consumption will increase. It is this balance that 

will be better understood by simulation of the test cases. 

Before detailed modelling results are outlined, it is important to ensure window 

performance terminology is correctly understood. Solar Heat Gain Coefficient (SHGC) 

is a measure of how well the radiant energy from sunlight is transferred through the 

window and thus adds heat to the space. It is defined as the fraction of incident solar 

radiation transferred through glass (sometimes is it specified as the glass and frame) and 

is expressed as a number between 0 and 1 [81]. A higher SHGC will potentially allow 

more heat to pass into the internal space. This may have benefits in a colder climate, and 

certainly has disadvantages in warmer climates. 

Visible transmittance is a measure of how much daylight passes through the window 

and is also expressed as a number between 0 and 1. A higher number means more light 

is transmitted. This parameter concerns only light in the visible spectrum.  

U-value (otherwise known as thermal conductance) is a measure of how well the 

window conducts heat. The U-value is used to specify many other types of building 

materials and is the inverse of the R-value, the parameter commonly used to specify the 
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performance of insulation materials. U is specified in units of W/m2-K. In other words, 

it is the rate of heat transfer per unit area, per unit Kelvin temperature difference. The U 

value may apply to both glass/air gap and frame, or glass/air gap only. Here, it applies 

to the glass/air gap only. The window frames used throughout all scenarios in this study 

are consistent and thus the specifications of the SHGC and U-value as being ‘glass-

only’ should not adversely affect the analysis. The frame type is aluminium with 

thermal break. 

Table 5-1 shows the glazing specifications for all simulated scenarios for all three 

buildings. A predictable downward trend is observed in most parameters as glazing 

scenarios progress toward the highest performance option (LowE triple glazed). Note 

however that Double LowE glazing performs better than regular triple glazing for 

SHGC.  

Table 5-1 Glazing simulation scenarios. 

Glazing 

Scenario 
Glass Type (Layer 1/2/3) 

Glass 

Thickness 

(mm) 

Air Gap 

(mm) 
SHGC 

Visible 

Transmittance 

U-Value 

(W/m2-

K) 

Single Generic Clear 6 - 0.819 0.881 5.778 

Single 

LowE 
Generic PYR B Clear 6 - 0.72 0.811 3.779 

Double Generic Clear 6 13 0.703 0.781 2.665 

Double 

LowE 
Generic LowE/PYR B Clear 6 13 0.634 0.721 1.931 

Triple Generic Clear 3 13 0.684 0.738 1.757 

Triple 

LowE 

Generic LowE Clear/Generic 

Clear/Generic LowE  
3 13 0.474 0.661 0.982 

 

Building envelope parameters for each test case are summarised in Table 5-2. The ratios 

of window area to both floor and external wall area are also given. The window to floor 

ratio remains consistent across all three buildings with an average value of 0.229. When 

the high bay wing of the SBRC is excluded, these numbers change significantly. The 

high bay wing is a large 900 m2 area which is naturally ventilated only, and is designed 

with very low lighting loads. As a result, it has a very low energy impact on HVAC and 

lighting systems. The window to floor ratio at the SBRC with the high bay wing 
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excluded becomes 0.357, the highest of all three buildings. The Window to Wall Ratio 

(WWR) when the high bay wing is excluded becomes 0.436, up from 0.288 when the 

high bay is considered. This is still lower than the WWR of Enterprise 1, which is 

0.710. 

Table 5-2 Case study building envelope parameters. 

Building 
Floor Area 

(m2) 

Window Area 

(m2) 

Wall Area 

(m2) 

Window to Wall 

Ratio 

Window to Floor 

Ratio 

TTT 1021 218 813 0.268 0.214 

SBRC 2600 652 2261 0.288 0.251 

SBRC (ex HB) 1700 606 1390 0.436 0.357 

E1 11874 2649 3730 0.710 0.223 

 

The simulations performed were conducted over a period of an entire year. The 

simulation time interval is 1 hour. The results are compared to the single glazed 

scenario which, in this case is treated as the benchmark. Single glazing is not installed 

in the real case-study buildings, however as glazing technology in each real building 

varies, it is easier to compare each building to a common benchmark. Figure 5-2 shows 

the per cent change in yearly HVAC energy use for each glazing technology across all 

three buildings. As is expected, as glazing performance increases, HVAC loads decrease 

as a response to the reduced SHGC and U-value. It is noted that there is a small increase 

in energy use between the double glazed LowE option and the triple glazed clear option 

for all buildings. This indicates that a double-glazed option with low emissivity glass is 

a better choice than triple glazing in this case.  

It is clear that the HVAC energy savings at the SBRC are higher than at the other 

buildings. This gap widens as glazing performance increases, with HVAC energy 

reduction at the SBRC occurring at a higher rate than with the other buildings. 
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Figure 5-2 Glazing simulations: change in HVAC energy use. 

The per cent change in lighting energy use for the three buildings across a full year is 

shown in Figure 5-3. The opposite behaviour to that seen in Figure 5-2 is observed. This 

is expected, since a higher performing window will typically reduce solar heat gains at 

the expense of also reducing visible light. Again, the difference between double glazed 

LowE and triple glazed clear is the opposite of the overarching trend. The magnitude of 

the change in lighting energy use at the SBRC building is much higher and increases at 

a higher rate than for the other two buildings. This is the same trend seen in Figure 5-2, 

but the effect is much more pronounced. 

 

Figure 5-3 Glazing simulations: change in lighting energy use. 

When the data from Figure 5-2 and Figure 5-3 is combined, the overall effect of 

different glazing technologies on total building energy consumption for the year is 

shown in Figure 5-4. Clearly the overall effect of higher performance glazing on total 

building energy use across a whole year is a net reduction in energy use for the three 

buildings studied. The building that benefits most from high performance glazing is the 
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SBRC, with the TTT building experiencing the second highest saving. It appears that 

when choosing between double glazed LowE windows and triple glazed clear, the 

highest performing window technology is double glazed LowE by a small margin. 

 

Figure 5-4 Glazing simulations: change in total building energy use. 

The benefits to Enterprise 1 of high performing glazing technology are noticeable, but 

to a much smaller degree than the other two buildings. Whilst a maximum of 11% 

reduction in HVAC energy use and maximum 1.1% increase in lighting loads was 

predicted at Enterprise 1, a review of Figure 5-1 illustrates that the lighting energy use 

at Enterprise 1 represents a significantly larger portion of overall energy than that of the 

HVAC system. The overall net effect on the building is a 1.9% reduction in overall 

energy use. 

To better understand why the SBRC building energy consumption may be more 

sensitive to changes in glazing technology, a separate set of simulations was performed 

where the lighting systems were identical. The lighting power density of all zones in all 

buildings was set at 5 W/m2.  
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Figure 5-5 Glazing simulations: change in HVAC energy use for identical LPD. 

Figure 5-5 and Figure 5-6 show the results of the simulations with identical lighting 

power densities. The effects on lighting energy (Figure 5-6) show the same trend as was 

observed previously. The increase in lighting energy consumption for the SBRC 

building is far higher than for the other two buildings. In fact, for an increased LPD of 

5 W/m2 (the actual LPD at the SBRC is 1.6 W/m2), the change in energy consumption 

increases.  

 

Figure 5-6 Glazing simulations: change in lighting energy use for identical LPD. 

By simulating all three buildings with identical lighting power densities, it can be 

concluded that lighting system design is not the significant driving factor behind a 

building’s energy sensitivity to reduced natural lighting levels caused by higher 

performance glazing. 

To better understand what could be the driving factor in the results seen in the previous 

figures, data concerning the frequency of lighting system operation was analysed. For 

the SBRC and TTT buildings, the lighting system is controlled by occupancy and 
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daylight sensors. If the zone is sensed as being occupied, the lighting system is able to 

operate. The daylight sensors determine how much light, if any, needs to be provided by 

the artificial lighting system.  

To investigate the cause of the higher magnitude of increase in lighting energy at the 

SBRC, the average full load hours per week as a percentage of the total scheduled hours 

per week was graphed for both TTT and SBRC. Enterprise 1 does not have full 

daylighting control and thus the values for this building would be at 100% for all cases. 

The lighting systems in the models are controlled by a schedule. This is the best way of 

approximating occupancy in each zone. Whilst in reality, occupancy is a random 

phenomenon; it is in most cases, regular and predictable to a reasonable degree of 

accuracy. The average full load hours per week are the average number of hours for 

each zone where the lighting system is operating at 100% of its output potential (i.e. no 

dimming). The daylighting control enables the lighting system to dim to 20%. An 

increase in the number of hours operating at 100% would indicate lower natural light 

levels on average. 

Figure 5-7 shows the full load lighting hours per week as a percentage of the total 

scheduled hours for both the SBRC and TTT building models. This term shall be known 

as the lighting utilisation rate. Whilst the TTT building shows a small increase in 

lighting utilisation of less than 1% across the glazing performance spectrum, the SBRC 

experiences a much larger increase of more than 4% across the glazing performance 

spectrum. This means that the SBRC adaptive lighting system is more sensitive to 

changes in daylight levels compared to the TTT adaptive lighting system.  
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Figure 5-7 Glazing simulations: lighting system average weekly utilisation rates. 

