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a b s t r a c t

Nowadays, creating a blockchain-based system for supply chain tracing is a complex task. This paper
defines a model, a graphical domain specific language, and a set of tools aimed at helping supply chain
domain experts to create blockchain based tracing systems for their supply chains. Starting from a
graphical representation of the supply chain, the solidity smart contracts implementing the related
tracing system are automatically generated by our framework. Small interventions of programmers
are required to customize and finalize such smart contracts. A set of web based interfaces to interact
with such smart contracts are also automatically generated. We are confident that our results will
increase blockchain usage for supply chain traceability thanks to the automatic process of smart
contract generation.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A Supply Chain (SC1) has been defined in [1] as an organiza-
tions network involved in different processes and activities with
the aim of producing value (products or services) at the benefit
of the ultimate consumer. Focusing on the product/service, an
SC represents a sequence of (even complex) operations which
transform the initial assets into intermediate products/services
and then into the final one.

In order to give a more precise definition of an SC, it is
necessary to understand which aspects of the products/services
and which operations are under analysis, the type of process rep-
resented, and the actors operating in the network. Regardless of
the specific process represented by the SC, having the capability
of automatically tracing and controlling the actions performed
by the actors of the SC is of paramount importance to obtain
an effective and efficient process. Auditability is a fundamental
eature of such a tracing system, assuring that the records tracing
he actions that have been performed on the SC assets must be
lways available and that they cannot be deleted or altered.
Supply Chain Management (SCM) systems are software sys-

ems that allow to follow and record the execution of the steps
f the process represented by a given SC [2,3]. A number of
CM system implementations, both from academy and industry,

∗ Corresponding author at: Universita‘ di Camerino, Camerino, Italy.
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1 A list of all the acronyms used in the paper is available in Appendix.
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167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
are currently available.2 ,3 ,4 A commonly used approach to have
auditable SCM systems is to implement them over blockchain
infrastructures.

A number of blockchain-based solutions tailored for SCs [4–7]
are already available but, according to the researchers proposing
them, such solutions are still focused on a specific scenario and
very difficult to be generalized. Consequently, to promote the
usage of blockchain technology for SC tracing and with the aim to
make the SCM systems development easier and usable by supply
chain domain experts, who are not necessarily distributed ledger
technology experts as well, we propose the *-chain framework.

*-chain is a framework that helps supply chain domain experts
to design an SCM system and to automatically obtain the smart
contracts implementing it ensuring auditability via blockchain
tracing. The proposed framework consists of: (i) a general model
aimed at representing the most common types of SCs; (ii) a
Domain Specific Language (DSL) representing such model; and
(iii) a set of tools able to implement frontend and backend of a
blockchain based SCM system, starting just from the SC graphical
representation.

As a matter of fact, *-chain provides a graphical interface that
is used by supply chain domain experts to represent their supply
chain processes in terms of assets and operations performed

2 www.swarmnetwork.org/.
3 www.ripe.io.
4 aws.amazon.com/it/industrial/supply-chain-management/.
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n them. Such operations can be defined according to a set of
redefined types, and they can be customized by configuring
onstraints on the properties of the involved assets, and autho-
ization rules on the role of users executing them. Starting from
he graphical representation, the suite of tools of the framework
roduces a set of smart contract skeletons implementing the logic
f the supply chain to be tracked and monitored. Such smart
ontracts are then finalized (when necessary) by developers ac-
ording to the specific needs of the supply chain. Starting from
he graphical representation of the supply chain as well, the
uite of tools also creates the web interfaces to interact with the
CM system, namely the Supply Chain Administration Interface
nd the Supply Chain Participant Interface. The former will be
sed by the supply chain administrator to manage supply chain
articipants (e.g., registration and roles), while the latter will be
sed by the supply chain participants to invoke smart contracts
nd record the operations executed on the SC assets.
The original contributions brought by this paper are the fol-

owing:

• A general model to represent most of supply chains (sales,
distribution, production), and the related DSL;

• A tool providing a graphical interface to design specific
supply chains through the previously defined DSL;

• A software suite that, starting from a specific supply chain
represented through our DSL, produces:

– the skeleton of the smart contracts implementing the
related SCM system;

– a graphical interface enabling supply chain administra-
tors to define the users allowed to interact with the
smart contracts, their roles and their rights;

– a graphical interface connected with the created smart
contracts enabling authorized supply chain
participants to permanently record on the blockchain
the actions they executed on the assets of the SC.

This paper extends and supersedes our previous works [8,9]. In
articular, in [8] we presented the initial idea of the supply chain
epresentation model and of the DSL, which are then exploited
n [9] to represent a small excerpt of a well known supply chain.
his paper presents several enhancements with respect to our
revious works. First of all, we refined the proposed model and
SL by adding some new operations in order to allow a better
epresentation and differentiation of the change of owner and
f controller of an asset. We also refined the representation of
he authorization rules that are now paired with operations to
egulate their execution by supply chain participants. Another
elevant contribution provided by this paper w.r.t. our previous
orks is the definition of the complete workflow of the creation
f SCM systems. In order to validate the proposed framework, in
his paper we give a complete representation of the well known
upply chain we introduced in [9] as reference example. Finally,
n this paper we also present an experimental evaluation of the
eployment and execution costs of SCM systems produced with
ur framework.
The rest of the paper is organized as follows: Section 2 intro-

uces the blockchain technology, the solidity language, the SCM
ystems, and the reference example we have already used in [8].
ection 3 presents our approach and the proposed framework
rchitecture. Section 4 describes the model we defined and the
elated DSL. Section 5 shows the representation of the supply
hain of the reference example using our DSL. Section 6 describes
he graphical interface allowing supply chain domain experts to
reate their SCM systems, and presents the graphical interfaces
roduced by our framework allowing supply chain administrators
nd participants to interact with the produced SCM systems.
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Section 7 provides some details about the process that, start-
ing from the SC graphical representation, produces the smart
contracts implementing the SCM system. Section 8 presents an
experimental evaluation of the deployment and execution costs
of such smart contracts. Section 9 presents some related works,
while Section 10 draws the conclusions and describes possible
future works.

2. Background

2.1. Blockchain and smart contracts

Distributed Ledger Technology (DLT) defines a protocol act-
ing in a decentralized fashion to provide access, validation and
updating of a ledger maintained by multiple entities, without
assuming trust among them, and the Blockchain technology is
one implementation of DLT. A Blockchain is a sequence of blocks
connected through cryptographically protected links and embed-
ding a set of transactions. Blockchain users submit the transaction
they want to be included in the next blocks (payments for in-
stance), while blockchain miners validate such transactions and
participate to the consensus algorithm to create a new block in-
cluding them. Blockchain main features are decentralization, im-
mutability, and transparency. First generation blockchains were
focused on cryptocurrencies (such as Bitcoin5). Subsequently, a
new generation of blockchains, able to execute programs called
smart contracts, were designed. The most famous examples are
Ethereum6 and EOS.IO.7 The advent of smart contracts paved the
way for blockchain based applications in industry and in public
sectors [4,5,10]. Smart contracts are ‘‘self’’-executing contracts
(scripts) that represent the agreement, written into lines of code,
between actors in the blockchain ecosystem (usually a buyer and
a seller).

Smart contracts execution (and the produced transactions) are
easily traceable in the blockchain ledger and no trusted third
party is needed to prove such agreement execution. Hence, smart
contracts permit trusted transactions and agreements among
those who are sharing the distributed code. Solidity is a coding
languages for smart contracts8 which is widely used on the
Ethereum blockchain, and we use it in the following of this paper
as our reference language.

