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Abstract

This article presents a study with feasibility and performance analysis of machine learning (ML) techniques using supervised
techniques for anomaly detection problems in a 5G communication network. The proposed ML models (Multilayer Perceptron,
Decision Tree, and Support Vector Machine) were used to classify data into anomaly or non-anomaly based on two 5G Open
Radio Access Network (O-RAN) datasets with various key performance indicators (KPIs). Furthermore, we propose a strategy
that devotes to labeling anomalous situations, leveraging the t-Distributed Stochastic Neighbor Embedding (tSNE) technique atop
datasets enclosing multiple KPIs. The results were significant, with an accuracy above 90% for all use cases considered.
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1. Introduction

To support new 5G cellular network requirements (e.g., data rates exceeding 10 Gbps, network latency under 1
ms, capacity expansion by a factor of 1,000, and energy efficiency gains), vendors have begun investigating new radio
access network (RAN) architectures [17, 13, 25, 5, 23].

Open Radio Access Network (O-RAN), suggested by the O-RAN Alliance [15], stands as a promising radio
technology that has gained worldwide acceptance. O-RAN is a worldwide community of operators, manufacturers,
and academic institutes [18, 1]. The vision is to rewrite the RAN industry towards establishing an open, adaptable, and
intelligent RAN [15]. Artificial intelligence (AI) in machine learning (ML) will play a crucial role in the 5G network,
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with particular emphasis on the O-RAN. For example, ML use can drive more efficient enhancements in 5G network
planning, automation of network operations (e.g., provisioning, optimization, and fault prediction), network slicing,
service quality prediction, and other applications and services [8, 3, 14, 20].

As presented in [4] and [16], O-RAN defines five different ML-based application deployment scenarios
characterized by the ML task type and application latency requirements. As for the learning paradigm, the O-RAN
architecture supports three main types of ML tasks: supervised learning, unsupervised learning, and reinforcement
learning, and three levels of latency requirements: high latency, low latency, and ultra-low latency. Supervised learning
algorithms can deal with regression and prediction problems [4, 16], whereas unsupervised learning techniques best
suit data classification and clustering [4, 16]. In contrast, reinforcement learning algorithms train agents to operate in
environments to maximize their utility in reaching some goals [4, 16, 10].

The O-RAN architecture is composed of several interworking components, and from the ML point of view, we
highlighted both the non-real-time (non-RT) RAN intelligent controllers (RIC) and the near-real-time (near-RT) RIC.
The non-RT RIC and the near-RT RIC support ML applications (training and inference) in non-RT and near-RT,
respectively. Non-RT applications are called rApps, whereas the near-RT applications are xApps [16, 10, 6, 21, 28].

An anomaly can be understood to as a pattern that does not conform to expected behavior. Therefore, it appears
infrequently and is closely linked to normality. All network traffic that does not fall into the typical class can be
considered anomalous. Consequently, anomaly detection systems should not be limited by any predefined set of
anomalies; instead, they must be flexible enough to adapt to any strange events that affect the network [10, 9, 27].

Machine learning-based anomaly detection techniques act as classifiers and can operate either supervised or
unsupervised. A dataset with traffic labeled as normal or anomalous in the supervised case must be available. In
the unsupervised case, no labeled training set is needed, and the objective is to discover groups of similar examples
within the data (clustering) [10, 9, 27].

Several works in literature have proposed ML for anomaly detection as presented in [9, 29, 30, 12, 27, 2]. However,
most works focus on using time series prediction, such as works presented in [29, 30, 24] and applied to cybersecurity
defence systems as shown in [12, 2].

Thus, differently from the existing literature, this paper aims to present a study with feasibility analysis and
performance of AI-ML using supervised techniques for anomaly detection problems in a 5G communication network.
The proposed ML models (Multilayer Perceptron, Decision Tree, and Support Vector Machine) were used to classify
data in anomaly or non-anomaly. The results were based on three 5G datasets with various Key Performance Indicators
(KPIs) such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and others.

This paper is organized as follows. Section 2 introduces our dataset, including some preliminary processing and
the proposed methodology for labeling. Then, Section 3 discusses anomaly detection results while Section 4 presents
the final remarks.

2. Dataset

2.1. Dataset description

This work used three 5G datasets called here DS-1, DS-2, and DS-3. The DS-1 is characterized by the dataset
presented in anomaly detection O-RAN’s use case [22], and the datasets DS-2 and DS-3 are described in [19].