One likely reason for the SBRC building being more sensitive to variable daylight 

levels is building layout.  Figure 5-8 shows the layout of the first floor of the TTT 

building. The first floor represents the majority of the building occupied floor area.  

 

Figure 5-8 TTT building level 1 floor plan [82]. 

The SBRC building layout (shown in Figure 5-9) in comparison to the TTT building is 

much narrower in width in its two wings. The longest dimension is that running east-

west. This results in an aspect ratio (the ratio of the longest dimension to shortest 

dimension) for each wing at the SBRC of approximately 4:1. The aspect ratio at the 

TTT is approximately 1.2:1 for the western portion of the building where most building 

activity and energy consumption takes place.  
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Figure 5-9 SBRC building level 1 floor plan [83]. 

The result of the larger aspect ratio at the SBRC building is that daylight is able to 

penetrate a higher proportion of the building’s interior depth – reducing the overall 

reliance of artificial lighting in the centre of the building. Conversely for the TTT 

building, light is less able to reach all the way into the south facing rooms, increasing 

the reliance on artificial lighting. The outcome for lighting energy consumption for 

these two scenarios is that the TTT building must have a higher amount of installed 

artificial lighting and must rely on that lighting more often, while at the SBRC, a lower 

lighting power density is possible. Another contributing factor for the sensitivity of the 

SBRC building to daylight level changes is that it has the highest Window to Floor area 

Ratio (WFR) and Window to Wall area Ratio (WWR). This means that lighting levels 

inside are reduced by the greatest amount overall per square meter of floor area for all 

three buildings. The response to reduced daylight levels overall is an increase in light 

output, illustrated by the increase in average lighting utilisation shown in Figure 5-7.  

The SBRC building becomes susceptible to being unable to fulfil lighting requirements 

when daylight levels drop due to the combination of a large window to floor ratio and 

low lighting power densities afforded by its high building aspect ratio. This 
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phenomenon has been illustrated by the glazing simulations performed here where 

daylight transmission is reduced in higher thermally performing windows.  

5.1.2 Lighting control 

The lighting system in most buildings is a significant contributor to overall energy 

consumption throughout the year. For the net zero buildings studied here, the lighting 

systems represent an average 18% contribution to overall yearly consumption. This is 

contrasted with the non-net zero building, Enterprise 1, where lighting represents 36% 

of the overall energy consumption as seen in Figure 5-1. There are a few factors 

contributing to the difference in energy intensity of lighting systems between the two 

types of building. The first factor is the type of light fitting used. A modern, 

conventional commercial building will typically use T5 or T8 fluorescent tube fittings 

[84] while the net zero buildings use LED luminaires to a large extent. LED technology 

is much less energy intensive over fluorescent fittings. The result of using more 

efficient fittings in the building is that the lighting power density of the building is 

reduced. Table 5-3 shows the different lighting power densities for the three buildings. 

Enterprise 1 is the highest at 9.4 W of installed lighting power per square meter. The 

TTT building is much lower at 4.75 W/m2, while the SBRC is the lowest at 1.6 W/m2.  

Table 5-3 Building model lighting specifications. 

 TTT SBRC Enterprise 1 

Average lighting level (lux) 193 213 320 

Average lighting power density (W/m2) 4.75 1.60 9.40 

Average LPD/100 lux (W/m2-100lx) 2.46 0.75 2.94 

Minimum output fraction (%) 20 20 20 

 

The average lighting power density /100lux of luminous output (W/m2-100lx) is an 

indicator of the efficiency of the overall lighting system of the building. An efficiently 

lit space will achieve its designated average lighting level at a lower lighting power 

density.  

The minimum output fraction is an indicator of how low the lighting system is able to 

be dimmed. It is a percentage of the maximum output. 
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The type of light fitting is not the only contributor to reduced lighting power density. 

Notice also in Table 5-3, the average lighting level in the building varies too. The 

lighting system at Enterprise 1 is specified at 320 lx according to Australian standard 

AS 1680 [85]. A 320 lux is recommended for “routine office work”. The two net zero 

buildings have much lower average lighting levels. This is because whatever deficit 

there may be in overall lighting levels, localised, low power light sources are utilised on 

work surfaces to ensure lighting levels are appropriate. This enables much lower 

lighting power densities. Additionally, the increased reliance on daylighting in the net 

zero buildings contribute to the lower lighting power densities in those buildings.  

Simulating building scenarios where different output light fittings are used could be 

performed. However, the result is quite predictable without having to perform whole-

building energy simulations. A reduction in power consumption of each fitting is 

relatively constant, and thus it would be possible to calculate with reasonable accuracy, 

any overall consumption differences if the basic lighting specifications of each building 

are known. What is more interesting, and more appropriate to simulate, is lighting 

output control based on available daylight levels. This is a much more complex system 

and depends on many variables such as building design and construction, as well as 

weather conditions. 

Each building model was simulated with and without a daylight-controlled lighting 

system. The results were compared below; Figure 5-10 shows the lighting energy use 

intensity across an entire year for each building. Lighting energy use intensity 

(kWh/mfloor
2) is the metric used here to enable practical comparison on one graph due to 

the significant differences in overall energy use across the three buildings. The results 

show that the energy use attributed to lighting can be reduced by between 49 and 65%. 

Enterprise 1 would benefit greatly from daylighting control because of its high window 

to wall ratio. An older style of conventional building may not respond as well to this 

type of lighting control since daylight may not as readily reach into the centre of the 

building. Enterprise 1 office space is centred on a heavily lit atrium area with large 

skylights that would convey a large amount of daylight into the space. 



 

117 

 

 

Figure 5-10 Lighting control simulations: yearly lighting energy use intensity. 

The effect on the HVAC system from daylight controlled lighting is show in Figure 

5-11. Overall, there is a saving as a result of reduced lighting use resulting in less waste 

heat output. The Enterprise 1 building model predicts the biggest saving of the buildings 

with a 10% reducing in HVAC energy use intensity. Much of this saving can be 

attributed to the waste heat from fluorescent lights being reduced. This saving is less 

significant in the other two buildings because the more efficient lighting technology 

used there does not emit as much waste heat. Savings in HVAC energy use intensity for 

the net zero buildings are between 2% and 5 %. 

 

Figure 5-11 Lighting control simulations: yearly HVAC energy use intensity. 

Considering the effects on lighting and HVAC energy consumption, the net effect on 

overall building energy consumption was compared between the three buildings. Figure 

5-12 shows the yearly building energy use intensity for each building. The results show 

that the Enterprise 1 building would have the greatest net benefit from daylight controls 

with a very significant 25% reduction in overall building energy use. The TTT 
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simulation suggests that the building experiences a 21% overall energy saving as a 

result of daylight controls. The smallest impact is seen at the SBRC where only 8% of 

energy savings can be attributed to daylight controls.  

 

Figure 5-12 Lighting control simulations: yearly building energy use intensity. 

The reason daylight controls at the SBRC contribute to such a small overall saving is 

that the installed lighting power density is so low because of the building being 

optimised to take advantage of maximum daylighting levels. It is a different story at the 

TTT where a higher provision of artificial lighting is installed. Whilst it is a NZEB, the 

installed lighting power density is three times higher than at the SBRC because of the 

lower aspect ratio and its implications for daylighting as described previously in Section 

5.1.1. 

5.1.3 Window shading 

There are many potential techniques and design principles that may be applied to the 

shading of a building. Primarily the purpose of shading, no matter how it is applied, is 

to reduce the cooling loads in a building and to optimise the quality of daylight entering 

the interior of the building by controlling glare levels. For these reasons, it comes as no 

surprise that incorporation of shading elements is of critical importance to net zero 

energy building design. Shading can be implemented in a number of ways. Some of 

these are integral to the building’s design and construction, such as a roof overhang, 

which must be designed to maximise the transmission of low winter sun, while 

minimising the transmission of high winter sun. Other techniques are incorporated into 

the building envelope such as vertical or horizontal louvres placed in front of a 

window’s external face. These building-integrated shading approaches require a high 

degree of knowledge of building design principles, as well as information about the 
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building site, such as nearby structures, landmarks, vegetation and building orientation. 

A simpler approach to shading is simply implementing shading of windows using blinds 

or curtains. These are typically controlled by occupants to suit their personal tastes and 

comfort requirements. Window shading may also be effective in some cases at reducing 

energy consumption.  

For the purposes of this study, simulation of local, building-integrated shading will be 

ignored due to the need for it to be designed specifically according to the building and 

its location. This would make it difficult to compare results between the case study 

building models. Horizontal slatted blinds will be investigated instead. A common type 

of window shading and a common control method across all buildings will be easily 

comparable. The blind type used in this study is a blind with high reflectivity slats 

which is provided as a default in the DesignBuilder library. A description of each 

control strategy modelled is given in Table 5-4. 

