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Lymphoma and leukemia are fatal syndromes of cancer that cause other diseases and afect all types of age groups including male
and female, and disastrous and fatal blood cancer causes an increased savvier death ratio. Both lymphoma and leukemia are
associated with the damage and rise of immature lymphocytes, monocytes, neutrophils, and eosinophil cells. So, in the health
sector, the early prediction and treatment of blood cancer is a major issue for survival rates. Nowadays, there are various manual
techniques to analyze and predict blood cancer using the microscopic medical reports of white blood cell images, which is very
steady for prediction and causes a major ratio of deaths. Manual prediction and analysis of eosinophils, lymphocytes, monocytes,
and neutrophils are very difcult and time-consuming. In previous studies, they used numerous deep learning and machine
learning techniques to predict blood cancer, but there are still some limitations in these studies. So, in this article, we propose
a model of deep learning empowered with transfer learning and indulge in image processing techniques to improve the prediction
results. Te proposed transfer learning model empowered with image processing incorporates diferent levels of prediction,
analysis, and learning procedures and employs diferent learning criteria like learning rate and epochs. Te proposed model used
numerous transfer learning models with varying parameters for each model and cloud techniques to choose the best prediction
model, and the proposed model used an extensive set of performance techniques and procedures to predict the white blood cells
which cause cancer to incorporate image processing techniques. So, after extensive procedures of AlexNet, MobileNet, and ResNet
with both image processing and without image processing techniques with numerous learning criteria, the stochastic gradient
descent momentum incorporated with AlexNet is outperformed with the highest prediction accuracy of 97.3% and the mis-
classifcation rate is 2.7% with image processing technique. Te proposed model gives good results and can be applied for smart
diagnosing of blood cancer using eosinophils, lymphocytes, monocytes, and neutrophils.
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1. Introduction

Leukemia and lymphoma are the most frequent kinds of
blood cancer in people of all ages, particularly young people.
Tis abnormal situation is induced by red blood cell pro-
liferation and immature growth, which can harm red blood
cells, bone marrow, and the immune system [1]. Leukemia
accounts for more than 3.5% of new cancer cases in the
United States, with over 50,000 new cases diagnosed in 2018
[2]. Cancerous lymphoblasts in the blood travel to other
organs, including the heart, brain, lungs, and arteries, before
spreading to important tissues throughout the body. Red
blood cells are normally in charge of transporting oxygen
from the heart to all organs. Tey make up half of the total
blood volume.White blood cells, on the other hand, serve an
important role in the human immune system, serving as the
frst line of protection against a variety of diseases and
disorders [3]. As a result, accurately identifying these white
blood cells is crucial in understanding the symptoms of the
problem. Teir categorization is determined by their cyto-
plasmic composition. Changes in lymphocytes, a kind of
white blood cell, cause acute lymphoblastic leukemia [4].
Acute or chronic leukemia are the two types of leukemia.
Without treatment, the typical recovery period for acute
myeloid leukemia is roughly three months; however, the
time of appearance of chronic leukemia is longer than that of
acute leukemia. Chronic lymphoblastic leukemia is the most
common kind of acute leukemia, accounting for around 25%
of all juvenile malignancies [5, 6]. Early detection of leu-
kemia and lymphoma has always been difcult for re-
searchers, clinicians, and hematologists. Leukemia
symptoms include enlarged lymph nodes, paleness, fever,
and weight loss, although these symptoms can also be caused
by other diseases [7]. Because of the moderate nature of the
symptoms, diagnosing leukemia and lymphoma in its early
stages is challenging. PBS microscopic assessment is the
most often used leukemia and lymphoma diagnostic ap-
proach, while the gold standard for leukemia and lymphoma
diagnosis only entails obtaining and analyzing white blood
cell samples [8]. Several research have utilized machine
learning and deep learning and machine diagnostics ap-
proaches to laboratory image processing during the last two
decades in the hopes of pushing the boundaries of late di-
agnosis of leukemia and lymphoma and establishing their
subtypes [9]. In this research, blood smear pictures were
evaluated to diagnose, distinguish, and count cells in distinct
kinds of leukemia and lymphoma [10].

Deep learning is a famous artifcial intelligence area that
comprises algorithms and statistical associations. It has
quickly permeated the feld of clinical research. Deep
learning allows you to teach machines without prior skills
and discover your knowledge. Te application of these
technologies to medical data processing achieved out-
standing results and was especially benefcial in disease
detection [11]. Deep learning techniques, according to
studies, signifcantly help [12] the complexmedical decision-
making processes in medical image processing [13] by
extracting and then analyzing characteristics from these
pictures [14]. As the number of medical diagnostic

instruments increased and a considerable volume of high-
quality data was created, there was an urgent demand for
more powerful data processing technologies. Conventional
data analysis methods were incapable of analyzing such
massive volumes of data or identifying data trends.