DS-1 has about 10000 rows in a range of about 33 s, and it is composed of several KPIs, as showed in Table 1.
DS-2 and DS-3 are characterized by the streaming data for playing the Adventure Time and Rick and Morty cartoons
on Amazon Prime and Netflix, respectively. DS-2 and DS-3 datasets are composed of several files with about 3800
rows per file, and the range time per file is about 38 s. The KPIs of the datasets DS-2 and DS-3 are presented in
Table 2.

2.2. Dataset preprocessing

Some KPIs in the DS-2 and DS-3 have a considerable amount of missing data. We used the roulette wheel selection
for each KPI to cope with this problem. Widely used in genetic algorithms [26, 7], roulette selection is a stochastic
selection method where the probability of selecting a given value is proportional to a previously designed evaluation
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Table 1: Description of the dataset DS-1.

KPI name Description
x position
y position
rsrp reference signal received power
rsrq reference signal received quality
rssinr received signal strength indication
nbCellIdentity 0 neighbor 0 cell identifier
nbCellIdentity 1 neighbor 1 cell identifier
nbCellIdentity 2 neighbor 2 cell identifier
nbCellIdentity 3 neighbor 3 cell identifier
nbCellIdentity 4 neighbor 4 cell identifier
rsrp nb0 reference signal received power for neighbor 0
rsrq nb0 reference signal received quality for neighbor 0
rssinr nb0 received signal strength indication for neighbor 0
rsrp nb1 reference signal received power for neighbor 1
rsrq nb1 reference signal received quality for neighbor 1
rssinr nb1 received signal strength indication for neighbor 1
rsrp nb2 reference signal received power for neighbor 2
rsrq nb2 reference signal received quality for neighbor 2
rssinr nb2 received signal strength indication for neighbor 2
rsrp nb3 reference signal received power for neighbor 3
rsrq nb3 reference signal received quality for neighbor 3
rssinr nb3 received signal strength indication for neighbor 3
rsrp nb4 reference signal received power for neighbor 4
rsrq nb4 reference signal received quality for neighbor 4
rssinr nb4 received signal strength indication for neighbor 4

Table 2: Description of the datasets DS-2 and DS-3.

KPI name Description
Longitude longitude GPS coordinate
Latitude latitude GPS coordinate
CellID cell identifier
RSRP reference signal received power
RSRQ reference signal received quality
SNR signal to noise ratio
CQI continuous quality improvement
RSSI received signal strength indication
DL bitrate Download rate measured at device in kbit/s
UL bitrate Uplink rate measured at the device in kbit/s
RAWCELLID cell Identifier
NRxRSRP neighboring cell signal received power
NRxRSRQ neighboring cell signal received quality

function. The KPI values associated with the DS-2 and DS-3 datasets are discrete values belonging to a finite set of
possibilities. Therefore, the evaluation function was characterized as the number of occurrences of each value. In other
words, the greater the value occurrence, the greater its slice on the sheet.
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Thus, histograms were calculated for each KPI of the DS-2 and DS-3 datasets. Then, a roulette wheel was set up
based on the histogram of each dataset’s KPI. This way, the roulette wheel was performed for each missing value in
a given KPI, filling the value in. Figs. 1 and 2 show an example of the missing data strategy used. Fig. 1 presents a
histogram with all values for the KPI NRxRSRQ (see Table 2) before treating missing values, and Fig. 2 shows the
same KPI after being treated.

Fig. 1: NRxRSRQ KPI before treating missing values. The roulette wheel slices are based on each value’s proportional number of occurrences.

Fig. 2: NRxRSRQ KPI after treating missing values.

2.3. Dataset labelling

In wireless communications, as in the case of 5G systems, network traffic situations that are out of a regular pattern
can be considered anomalies. For example, abrupt throughput reduction, latency increase or significant signal loss
can be observed as anomalous situations. It is essential to understand that anomaly detection in 5G systems is a
multifactorial problem that must be treated based on several variables, based on several KPIs [12, 9, 11]. On the other
hand, anomaly detection systems should not be limited to a specific group of anomalies and should be able to act in
any situation [12, 9, 11].
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Thus, aiming to create distinct anomaly profiles that may be caused by multiple KPIs and, at the same time, validate
the performance of ML techniques, this article proposes a dataset labelling scheme composed of three strategies
described as follows.