Table 5-4 Shading simulation control strategies. 

Shading Control 

Strategy 
Description 

Summer day Blinds closed between 7:00 and 19:00 for all summer days (from 1st Dec to 28th Feb) 

Summer night Blinds closed between 19:00 and 7:00 for all summer nights (from 1st Dec to 28th Feb) 

Winter day Blinds closed between 7:00 and 19:00 for all winter days (from 1st June to 31st Aug) 

Winter night Blinds closed between 19:00 and 7:00 for all winter nights (from 1st June to 31st Aug) 

Temperature 26°C Blinds closed when outdoor temperature is above 26°C at all times of the day 

Temperature 28°C Blinds closed when outdoor temperature is above 28°C at all times of the day 

Temperature 30°C Blinds closed when outdoor temperature is above 30°C at all times of the day 

Temperature 32°C Blinds closed when outdoor temperature is above 32°C at all times of the day 

 

The window shading implemented here in this study does not replace any building 

integrated shading elements in the original design. Some degree of shading is present in 

each test case in the form of roof overhangs, window louvres, or both. These are left as-
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designed in the building models. The window shading studied here is in addition to the 

originally designed and built-in shading elements of the building envelope. The results 

are compared to a benchmark where these local shading elements do exist, but where no 

window shading is used. 

The change in lighting energy use because of window shading controlled according to 

the season is given in Figure 5-13.  

 

Figure 5-13 Shading simulations: lighting energy use, seasonal schedule. 

Unsurprisingly, the result is an increase in lighting use when shading is implemented 

during the day for both summer and winter.  The SBRC building model appears most 

sensitive in summer, while Enterprise 1 is the least sensitive. Both the TTT and SBRC 

experience a similar degree of change for the winter daytime case. Since all three 

buildings are primarily occupied only during the daytime, only small changes were seen 

for the summer and winter night time control cases.  

The lighter colour, patterned columns on the graph represent the per cent change in 

lighting energy use in proportion to the window to floor area ratio. Whilst this is not 

necessarily a useful metric with which to specify a building or lighting design by, it is a 

nominal dimension which does give an indication of the comparative sensitivity of the 

buildings to window shading. From the graph, the comparative magnitudes of these 

values are largely similar to those of the absolute change in lighting energy use. This 

indicates that the WFR is likely to be the determining factor in the degree of change in 

energy consumption for the lighting system. To make sure of this, the per cent change in 

lighting energy use is also compared to the window area on its own. This is shown in 

0.0%

4.0%

8.0%

12.0%

16.0%

20.0%

24.0%

28.0%

32.0%

36.0%

40.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

Summer Day Winter Night Summer Night Winter Day

C
h

an
ge

 in
 li

gh
ti

n
g 

en
er

gy
 u

se
/W

FR
 (

%
)

C
h

an
ge

 in
 li

gh
ti

n
g 

en
er

gy
 u

se
 (

%
)

Control schedule

SBRC TTT E1

SBRC_WFR TTT_WFR E1_WFR



 

121 

 

Figure 5-14. When compared to window area alone, the units are multiplied by a factor 

of 1,000 to scale the values up due to window areas being much larger than the per cent 

change in energy. 

 

Figure 5-14 Shading simulations: change in lighting energy/Awindow - seasonal. 

A different behaviour is observed when the per cent change/window area (Awindow) is 

examined. The TTT building experiences a larger per cent change / area of window than 

that of the SBRC and Enterprise 1 models. This makes sense since it has the smallest 

total window area of the three buildings. 

Comparing the change in HVAC energy use as a result of shading according to a 

seasonal control strategy, Figure 5-15 shows that similar behaviour was observed as in 

Figure 5-13 but with reversed changes, the HVAC loads decrease during the summer 

day due to a cut in heat gain through the windows. Little change is observed for the 

summer and winter night time control strategies, but interestingly HVAC energy use 

increases for the case where shading is implemented during winter days. This is because 

solar heat gain through windows helps to reduce heating loads during these periods. The 

TTT building benefits most from this effect since the HVAC energy use increases by 

16% when solar gains are reduced through shading. At the SBRC, HVAC energy use 

increases by only 8%. Little change is observed for Enterprise 1. 
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Figure 5-15 Shading simulations: HVAC energy - seasonal schedule. 

Once again, comparing the change in energy use/window to floor area ratio, with the 

change in energy use/window area gives some indication of what the determining 

parameter is with regards to the buildings’ sensitivity to shading levels. The change in 

energy use/window area is shown in Figure 5-16. The behaviour observed is similar to 

that in Figure 5-14, where the TTT building appears to experience the largest per cent 

change in HVAC energy use per m2 of window area.  

 

Figure 5-16 Shading simulations: change in HVAC/Awindow - seasonal schedule. 

It is not until the relationship between floor area and window area is considered, that it 

becomes clear that this parameter is closely aligned with the relative changes in energy 

use for both lighting and HVAC. 
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The changes in lighting and HVAC energy for window shading using a temperature 

threshold control strategy are shown in Figure 5-17 and Figure 5-18. What is most 

obvious is that the biggest changes come from lower temperatures, with the largest 

effect being seen at the SBRC for both lighting and HVAC. The increase in lighting 

energy at the TTT and Enterprise 1 were of similar magnitude of around 1.5%, while 

the decrease in HVAC energy at the TTT compares more closely with the SBRC at 

around 3.6 to 4.8%. 

 

Figure 5-17 Shading simulations: lighting energy use - temperature control. 

Interestingly, changes in energy consumption decrease as the threshold temperature for 

implementing shading increases. The minimum temperature of 26°C is chosen as being 

just above the cooling setpoint temperature for each of the three buildings. 

Temperatures below this would interfere with the natural ventilation strategies 

implemented in the NZEBs. 
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Figure 5-18 Shading simulations: HVAC energy use - temperature control. 

To understand why the changes in energy consumption diminish as the threshold 

temperature increases, the temperature histogram of the weather file used in each model 

will be examined. This histogram is shown in Figure 5-19. The average temperature for 

the Typical Meteorological Year is 17.5°C, which the maximum is 34.3°C. The most 

relevant detail here is the frequency of temperatures 26°C and above.  

 

Figure 5-19 Bellambi TMY weather file temperature histogram. 

Temperatures in this range occur only 8.14% of the time, with temperature occurrence 

decreasing steadily from 26°C.  Figure 5-20 shows the rate of occurrence of temperature 

20.6°C and above for the TMY weather file used in this study. This explains why the 

magnitude of changes in energy consumption decrease as shading threshold temperature 

rises. In a more extreme climate than Wollongong, this behaviour would be expected to 

be different.  
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Figure 5-20 Occurrence of outside temperatures above 26°C. 

The overall net effect on building energy consumption for the two different control 

methods are shown in Figure 5-21 and Figure 5-22. 

For the seasonal shading control, the most effective strategy for the net zero buildings is 

to close all blinds during summer days. The models predict that this will result in a 

saving of 1 to 4% overall. For Enterprise 1, this will have the effect of increasing 

overall consumption by around 1%. This is because lighting in this building makes up a 

higher proportion of energy consumption than the HVAC system. Shading windows 

during winter nights also results in a net reduction in overall consumption for the SBRC 

building model due to a reduction in HVAC loads as a result of the building being better 

able to retain heat overnight. The opposite observation is made for the TTT building due 

to an increase in lighting use as a result. Negligible effects on building energy 

consumption are observed for all three of the buildings when shading is used during 

summer nights. Significant increases in overall energy use when shading is used during 

winter days are observed. This is caused by increases in both lighting and HVAC use in 

the order of 3 to 8% for the net zero buildings, while Enterprise 1 sees negligible 

changes in HVAC loads, but a 3.5% increase in lighting loads resulting in a 1.3% 

increase in overall consumption. 
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Figure 5-21 Shading simulations: building energy use - seasonal schedule. 

Where shading is controlled according to the outdoor temperature threshold, the net 

zero buildings experience savings of between 1% and 2% for the 26°C case, while 

Enterprise 1 experiences a slight increase for all temperatures above 26°C. 

 

Figure 5-22 Shading simulations: building energy use - temperature control. 

Overall, window shading of all three of the case study buildings resulted in only 

marginal net energy savings for the type of shading and control strategies investigated. 

The Enterprise 1 model experienced a net increase in overall consumption for all cases 

because of lighting loads being larger than HVAC loads and the higher sensitivity of the 

lighting system to window shading. The net zero buildings, with their much lower 

lighting loads, were able to achieve overall savings, however these were of a small 

magnitude: 3.9% was the maximum saving for the SBRC building and 1.2% for the 

TTT building. The savings found here must also be balanced with perceptions of 
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comfort for occupants, as well as convenience. Spending the entire work day in a room 

effectively without windows is unlikely to be a pleasant workplace. 

5.1.4 HVAC setpoint 

Given that HVAC systems in buildings are typically a major consumer of energy, 

optimisation of these systems is a worthwhile endeavour to reduce overall consumption 

as much as possible.  