Te proposed study employs deep learning procedures
driven by transfer learning and image processing to over-
come the limitations of earlier investigations. Te following
are the study’s signifcant contributions:

(i) Te proposed study used transfer learning in-
corporated with various algorithms for better pre-
diction results

(ii) Te proposed study used a generic approach and
comparative analysis techniques have shown that
the proposed study of deep learning empowered
with transfer learning with image processing out-
performed using the white blood cell dataset

(iii) For enhanced results, the proposed study uses image
processing practices

(iv) Private data cloud techniques are used for data and
model security

(v) For performance evaluation, the proposed model
used numerous performance matrices

2. Literature Review

Image analysis of contaminated blood cells is frequently
separated into four stages: preparation, extraction, feature
engineering, and classifcation. Extensive research has been
conducted on numerous types of cancer, including leukemia
and lymphoma. Zhang et al. proposed a convolutional
neural network (CNN) model for the nonsegmented direct
sorting of tissue samples into healthy and sick cells [15]. To
categorize distinct kinds of white blood cells in the body,
Zhao et al. ofered machine-learning approaches such as
CNN, support vector machine (SVM), random forest, and
others [16].

Te relative white blood cell ratio is used to determine
the morphology of leukemia and lymphoma. Deep learning-
based computational analysis has shown promise as a di-
agnostic technique for heterogeneous white blood cell count.
Deep learning was demonstrated by Choi et al. [17] and Qin
et al. [18] to categorize white blood cells at numerous stages
of maturation, laying the foundation for a deep learning-
based diagnosis of leukemia and lymphoma; however, these
research fndings had constraints due to a shortage of cell
types and poor sensitivity, respectively, and classifcation
was usually done using precompiled images rather than raw
clinical images. Te white blood cell disparity ratio for
myeloid analysis is an important use of transfer learning that
still requires improvement.

Karthikeyan and Poornima [19] described a novel
method for segmenting and classifying acute myeloid and
lymphomas that were preprocessed using histogram
equalization and median fltering. Two techniques for
lymphocyte segmentation were compared: clustering algo-
rithm and k-mean. For lymphocyte segmentation, fuzzy c-
means clustering beats k-means clustering. After that, the
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support vector machine was utilized to separate normal and
blast cells. MoradiAmin et al. [20] separated background
lymphocytes using widespread pooling of C medium to
increase the identifcation of acute lymphocytic leukemia
cells. Following the extraction of diverse shape-based data,
they used hierarchical clustering to minimize the number of
parameters before providing them to assist the SVM clas-
sifer for normal and popping cell categorization.

Te authors of the study employed computer vision
techniques to overcome the difculties of manual counting. In
this situation, the picture has been preprocessed to remove the
chance of distortion, and the proportion of white blood cells
to red blood cells has been determined to determine if the
image is normal or abnormal for detecting Salihah et al. [21].
Horie et al. [22] proved the diagnostic efectiveness of deep
learning approaches such as CNN for esophagitis, including
melanoma and adenocarcinoma, with a sensitivity of 98%.

Te authors [23] developed a CNN model for leukemia
prediction that featured three key steps: CNN comparison
stretching and edge extraction, followed by transfer learning
depth feature extraction. In [24], authors developed
a method for distinguishing tainted pictures from healthy
ones that uses a convolutional neural network. Furthermore,
the clustering method using the EM approach is utilized to
compute the rate of infection spread thus far. Te study [25]
proposed computer-aided diagnostic methods for leukemia
cancer classifcation using an ensembled SVM learning
approach. Te authors proposed a supervised machine
learning approach to identify blood cancer and then cate-
gorise them using a fully integrated network [26].

Te study ofered classifcationmodels for distinguishing
microscopic pictures of blood from leukemia and lymphoma
patients from those who were not [27]. A pretrained CNN
named AlexNet, as well as numerous additional classifers,
are utilized to extract the features. In comparison to other
classifers, the support vector machine fared better in tests.
In the second model, AlexNet is used for extraction and
classifcation only when the results demonstrate that it
outperforms other models on various performance criteria.

Te authors of this study [28] presented a computational
method for detecting acute leukemia and lymphoma. To
begin, focusing was applied to digital microscope pictures to
decrease noise and blurring. Color, form, texture, and sta-
tistics were identifed and classed as benign or malignant.
Classifcation models based on K-nearest neighbors and
naive Bayes were utilized. Experiments with sixty blood
analyzers proved the efectiveness of the K-nearest neighbor
(KNN), which had a 92.8% accuracy rate.

Te authors of this study [29] created a mechanism for
categorizing acute myelogenous leukemia cells into sub-
groups. Initially, cells were segmented using a color k-means
technique. Following that, six statistical characteristics were
retrieved and fed into a multiclass SVM classifer. Te data
yielded a maximum aiming accuracy of 87% and a maxi-
mum accuracy of 92.9%.