2.2. Supply chains

An SC can be defined as a (even complex) process consisting
of a sequence of operations which transform a set of initial assets
into intermediate ones and then into the final product. An SCM
system is the software system allowing to trace such sequence
of operations executed on the assets of the SC. In particular, the
participants to the SC invoke a proper function of the SCM system
each time they completed the execution of an operation on an
asset, following the operation flow defined by the SC. Advanced
mechanisms can be applied to certify that a task declared as
completed by a participant in the SCM system has actually been
executed. For instance, in case of blockchain-based SCM systems,
the Blockchain Oracle technology [11] (and, in particular, the
Chainlink9 implementation) could be exploited to collect in a re-
liable way and store on the SCM system, information about some
relevant physical features of the assets during the production
process which prove the execution of some operations. Notice

5 bitcoin.org.
6 ethereum.org/.
7 eos.io/.
8 docs.soliditylang.org/en/v0.8.4/.
9 https://chain.link/.

https://bitcoin.org/en/
https://ethereum.org/en/
https://eos.io/
https://docs.soliditylang.org/en/v0.8.4/
https://chain.link/
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Fig. 1. Supply chain of the soybeans reference example [7].
also that, when two parties are involved in the same operation,
the SCM system could require that they both confirm that such
operation has been executed. For instance, in our framework
we have chosen to have pair of operations when one supply
chain participant transfers the ownership or the control of an
asset to another (that is, the pairs of methods sell/buy and give-
Control/takeControl, see Section 4). In this way, the operation
recorded on blockchain-based SCM system is confirmed by both
the involved parties.

Several types of SCs have been defined in the scientific litera-
ture [12–15], depending on the specific production/distribution
process they are meant to model: Production supply chains
are designed to organize the creation and transformation of a
product; Distribution supply chains are meant to trace products
in their paths from the producers to the consumers; Sales supply
chains describe the relationships between distribution nodes in
the path chain that a product undergoes in its sales or delivery
cycle.

2.3. Reference example

Fig. 1 shows an example of supply chain use case representing
the soybeans life cycle, from the seed production to the end
customer, as described in [7]. The leftmost green bean in the
figure represents the first asset of the supply chain (Seed). In
this example, subjects must have the role Seed Company to be
allowed to create Seed assets. The first operation done on the
Seed asset is Sell. This operation represents the change of the
owner from the entity who created the asset to another entity
with the role Farmer. The second operation of the supply chain
is Harvest Crop, it is performed by the farmer who bought the
seeds, and it represents a transformation of the Seed assets into
other assets: the Crops. The harvested Crops are then gathered
and stored in an elevator, waiting to be sold. The farmer sells the
Grain stored in the Grain Elevator to a Grain Processor (a refinery
or industry suitable for the purpose) where the Grain undergoes
a transformation process (called Refines grain and produces end
product in the figure) until it becomes the final product ready
to be sold. The final product is then sold by the refiner to the
main distributor. In this phase, in addition to the sale, we can see
how the product is stored in warehouses and then distributed in
the reference distribution network. The final destination of the
refined product is the single store, having the role Retailer, where
he final product is available for sale to the customer.

The described example involve several class of operation:
move transaction (green background) changing the physical
lacement of an asset, the sale (pink background) changing the
wner of an asset, and some transformation phases (yellow
ackground) changing some properties of the asset or destroying
t and creating new ones.

. The *-chain approach

The *-chain framework is aimed at driving its users in the
esign and development of SCM systems for tracing their pro-

uction processes exploiting the blockchain technology.
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The main idea underlying the *-chain approach is to enable
the experts of a specific supply chain process (e.g., the soybeans
production process described in Section 2.3) to contribute with
their expertise to define the related blockchain based SCM sys-
tem, although they do not have (or they have a little) knowledge
of the blockchain technology.

For this reason, the proposed framework decouples the supply
chain process design phase from the smart contract design and
programming phase, being typically distinct the two actors in
charge of executing such phases. As a matter of fact, the supply
chain process design phase will be executed by an expert of
the specific supply chain process, while the related smart con-
tracts programming will be executed by developers expert in
blockchain technology.

The *-chain framework consists of the components in Fig. 2:

• The supply chain General Model (scGM): a general model
and the related Domain Specific graphical Language (DSL)
allowing to represent the most common types of supply
chains. The scGM and the DSL are described in detail in
Section 4;

• The supply chain Design Interface (scDI): a graphical editor
allowing the supply chain domain experts to design the SCM
systems representing their specific supply chains using the
aforementioned DSL. This editor produces a graphical and a
textual JSON-formatted representation of the specific supply
chain, which we call, respectively, supply chain Graphical
Representation (scGR) and supply chain JSON Representa-
tion (scJR). The scJR, being a JSON string, can be saved onto
a file and re-used subsequently (e.g., to update the supply
chain or to create a new supply chain starting from the
current one). The scDI is described in detail in Section 6.1;

• The supply chain Model Translator (scMT): a tool which,
starting from the scJR created with the design interface,
derives the software architecture of the smart contracts
required for the development of the related SCM system.
These smart contracts represent all the asset types that are
present in the SC, and each smart contract has functions
for tracing the execution of all the operations supported by
the asset it represents. The scMT is described in detail in
Section 7;

• The supply chain Managing Interfaces Builder (scMIB): a tool
which, starting from the scJR and the related smart contracts
skeletons (created from the scMT), creates two graphical
interfaces for the management of the blockchain based SCM
system:

– one graphical interface for SC administrators, the sup-
ply chain Administrator Interface (scAI), allowing them
to enable other entities to participate to their SCM
systems, setting proper roles and rights for them. The
scAI is described in detail in Section 6.2;

– one graphical interface for the supply chain partic-
ipants, the supply chain Participant Interface (scPI),
allowing them to register on the SCM system the ac-
tions that they have executed on the assets in the SC,
according to the roles they have been assigned. The

scPI is described in detail in Section 6.3.
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Fig. 2. *-chain Framework usage workflow.
Fig. 2 shows the architecture of the *-chain framework and
he interactions among its components during the SCM system
esign phase, during the SCM system creation phase, and when
t is in usage. In particular, the figure shows that the supply
hain domain expert uses the scDI (step 1) to design its supply
hain process using the DSL. The result of the design step is the
cJR (step 2) which is passed by the scMT (step 4) to produce
he skeleton of the smart contracts that will implement the SCM
ystem (step 5). This skeleton will be passed to the Solidity
evelopers (step 8), who will add the code for managing specific
equirements thus obtaining the final smart contracts that will be
eployed on the blockchain (step 9). Moreover, the domain expert
ses the scMIB (step 3) to automatically produce the graphical
nterfaces to be made available to supply chain Administrator
nd to the supply chain participants (respectively, steps 6 and 7).
hese two interfaces communicate directly with the SCM system
mart contracts deployed on the blockchain (steps 10 and 11)
hrough specific functions.

Please notice that, although the supply chain Graphical Rep-
esentation describing all the possible flows of the production
rocess is defined by the supply chain domain expert, the ex-
cution of the production process operations and the calls to
he associated smart contract methods of the SCM system are
erformed by the actors of such process. Hence, the execution
s decentralized because the operations representing the steps
f the production process are carried out by distinct actors, the
upply chain participants, which use the SCM system to keep
rack of which operations they performed on which assets. In
ddition, notice that the proposed tracing system also allows to
ynamically define the actors executing the production process
teps. As a matter of fact, the same operation of the production
rocess could be carried out by distinct actors for distinct in-
tances of each asset. For instance, the farmer could send distinct
ots of crops to distinct grain processors, and this can be naturally
epresented in our model and traced in our SCM system.

Notice also that, deploying the SCM system on a public
lockchain could somehow be seen as a disclosure of the produc-
ion processes to the competitors. However, the operations that
re tracked in the SCM system are typically quite high level, and
ach actor of the supply chain does not reveal on the blockchain
he details of the work they carried out to execute each operation.