The study performed here was to evaluate the impact of changing the heating and 

cooling setpoint temperatures on energy use. The heating setpoints were varied in 

one-degree increments from the benchmark while the cooling setpoint was kept 

constant. For example, for the Heating -3° scenario, the heating setpoint is lowered by 

3°C from the benchmark, while the cooling setpoint remains set at the benchmark. 

Where natural ventilation was employed (in the two NZEBs), the lower limit of this 

range followed the heating setpoint up and down. Conversely, the cooling setpoint was 

then varied in 1-degree increments while the heating setpoint was held constant. A dead 

band/hysteresis region of 0.5°C exists between modes to ensure different modes are not 

toggled repeatedly on mode borders. This incorporates as 20-minute switching delay. 

The upper limit of the natural ventilation range followed the cooling setpoint up and 

down. A range of three degrees was chosen for the net zero buildings since the comfort 

bands in these buildings are wider than that of Enterprise 1. The range was two degrees 

at Enterprise 1 due to not being able to increase the heating setpoint, or decrease the 

cooling setpoint any further without overlapping into the other’s range. The complete 

methodology is shown in Table 5-5. 
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Table 5-5 HVAC setpoint simulation methodology. 

 

Several assumptions were made in the HVAC models for each building. As discussed in 

Section 4.3, the HVAC models are approximated using an idealised load calculation 

method which uses constant coefficients of performance. This eliminated the need to 

specify every individual HVAC component in the system, a task which requires 

information that is often hard to come by, and a large amount of modelling experience 

in order to achieve reliable results. Because of the basic assumptions made, the HVAC 

model is not expected to be a true representation of the real systems; however the 

relative changes in overall consumption are expected to be broadly reliable based on the 

validations performed in Section 4.4. A summary of the key performance parameters for 

each HVAC model is given in Table 5-6. The coefficients of performance and natural 

ventilation rates are approximated through trial and error throughout the validation 

process as these parameters are not easily measured in reality. 
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Table 5-6 HVAC setpoint simulation: building model HVAC details. 

 TTT SBRC E1 

Auxiliary loads (W/m2) 3.0 3.0 5.2 

Heating COP 2.8 2.8 1.0 (natural gas) 

Cooling COP 2.8 2.8 2.8 

Heating supply air Temp (°C) 40.0 40.0 35.0 

Cooling supply air temp (°C) 14.0 12.0 12.0 

Natural vent. rate (Air changes/hour) 3.5 3.0 - 

 

Figure 5-23 shows the change in yearly HVAC energy use at each building for each 

degree change in HVAC setpoint from the benchmark. The SBRC building model 

appears most sensitive to changes in heating setpoint, with approximately 15% change 

occurring for every degree increase in heating setpoint. For every degree decrease in 

heating setpoint, the energy consumption decreases by an average 9% per degree for the 

SBRC model. The TTT and Enterprise 1 models experience very similar behaviour for 

the heating case. Almost identical changes in energy consumption are observed for 

these models when the heating setpoint is increased. When the heating setpoint is 

decreased, the Enterprise 1 model is the least sensitive, experiencing very little change 

in energy consumption. Conversely, the Enterprise 1 model experiences the most rapid 

increase in energy consumption when the cooling setpoint is decreased. The SBRC and 

TTT models experience significant changes in this respect also, with a maximum of 

50% increase in energy consumption when the cooling setpoint is lowered by 3°C. 

When the cooling setpoint is raised, the corresponding reduction in energy consumption 

observed for the SBRC model is the smallest of the three buildings, while the reductions 

for the TTT and Enterprise 1 models are quite similar. 
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Figure 5-23 HVAC setpoint simulations: change in HVAC energy use. 

To see how these changes in HVAC energy consumption translate into overall building-

wide impacts, the change in total yearly building energy consumption is shown in 

Figure 5-24 for the three buildings.  

 

Figure 5-24 HVAC setpoint simulations: change in building energy use. 

The building model most responsive to changes in heating setpoint is the SBRC. For the 

cooling setpoint case, the SBRC and TTT models are equally sensitive to changes when 
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the setpoint is reduced. The TTT model is most sensitive to increases in cooling 

setpoint. In all cases, the Enterprise 1 model was the least sensitive to setpoint changes 

with negligible savings being achieved and a 2.5% energy increase being observed in 

the heating case. In the cooling case, the Enterprise 1 model achieved up to 5% energy 

saving for a 2°C increase in cooling setpoint. Where the cooling setpoint was decreased, 

the energy consumption of the Enterprise 1 model increased by up to 8.5%. 

When considering the practical applications of the results presented here, occupant 

comfort must be considered. Whilst further savings of 5 to 15% may be achievable for 

the already efficient net zero buildings, this must be weighed against the comfort of 

occupants. Saving 10% in energy costs at the SBRC is unlikely to be worthwhile given 

that in order to achieve this, the heating setpoint must be lowered by 3°C, corresponding 

to a temperature of 16.5°C. Likewise, a further 15% might be saved at the TTT if the 

cooling setpoint was raised by 3°C. But this would mean that the new cooling setpoint 

was 27.5°C, beyond the acceptable comfort limits of most occupants. 

The results of simulations performed here show that the Enterprise 1 model is least 

sensitive to changes in HVAC setpoint from an energy consumption standpoint, despite 

having the narrowest comfort band compared to the two NZEBs. Energy consumption 

at both the SBRC and TTT is seen to increase significantly when the cooling setpoint is 

lowered and when the heating setpoint is raised. Interestingly, the decrease in energy 

consumption is almost equally as significant despite the wider comfort band employed 

in these buildings. The reason for this likely has to do with the building EUB seen in 

Figure 5-1. The HVAC component of energy consumption makes up 54% and 49% of 

overall building consumption at the TTT and SBRC, respectively. HVAC loads at the 

Enterprise 1 building make up only 25% of overall building loads. This means changes 

in HVAC energy consumption at the net zero buildings have a greater impact on overall 

building consumption.  

 

5.2 Summary 

This chapter has presented the results of building simulation of two net zero energy 

buildings and one modern commercial building. Results indicated that the net zero 

energy buildings are designed to operate at a higher performance level and therefore 

their systems are more finely tuned to match their passive design principles. For 
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example, lighting power density is kept as low as possible in the net zero buildings due 

to their reliance on natural daylight to light the building. Artificial lighting is kept to a 

minimum. HVAC setpoints are generally set wider in net zero energy buildings in a bid 

to save energy. This must be balanced with the perceived comfort standard of occupants 

to ensure a comfortable environment indoors. Increasing the cooling setpoint from 24°C 

to 26°C at the Enterprise 1 building is predicted to result in a 25% energy saving, 

however this would not be feasible if occupants were not comfortable while in the 

building. 

The effects of daylighting controls were modelled. It was found that significant benefits 

could be attributed to this where the building had high enough fenestration levels and its 

main occupancy was during the day. A simulated retrofit of daylighting controls to the 

Enterprise 1 building found that a 25% reduction in overall building energy use could 

be achieved. Simulations of the TTT and SBRC buildings show that daylighting 

controls contribute to savings of 21% and 8%, respectively. The low figure associated 

with the SBRC building is due to its open plan format relying heavily on natural 

lighting by-design. This anticipation in the design phase is the reason the SBRC 

building has such a low installed lighting power density compared to the other buildings 

and thus the reason daylighting has a significantly smaller benefit when compared to the 

other case study buildings. 

The benefits of window shading in each building were examined. This is a complex 

design area and could not be fully investigated without significant changes to the 

envelope of each building. Instead, local shading of windows using high reflectivity 

slatted blinds was simulated. Results showed that the net benefit for all buildings was 

low. This was a result of an increased requirement for artificial lighting reducing any 

benefits that shading may have brought to HVAC loads. Different forms of shading 

would likely provide different results however, and further modelling of this would be 

worthwhile. 

Higher performance glazing offers benefits for the net zero energy buildings where 

HVAC loads are dominant. Installing triple LowE glazing in these buildings offers a 6-

11% reduction in overall use when compared to a benchmark of single glazed clear 

glass. For the Enterprise 1 building, where lighting and power loads are dominant, 

higher performance glazing upgrades have less effect on overall building energy use. 
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Triple LowE glazing offers only a 2% improvement in overall energy use compared to 

the single glazed benchmark. 

Where HVAC loads are the dominant loads in the building, HVAC setpoint adjustment, 

installing higher performance glazing and, in some situations, window shading, can help 

to produce significant reductions in energy use. For buildings where HVAC loads are 

less significant, these changes will have less impact. More worthwhile changes in 

building design may be to install daylight controls. 
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Chapter 6 Energy Balance & Grid Interaction of Case Study 

Building 

For grid-connected net zero energy buildings, the interaction of electrical energy 

between the building and the grid is of importance and needs to be considered from the 

point of view of designing and maintaining grid infrastructure to cope with significant 

energy flows into the grid network that come with high penetrations of net zero 

buildings in the future. Energy storage such as batteries will help to address these issues 

with their ability to store and discharge energy at convenient and controllable times, 

however load matching and grid interaction factors must still be understood.  