According to the study [30], a three-tier approach in-
cluding extracting features, coding, and categorization is
recommended. Te goal of this approach was to evaluate
whether or not a patient has leukemia or lymphoma based

on a picture of a sample of blood from a particular patient. A
thick structurally complex transformation was used in
feature extraction. At the encoding layer, the size of the
recovered feature vectors was lowered. Finally, a multiclass
support vector machine classifer was used to do the clas-
sifcation. Experiments with four hundred samples resulted
in an accuracy of 79.38%.

Te study [31] established a classifcation system for
acute myelogenous leukemia that segments grains using
contour and k-signature methods. Ten, utilizing the
morphology, characteristics such as cell volume, cell color,
and so on were retrieved. Studies on a dataset of one
hundred pictures found that the SVM classifer had up to
92% classifcation accuracy.

Te study [32] described an automated microscopic
image-based technique for diagnosing leukemia and lym-
phoma. Te technique begins by reducing noise and blur
during preprocessing. Te white blood cells were then
separated using the k-means and Zack algorithms. Following
that, chromatic, statistical, geometric, and textural elements
were restored. Finally, to distinguish between healthy and
unhealthy images, an SVM classifer was utilized. Trials on
a dataset of twenty-seven pictures revealed a 93.57% clas-
sifcation accuracy.

Te research [33] created a categorization system for
three forms of acute myeloid leukemia and acute multiple
myeloma leukemia and acute lymphocytic leukemia. Twelve
characteristics were extracted by hand from picture samples.
Finally, for classifcation, a K-nearest neighbor predictor was
applied. Experiments using a sample of 350 photos yielded
86% reliability. Te authors [34] developed a fve-
characteristic method for acute myelogenous leukemia
categorization that improved picture contrast. An SVM
classifer was used to categorize the data. Experiments with
51 photos provided a categorization accuracy of 93.5%.

To categorize acute lymphocytic leukemia and its sub-
types, the authors [35] recommended using a CNN network
termed a convolutional network. A dataset of 373 pictures
was utilized for the evaluation, and an accuracy of 80% was
reached. Experiments confrmed this method’s superiority
over a range of earlier techniques. Te authors [36] used
numerous deep learning approaches to predict blood cancer
cells including CNN and SVM and they achieved 97.04%
prediction accuracy.

Previous research on the prediction of blood cancer
utilizing white blood cells using machine learning and deep
learning had signifcant drawbacks. Te limitations of prior
investigations are shown in Table 1.

As Table 1 depicts the summary of all previous research
that predicted blood cancer using machine learning, deep
learning, and transfer learning techniques, every study has
its own limitations. So, this study has the advantage of
coping with all these limitations wisely during blood cancer
prediction.

3. Materials and Methods

Figure 1 depicts an overview of the suggested approach for
predicting blood cancer using transfer learning-enabled
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malignant white blood cells. Te proposed process begins
with data input from several hospital sources. After col-
lecting all white blood cell (WBC) samples, data

augmentation techniques were used to overcome the chal-
lenges of mining data samples for WBC classes. Te pro-
posed methodology depicts four major steps in the whole

Table 1: Limitations of previous studies (it explains the results of previous studies and shows the previous studies research gap).

Publications Methods Datasets Accuracy (%) Limitations

Pansombut et al. [35] CNN Image (public) 80 (i) Low-ratio dataset
(ii) Data image processing layer

Madhukar et al. [34] SVM Image (public) 93.5
(i) Low-ratio dataset
(ii) Minor image classes
(iii) Data image processing layer

Supardi et al. [33] KNN Image (public) 86 (i) Low-ratio dataset
(ii) Data image processing layer

Patel and Mishra [32] SVM Image (public) 93.57 (i) Data image processing layer

Laosai and Chamnongthai [31] SVM Image (public) 92 (i) Low-ratio dataset
(ii) Data image processing layer

Faivdullah et al. [30] SVM Feature (public) 79.38 (i) Required handcrafted features

Setiawan et al. [29] SVM, K-means Image (public) 87
(i) Low-diverse dataset
(ii) Low-ratio dataset
(iii) Data image processing layer

Kumar et al. [28] KNN, Naı̈ve Bayes, CNN Image (public) 92.8 (i) Low-ratio dataset
(ii) Less number of classes

Loey et al. [27] CNN, AlexNet Image (public) 94.3
(i) Low-ratio dataset
(ii) Data image processing
(iii) Less number of classes

Figure 1: Te proposed methodology for prediction of blood cancer using white blood cells empowered with transfer learning (this shows
the research methodology of the current study, the overall process how data is fetching, training, and testing).
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prediction process for blood cancer. In the frst phase, the
proposed framework collects data from the hospital, pre-
processed blood samples, divides all preprocessed samples
into training testing sample ratios, and stores these split
samples in private for easy access at any step. Te training
phase imports training data samples from the private cloud
and trains the AlexNet, ResNet, and MobileNet algorithms
with stochastic gradient descent (SGD) with momentum,
adaptive momentum estimation, and signal propagation
algorithms using squares of the root. After training all al-
gorithms of AlexNet, ResNet, and MobileNet, applying
learning criteria techniques, if the learning criteria match the
proposed framework expectations, then the trained model is
stored separately on each algorithm’s private cloud. If the
proposed model does not meet the learning criteria then
apply image processing techniques such as histogram
equalization and again train the model and check the
learning criteria.