All data were labelled as an anomaly (A) and not-anomaly (NA). The three labelling strategies used t-Distributed
Stochastic Neighbor Embedding (tSNE). This technique reduces data dimension so that we visualize data from DS-2
and DS-3 (with 13 dimensions) and DS-1 (with 23 dimensions) in just two dimensions. In the first labelling strategy,
called here balanced strategy, the data was divided approximately half for each class (A and NA). In the unbalanced
strategy’s second labelling approach, the data was split with more elements of the A class than the NA class. Finally,
in the third one, called alternated strategy, the data was divided with approximately the same size for each class but
spread in the tSNE space.

Next figures show the labelling process for:

• the dataset DS-1: Figs. 3, 4, and 5;
• the dataset DS-2: Figs. 6, 7, and 8; and
• the dataset DS-3: Figs. 9, 10, and 11.

The blue points represent class A, and the red is class NA.

Fig. 3: Labelling processing for DS-1 in balanced strategy. The blue points represent class A, and red points class NA.

3. Results

The results were obtained for three ML techniques: the Multilayer Perceptron (MLP), Decision Tree (DT) and the
Support Vector Machine (SVM). As Python is a supported language for developing xAPPs and rAPPs on RIC [6, 21,
28], all ML techniques were developed and executed in Python.

The MLP architecture used 1000 neurons in a hidden layer and trained for 25 epochs. The DT strategy was based
on the Gini criterion. Finally, the SVM architecture was based on the radial basis function as kernel and regularization
parameter set as 1.0. Each ML model used 25 inputs for DS-1 and 13 for DS-2 and DS-3. The ML training step was
based on k-fold cross-validation approach with k = 5.

Tables 3, 4, and 5 depict the confusion matrix for DS-1 associated with MLP, DT, and SVM, respectively, while
Table 6 summarizes the accuracy results for the DS-1.
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Fig. 4: Labelling processing for DS-1 in alternated strategy. The blue points represent class A, and red points class NA.

Fig. 5: Labelling processing for DS-1 in unbalanced strategy. The blue points represent class A, and red points class NA.

Table 3: Confusion matrices associated for the MLP model with the DS-1 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 99.8% 0.2% 99.0% 1.4% 99.8% 1.3%

NA 0.3% 99.7% 0.9% 98.8% 0.1% 99.1%



 Pedro V. A. Alves  et al. / Procedia Computer Science 222 (2023) 81–93 87Author name / Procedia Computer Science 00 (2023) 000–000 7

Fig. 6: Labelling processing for DS-2 in balanced strategy. The blue points represent class A, and red points class NA.

Fig. 7: Labelling processing for DS-2 in alternated strategy. The blue points represent class A, and red points class NA.

Fig. 8: Labelling processing for DS-2 in unbalanced strategy. The blue points represent class A, and red points class NA.

Table 4: Confusion matrices associated for the DT model with the DS-1 dataset. Results associated with three anomaly labeling strategies: balanced,
alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 99.4% 0.6% 97.9% 2.6% 99.6% 1.4%

NA 0.8% 99.2% 2.5% 96.7% 0.2% 98.8%
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Fig. 9: Labelling processing for DS-3 in balanced strategy. The blue points represent class A, and red points class NA.

Fig. 10: Labelling processing for DS-3 in alternated strategy. The blue points represent class A, and red points class NA.

Table 5: Confusion matrices associated for the SVM model with the DS-1 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 99.0% 0.9% 95.7% 10.2% 99.9% 0.9%

NA 0.9% 99.1% 4.3% 89.8% 0.1% 99.1%
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Fig. 11: Labelling processing for DS-3 in unbalanced strategy. The blue points represent class A, and red points class NA.

Table 6: Accuracy results for the MLP, DT, and SVM models with the DS-1 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Model Balanced Alternated Unbalanced

MLP 99.76% 98.90% 99.72%

DT 99.29% 97.44% 99.45%

SVM 99.09% 93.92% 99.76%

The best accuracy for the DS-1 dataset was using the MLP algorithm that reached 99.76%, 98.90%, and 99.72%
for Balanced, Alternated, and Unbalanced strategies, respectively (see Table 6). Although the other techniques (DT
and SVM) did not achieve the same result as MLP, their results were quite promising (see Tables 3 and 5).

For DS-2 and DS-3 the confusion matrix are presented in Tables 7, 8, 9, 11, 12, and 13. Tables 10 and 14 summarize
the accuracy results of the DS-2 and DS-3, respectively.