Each step and component of the aforementioned workflow
ill be described in detail in the following sections.
682
4. A general model and a domain specific graphical language
for representing supply chains

The definition of a general model for the representation of the
objects and of the typical operations involved in supply chains
is the first step towards the design of a framework for autom-
atizing the development of blockchain based SCM systems. Our
framework is addressed to supply chain domain experts, who
are supposed not to know how to program and use blockchain
technologies. For this reason, it provides a user-friendly graphical
editor allowing supply chain domain experts to simply design
their supply chains through our graphical language. This would
relieve supply chain domain experts from the burden of learning
a textual programming language just for representing their sup-
ply chains. Moreover, the graphical editor prevents its users from
possible syntactical errors, which are typical of using a textual
interface.

Notice that, differently from other approaches in the scientific
literature (for instance see [16–18], and [19]) which are based on
Business Process Modeling Notation, BPMN [20], we have chosen
to define a customized model since our approach is asset-based
(instead of process-based like BPMN architecture). Indeed, a rele-
vant difference with the BPMN approach is that in our model we
first define the assets that are involved in the production process,
along with the properties that characterize them, and then we
define the operations that can be executed on each asset during
the production process, indicating whether these operations sim-
ply involve a modification of the properties of the asset, or they
transform an asset into another asset. Hence, the supply chain is
defined starting from this set of assets, by properly connecting
them through a set of operations that represent the workings
and the transformations that are executed during the production
process. The architecture of the blockchain-based SCM system
produced with our approach is asset-based as well. As a matter
of fact, each asset is represented with a specific smart contract,
which defines all the possible operations that can be executed
on such asset during the production process and the effects they
have on it. At the same time, this smart contract keeps track of
all the operations that have been actually executed on the asset
it represents, of the values of the related properties, and of their
changes as a consequence of such operations. Summarizing, the
proposed approach differs from the BPMN-based ones because
the supply chain is defined starting from the involved assets,
and defining operations on them, while BPMN-based approaches,
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Fig. 3. Graphical representation of assets.

nstead, define the supply chain starting from the flow of oper-
tions that define the production process. Hence, the difference
s somehow similarly to the one between procedural and object-
riented programming languages, where both of them can be
sed to solve the same problem, but they have two distinct views
f the problem.
In our model, we identify three families of elements that will

e the bricks of any SC: Assets, Containers, and Operations. In
addition, also Roles & Rights are considered to perform autho-
rizations on SC operations. Starting from the general model, we
defined the related DSL by giving a graphical representation of
the aforementioned elements. The DSL is then used by the *-
chain framework users, i.e., the supply chain domains experts,
to represent their specific supply chains. For instance, Section 5
shows how the soybeans supply chain reference example can be
represented using our DSL.

In the following of this section, we give a detailed descrip-
tion of the elements composing the general model and of the
corresponding graphical representations.

Assets are the objects involved in the process described by the
supply chain, on which the operations are executed. For instance,
the Seed and the Crop are two examples of assets involved in our
reference example. An asset is uncountable if it must be placed
into a container in order to be tracked (e.g., the oil asset needs
to be stored in oil tins or bottles). On the opposite, an asset is
countable when it can be tracked without the need of containers
and when it can easily be identified (e.g., a car or a cow). An asset
is consumable if it is destroyed as a consequence of its use or
transformation, and non-consumable if it can be used more than
one time (so an apple tree producing apples is non-consumable).
In our reference example, the Seeds are consumable assets be-
ause when they turn to Plantation (after some time), they do
ot exist anymore. Fig. 3 shows the graphical representation of
sset types. For instance, a countable and non-consumable asset
s represented by a rectangular box with borders.

Each asset has a number of properties which characterize it.
set of default properties, that are common to all the assets,

re automatically paired to each asset when it is created. In the
ollowing of this paper we assume that the default properties are:
wner, Controller, and Position. Since these properties are always
aired to all assets, for the sake of clarity (in particular in case
f complex supply chains), they are not explicitly represented
n the scGR. The Owner property stores the ID of the supply
hain participant who has the ownership of the asset (e.g., the
wner bought that asset from another participant or created
t). The controller property, instead, stores the ID of the supply
hain participant who has currently the physical availability of
he asset, and hence could execute operations on it. The owner
nd the controller of an asset could be the same subject in some
hases of the supply chain process, and could be distinct subjects
n other phases of the supply chain. For instance, the owner and
he controller do not coincide when the owner gives the asset to
third party in charge of performing some kind of transformation
n it.
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Fig. 4. Example of asset with its asset specific property.

Fig. 5. Example of container with its property.

Besides the default ones, each asset has also other proper-
ties that are specific to that asset and are represented in the
SCM system because they are relevant to describe the asset and
the transformations performed in the production process. In our
reference example, the asset Seed has only one asset specific
property called weight. In our DSL, the asset specific properties
are represented in the scGR through small circles connected to
their asset by an edge (as shown in Fig. 4). In the following of this
section, we will specify, for each operation of our model, when
the asset specific properties are shown in the scGR.

Containers are the components of our model representing
what can contain – usually uncountable – assets. Uncountable as-
sets must be placed into containers in order to be transported and
tracked. Countable objects can be placed into containers as well,
for instance, to simplify their storage and transportation. Simi-
larly to assets, containers can be consumable or non-consumable.
Fig. 5 shows a simple example of consumable container (called
Package A) with a property (called property 01). Some container
examples could be: sacks, boxes, silos, haulers, and ships. In our
reference example, Sack containers are used for the storage of
the Seed uncountable asset. Containers are usually countable and
traceable objects. In our DSL, the representation of containers
is different from assets’ representations. Non-consumable con-
tainers appear as wider transparent rectangles (the border is the
container), while consumable ones have rounded corners (like the
one in Fig. 5). Moreover, to represent that an asset is placed into
a container, the box representing the asset is drawn inside the
box representing the container.

Operations are used to represent modifications or transfor-
ations of assets. First of all, for the sake of clarity we recall

hat, since our framework is meant at defining a tracing system
or supply chains, the effect of invoking such operations in our
ystem by a user is the one of registering on the blockchain that
uch user declares to have executed the corresponding operation
n the real asset. An operation executed on an asset (except for
he sell one) can be registered on the SCM system only by the user
aving the physical availability of the asset, i.e., the controller,
rovided that such controller holds the right to perform such
peration (as described in the following of this section).
When designing a supply chain, the supply chain domain

xpert defines the operations representing such supply chain
hoosing among the operation types defined by our model, and
iving to each specific operation its own and unique mnemonic
ame (having the asset name as prefix). For instance, in our ref-
rence example, the transformation operation which transforms
he Plantation asset in Crop asset is called Plantation_Harvesting.
Instead, since there is only one sell and one giveControl operation
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Fig. 6. Main operations defined in our model.
or each asset, and since they have the same meaning for all the
ssets, such operations maintain their original names.
Our DSL represents each operation type with a distinct graphi-

al format, as shown in Fig. 6, and the scJR representing a specific
upply chain reports the features of each of the operation that
ave been defined, including the operation type. In the following,
e describe the main types of operations defined by the proposed
odel:

• asset_create (Fig. 6(a)): this operation is used to create a new
asset. In the scGR, all the asset specific properties of the
new asset must be explicitly represented, and the supply
chain participant who invokes the operation must provide
the values of all such properties, to be recorded in the SCM
system. The default properties of the asset, instead, are not
represented in the scGR, because the framework knows how
to deal with them. For instance, the owner and the controller
properties of an asset are initialized with the id of the supply
chain participant who invokes the asset_create operation.

• asset_destroy (Fig. 6(b)): this operations is applied to destroy
an existing asset. When a destroy operation is executed, no
further operations can be executed on that asset.

• asset_move (Fig. 6(c)): this operation is invoked by a supply
chain participant to update of the physical position of the
asset. Since this operation is exactly aimed at modifying the
position default property of the asset, it is not necessary to
explicitly represent such property for this operation in the
scGR.