In the third phase, choose the semi-best-trained algo-
rithms from all private clouds and store them in another

private cloud for the further testing processes. In the last
phase, which is known as the testing phase, import blood
samples from the cloud, import the best-performed trained
model from the model secluded, and apply the testing
process to predict the cancerous white blood cells. Finally,
the proposed framework used numerous statistical matrices
[37–43], e.g., classifcation accuracy (CA), negative predicted
value (NPV), sensitivity, specifcity, f1-score, miss-
classifcation rate (MCR), positive predicted value (PPV),
likelihood positive ratio (LPR), false negative rate (FNR),
likelihood negative ratio (LNR), false positive rate (FPR),
and Fowlkes Mallows index (FMI), all statistical matrix
equations are given as follows:

zi �
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ζ i

. (1)
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.

(2)

Te descriptive algorithm of the proposed study for
blood cancer prognostication utilizing transfer learning-
enhanced white blood cells is shown in Table 2. It repre-
sents the specifcs of the proposed framework’s complete
procedure.

3.1. Dataset. In this proposed study, the dataset is acquired
from the online source Ghaderzadeh et al. [43]. Te dataset
consists of four classes named eosinophils, lymphocytes,
monocytes, and neutrophils. Machine learning algorithms
are highly data hungry [44].

Te proposed framework dataset consists of 10,000 in-
stances, and each class instance consists of almost 2,500
blood samples. Figure 2 shows the sample data instance of
each blood sample class.

4. Image Processing

To overcome the classifcation accuracy defciency problem,
the proposed framework uses the image processing tech-
nique e-g histogram equalization to enhance the quality of
blood samples. With the help of histogram equalization, as
shown in Figures 3 and 4, the proposed framework enhances
the contrast and intensity of pixels in blood samples.
Equation (3) represents the distribution function of histo-
gram equalization.

DFy(m) � 
m

n�0
ρy (y�n). (3)

5. Simulation Results and Discussion

In this article, transfer learning has been used for the pre-
diction of blood cancer empowered with eosinophils,
lymphocytes, monocytes, and neutrophils incorporated into
the blood cell dataset [45]. For simulation purposes to train
and test the data sample, the proposed model used a Mac-
Book Pro 2017, 16 giga byte random access memory, and
Core i5 with a 512 Giga byte solid state drive. Te proposed
framework divided the dataset into 70% and 30% blood cells
for training and testing, respectively. To remove the diferent
anomalies in the dataset, diferent pre-processing techniques
have been implemented. Numerous transfer learning algo-
rithms have been used to train the models and test the data
samples. Diferent phases of training and testing have been
discussed and elaborated on in this article. To measure the
performance of all trained models and test results, the
proposed framework used statistical performance parame-
ters, and all parameters’ equations are mentioned above in
the methodology section.

Figure 5 shows the training progress of SGD with
momentum using AlexNet without image processing. To
train this model, the proposed model set a learning rate of
0.001, 100 epochs, and 58 iterations per epoch.Te proposed
framework of this training model has a lot of distortion and
does not converge until the last epoch; all this distortion
happens due to the contrast and pixels unbalancing in the
data samples. So, stochastic gradient descent with mo-
mentum achieves 75.78% of CA and 24.22% MCR.
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Table 2: Pseudocode of the proposedmodel (this depicts the algorithm of the current study and researchmethodology from data fetching to
training and testing and also it explains every training model).

Steps Codes
1 Input cancerous white blood cell images
2 Image preprocessing
3 Data division into training and testing
4 Store into cloud (£)
5 Input training images to deep learning algorithms

6

AlexNet
1- SGDM
2- Adaptive moment (ADAM)
3- Root mean square propagation (RMSPROP)

Check learning criteria
If meet
Store into private cloud

Else applying image preprocessing
Input image preprocessed images to deep learning algorithm
AlexNet
4- SGDM
5- ADAM
6- RMSPROP

Check learning criteria
If meet
Store into private cloud

Else
Retrain

7

ResNet
1- SGDM
2- ADAM
3- RMSPROP

Check learning criteria
If meet
Store into private cloud

Else applying image preprocessing
Input image preprocessed images to deep learning algorithm
ResNet
4- SGDM
5- ADAM
6- RMSPROP