This chapter first presents an analysis of the energy balance of the SBRC building by 

the site and source energy metrics as outlined in Sections 2.2 and 2.3. Analyses of load 

matching and grid interaction issues for the SBRC building were also investigated. 

 

6.1 Considerations in the calculation of building energy balance 

Considering the key factors of net zero energy buildings as outlined in Sections 2.2 and 

2.3, the balance calculations for the case study net zero energy buildings were 

performed. The key factors of balance metric and period must be first discussed to 

properly define the net zero energy building and its performance. 

Balance metric 

The distinction between site energy and source energy is an important one when 

considering the balance metric. A site-energy metric considers only the energy 

consumed and generated, while a source metric considers the primary energy associated 

with the energy supplied from the grid. In an electricity grid with high penetration of 

fossil fuels, the primary energy factor is likely to be significant and may alter the 

operating outcome of the NZEB.  

Australia’s electricity grid is dominated by fossil fuels. Approximately 87% of total 

generation in 2012-13 came from fossil fuels (refer to Figure 6-1), with the remaining 

13% being sourced from renewables, mainly hydro [86]. 
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Figure 6-1 Australian electricity generation breakdown, 2012-13 [86]. 

 

To calculate the primary energy factor, it is necessary to determine the primary energy 

inputs used for electricity generation and compare this with overall electrical generation 

output.  

𝑃𝑟𝑖𝑚𝑎𝑟𝑦⁡𝐸𝑛𝑒𝑟𝑔𝑦⁡𝐹𝑎𝑐𝑡𝑜𝑟⁡(𝑃𝐸𝐹) =
𝑃𝑟𝑖𝑚𝑎𝑟𝑦⁡𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑖𝑛𝑝𝑢𝑡𝑠⁡𝑓𝑜𝑟⁡𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙⁡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙⁡𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
 (6.1) 

  

 

Figure 6-2 Australian energy flows, 2012-13[86]. 

From Figure 6-2 and Table A-2, Australian energy supply and consumption [86], the 

total primary energy inputs used for electricity generation in Australia for 2012-13 were 

2,423.2 PJ. The resulting electrical energy generated was 791 PJ. Using equation (6-1), 
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the Primary Energy Factor (PEF) for the Australian electrical grid for 2012-13 was 

calculated as 3.07. This value is not expected to vary significantly in the short term. 

This means that when determining the source energy balance for a NZEB, any unit of 

energy imported from the utility grid should be multiplied by 3.07 to properly account 

for the units of energy that were lost during electrical generation and transmission 

processes. Conversely, any unit of energy exported to the utility grid should also be 

multiplied by 3.07, as this counts as primary energy expenditure avoided. 

Balance period 

A NZEB with variable loads and generating capacity throughout the year may not 

achieve net zero energy on a short-term basis, but will make up for any deficits during 

other times. A year should be used as the balance period to allow for a full seasonal and 

operational cycle. 

 

6.2 SBRC energy balance  

Despite a loss of meter data occurring for the first half of the year 2015, manually 

recorded monthly readings enabled the site energy net zero balance to be calculated for 

the SBRC test case. Data from additional backup metering equipment implemented 

during 2015 could be analysed in such a way that the energy imported/exported balance 

was able to be determined for the purposes of calculating the source-energy net zero 

balance. 

6.2.1 NZEB – Site energy 

To illustrate the month-to-month behaviour of the building, Figure 6-3 shows the energy 

consumption, generation, and net balance for each month of 2015. Summer and spring 

months resulted in a net positive result averaging 13,000 kWh per month. This is due to 

the combination of these months providing the highest level of solar generation 

potential, as well as energy demand within the building being marginally lower than 

during winter – a result of more mild temperatures requiring less HVAC input. The net 

result during the winter and autumn months is still positive, however increased demand 

and lower solar yields resulted in an average net positive output of only 3,800 kWh per 

month. 
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Figure 6-3 SBRC monthly site energy balance: 2015. 

To better understand how the building tracks cumulatively throughout the year, Figure 

6-4 shows the cumulative result of each month. The net balance at the end of 2015 was 

a positive result of 110 MWh.  

 

Figure 6-4 SBRC cumulative site energy balance: 2015. 

 

The total generation for the year was 225,140 kWh, an average of 617 kWh per day. 

Total consumption was 115,240 kWh, averaging 316 kWh per day. 

It must be noted that during 2015, the building was not operating at full occupancy 

capacity, nor were research labs and equipment fully fitted-out or installed. It is 

expected that energy consumption would increase in the future for these reasons. It is 

important to determine what the energy balance picture will be at full operating 

capacity. To project this, the energy consumption modelling provided by consultants 

performed during the design phase of the building was used. The recorded generation 
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figure for 2015 will inform the other side of the equation. The consultants design figure 

for consumption was 164,016 kWh, an additional 48,776 kWh more than was recorded 

for 2015. Assuming annual generation of 225,140 kWh, the result is a net positive 

balance of 61,124 kWh. 

6.2.2 NZEB – Source energy 

To determine the net zero energy balance based on the source energy metric, it is 

necessary to determine the energy both exported and imported to and from the electrical 

grid. This differs from energy consumed and generated. The amount of energy 

consumed is not equal to the energy imported because some or all of the energy being 

consumed may be met by the building’s own generating capacity at that time. For the 

same reason, the amount of energy generated differs from energy exported because 

some or all of the energy being generated is used to meet the building’s own demand.  

Data analysis 

To determine the energy exported and imported, it may be possible to use the building’s 

main incomer meters to separate these values. It would be a simple matter to read the 

imported and exported values on a monthly basis. For the SBRC building, it was made 

possible to do this in July of 2015. Prior to this time, it is possible to determine energy 

imported/exported by using historical power data if it is available. Separating the 

positive values (imported) and negative values (exported) of active power and 

numerically integrating them over the desired time periods will give figures for energy 

imported and exported for that time period. 

Data collected using a Hioki power quality analyser on the main incomer from January 

to August of 2015 was used to calculate the monthly total imported and exported 

energy. This will be known as the PQA integral method presented in this chapter. From 

July onward, the data from the building BMS was used. The BMS logs a running total 

of the imported and exported energy values. Monthly totals were simply calculated from 

this. This will be known as the BMS summation method. To validate the effectiveness of 

these two methods of analysis and to ensure their results are comparable, overlapping 

data from the power quality analyser and the BMS was available for July. The PQA 

integral and BMS summation methods were compared. A third method was also used 

for validation. This is referred to as the BMS integral method and involves the same 
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method used in the PQA method but with power data stored in the BMS being 

integrated. 

PQA integral method 

This involves taking power (kW) data from the Hioki Power Quality Analyser in 10-

minute time steps. The data is separated into values less than zero and values greater 

than or equal to zero. Positive values represent energy imported while negative values 

represent energy exported. This is illustrated in Figure 6-5 using data from a typical 

sunny winter day at the SBRC. 

 

Figure 6-5 PQA integral method definition. 

The separated data is then numerically integrated according to the appropriate time 

interval (10 minutes for the case of the PQA data). The total values for each month are 

then calculated and these become the energy imported and exported for that month. 

Since readings took place only in 10 minute intervals, the values of power at each 

reading were average readings for that 10-minute duration. This means the data hides 

information related to rapid changes in power consumption and it is possible that rapid 

transitions between import and export have occurred. In this case, the detail would be 

lost through this method because only the net result in that time interval will be 

recorded. For example: if the meter reads 10 kW imported for 5 minutes and 10 kW 

exported for 5 minutes, then the resulting value that is recorded by the meter is 0 kW for 

that 10-minute time interval. This means that the 0.83 kWh of energy exported and 

0.83 kWh of energy imported will not be counted when the power data is integrated. 

This is one benefit of using high resolution data in analysis such as this. However, it is 
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not expected that error attributed to this phenomenon will have a significant impact on 

the final result. 

The BMS integral method is exactly the same as that used in the PQA method, the only 

difference being that the BMS data time interval is 15 minutes instead of 10 minutes. 

Validation of methods 

For the source energy metric, the data from two different methods was used, and it was 

necessary to ensure that the data and their analysis techniques are comparable. 

Fortunately, the data from July overlapped and thus can be compared for an entire 

month. Figure 6-6 shows a comparison of the power data from the Hioki PQA, with 

power data from the BMS for a day in July. It was observed that both sets of data 

matched well with each other, albeit with a slight difference in timing. 

 

Figure 6-6 Power profile comparison as measured by BMS & PQA: 5/07/2015. 

Since it is established that the raw power data is a satisfactory match, the methods of 

analysis may be compared. The PQA integral method, BMS integral method, and BMS 

summation methods were all performed for the month of July, the result being a figure 

for total energy imported and exported for each method. The results are shown in Figure 

6-7. 
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Figure 6-7 Comparison of imported/exported calculation methodologies. 

Numerical values are recorded in Table 6-1 along with their relative errors compared to 

the PQA integral method. A maximum error of 1.5% is recorded for the month of July. 