• asset_pack (Fig. 6(e)): this operation represents the pack-
ing of assets into a container. All kinds of assets (count-
able/uncountable and consumable/non-consumable) can be
stored in containers (for uncountable is mandatory, while
for countable is discretionary). This operation does not
change the original asset information. The asset_pack oper-
ation is used also to represent the packing of a container
(embedding an asset) into another container. Actually, this
operation can be repeated several times, to represent that
containers have been iteratively packed inside other con-
tainers. In the scGR, the asset specific properties of the

container are explicitly represented.
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• asset_unpack (Fig. 6(f)): this operation represents the un-
packing of assets from a container. When a container has
been packed into another container, this operation is used
also to represent the unpacking of the inner container form
the outer one. Consumable containers are destroyed by
the unpack operation, while non-consumable ones become
empty.

• asset_flow (Fig. 6(d)): this operation is used when an asset is
moved from one container into another. It can be seen as the
sequential execution of an asset_unpack and an asset_pack
operations. Asset_flow is often used with uncountable as-
sets. In the scGR, the asset specific properties of the new
container are explicitly represented.

• asset_transform (Figs. 6(g) and 6(h)): the transformation op-
erations are meant to represent the execution of opera-
tions which modify the asset features. Specific transfor-
mation operations are defined for each asset in each sup-
ply chain. As an example, in the soybeans supply chain
we defined the Plantation_Harvesting transformation oper-
ation, which transforms Plantation assets into Crop assets.
Transformation operations are different for consumable and
non-consumable assets. In particular, when applied to a
consumable asset, the operation represents the destruction
of the original asset and the creation of a new one (or
ones). Instead, when applied to a non-consumable asset,
the operation represents the generation of a new asset (or
assets), i.e., the original asset still exists, and a new asset
is created. In both the previous cases, the asset_transform
operation is meant to represent the execution of trans-
formations which are not reversible in that supply chain.
This means that, in case of consumable assets, it is not
possible to have back the original asset from the newly
created one. In case of non-consumable asset, instead, it is
not possible to recompose the asset on which the operation
has been executed and the newly created one obtaining the
original asset (however, is possible to destroy the newly
created asset). Since a new asset is actually created as a
consequence of the asset_transform operation, in the scGR all
the asset specific properties of the new asset are explicitly

represented. When the asset_transform operation is invoked
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Fig. 7. Sell and giveControl operations.

by a supply chain participant, the latter must provide the
values of such properties, to be stored on the SCM system.
Instead, the default properties of the new asset are not
shown in the scGR, because the framework knows them and
how to collect their values. For instance, the owner and the
controller of the newly created asset are set to be the same
as the older one. In our reference example, a quantity of
seeds represented with an uncountable consumable asset
(Seed) inside a container (Sack) is modified by a transform
operation (Seed_Planting) causing the destruction of the Seed
asset and the creation of the Plantation asset representing a
portion of the cultivated field inside the container Field.

• asset_monitor (Fig. 6(i)): the monitor operation is aimed at
recording on the SCM system some relevant information
concerning an asset. For instance, a supply chain partici-
pant could measure the temperature and the humidity of
a Plantation asset every hour, and execute periodically the
asset_monitor operation to record them on the SCM system.
This operation is used also to record on the SCM system
a modification of the properties of the asset. In the scGR,
the right instance of the monitored asset (the one with
the incoming arrows) reports (only) the properties that are
updated by the operation.

• asset_compose and asset_decompose (Figs. 6(j) and 6(k)): the
compose operation creates a new asset using existing as-
sets having the same owners without destroying them. The
representation in the scGR of asset properties (both asset
specific and default ones) and the initialization of their
values for the asset_compose operation is managed in the
same way as for the asset_transform operation.
The decompose operation, instead, is used for tracing that a
previously assembled asset has been disassembled, causing
the original assets to be restored. The asset_compose() is
somehow similar to the asset_transform() operation, because
they both produce a new asset. However, the compose op-
eration is revertible through the decompose one, while the
transform operation is not revertible.

• asset_sell (Fig. 7(a)): is a special transaction between two
supply chain participants, owner_a and owner_b, represent-
ing that owner_a sells such asset to owner_b. Hence, this
operation changes the value of the owner property of an
asset and, obviously, only the owner of an asset can perform
the related asset_sell operation, specifying the ID of the new
owner. Symmetrically, in order to actually become the new
owner of the sold asset, owner_b must explicitly accept the
ownership of the asset by performing asset_buy operation. In
the scGR, the asset_sell and the related asset_buy operations
are represented by a red arrow between two assets having a
label reporting the operation name: ‘‘Sell’’. Moreover, since
this operation is exactly aimed at changing the value of the
owner default property of the asset, this property is not
explicitly represented in the scGR.
685
Fig. 8. Alternative operations defined on an asset.

• asset_giveControl (Fig. 7(b)): is another special transaction
between two supply chain participants, controller_a and
controller_b, representing the transfer of the control of an
asset from controller_a to controller_b. Hence, this opera-
tion changes the controller property of an asset. The as-
set_giveControl operation can be invoked only by the con-
troller of the asset, who specifies the ID of the supply
chain participant that will be the new controller. Sym-
metrically, in order to actually become the new controller,
controller_b must explicitly accept the control of the asset
by performing an asset_takeControl operation. In the scGR,
the asset_giveControl and the related asset_takeControl oper-
ations are represented by a red arrow between two assets
having a label reporting the operation name: ‘‘giveControl’’.
Moreover, since it is clear that the only aim of this operation
is to change the value of the default asset property controller,
this property is not explicitly represented in the scGR.

Notice that, although all the operations in Figs. 6 and 7 are
applied over consumable assets (and containers), the same oper-
ations are also applicable to non-consumable ones.

Also notice that more than one outcoming arrow can be orig-
inated from the box representing an asset, as shown in Fig. 8,
meaning that, at a given point of the supply chain, the supply
chain participant having the control of an asset can choose among
a number of (distinct) operations to be executed on such asset.
Symmetrically, more than one incoming arrow can enter a box
representing an asset, meaning that such asset can be obtained
following two or more distinct production processes. This would
also allow the supply chain domain expert to design supply
chains having operations loops. In this case, since it is always the
controller of the asset who decides the operation to be performed
on the asset among the one admitted in the current state of the
asset, is the controller who decides whether to exit or not from
an operation loop.

Our framework allows to pair a set of constraints to each op-
eration. These constraints are mathematical or logical conditions
computed on the properties of the two assets involved in the
operation, and they must be satisfied in order the operation to
be registered on the SCM system.

In our reference example, a constraint could be defined on the
harvesting operation (called Plantation_Harvesting in Section 5)
which states that the ratio between the weight of the Crop asset
that has been produced and the dimension of the Plantation asset
from which such crops have been produced must not exceed a
given threshold.

Roles & Rights are used in our model to regulate the right of
registering on the SCM system the execution of the previously
described operations by the supply chain participants. The idea is
that each operation executed on an asset requires a specific capa-
bility from the supply chain participant executing it. For instance,
the actor who plants seed in a field must be a farmer. Hence, the
SCM system must somehow check that the supply chain partici-
pant trying to register the execution of an operation was actually
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Fig. 9. Authorization rule paired to a transform operation.