Check learning criteria
If meet
Store into private cloud

Else
Retrain

8

ResNet
1- SGDM
2- ADAM
3- RMSPROP

Check learning criteria
If meet
Store into private cloud

Else applying image preprocessing
Input image preprocessed images to deep learning algorithm
ResNet
4- SGDM
5- ADAM
6- RMSPROP

Check learning criteria
If meet
Store into private cloud

Else
Retrain

Journal of Healthcare Engineering 7



Figure 6 shows the training progress of the adaptive
momentum association using AlexNet without image pro-
cessing. To train this model, the proposed study set
a learning rate of 0.001, 100 epochs, and 58 iterations per
epoch. Te proposed framework of this training model has
a lot of distortion and does not converge till the last epoch;
all this distortion happens due to the contrast and pixels

unbalancing in data samples. So, adaptive momentum as-
sociation achieves 86.72% and 13.28% of classifcation ac-
curacy and miss-classifcation rate, respectively.

Figure 7 shows the training progress of root mean square
(RMS) propagation using AlexNet without image process-
ing. To train this model, the proposed study set a learning
rate of 0.001, 100 epochs, and 58 iterations per epoch. Te

Table 2: Continued.

Steps Codes

9

Access all private cloud
Check the learning criteria of the best deep learning trained models
If meet
Select semi-best model and store it in other private cloud

Else
Retry

10 Import one best trained model
11 Input pre-processed test images
12 Test analysis
13 Applying statistical performance matrix

(a) (b)

(c) (d)

Figure 2: Data samples of all white blood cancerous cells (this shows some data samples for the easiness of the reader, learner, and other
researchers). (a) Eosinophil. (b) Lymphocyte. (c) Monocyte. (d) Neutrophil.
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proposed framework of this training model has a lot of
distortion and does not converge till the last epoch; all this
distortion happens due to the contrast and pixels unbal-
ancing in the data samples. So, root means square propa-
gation achieves 75.78% of CA and 24.22% MCR.

Figure 8 shows the training progress of SGD with
momentum using MobileNet without image processing. To
train this model, the proposed study set a learning rate of
0.001, 100 epochs, and 58 iterations per epoch.Te proposed
framework of this training model has a lot of distortion and
does not converge till the last epoch; all this distortion
happens due to the contrast and pixel unbalancing in the
data samples. So, stochastic gradient descent with mo-
mentum achieves 75.00% and 25.00% of CA and MCR,
respectively.

Figure 9 shows the training progress of adaptive mo-
mentum association using MobileNet without image pro-
cessing. To train this model, the proposed framework set
a learning rate of 0.001, 100 epochs, and 58 iterations per
epoch. Te proposed framework of this training model has
a lot of distortion and does not converge till the last epoch;
all this distortion happens due to the contrast and pixels
unbalancing in the data samples. So, adaptive momentum
association achieves 82.03% of classifcation accuracy and
17.97% miss-classifcation rate, respectively.

Figure 10 shows the training progress of RMS propa-
gation using MobileNet without image processing. To train
this model, the proposed study set a learning rate of 0.001,
100 epochs, and 58 iterations per epoch. Te proposed
framework of this training model has a lot of distortion and
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Figure 3: Blood cell samples before image processing (this depicts the results of data samples before image preprocessing in the form of
histogram equalization).
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Figure 4: Blood cell samples after image processing (this depicts the results of data samples after image preprocessing in the form of
histogram equalization).
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Figure 5: Training progress of SGDM and AlexNet without image processing (this depicts the training progress of SGDM and AlexNet
before the image processing phase and shows fuctuation).

Figure 6: Training progress of Adam of AlexNet without image processing (this depicts the training progress of adam and AlexNet before
the image processing phase and shows fuctuation).
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Figure 7: Training progress of RMSPROP of AlexNet without image processing (this depicts the training progress of RMSPROP and
AlexNet before the image processing phase and shows fuctuation).

Figure 8: Training progress of SGDM of the mobile net without image processing (this depicts the training progress of SGDM and
MobileNet before the image processing phase and shows fuctuation).
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Figure 9: Training progress of adam on the mobile net without image processing (this depicts the training progress of adam andMobileNet
before the image processing phase and shows fuctuation).

Figure 10: Training progress of RMSPROP of the mobile net without image processing (this depicts the training progress of RMSPROP and
MobileNet before the image processing phase and shows fuctuation).
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does not converge till the last epoch; all this distortion
happens due to the contrast and pixels unbalancing in the
data samples. So, root means square propagation achieves
75.00% and 25.00% of CA and MCR, respectively.

Figure 11 shows the training progress of SGD with
momentum using ResNet without image processing. To
train this model, the proposed study set a learning rate of
0.001, 100 epochs, and 58 iterations per epoch.Te proposed
framework of this training model has a lot of distortion and
does not converge till the last epoch; all this distortion
happens due to the contrast and pixels unbalancing in the
data samples. So, stochastic gradient descent with mo-
mentum achieves 87.50% of classifcation accuracy and
12.50% miss-classifcation rate, respectively.