This indicates that the methods used to determine imported and exported energy from 

the SBRC on a monthly basis are sufficiently accurate as to provide confidence in the 

SBRC buildings net zero energy source metric results. 

Table 6-1 Comparison of errors for imported/exported calculation methodologies. 

  Imported (kWh) Exported (kWh) 

PQA Integral Method 8169.38 -10917.15 

BMS Integral Method 8047.22 -10815.80 

BMS Separated Summation 8269.80 -10765.20 

PQA Integral Method - - 

BMS Integral Method 1.50% 0.93% 

BMS Separated Summation -1.23% 1.39% 

 

Figure 6-8 shows the energy consumption, generation, and net balance for each month 

of 2015 according to the source metric. These results confirm that the building makes an 

even more valuable contribution to decarbonizing of the built environment than in the 

site metric due to the surplus energy it produces which avoids consumption of fossil 

fuel generated grid electricity.  
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Figure 6-8 SBRC monthly source energy balance: 2015. 

The primary energy factor (PEF) of 3.07 as discussed in Section 6.1 is applied on both 

sides of the energy equation. Whilst this increases the primary energy associated with 

imported energy, it also increases the primary energy consumption that is avoided 

thanks to the export of surplus energy. Exported energy from the SBRC building is used 

by other buildings on the same campus and thus saved them importing energy from the 

grid with the 3.07 primary energy factor. 

The cumulative source energy balance for 2015 is shown below in Figure 6-9. 

 

Figure 6-9 SBRC cumulative source energy balance: 2015. 

The total energy imported from the grid for the year was 197,708 kWh, an average of 

541 kWh per day. Total energy exported to the grid was 526,517 kWh, averaging 

1,443 kWh per day. The surplus of primary energy at the end of 2015 was 330 MWh. 

A comparison of the cumulative net energy balance throughout the year for the site and 

source metrics is shown in Figure 6-10. When the source metric is considered, the 
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SBRC is three times more effective as a net zero energy building than when the site 

metric is employed. This is expected given the PEF is 3.07. 

 

Figure 6-10 SBRC net zero energy balance metric comparison: 2015. 

 

6.3 Load-matching & grid interaction considerations for the SBRC 

As has been discussed in Section 2.6.2, the major difference between conventional 

electrical supply and on-site renewable energy is that renewables are a variable 

resource. This means that a constant reliable renewable supply is not always possible to 

maintain and thus variations in output occur throughout the day, and in the case of 

rooftop solar PV, over longer seasonal periods (average summer solar PV output is 

approximately 40% higher than average winter output as recorded by the data in Section 

6.2.1). The ideal situation is that the generation profile is matched to the buildings’ load 

profile and for many commercial buildings this will be case for a significant percentage 

of the time, but far from 100%. Additionally, with more and more buildings having 

solar PV installed on site, future large export events are likely to occur on sunny days 

when all buildings in the area are producing surplus energy and are exporting to the 

grid. The potential for grid stability issues caused by these two-way energy transfers 

between the grid and buildings must be considered if net zero energy buildings are to 

become commonplace. 

6.3.1 Load match index 

To measure the degree to which the energy generated by the building is able to meet the 

load of the building at any particular time, the load match index (LMI) is used [55]. The 
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load for each time step. Where the generation exceeds the load, the LMI for that time 

step is equal to one. The LMI will never be more than one. This is because it is simply a 

measure of how well the present load is met by on-site renewable generation at that 

time. If the generation output is more than or equal to the load, the load is being met 

100% by generation, regardless of how much it exceeds the magnitude of the load. 

The LMI is affected by the time interval of data used. For a net zero or net positive 

building, the LMI will be equal to one when viewing its annual energy balance. 

However, on shorter timescales, the generation will not always match the load. On a 

daily basis, with only solar PV and without storage, the generation will not match load 

as generation is not possible outside of sunlight hours. This means that the LMI will be 

less than one. To ensure a more accurate LMI, high resolution data should be used [54]. 

For this study, the data time interval used was 15 minutes. Ideally a full year of 15-

minute data would be available however, in this case, only data from July to the end of 

2015 was available. This will still give a good indication of the overall average LMI for 

the year as summer and winter seasons are still well represented in the data. An average 

representative day of generation and load at the SBRC building is shown below in 

Figure 6-11. One aspect to note is the early morning peak in the consumption profile. 

This is caused by early morning pre-heating and cooling of the concrete hydronic slab 

system, particularly in winter. 

 

Figure 6-11 SBRC average load and generation profiles: 2015. 

Visual inspection of the chart indicates that the load is matched (remembering the 

surplus is ignored when considering the LMI) roughly 40 to 50% of the entire day. The 

relatively flat load profile of the building makes the visual estimate of the LMI simple. 
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Using the 15-minute data from July to the end of December the LMI is described as 

follows: 

The ratio between generation and load is calculated for each data point:  

 
𝐿𝑀𝐼𝑖 = min (1,

𝑃𝑔𝑒𝑛,𝑖

𝑃𝑙𝑜𝑎𝑑,𝑖
) (6.2) 

Where i is the value at each time step, Pgen is the generation power output for a 

given time and Pload  is the load at the given time. This is the simplest form of the 

LMI equation, where storage and any system losses are ignored. 

 

This is calculated for every n time-step in the data set. The mean of the LMI for 

all data points is then calculated to give the LMI for the time period considered: 

 

 
𝐿𝑀𝐼 = ⁡∑𝐿𝑀𝐼

𝑛

𝑖=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (6.3) 

For the SBRC building, using the data available, the average LMI for the six-month 

period July to December was calculated to be 43.5%. The average LMI for the average 

24-hour period shown in Figure 6-11 (averaged from the same July to December data) 

is 47.9%.  This agrees well with the visual estimate made above.  

The result means that the SBRC building, despite being a net positive building 

throughout the year on a yearly, monthly, and frequently daily basis, is only able to 

meet its own energy requirements 44% of the time when sub-hourly data is considered 

due to overnight loads being unable to be matched with solar PV output which of course 

cannot generate at night. 

General suggestions for improving the LMI are to implement demand-side management 

(DSM) strategies, as well as increase generation capacity. In the specific case of the 

SBRC building, increasing generating capacity will not improve the situation, given that 

the problem lies not in the output potential, but in the output timing. DSM, too, is 

unlikely to have a significant effect on the LMI, given that the load profile of the 

building is typically quite flat across the day. 

One strategy which may improve the LMI is not to increase solar PV generating 

potential, but to diversify the generation techniques. Installation of small-scale wind 

turbines on the site could generate energy during the night where solar PV cannot. 

However, this improvement would be intermittent, depending on the quality of the 
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variable wind resource at the site. The most promising method of improving the LMI at 

the SBRC is to install battery storage. A large surplus is generated every day by the 

solar PV system, excluding days of inclement weather. A battery storage system sized 

to match the average or peak magnitude of overnight energy requirements would be 

charged during the day at times of surplus generation and would discharge overnight 

when the load exceeds generation.  

6.3.2 Grid interaction index 

Whilst the load match index measures the degree to which the generation of the 

building is able to meet its load requirements, the grid interaction index (GII) measures 

the variability of energy exchange with the grid over a particular time period. It is a 

comparison of the net grid energy reading to the maximum value of net energy in the 

time period. The GII explains the variability of energy exchanged with the grid by 

taking the standard deviation of the GII for each time step of the time period. It is not 

related to the magnitude of electricity required from the grid. The GII is calculated as 

follows: 

The net power reading of the main incomer at each time step is compared to the 

maximum of the absolute value of net power in the dataset: 

 

 
𝐺𝐼𝐼𝑖 =

𝑃𝑛𝑒𝑡,𝑖

𝑚𝑎𝑥|𝑃𝑛𝑒𝑡,𝑛|
 (6.4) 

Where i is the value at each time step, and Pnet is the power reading at the main 

incomer of the building. 

 

GIIi is calculated for every n time step in the data set. The standard deviation of 

the GIIi dataset is then calculated to give the average grid stress for the time 

period considered: 

 

 
𝐺𝐼𝐼𝑛 = ⁡𝑆𝑇𝐷(𝐺𝐼𝐼𝑖) (6.5) 

For the case study SBRC building, the GII for the year was calculated to be 0.22. Whilst 

there is not yet a large volume of NZEBs reporting their GII’s in the literature, this 

result is a good comparison with the small number of results reported for GII in [54]. 
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6.3.3 Power quality considerations of net zero energy buildings 

Net zero energy buildings typically utilise a range of high efficiency appliances, such as 

lighting equipment. The impact of such equipment from the perspective of power 

quality and the consequences for the grid needs to be considered. Whilst a detailed 

analysis of these factors in relation to NZEBs is beyond the scope of this thesis, some 

preliminary presentation of basic power quality data is provided here. 

Power Factor 

The first consideration for power quality in commercial buildings is often power factor. 