ntitled to perform such operation, in order to protect the quality
f the production process and hence of the final product. For this
eason, our model adopts the Role-Based Access Control model
RBAC) [21] for defining authorization rules. Hence, when design-
ng a supply chain through our tool, the supply chain domain
xpert at first creates a proper set of roles to be assigned to the
upply chain participants, and then pairs an authorization rule to
ach of the operations of the supply chain to be protected. Each
ole represents the capability to perform one or more operations
f the supply chain. For instance, the role Farmer represents
he capability of performing a number of operations such as:
lanting seeds in a field, harvesting crops from the field, or baling
rops. Assigning a role to a supply chain participant, the supply
hain domain expert recognizes to such participant the expertise
aired to such role. Hence, an authorization rule paired with an
peration defines which role is required to be allowed to perform
uch operation. Notice that we chose to not associate specific ca-
abilities when selling or transferring the control of an asset. For
his motivation the asset_sell and asset_giveControl do not have
ssociated RBAC authorization rule. Notice however that such
perations are protected by two default authorization rules, that
re always enforced by our framework, which grant the rights to
erform the asset_sell and the asset_giveControl operations only
o the owner and controller of the asset, respectively. Similarly,
he asset_buy and the asset_takeControl operations are protected
y other two default authorization rules which grant the right
o perform such operations only to the blockchain participants
hat have been explicitly specified (as parameters) in the related
sset_sell and the asset_giveControl operations, respectively.
In the scGR, a light blue label attached to the arrow represent-

ng an operation represents the related authorization rule, and
pecifies which role is required to hold the right to perform such
peration, as shown in Fig. 9.
When the smart contracts implementing the SCM system have

een deployed on the blockchain, the supply chain administrator
egisters in the SCM system the unique addresses of the supply
hain participants (e.g., the Ethereum address), and assigns to
ach of them a set of roles among the available ones (using
he Administration Interface described in Section 6.2). Hence, the
CM system will allow the registration of the execution of an
peration on an asset only to the supply chain participants hold-
ng the specific role requested for that operation (e.g., Farmer,
istributor, etc.).
Moreover, our framework imposes a further implicit autho-

ization rule on all the operations, which states that, in order to
e allowed to execute an operation on a given asset, a supply
hain participant must be the controller of such asset. The only
xception is for the asset_sell operation, for which the implicitly
uthorization rule requires that the supply chain participant who
ants to sell an asset must be the owner of such asset.

. Representing a real case with the *-chain model

In this section we apply our model to represent the soybean
upply chain described in Section 2.3. We suppose that the Soy-
eans Producer (SBP) wants to track the soybeans production
rocess, from the seeds acquisition to the soybeans commercial-
zation.

As the first step, the SBP , who is the supply chain domain
xpert, defines the assets and the operations of the soybean
 t
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production process. Then, exploiting the tools of our framework,
the SBP graphically represents the sequence of operations to
be executed on the assets in the production process, and the
skeletons of the smart contracts implementing the related SCM
system are automatically produced.

Fig. 10 shows a graphical representation (divided in five parts)
of the soybean production process using our model.

The first asset of the supply chain is Seed, represented by the
leftmost rounded box in Fig. 10(a). The Seed asset is enclosed in
a consumable container, called Sack, because it is a consumable
and uncountable asset. A relevant property of the Seed asset is
the weight, which represents the weight of the seeds in the
sack. This asset has an incoming arrow which not originates
from another asset, that in our framework assumes the meaning
that such asset have no origin tracked in the system and that
this asset is simply created by a participant of our SCM system
through the asset_create operation (labeled in the scGR with the
name Seed_create), which also creates the Sack container for the
Seed asset. As explained in Section 4, our framework adopts the
RBAC model to regulate the rights to register the execution of
operations on the SCM system. Hence, the SBP, when designing
the soybeans supply chain through the scDI, can define the role(s)
that is required to have the right to perform each of the oper-
ations in such supply chain. In the reference example, the SCM
system participants allowed to create Seed assets must hold the
role Seed Company. This is represented in the scGR by the light
blue label under the creation arrow.

The first operation performed on the Seed asset is the Sell one.
Hence, a second instance of the Seed asset (enclosed in the Sack
container as well) is present in the scGR on the right of the first
one, and these two instances are connected through the arrow
representing the Sell operation.

Since in the reference example we assume that the Sell oper-
ation also involves a physical transfer of the asset performed by
the farmer (from the seed company premises to the farm), in the
scGR the Sell operation is followed by a giveControl and then by a
ack_Move operation.
The giveControl operation is performed just after the Sell one,

n order to register on the SCM system that another subject has
aken the physical availability of the asset.

The giveControl operation must be executed before the
ack_Move one to change the controller of the Seed asset because
ur framework enforces the (implicit) authorization rule that
perations on an asset can be performed only by the controller of
uch asset (with the exception of the Sell operation, as previously
xplained). Hence, in the scGR there are other two instances of
he Seed asset enclosed in the Sack container. The third instance
s connected to the previous one through the arrow representing
he giveControl operation, while the fourth instance is connected
o the third one through the arrow representing the Sack_Move
peration, which represents the physical transfer of the asset. The
atter operation can be executed only by controllers holding the
ole Farmer, as shown in the scGR by the light blue label under
he Sack_Move arrow, which contains the role name: Farmer.

The fourth operation in our reference example supply chain
s the Seed_Planting one, which is performed on the Seed asset
f a Sack, transforming it in a Plantation asset, which represents
he specific area of the field where such seeds have been planted.
ince the Seed asset and the Sack container are consumable, they
re implicitly destroyed when the Plantation asset is created.
nstead, the Field container embedding the Plantation asset is non-
onsumable container. Hence, in the scGR it is represented by
rectangle. Moreover, in our reference example we want that
nly users holding the role Farmer are authorized to execute the
eed_Planting operation. This authorization rule is represented in

he scGR by the light blue label under the Seed_Planting arrow.
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The fifth operation of our reference example supply chain is
lantation_Harvesting, which is executed on the Plantation as-
et (shown in Fig. 10(b)). This operation can be executed only
y entities having the role Farmer, as represented by the light
lue label under the arrow representing the Plantation_Harvesting
peration. The result of the Plantation_Harvesting operation is
he creation of a new asset, called Crop, which have a property,
eight, representing its weight. The Crop assets are stored in
Grain Elevator, which is a non-consumable container having

wo properties: capacity and content. The first property, capacity,
epresents the maximumweight of crops that can be stored in the
rain Elevator, while the second property, content, represents the
eight of the crops that are currently stored in the Grain Elevator.
or the sake of this example, we define two constraints on the
lantation_Harvesting operation. The first constraint states that
he ratio between the weight of the Crop asset and the dimension
f the Plantation asset from which it was produced must not
xceed a given threshold. The second constraint states that the
urrently available capacity of the Grain Elevator, computed as
687
he difference between the properties capacity and content of the
rain Elevator itself, must be greater than the weight of the Crop
ssets that the Plantation_Harvesting operation declares that are
eing stored there. These constraints are defined by the SBP in the
escription of the Plantation_Harvesting operation, exploiting the
dit panel of the scDI (see Section 6.1).
Several Grain Elevator containers could be defined, and the

upply chain participant specifies the id of the Grain Elevator
here the Crop assets have been stored among the parameters
f the Plantation_Harvesting operation.
The remaining operations of the soybeans supply chain are

ery similar the ones we have already described. For this reason,
e are not providing a detailed description of Figs. 10(c), 10(d),
nd 10(e).
We recall that the same production process could be rep-

esented in several distinct ways using our DSL, depending on
hich aspects of such production process the supply chain do-
ain expert wants to highlight and hence trace with the SCM
ystem.
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Fig. 11. Example of supply chain Design Interface (scDI).
6. *-chain framework interfaces

As anticipated in Section 3, the *-chain framework provides to
its users three user-friendly graphical environments: (i) the Sup-
ly Chain Design Interface, (ii) the Supply Chain Administration
nterface, and (iii) the Supply Chain Participant Interface.

.1. Supply Chain Design Interface

The supply chain Design Interface (scDI) is meant to allow
ts users, i.e., the supply chain domain experts, to represent the
haracteristics of their supply chains (as shown by step 1 of
ig. 2), using the model and the DSL described in Section 4. A
creenshot of the scDI is shown in Fig. 11. This web interface
rovides four main functions, represented by the buttons on the
eft side of the window, which allow building the supply chain
n terms of the four constructs defined in Section 4: Assets,
ontainers, Operations, and Roles & Rights.
The scDI implementation consists of two JS files: the

‘init_graph.js’’ file defines the structure of the web page and
he graphical representation, while the ‘‘main_index.js’’ file is a
ibrary. The first file initializes the graphical tool, loads the global
ariables, and uses the JointJs10 package to build and manage
he graphical aspect, while the basic functions of JQuery11 are
used to manage the resources for the framework. The second file
describes the operations provided by the graphical environment,
i.e., the operations defined by our model (see Section 4).