Figure 12 shows the training progress of adaptive mo-
mentum association using ResNet without image process-
ing. To train this model, the proposed study set a learning
rate of 0.001, 100 epochs, and 58 iterations per epoch. Te
proposed framework of this training model has a lot of
distortion and does not converge till the last epoch, all this
distortion happens due to the contrast and pixels unbal-
ancing in the data samples. So, adaptive momentum asso-
ciation achieves 74.22% and 25.78% of classifcation
accuracy and miss-classifcation rate respectively.

Figure 13 shows the training progress of RMS propa-
gation using ResNet without image processing. To train this
model, the proposed study set a learning rate of 0.001, 100
epochs, and 58 iterations per epoch. Te proposed frame-
work of this training model has a lot of distortion and does
not converge till the last epoch; all this distortion happens
due to the contrast and pixels unbalancing in the data

samples. So, root means square propagation achieves 71.09%
of classifcation accuracy and 28.91%miss-classifcation rate,
respectively.

Table 3 shows the training results of AlexNet models
after image processing; all models tune on 5800 iterations,
a 0.001 learning rate, and 100 epochs. So, the stochastic
gradient descent moment outperformed the supra each
training model and achieves 99.2% of classifcation accuracy
and 0.8% miss-classifcation rate, respectively.

Figure 14 shows the training progress of SGD moments
using AlexNet after image processing. To train this model,
the proposed study set a learning rate of 0.001, 100 epochs,
and 58 iterations per epoch.Te proposed framework of this
training model converges before 90 epochs and gives the
highest training results.

Table 4 shows the training results of ResNet models after
image processing; all models tune on 5800 iterations, a 0.001
learning rate, and 100 epochs. So, RMSPROP outperformed
all models and achieves a 69.53% and 30.47% of classifcation
accuracy and miss-classifcation rate, respectively.

Table 5 shows the training results of MobileNet models
after image processing; all models tune on 5800 iterations,
a 0.001 learning rate, and 100 epochs. So, RMSPROP out-
performed all models and achieves a 73.44% and 26.56% of
classifcation accuracy and miss-classifcation rate,
respectively.

Table 6 shows the test simulation of AlexNet models after
image processing. Te proposed framework fnds that
SGDM performs very well as compared with other models.
SGDM predicted 719 lymphocyte cancerous cells correctly,
742 monocyte cancerous cells, and 716 neutrophil cancerous

Figure 11: Training progress of SGDM of ResNet without image processing (this depicts the training progress of SGDM and ResNet before
the image processing phase and shows fuctuation).
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Figure 13: Training progress of RMSPROP of ResNet without image processing (this depicts the training progress of rmsprop and ResNet
before the image processing phase and shows fuctuation).

Figure 12: Training progress of adam of ResNet without image processing (this depicts the training progress of adam and ResNet before the
image processing phase and shows fuctuation).
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Table 3: AlexNet training results after image processing (this depicts the AlexNet training results of all learners after image processing).

AlexNet

Model Iterations Learning rate
(LR) Epoch Classifcation accuracy

(%)
Missclassifcation rate

(%)
SGD moment

5800 0.001 100
99.2 0.8

ADAM 95.31 4.69
RMSPROP 96.09 3.91

Figure 14: Training progress of SGDM and AlexNet after image processing (this depicts the training progress of SGDM and ResNet after the
image processing phase and shows no fuctuation in the end and smoothes the training curve).

Table 4: Training results of ResNet models after image processing (this depicts the ResNet training results of all learners after image
processing).

AlexNet

Models Iterations Learning rate
(LR) Epoch Classifcation accuracy

(%)
Missclassifcation rate

(%)
SGD moment

5800 0.001 100
68.75 31.25

ADAM 68.79 31.21
RMSPROP 69.53 30.47

Table 5: Training results of mobile net models after image processing (this depicts the mobile net training results of all learners after image
processing).

AlexNet

Models Iterations Learning rate
(LR) Epoch Classifcation accuracy

(%)
Missclassifcation rate

(%)
SGD moment

5800 0.001 100
69.53 30.47

ADAM 72.3 27.7
RMSPROP 73.44 26.56
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cells correctly. SGDM achieves 97.3%, 2.7% of classifcation
accuracy, and miss-classifcation rate, respectively. ADAM
predicted 674 lymphocyte cancerous cells correctly, 703
monocyte cancerous cells, and 720 neutrophil cancerous
cells correctly. ADAM achieves 93.7% of classifcation ac-
curacy, 6.3% of classifcation accuracy, and a miss-
classifcation rate, respectively. RMSPROP predicted 714
lymphocyte cancerous cells correctly, 680 monocyte can-
cerous cells, and 692 neutrophil cancerous cells correctly.
RMSPROP achieves 93.2%, 6.8% of classifcation accuracy,
and a miss-classifcation rate, respectively.