Power factor is the ratio of real power (kW) to apparent power (kVA). While optimising 

power factor, i.e. making it closer to unity, will have little effect on the energy use 

internally within a net zero energy building, utilities provide incentive to increase power 

factor through penalties for exceeding minimum power factors and indirectly via 

demand charges (which are a function of apparent power). Accordingly, commercial 

buildings will generally have a power factor correction unit, typically a large switched 

capacitor bank, installed to increase power factor during high reactive power (kVAr) 

demand periods. 

 

Figure 6-12  SBRC 15-minute average power factor, real, and apparent power. 

From Figure 6-12 it can be seen that the nominal power factor of the SBRC is close to 

unity during both generation and non-generation periods. Note that M1 refers to the 

meter number installed on the main incomer of the SBRC building. This is proposed to 

be largely due to the combined power factor of high efficiency equipment such as LED 

lighting, inverter based variable speed drives, etc., which will be synonymous with net 
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zero energy buildings or buildings retrofitted for energy efficiency improvements. The 

power factor of such equipment at the SBRC has negated the need for costly power 

factor correction equipment to be installed. It is noted that in Australia, at present, 

generation from the solar photovoltaic system inverters are required to deliver power to 

the local load and grid at near unity power factor. 

Harmonics 

The operation of modern, high efficiency lighting technology produces significant 

harmonic distortion in the currents that they draw from the power system. While 

harmonic distortion levels are often factored into equipment standards to reduce their 

impact on the grid, the high penetration of such devices in the low voltage distribution 

system of net zero energy buildings needs to be understood. While power quality 

analysis is beyond the primary scope of this thesis, some preliminary reporting on the 

harmonic distortion levels, available from the installed sub metering equipment, is 

presented here as a prelude to possible future research. Figure 6-13 shows that there is a 

high level of harmonic distortion in the current drawn from the grid by the SBRC. 

  

Figure 6-13  SBRC THD of voltage and current on a typical day. 

The resulting harmonic distortion in the voltage is within acceptable limits [87] 

however consideration of harmonics needs to be factored into the design of the 

electrical system (rating of cables, etc.). It is also noted that operation of the solar 

photovoltaic system inverters, i.e. in times of generation, reduces the levels of current 

and voltage harmonic distortion on the system. 
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Voltage Rise 

Voltage rise due to localised generation within the network is also another important 

consideration for net zero buildings. At the SBRC, several instances of voltage greater 

than the recommended limits have been recorded where the photovoltaic inverters 

connect into the electrical distribution systems. Figure 6-14 illustrates the voltage level 

recorded at the inverter connection and main switchboard at an example high generation 

period. The maximum allowable voltage of 253 Vrms is exceeded for some periods of 

time at the inverter connection. At the SBRC only the connected inverters see these 

higher voltages, however if more sensitive equipment was connected at the same point, 

reduction in equipment lifetime is possible. 

 

Figure 6-14 Maximum RMS voltage levels at the SBRC. 

 

6.4 Summary 

This chapter reported on the energy status of one case study net zero energy building, 

the Sustainable Buildings Research Centre, as well as factors relating to load match and 

grid interaction. Results have shown that the SBRC building is a successful net positive 

energy building, producing an annual surplus of 110 MWh and remaining net zero for 

every month of the year. When the primary energy on the utility grid is considered, the 

success of the building triples due to its large surplus being able to avoid primary 

energy expenditure for the surrounding buildings. Whilst the building is not yet fully 

equipped or occupied, modelling of consumption using figures provided by the building 
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design consultants indicate that the building will still easily achieve net zero when fully 

occupied. 

An analysis of how the SBRC building is able to match its generation and load profiles, 

and how it interacts with the grid was also performed. The reported Load Match Index 

was found to be 43.5% for the second half of 2015. The GII for 2015 was found to be 

0.22. It is desirable for the GII to be as low as possible. Electrical equipment must be 

designed for peak loading. Significant infrastructure savings can be found in reducing 

the expected peak loads in a system. The LMI, together with the GII provide a means to 

quantify how the building interacts with the utility grid. Peak import and export events 

can be reduced through implementation of load matching improvement measures to 

minimise interaction of the building with the grid. A high GII means the building has a 

highly variable relationship with the grid, ranging from high levels of import or export 

to having little interaction at all. Since infrastructure is designed for extreme cases 

which may happen only on very rare occasions, reduction of grid interaction variability 

can save significant costs by lowering the levels with which infrastructure must cope. 

While energy generation and use is of primary importance to NZEB design, other 

considerations associated with the energy delivery system need to be included during 

design, e.g. power factor and power quality requirements. While such considerations are 

relevant to all buildings, the uniqueness of NZEBs means that power factor correction 

equipment may be omitted in some cases, and the electrical distribution system needs to 

be able to mitigate the harmonics of high energy efficiency equipment as well as voltage 

rise from localised generation.  
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Chapter 7 Conclusion and Future Work 

As a promising design philosophy in the future of the built environment, the success of 

net zero energy buildings depends greatly on a good understanding of the influence that 

different design factors have on the energy performance of a building. The importance 

of design and operational factors to the success of net zero energy buildings has been 

investigated through the use of building performance simulation. This research entailed 

the development of building performance models for three case study buildings as well 

as a comprehensive validation methodology for each model. 

 

7.1 Building model validation  

This thesis demonstrated that validation of models of efficient buildings is more 

challenging than models of conventional buildings due to intelligent systems which are 

able to adjust their behaviour automatically depending on a range of environmental 

variables such as available natural light. This has the effect of making energy 

consumption of these systems more variable than in a conventional building and thus 

more difficult to model where provision of specific environmental inputs is not made. 

Natural ventilation in building models is not as easily predicted as behaviour of artificial 

HVAC systems. More complex modelling techniques which consider the intricacies of 

internal and external airflow interactions with the building envelope would possibly 

provide more accurate results. 

A methodology to successfully validate building models and simulation results was 

developed. Successful validation of building models is dictated heavily by the 

availability and reliability of measured building data. Both energy consumption for the 

main building systems (HVAC, lighting, building services), as well as temperature data 

for summer and winter periods for several zones within the building, are recommended 

to ensure the building not only exhibits characteristic energy consumption behaviour, 

but that the building responds properly in a thermal respect. One challenge encountered 

in this study was obtaining adequate data for all test cases. No thermal data was 

available for the Enterprise 1 building, while very little energy data was obtainable from 

the TTT building. Had a longer timeframe been available for data acquisition, a better 

result may have been achieved regarding the validation of the case study building 
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models. Nonetheless, the modelling performed here can be regarded as adequate, given 

that results are compared to a benchmark of the same building model for each scenario. 

 

7.2 Building simulation results 

Simulations were undertaken to investigate the performance of net zero energy 

buildings. The effectiveness of various designs and operating parameters were modelled 

to gain an understanding of the most effective way of reducing energy consumption and 

achieving net zero energy in a building. The net zero energy case study buildings 

studied here indicated from simulation results that efficient buildings are more sensitive 

to changes in design or operating practices than more conventional buildings. This 

suggests that a building designed from scratch for the purpose of being net zero will 

have the best chance of achieving that goal. A retrofitted building may not achieve this 

goal as easily due to factors such as the building envelope not being designed to be able 

to capture the maximum amount of daylight to aid in reducing lighting loads. Another 

factor which may affect the outcome of a retrofitted building compared to a NZEB 

designed from scratch is that the building layout may not lend itself to successful 

natural ventilation implementation. Ideally a building with a successful natural 

ventilation scheme will be designed with cross-flow of air in mind: open plan spaces 

with large atrium common areas enabling airflow between different levels of the 

building. Buildings should be narrow to maintain sufficient air distribution throughout 

the interior. 

The research undertaken in this thesis indicated that significant benefits to energy 

consumption are possible with the installation of high performance glazing. Energy 

savings between 6% and 11% are possible in net zero buildings when triple glazed, low 

emissivity glass is used compared to a benchmark of single glazed, clear glass. Higher 

performance glazing presented less of a benefit for the conventional building due to 

HVAC loads (the aspect most effected by glazing) being less dominant than in the 

NZEBs. 

Simulations of building models and complimentary data collection from case study 

buildings have shown that controlling lighting output in proportion to the available 

amount of daylight present in a room also presents significant benefits to energy 

reduction in buildings. Large open plan spaces with high levels of external and internal 
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glazing benefit most from this, enabling maximum transmission and penetration of 

natural light into the building. This is where design intent is important and where older, 

more conventional buildings may not achieve benefits. Enterprise 1, the conventional 

building studied here, was designed with open plan offices, as well as large atriums with 

skylights at each end of the building. This makes it a very good candidate for the 

retrofitting of daylighting controls. Simulation results suggested an overall saving of 

25% to total building energy use. This is a significant saving due as lighting is one of 

the most dominant loads in this building. In the TTT building, an overall saving of 21% 

was determined compared to a scenario where daylight controls were not installed, 

while at the SBRC, it was found that due to the already very low lighting power density 

specified in the design phase, daylight controls contribute to only an 8% energy saving. 

The implications for energy consumption from window shading controlled by both time 

of day and outdoor temperature were investigated. Overall, the net benefit to total 

energy consumption in each building was insignificant, if there was a benefit at all. 