The first function provided by the scDI is meant to add a new
asset in the graphical representation of the supply chain shown
in the central panel. Before creating the new asset by clicking on
the Asset button, the user must choose the asset characteristic,
using the radio buttons under the Asset button: uncountable or
countable, consumable or non-consumable.

Containers creation is the second basic function provided by
the scDI. In this case, the user can choose among consumable and
non-consumable containers. Notice also that, in our framework,
containers are always countable. Once a container has been cre-
ated (and it appears in the central panel), any of the asset objects
already present in the panel (or any other container object with
its relative content) could be dragged into it.

10 www.jointjs.com/.
11 jquery.com/.
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The operation construct defined in Section 4 is represented
in our DSL by drawing an arrow that connects the two assets
involved in the operation. In the scDI, the supply chain expert
chooses the type of operation to be inserted (move, transform,
compose, monitor, giveControl and sell) through the radio buttons
under the Operations button. Then, by clicking on the Operations
button, the supply chain expert can add an arrow connecting two
assets and choose a unique name for that operation (except for
sell and giveControl operations).

Finally, the ‘‘List of Roles’’ panel allows the user to create the
set of roles that are necessary for the specific supply chain. This
list of roles is used to define the authorization rules to regulate
the execution of operations on the SCM system. As we already
pointed out, the only authorization rule imposed by default by
the framework is that the sell operation can be executed on an
asset only by the owner of such asset, and all the other operations
can be performed only by the controller of the asset. As a matter
of fact, the owner of an asset is the only entity entitled to sell
the asset (to register on the SCM system that a sell operation has
been executed), while the controller of an asset is the only entity
that can execute (register on the SCM system) an operation on
an asset, because the controller has the physical availability of
the asset.

On the right side of the scDI there are three configuration
panels: Edit panel, Constraints panel, and Authorizations panel:

• The Edit panel (the light green box on the top right of
the scDI) allows the user to modify the names of assets,
containers and operations, as well as to add properties to
assets and containers.

• The Constraints panel (the light orange box in the middle
right of the scDI) allows the user to set constraints on
the execution of operations on assets. Such constraints are
defined on the properties defined for the assets involved in
the operations.

• The Authorizations panel (the light blue box on the bottom
right of the scDI) allows the user to add authorization rules
on the execution of operations on assets.

Through the Save Model and the Export buttons (placed in the
bottom of the scDI), two digital representations of the scGR drawn

http://www.jointjs.com/
https://jquery.com/
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Fig. 12. Example of supply chain Administrator Interface (scAI).
n the central panel are built: the scJR and the Solidity/web3js12
cript.
The Save model function exports the scJR into a file. The scJR

ile can be reloaded into the scDI through the Load model function,
o that the supply chain previously saved can be modified (see
tep 2 of Fig. 2). The scJR is a JSON formatted string consisting
f six sections, namely: ‘‘graph’’, ‘‘asset ’’, ‘‘operation’’, ‘‘property’’,
‘constraints’’, and ‘‘roles’’. The ‘‘graph’’ section gathers the decla-
ations of all the objects needed by the framework’s graphical
ibraries to rebuild the scGR. The ‘‘asset ’’ section lists all the
ssets as they appear in the scGR. The ‘‘operation’’ set lists all the
perations occurring in the scGR, i.e., all the arrows connecting
ouples of assets. The ‘‘property’’ section lists all the properties
elated to each asset. The ‘‘constraints’’ section lists the constraints
aired with each operation. The ‘‘roles’’ section saves all the roles
hat have been declared. The function Export, instead, creates two
ifferent outputs: the solidity code and the ‘‘web3js interface’’
ibrary for that code. In particular, the scJR produced using the
cDI is translated into a Solidity Skeleton by the Supply Chain
odel Translator, as shown in step 5 of Fig. 2. Moreover, the scJR

s also used by the Supply Chain Managing Interface Builder to
reate the Supply Chain Administration Interface (step 6 of Fig. 2)
nd the Supply Chain Participant Interface (step 7 of Fig. 2). In the
ollowing, we describe in details such components.

.2. Supply chain Administration Interface

The supply chain Administration interface (scAI), shown in
ig. 12, is automatically generated by the export function invoked
rom the scDI, as shown in Fig. 2 (step 6).

The scAI allows the supply chain administrator to register
lockchain users as participants to the supply chain, and hence
o the SCM system, and to assign and revoke their roles, in order
o give them the rights to register on the SCM system the opera-
ions they perform on assets. The scAI consists of three sections:

12 web3js.readthedocs.io/en/v1.3.4/.
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Role List, Participant Registration, and Role Assignment. The Role
List section lists all the roles that have been defined when the
supply chain has been designed through the scDI. The Participant
Registration panel is used by the supply chain administrator to
associate the Ethereum addresses of users with their human-
readable names. These are the users which will operate on the
supply chain. The Bind Username button creates the association
between the address and the string representing the user name
by invoking the create_user function of the web3js interface
library.

Since the names of supply chain participants are personal data,
they are not directly stored on the blockchain. Instead, they are
saved in an off-chain storage, and the related pointer is saved in
the blockchain.

In the Role Assignment panel of the scAI, the registered users
are listed in a drop-down menu. By selecting a username, the
supply chain Administrator can assign one of the available roles to
that user. By pressing the button Assign Role on the right of a role
name, the function set_role of the Accessrole smart contract is
called in order to assign that role to the selected user. By pressing
the button Remove Role, instead, the function revoke_role of the
Accessrole smart contract is invoked in order to delete a previous
role assignment.

6.3. Supply chain participant interface

The supply chain Participant Interface (scPI), shown in Fig. 13,
is automatically generated by the export function invoked from
the scDI, as shown in Fig. 2 (step 7).

This web interface is meant to be used by supply chain par-
ticipants to claim the execution of the operations on the assets,
according to the defined supply chain and to the roles they have
been assigned. The scPI consists of one main panel which shows
the list of assets of which the supply chain participant is the con-
troller or the owner. By selecting one of these assets, a simplified
version of the related scGR is shown in the central panel, while

in the bottom panel the scPI shows the list of operations that

https://web3js.readthedocs.io/en/v1.3.4/
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Fig. 13. Example of supply chain Participant Interface (scPI).
he participant has the right to perform on the selected asset,
ccording with the participant’s role and the asset status.
Fig. 13 shows an example concerning the user ‘‘Farmer_a’’. The

ssets shown in the top panel are those for which Farmer_a is the
ontroller or the owner. Since we selected the asset ‘‘Seed_soy_b’’,
he central panel shows an excerpt of the related scGR where
uch asset is placed, while the bottom panel of the scPI shows
button which allows Farmer_a to claim the execution of the
eed_Planting operation on this asset, which is the only operation
hat can be executed on that asset in its current state.

. Supply chain model translator

The Supply Chain Model Translator (scMT) is the tool of our
ramework in charge of producing the smart contracts imple-
enting the SCM system starting from the scJR representing a
upply chain (step 5 of Fig. 2).
Fig. 14 shows a simple example of scGR and Fig. 15 shows
snippet of the related scJR. In the asset section of the scJR

here are two entries (identified by ‘‘id’’:‘‘c8’’ and ‘‘id’’:‘‘c16’’)
hich represent the two states of the asset A in the supply
hain; in the operation section there is an entry (identified by
‘id’’:‘‘c23’’) which represents the move operation having name
_Move; in the property section there is one entry (identified by
‘id’’:‘‘c46’’) representing the property called property 01 of the
sset identified by ‘‘id’’:‘‘c8’’, i.e., the first state of asset A.
690
Fig. 14. Example of supply chain Graphical Representation (scGR).