Table 7 shows the test simulation of MobileNet models
after image processing. Te proposed framework fnds that
RMSPROP performs very well as compared with other models.
RMSPROP predicted 729 lymphocyte cancerous cells correctly,
559 monocyte cancerous cells, and 159 neutrophil cancerous
cells correctly. RMSPROP achieves 64.9% and 35.1% of clas-
sifcation accuracy and miss-classifcation rate, respectively.
ADAM predicted 676 lymphocyte cancerous cells correctly,
339 monocyte cancerous cells, and 390 neutrophil cancerous
cells. ADAM achieves 63.0% of classifcation accuracy and
37.0% miss-classifcation rate, respectively. SGDM predicted
678 lymphocyte cancerous cells correctly, 284 monocyte
cancerous cells, and 388 neutrophil cancerous cells correctly.
SGDM achieves 60.5% of classifcation accuracy and 39.5%
miss-classifcation rate, respectively.

Table 8 shows the test simulation of MobileNet models
after image processing. Te proposed framework fnds that
ADAM performs very well as compared with other models.
ADAM predicted 736 lymphocyte cancerous cells correctly,
319 monocyte cancerous cells, and 428 neutrophil cancerous
cells. ADAM achieves 66.5%, and 33.5% of classifcation ac-
curacy and miss-classifcation rate respectively. RMSPROP
predicted 728 lymphocyte cancerous cells correctly, 608
monocyte cancerous cells, and 128 neutrophil cancerous cells.
RMSPROP achieves 65.6%, and 34.4% of classifcation

accuracy and miss-classifcation rate respectively. SGDM
predicted 717 lymphocyte cancerous cells correctly, 409
monocyte cancerous cells, and 352 neutrophil cancerous cells
correctly. SGDM achieves 66.2% of classifcation accuracy and
33.8% miss-classifcation rate, respectively.

Table 9 shows the statistical matrix results of blood
cancer prediction after image processing. Tese results de-
pict that the SGDM of AlexNet outperthiformed all models
and achieves 97.3% classifcation accuracy and a 2.7% miss-
classifcation rate. SGDMofMobileNet performed below the
performance line and achieved 60.5% classifcation accuracy
and a 39.5% miss-classifcation rate.

Table 10 shows the testing results of all models, and
SGDM of AlexNet is outperformed as compared with other

Table 6: AlexNet confusion matrix of testing samples after image
processing (this depicts the testing confusion metric of AlexNet
after image processing).

AlexNet
Model (SGDM) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 719 0 9
Monocyte 16 742 25
Neutrophil 10 1 716

AlexNet
Model (ADAM) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 674 15 14
Monocyte 22 703 16
Neutrophil 49 25 720

AlexNet
Model (RMSPROP) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 714 30 36
Monocyte 16 680 22
Neutrophil 15 33 692

Table 7:Mobile net confusionmatrix of testing samples after image
processing (this depicts the testing confusion metric of the mobile
net after image processing).

MobileNet
Model (SGDM) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 678 44 47
Monocyte 0 284 308
Neutrophil 67 415 388

MobileNet
Model (ADAM) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 676 3 5
Monocyte 28 339 348
Neutrophil 41 401 390

MobileNet
Model (RMSPROP) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 729 13 14
Monocyte 16 559 570
Neutrophil 0 171 159

Table 8: RESNET confusion matrix of testing samples after image
processing (this depicts the testing confusionmetric of ResNet after
image processing).

ResNet
Model (SGDM) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 717 1 0
Monocyte 21 409 391
Neutrophil 7 333 352

ResNet
Model (ADAM) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 736 1 1
Monocyte 1 319 314
Neutrophil 8 423 428

ResNet
Model (RMSPROP) Lymphocyte Monocyte NeutrophilSample� 2238
Lymphocyte 728 6 3
Monocyte 16 608 612
Neutrophil 1 129 128
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models and achieves 78.6% classifcation accuracy, 21.4% of
classifcation accuracy, and miss-classifcation rate, re-
spectively. But when the proposed framework compared
these results with the results of after-image processing, the
results of the proposed model after-image processing per-
formed well as compared with these. Te proposed
framework performed outstandingly as compared with the
previous studies.