Typically, any improvement due to reduction in HVAC loads was cancelled out by the 

need for significant increases in lighting use to compensate for lost daylight.  

From simulations performed on the case study building models, adjustments of HVAC 

setpoint offer meaningful energy savings. Net zero buildings appear most sensitive to 

changes in HVAC setpoints but it must be considered that the default setpoints are 

wider than usual to begin with. It is important that any changes to HVAC setpoints must 

meet the perceived comfort standard of occupants to ensure a comfortable environment 

indoors. Increasing the cooling setpoint from 24°C to 26°C at the Enterprise 1 building 

was predicted to result in a 25% energy saving, however this would not be feasible if 

occupants were not comfortable while in the building. 

 

7.3 Energy balance & grid considerations of case study NZEB 

Analysis of a full year of data available for the Sustainable Buildings Research Centre 

building has enabled the net zero status of the building for 2015 to be established. The 

position of the SBRC was successful, generating an annual energy surplus of 110 MWh 

and maintaining a surplus throughout every month of 2015 based on the site energy 

metric (a comparison of energy consumed to energy generated). The analysis included 

consideration of the primary energy factor of the utility grid, calculated in order to 
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assess the source energy balance (a comparison of energy imported to energy exported). 

With a primary energy factor of 3.07 established based on the most recent data 

available, the source energy balance for the SBRC improved the contribution of the 

building to emissions reduction by a factor of three. The large surplus of energy 

produced is used elsewhere on the campus, thereby avoiding the expense of primary 

energy associated with imports from the utility grid.  

Analysis of the load match and grid interaction factors at the SBRC provided an 

indication of what possible challenges high numbers of NZEBs will present to the utility 

grid in the future. Maximising the ability for the building to cover all of its own loads 

with on-site generation at all times of the day, as well as minimising the variance of 

energy transfer between the grid and building is important to reduce grid infrastructure 

capital and maintenance costs. The Load Match index for the SBRC based on available 

data of 15-minute intervals was calculated to be 43.5%. The Grid Interaction Index was 

calculated to be 0.22. With the increasing affordability of battery storage, this 

technology makes the prospects of improving the Load Match Index much easier. 

Surplus energy generated during the day is stored for overnight use. Additionally, 

diversification of on-site renewable technology through the addition of small-scale wind 

turbines would also serve to improve the Load Match Index. 

The balance of energy generated and consumed is of primary importance to the field of 

net zero energy buildings; however, considerations must be made regarding power 

quality. Primarily the power factor, total harmonic distortion, and voltage rise must be 

considered in the design phase of buildings. The general overview and brief analysis of 

these factors for the SBRC case study suggest that power factor correction equipment 

may not be necessary in some cases. 

 

7.4 Suggested future research 

Upon the fulfilment of the aim and objectives of this thesis, several areas of potential 

research have been identified: 

• Further efforts to more comprehensively validate each building model using a 

complete year of temperature and energy data. This would improve the 
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confidence of the results of this thesis, and also enable further study in other 

areas of building research using robust and reliable building model case studies. 

• Whilst the effects of window shading on energy consumption for the three test 

cases were simulated, the subject of shading elements in buildings is a broad one 

and should consider many interrelated variables. This made the study of this 

field, using differing case study buildings, difficult given that each building has 

its own location and building-specific shading elements already built-in. Further 

understanding of the effects of building shading elements on energy 

consumption would be gained through a separate study using a hypothetical 

model on which to investigate such factors as roof and window overhangs, 

vertical wall and window fins, and the placement of surrounding features such as 

buildings and vegetation. The ‘all-or-nothing’ approach to window shading 

modelling performed in this study led to poor results. However, investigation of 

more nuanced and subtle shading devices may find a positive and significant 

effect on energy consumption. 

 

• Important questions regarding occupant interaction with buildings and their 

effects on energy consumption were raised in this thesis. However, the 

modelling methodology employed did not lend itself to the study of occupant 

behaviour. One potential area of research in this field would be how energy 

consumption and efficiency initiatives shape the behaviour of occupants in a 

building and whether these initiatives conflict with occupant needs and 

preferences. It is suggested that net zero energy buildings will be more 

successful if their occupants embody a culture of energy conservation, however 

this would warrant further investigation. A successful NZEB would be one 

which requires little habitual and cultural change from its occupants as this may 

present a barrier to widespread up-take. 

 

• This study focussed on the modelling of three case study buildings conveniently 

situated in close proximity to each other. This made validation of each model 

simpler and the results were able to be compared on a level basis. However, the 

three buildings had differing sizes and purposes. These two factors are likely to 

affect energy consumption and thus some conclusions made here may not be 

able to be applied more broadly to buildings in general with total confidence. 
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More work should be undertaken with a higher sample size of case study 

buildings, both NZEB and conventional, in order to build up a reliable picture of 

factors which drive energy savings in NZEBs and how they compare to 

conventional buildings. 

 

• A brief overview of the power quality factors which warrant consideration in the 

design of a NZEB was given in this thesis. This is a field where deeper research 

is necessary to understand how large numbers of net zero buildings interact fully 

with the grid and what implications this may have in the field of power quality. 
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Appendices 

 

 

Appendix A. R2 plots omitted from Section 4.4.2 

 

 

Figure A-1  R2 for SBRC energy lab room temperature comparison - winter 

 

 

 

Figure A-2 R2 for SBRC Eastern Office temperature comparison - summer 
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Appendix B. Tables and Figures Omitted From Chapter 2 

The following tables and figures relate to literature sources that form sections of the 

literature review in Chapter 2. The sources these figures were taken from shape the 

conclusions made in the literature review, but the figures themselves were not deemed 

integral to the understanding of the conclusions. They are provided here with citation to 

provide the reader a deeper understanding if desired. 

Figure B-3 from Belleri et al. [17] is an example of the output of the Excel tool showing 

the NZEB balance for three differing NZEB definitions, as well as the monthly tracking 

of energy use and generation for the case study building. 

 

Figure B-3 NZEB balance for three definitions; Tracking of load/gen. - [17]. 

 

Results of the study by Nguyen & Altan [28] according to the prescribed criteria are 

shown below in Table B-1. 

Table B-1 Results from [28]. 
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Table B-2 is an excerpt from Dubois & Blomsterberg [38] showing the type of energy 

saving strategy and it’s potential for savings. 

Table B-2 Energy savings potential of different strategies by [38]. 
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Appendix C. Data Sets 

All data sets relating to building models, measured building data, simulation results, and 

weather files are stored in the Sustainable Buildings Research Centre data repository 

and are available upon request to the author or to the SBRC directly. A list of available 

files is given below: 

Table C-3 List of available data related to this thesis 

File No. File Name File Type Relating to: 

1 SBRC Monthly Energy Balance .xlsx SBRC 

2 Model EUB’s .xlsx ALL 

3 SBRC – DRAFT Building Users Guide .pdf  SBRC 

4 1004305 Uni of Wollongong_SBRC_TEC Report – Rev C .pdf SBRC 

5 SBRC MECH Drawings .pdf SBRC 

6 SBRC ELEC Drawings .pdf SBRC 

7 WSP Mechanical Services Specification .pdf SBRC 

8 TTT ARCH Drawings .pdf TTT 

9 TTT MECH Drawings .pdf TTT 

10 TTT ELEC Drawings .pdf TTT 

11 AC 1 Energy report Jan to April 15 .pdf TTT 

12 AC 2 Energy report Jan to April 15 .pdf TTT 

13 AC 3 Energy report Jan to April 15 .pdf TTT 

14 Level 1 lighting year to date .xlsx TTT 

15 Level 1 power year to date .xlsx TTT 

16 Level O lighting year to date .xlsx TTT 

17 RRSB year to date .xlsx TTT 

18 TTT Energy Data .xlsx TTT 

19 Yea to date level O power .xlsx TTT 

20 Water Furnace Specs .pdf TTT 

21 Enterprise 1 ARCH Drawings .pdf E1 

22 Asset List & Synthetic Breakdown .pdf E1 

23 Enterprise-1 Manual .pdf E1 

24 iCE1 Volume 1 Building Works .pdf E1 

25 Lighting Sheets .pdf E1 
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26 DesignBuilder TTT .zip TTT 

27 DesignBuilder SBRC .zip SBRC 

28 DesignBuilder Enterprise One .zip E1 

29 BMS Data .zip SBRC 

30 Aust electrical breakdown .xlsx ALL 

31 Bellambi TMY DB temp histogram .xlsx ALL 

32 SBRC Incomer HIOKI Power Data 2015 02-01-15 to 31-07-16 –chapter 6 .xlsx SBRC 

33 Glazing Simulations .xlsx ALL 

34 Glazing simulations_Identical lighting system .xlsx ALL 

35 Glazing simulations_Identical lighting system_no control .xlsx ALL 

36 HVAC SP analysis .xlsx ALL 

37 Lighting Control simulations .xlsx ALL 

38 Shading analysis .xlsx ALL 
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