Each of the smart contracts implementing the SCM system
takes its name from the asset it represents, e.g., the smart contract
‘‘contract_A’’ represents the asset A. In our model, assets having
the same name in the scGR (and, consequently, in the scJR)
represent the same asset in different moments of its life cycle,
and hence they are represented with a single smart contract.
Moreover, a further smart contract, Accessrole, is produced by
extending the access permissions management library provided
by the openZeppelin framework13 (a built-in library written for
solidity), to support the role-based access control on operations.

Each smart contract is composed of a data structure that stores
the values taken by all the properties of all the instances of such
asset in the states of their lifecycle, and of the set of functions that
are invoked to keep trace on the SCM system of the operations

13 openzeppelin.com/contracts/.

https://www.openzeppelin.com/contracts
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hat have been executed on the asset. Fig. 17 shows a simple
xample of smart contract for the asset A derived from the scJR

shown in Fig. 15. The data structure consists of two dynamic
nested arrays. The external array takes its name from the assets
name (e.g., ‘‘store_A_s’’ for the asset A in the example of Fig. 14)
and it represents the collection of all the existing instances of the
asset, each identified by its own (and distinct) ID. As a matter of
fact, each entry of the external array is represented by a struct
including the asset ID and an inner array, which represents the
history of the instance, i.e., it stores all the states it has taken
from its creation to its actual state. This array takes its name
from the assets name, e.g. ‘‘A’’ for the asset A, and each entry
is a structure storing the name of the state and the values of
691
all the properties of the asset in that state, i.e., the owner ID,
the controller ID, the asset physical position, and all the other
user defined properties of the asset that are represented in the
scGR (e.g., property 01 in the example shown in Fig. 14). The
states that an asset can assume correspond to the execution of the
operations defined on the asset itself, and they take their names
from such operations with the postfix ‘‘_ed’’. Moreover, the initial
state is called ‘‘Initialized’’ and the final state called ‘‘Destroyed’’.

An alternative solution to implement the tracking of the op-
erations executed on assets would have been to simply exploit
the fact that the blockchain inherently tracks in its blocks the
execution of smart contracts’ functions. However, adopting this
solution would have required to navigate back the blockchain
blocks to find the ones embedding the transactions related to
the asset we are interested in, with higher computational cost.
Moreover, the asset history would not have been visible from
the smart contracts of our framework, but only from off-chain
applications.

The operations defined on each asset in the scJR are imple-
mented as functions of the smart contract representing such
asset. These functions have the same name of the operations they
represent. If the operation represents a change in the properties
of the asset, the function of the corresponding smart contract up-
dates the value of the variable representing such properties in the
new asset state. If the operation, instead, represents the creation
of a new asset (e.g., as consequence of the transformation of the
original asset), then the corresponding function needs to invoke
the smart contract representing the other asset to invoke the
creation of the new instance. Further functions are always part
of the smart contract representing an asset: one function for the
creation of a new asset, one for destroying the asset, and the other
for accessing the contents of an asset. These functions take their
names from the assets name, e.g., ‘‘A_create()’’, ‘‘A_destroy()’’ and
‘‘A_view()’’ for the asset A.

The user defined constraints paired with the operations, i.e.,
the ones declared in the scGR, are implemented in the corre-
sponding functions of the smart contract as ‘‘require()’’ com-
mands. The default constraints imposed by the framework (e.g.,
the one requiring that user invoking the function must be the
current controller of the asset) are implemented in the same way.
The authorization rules are implemented through ‘‘require()’’
commands as well. In particular, these commands checks that the
role of the user invoking the function is the one specified in the
authorization rule in the scGR for the corresponding operation.

To generate the set of smart contracts building up the SCM
system according to the above description, the scMT elaborates
the scJR with three distinct procedures. The first procedure con-
sists of a loop that parses all the entries of the asset section of
the scJR, in order to identify all the distinct assets present in the
supply chain. For each asset found, a distinct smart contract is
created, following the structure described above. For instance, if
we consider the scJR shown in Fig. 15, which refers to the scGR in
Fig. 14, only one asset is found, asset A. The smart contract that
is produced by the scMT for asset A is shown in Fig. 17. Then,
the other two procedures are executed to complete the code of
such smart contracts: one for Properties, and one for Operations.
The second procedure parses the entries of the property section
of the scJR, in order to gather the set of properties related to
each asset. Then, for each asset, say A, the declarations of a set of
variables representing the set of properties previously identified
are added in the ‘‘asset_A_history’’ data structure of the related
smart contract. The declarations of the variables representing
the default asset properties (asset owner, controller and physical
position) are added by the procedure in the ‘‘asset_A_history’’
data structure as well. As a matter of fact, since in the scGR in

Fig. 14 only one property, property 01, is paired with asset A, we
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Fig. 16. Example of supply chain Graphical Representation (scGR): multiple
operations.

observe that the declaration of the ‘‘asset_A_history’’ data struc-
ture in the smart contract in Fig. 17 includes the three default
properties (lines 11–13), and the property 01 one (line14). The
rocedure also creates a temporary nominal array which pairs
ach property with the functions where it appear as parameter.
his data structure will be used by the next procedure to define
he functions of the asset smart contract.

The third procedure executed by the scMT parses the operation
ection of the scJR to determine the set of operations defined on
ach asset of the supply chain. All the operations have an unique
d, identifying them in the set. Then, in the smart contract related
o each asset, the scMT creates a function for each operation
efined on such asset, taking the parameters to be passed to
he function from the temporary nominal array of properties
reviously created. Since the supply chain described in the scGR
n Fig. 14 performs the sequence of operations A_create, A_Move,
nd A_destroy, the smart contract in Fig. 17, includes four func-
ions: A_Move (lines 24–35), and the default ones, i.e., A_create
lines 37–45), A_destroy (lines 47–54), and A_view (lines 56–58).

Instead, in the example of Fig. 16, the procedure would have
ound the operations: A_Move1, A_Move2, and A_Move3, besides
_create and A_destroy ones. For each function, a number of
onditions are imposed by adding ‘‘require’’ statements to the
ode of the function itself. The first condition, that is added
y default, checks that, when the operation represented by this
unction is invoked, the current state of the asset is the one where
his operation is defined, i.e., the operation is invoked at the
ight step of the production process represented by the scGR.
or all the operations (with the exception of the sell one) the
econd condition, that is added by default as well, checks that
he (address of the) blockchain user who invokes the function
s (equal to the address of) the current controller of such asset.
he address of the current controller of the asset is stored in
he Controller variable of the current state of the asset itself.
n case of sell operation, the second condition checks that the
address of the) blockchain user who invokes the function is
equal to the address of) the current owner of such asset. The
address of the) current owner of the asset is stored in the
wner variable of the current state of the asset itself. In the
mart contract in Fig. 17, the two default conditions paired with
he A_Move operation have been added at lines 26–27. Other
onditions that the scMT procedure adds through the ‘‘require’’
tatement to the functions of the asset smart contract concern
uthorization rules. In particular, when the scMT parses an entry
f the operation section of the scJR, if the field roles contains a role,
hen a ‘‘require’’ statement that checks that the user invoking the
peration holds such role is added to the function implementing
uch operation. We observe that the smart contract in Fig. 17,
or A_Move function, includes one authorization condition at line
8, because in the supply chain shown in Fig. 14 the operation
_Move requires the controller to have the role role_0 (light blue

ox under the operation arrow). Similarly, if the field constraint

692
s not empty, the scMT procedure adds a further ‘‘require’’ state-
ents implementing such constraint to the function in the asset
mart contract representing such operation. The last step of the
rocedure adds the code implementing each function defined
n each smart contract. This code depends of the type of the
peration. For instance, in case of transform operations, the code
n the body of the related function invokes the create function of
he smart contract representing the new asset that is created by
he transform operation. For the move operations, the position
roperties is updated with the new value passed as parameter.
or the sell and give_control operations, instead, the body of the
elated functions updates the owner or the controller property,
espectively, with the new address passed as parameter.