Table 7: Confusion matrices associated for the MLP model with the DS-2 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 99.5% 0.4% 99.0% 1.4% 100% 0.0%

NA 0.8% 99.3% 0.8% 98.9% 0.1% 99.5%
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Table 8: Confusion matrices associated for the DT model with the DS-2 dataset. Results associated with three anomaly labeling strategies: balanced,
alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA
A

ct
ua

lC
la

ss

A 99.3% 0.6% 98.3% 2.2% 99.9% 0.9%

NA 1.8% 98.4% 1.9% 97.5% 0.1% 99.1%

Table 9: Confusion associated obtained for the SVM model with the DS-2 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 97.4% 2.5% 97.8% 3.0% 99.9% 0.5%

NA 0.3% 99.7% 1.5% 98.0% 0.0% 100%

Table 10: Accuracy results for the MLP, DT, and SVM models with the DS-2 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Model Balanced Alternated Unbalanced

MLP 99.42% 98.95% 99.95%

DT 98.84% 98.00% 99.79%

SVM 98.58% 97.89% 99.94%
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Table 11: Confusion matrices associated for the MLP model with the DS-3 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA
A

ct
ua

lC
la

ss

A 99.8% 0.2% 98.9% 1.5% 99.8% 1.3%

NA 0.3% 99.7% 0.5% 99.4% 0.2% 98.8%

Table 12: Confusion matrices associated for the DT model with the DS-3 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 99.4% 0.6% 97.9% 2.7% 99.7% 1.9%

NA 0.8% 99.2% 2.4% 96.8% 0.4% 97.6%

Table 13: Confusion matrices associated for the SVM model with the DS-3 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Predicted Class
Balanced Alternated Unbalanced

A NA A NA A NA

A
ct

ua
lC

la
ss

A 98.9% 1.1% 91.7% 10.1% 99.8% 1.7%

NA 1.0% 99.0% 2.2% 96.6% 0.1% 99.4%
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Table 14: Accuracy results for the MLP, DT, and SVM models with the DS-3 dataset. Results associated with three anomaly labeling strategies:
balanced, alternated, and unbalanced.

Model Balanced Alternated Unbalanced

MLP 99.76% 99.09% 99.68%

DT 99.29% 97.44% 99.29%

SVM 98.93% 94.88% 99.72%

Similar to the DS-1, in DS-2 and DS-3 datasets, the accuracy of MLP (see Table 10) was better than the DT
and SVM (see Table 14). The best accuracy for the DS-2 was about 99.42%, 98.95%, and 99.95% for Balanced,
Alternated, and Unbalanced strategies, respectively (see Table 10). For the DS-3, it was about 99.76%, 99.09%, and
99.68% for Balanced, Alternated, and Unbalanced strategies, respectively (see Table 14). In the same situation of
DS-1, other techniques (DT and SVM) did not achieve the same result as MLP, but their results were quite promising
(see Tables 8, 9, 12, and 13).

The results showed that the anomaly detection performance depends on the scenario (DS-1, DS-2, and DS-3), the
degree of data balancing (Balanced, Alternated, and Unbalanced), and the ML technique. Although the MLP achieved
the best overall results, the accuracy values differed in each scenario and type of data balancing. Furthermore, the
accuracy results indicated that the SVM achieved the best results for the unbalanced data in the DS-1 and DS-3
scenarios, with slightly better performance than MLP. This association between the ML technique and the scenario
may imply the need to use a committee of ML techniques to choose the best technique for each experienced scenario.

Finally, the results show that anomaly detection based on multiple variables (i.e., multiple KPIs) is feasible for
several anomaly scenarios (balanced, alternated, and unbalanced strategies). From the ML point of view, regardless of
the KPIs values associated with signal quality (for example, RSRQ and RSSI) or the data stream quality (DL bitrate,
UL bitrate), the anomaly generates a signature that ML can detect after training. In addition, the O-RAN architecture
through Non-RT RIC and Near-RT RIC provides protocols and interfaces for model training, enabling models to adapt
to new anomaly profiles.

4. Conclusion

In this work, we present results and analyses of three ML/AI supervised approaches applied to anomaly detection:
Multilayer Perceptron, Decision Tree, and Support Vector Machine. The tests were conducted on an emulation testbed
concerning a network environment dataset. The unsupervised ML/AI strategy, based on t-Distributed Stochastic
Neighbor Embedding (tSNE), was used to create data labels. Results associated with the accuracy of the ML/AI
algorithms were obtained, suggesting an excellent performance with an accuracy of above 90% for all cases.
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[11] Maimó, L.F., Clemente, F.J.G., Pérez, M.G., Pérez, G.M., 2017. On the performance of a deep learning-based anomaly
detection system for 5g networks, in: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE. pp. 1–8.
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