Table 11 depicts the descriptive comparative analysis of
this study with previous work, so the analysis depicts
Pansombut et al. [35] achieved 80% classifcation accuracy,
20% miss-classifcation rate empowered with the CNN
model on publicly available image blood samples, Madhukar
et al. [34] achieved 93.5% classifcation accuracy, 6.5% miss-
classifcation rate empowered with an SVM classifer on
publicly available image blood samples. Supardi et al. [33]
achieved 86% classifcation accuracy and a 14% miss-
classifcation rate empowered with the KNN model on
publicly available image blood samples, Mishra and Patel
[32] achieved 93.57% classifcation accuracy, 6.53% miss-
classifcation rate empowered with SVM classifer on pub-
licly available image blood samples. Laosai and Cham-
nongthai [31] achieved 92% classifcation accuracy and an
18% miss-classifcation rate empowered with the SVM
model on publicly available image blood samples. Faivdullah
et al. [30] achieved 79.38% classifcation accuracy, 20.72%
miss-classifcation rate empowered with the SVM model on
publicly available feature-based blood samples. Setiawan
et al. [29] achieved 87% classifcation accuracy and 13%
miss-classifcation rate empowered with SVM and K-means
model on publicly available image blood samples. Kumar
et al. [28] achieved 92.8% classifcation accuracy and 17.2%
miss-classifcation rate empowered with CNN, Näıve Bayes,

Table 9: Statistical matrix test results of blood cancer prediction after image processing (this depicts the statistical results of all models
performed in the current study).

AlexNet
Stochastic gradient descent moment (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
97.3 96.51 98.76 0.60 3.49 160.10 0.04 97.63 97.62 98.28 99.40 2.7
Adaptive moment estimation (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
93.07 90.47 95.87 1.94 9.53 46.58 0.10 93.13 93.09 95.37 98.06 6.03
Root mean square propagation (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
93.02 95.84 91.54 4.42 4.16 21.68 0.04 93.66 93.64 97.87 95.58 6.08
MobileNet
Stochastic gradient descent moment (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
60.5 91.01 88.77 6.12 8.99 14.86 0.10 89.58 89.56 95.42 93.88 39.5
Adaptive moment estimation (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
63.0 90.74 98.83 0.54 9.26 46.55 0.09 94.70 94.61 95.42 99.46 37.0
Root mean square propagation (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
64.09 97.85 96.43 1.82 2.15 53.86 0.02 97.14 97.14 98.92 98.18 35.01
ResNet
Stochastic gradient descent moment (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
66.2 96.24 99.86 0.07 3.76 30.15 0.04 98.03 98.02 98.92 99.93 83.8
Adaptive moment estimation (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
66.5 59.55 88.04 6.31 40.45 9.43 0.43 72.40 71.04 98.92 93.69 33.5
Root mean square propagation (%)
CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR
65.6 59.28 87.92 6.34 40.72 9.35 0.43 72.20 70.82 98.92 93.66 34.4

Table 10: Testing results before image processing (this depicts the
comparative results of all models like classifcation accuracy and
miss-classifcation rate).

Models CA (%) MCR (%)
AlexNet

SGDM 78.6 21.4
ADAM 74.3 25.7
RMSPORP 68.3 31.7

ResNet
SGDM 71.0 29.0
ADAM 75.0 25.0
RMSPROP 56.0 44.0

MobileNet
SGDM 63.1 36.9
ADAM 73.8 26.2
RMSPROP 60.9 39.1
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and KNNmodels on publicly available image blood samples.
Loey et al. [27] achieved 94.3% classifcation accuracy and
5.7% miss-classifcation rate empowered with CNN and
AlexNet models on publicly available image blood samples,
on the other side, the proposed study achieved the highest
classifcation accuracy of 97.3% and a 2.7% of miss-
classifcation rate because the proposed framework used
image processing techniques empowered with various
transfer learning algorithms.

6. Conclusion and Future Work

Te early detection of blood cancer using white blood cells can
help meritoriously in its cure.Te study’s proposed framework
consists of three transfer learning models AlexNet, MobileNet,
and ResNet empowered with SGDM, ADAM, and RMSPROP.
Te proposed framework applies all transfer learning models
with varying learning rates efectively to white blood cancerous
cells for early classifcation. To enhance the results, the pro-
posed study used image processing techniques incorporating
transfer learning and achieved the highest CA of 97.3% and
2.7% MCR. All experiments in the proposed study are com-
prehensively explained with respect to every model training
and testing phase. Tis study helps health 5.0 to predict blood
cancer in its early stages for early treatment. Furthermore, in
the future, federated machine learning using the fed average
technique will play a major role in better early prediction of
blood cancer empowered with fuzzed machine learning and
deep learning techniques will also apply more statistical
techniques such as ANOVA and Chi-Square.

Abbreviations

SVM: Support vector machine
CNN: Convolutional neural network
KNN: K-nearest neighbor
WBC: White blood cells
SGD: Stochastic gradient descent
CA: Classifcation accuracy
NPV: Negative predicted value
MCR: Miss-classifcation rate
PPV: Positive predicted value
LPR: Likelihood positive ratio
LNR: Likelihood negative ratio
FNR: False negative rate
FPR: False positive rate
FMI: Fowlkes mallows index
ADAM: Adaptive moment estimation
RMSPROP: Root mean square propagation
ANOVA: Analysis of variance.
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