The operations defined in the scJR are also used to build
he‘‘web3js interface’’ library. This interface is a collection of func-
tions that can be used by the supply chain participants to in-
voke the smart contracts of the SCM system produced by our
tool. In Fig. 20 an excerpt of the web3js interface library is
shown where, for instance, the ‘‘A_create_obj’’ function invokes
the ‘‘A_create’’ function of the smart contract representing the
asset A (see Fig. 17), and the ‘‘f_A_Move’’ function invokes the
‘‘A_Move’’ function of the same smart contract. Please notice that
the values of the variables in lines 1–4 must be inserted by the
developer in the code of Fig. 20 after that the SCM system has
been deployed on the blockchain.

8. Cost evaluation

In order to validate the *-chain framework as well as the
blockchain based SCM systems generated using the *-chain tools,
in this section we evaluate the deployment and the execution
costs of the smart contracts produced by our framework, starting
from the given examples. First of all, it is important to observe
that the cost of deployment of an SCM system strongly depends
on the size and complexity of the related supply chain. The
more assets will be present in the supply chain, the more smart
contracts will be created by our framework and deployed on the
network, and the higher will be the SCM system deployment
costs. Similarly, the more complex will be the production process,
i.e., the more operations will be defined on an asset and/or the
more properties will be required to represent the asset features,
the most costly will be the deployment of the corresponding
smart contract. Hence, in this section we evaluate the deployment
cost of the assets of an SCM system varying the complexity,
i.e., varying the number of properties paired with assets, varying
the number of operations that can be executed on assets, and
varying the number assets present in the supply chain.

The first set of results we present in this section, shown in
Table 1, is related to the SCM system obtained from the supply
chain represented in Fig. 14, varying the number of properties
paired to asset A. Table 1 shows the cost of deploying the smart
contract related to asset A and the cost of executing the two
operations defined on such asset: A_create and A_Move. The costs
are expressed in gas.14 For what concerns the deployment cost,
as expected, Table 1 shows that it increases with the number of
properties, and ranges from about 3546K (1 property) to 4782K
gas (10 properties). It is important to notice that the deployment
cost must be bore only once in the lifetime the SCM system.
As a matter of fact, once the SCM system defined for a given
supply chain has been deployed, it can be used to trace the related
production process by simply creating new assets instances and
invoking the operations defined for such assets, without further
deployment costs. The cost of executing the A_create operation
increases with the number of properties, and it ranges from about

14 https://ethereum.org/en/developers/docs/gas/.

https://ethereum.org/en/developers/docs/gas/
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Fig. 17. Example of solidity translation from the scJR.
7K to 42K gas. This increase is motivated by the fact that the
nitial value of all the properties must be passed by the supply
hain participant to the A_create function. The cost of executing
he A_Move operation, instead, is almost constant, an it is about
25K gas. This is motivated by the fact that only one properties is
693
updated in this case, i.e., the asset position, independently on the
total number of properties of the asset. These cost are paid several
time during the lifetime of the SCM system, i.e., every time that
such operations are executed. We notice that the execution costs
are two orders of magnitude lower than the deployment cost.
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Table 1
Deployment costs and execution costs of the A_create and A_Move operations
arying the number of properties of the asset A.
#Properties #Move Deployment Execution cost

operations cost (gas) (gas)

1 1 3545879 26688 (A_create)
25096 (A_Move)

2 1 3585972 27753 (A_create)
25106 (A_Move)

3 1 3741248 28995 (A_create)
25142 (A_Move)

5 1 4045538 31372 (A_create)
25140 (A_Move)

8 1 4502005 35189 (A_create)
25118 (A_Move)

10 1 4781756 42103 (A_create)
25154 (A_Move)

Finally, we also need to say that for each SCM system, indepen-
dently on the number of assets and their properties or operations,
additional smart contracts must be deployed for ERC20 tokens
and for managing access control, having a cost of about 1246K
for ERC20 and 83K gas units for the abstract interface contract.

The second set of results, shown in Table 2, are obtained
arying the number of operations defined in the supply chain
or the asset A. For instance, Fig. 14 shows a supply chain where
here is only one move operation defined on A, while Fig. 16
hows a supply chain where three distinct move operations are
efined on A. Please notice that, although the A_create and the
_Destroy operations are always added by default by our frame-

work, they are not included in the number of operation shown in
the ‘‘#Move Operations’’ column of the table, which only refers
to the moves operations. From the results reported in the first
5 rows of Table 2 taking account an asset A with one property
nly, we can observe that the deployment cost of the smart
ontract representing A increases when the number of operations
efined for such asset increases, ranging from about 3546K gas (1
ove operation) to about 5044K gas (5 distinct move operations).
he costs for executing the A_create and A_Move1 operations,
nstead, are constants and they are both about 27K and 25K gas,
espectively, which are, again, two orders of magnitude less of
he deployment cost. Moreover, the last row of Table 2 shows
hat, taking an asset with 3 move operations, if we increment
he number of properties to 3, both the cost of deployment and
he cost of execution of the A_create operation increase, while
he cost of executing the A_Move1 operation is almost constant,
imilarly to what observed in Table 1 for assets with 1 operation
nly.
Table 3 shows the results of a third set of experiments that

ave been conducted on supply chains similar to the one used for
he second set of experiments, where move operations have been
ubstituted with transform operations. The new assets that are
reated by the transform operations have one property only. As
or the previous experiments, we evaluated the cost of deploying
he smart contract related to asset A and the costs of executing
he asset creation function, A_create, and a transform operation,
_Transform1, varying the number of transform operations de-
ined for such asset. From the results shown in Table 3 we observe
hat the trend is similar to the one shown in Table 2 for the move
peration. As a matter of fact, the smart contract deployment cost
ncreases with the number of transform operations defined on
he asset, while the execution costs of the A_create and of the
_Transform1 operations is almost constant when the number of
ransform operations defined on the asset changes. Moreover, the
ast row of the Table shows that, if we increase the number of
roperties defined for asset A, the cost of the A_create operation
694
Table 2
Deployment costs and execution costs of the A_create and A_Move1 operations
arying the number of move operations defined on the asset A.
#Properties #Move Deployment Execution cost

operations cost (gas) (gas)

1 1 3545879 26688 (A_create)
25096 (A_Move1)

1 2 3920498 26503 (A_create)
25118 (A_Move1)

1 3 4295137 26559 (A_create)
25140 (A_Move1)

1 4 4669597 26585 (A_create)
25170 (A_Move1)

1 5 5044301 26550 (A_create)
25196 (A_Move1)

3 3 4664381 28947 (A_create)
25130 (A_Move1)

Table 3
Deployment costs and execution costs of the A_create and A_Transform1 op-
erations varying the number of transform operations defined on the asset
A.
#Properties #Transform Deployment Execution cost

operations cost (gas) (gas)

1 1 3199521 26617 (A_create)
26218 (A_Transform1)

1 2 3253698 26615 (A_create)
26218 (A_Transform1)

1 3 3409800 26603 (A_create)
26218 (A_Transform1)

1 4 3565987 26693 (A_create)
26218 (A_Transform1)

1 5 3722093 26671 (A_create)
26218 (A_Transform1)

3 3 3837147 28914 (A_create)
26218 (A_Transform1)

Fig. 18. Example of supply chain Graphical Representation (scGR): as-
set_monitor and asset_move operations.

increases, while the cost of the A_Transform1 operation is not
affected.

We performed a forth set of experiments to evaluate the cost
of the monitor operation exploiting the SCM system obtained
from the supply chain represented in Fig. 18 and varying the
number of properties that are involved in the monitor operation.
The results are shown in Table 4. The deployment cost increases
with the number of properties, and it ranges from about 3886K
gas (1 property) to about 4454K gas (5 properties). We notice
that the deployment costs of asset B shown in Table 4 are higher
than the deployment costs of asset A shown in Table 1 (referring
to the supply chain represented in Fig. 14). This is because the
smart contract representing asset B is very similar to the smart
contract representing asset A, but it embeds one operation more,
the B_Monitor, and this affects the smart contract size. The cost
of executing the B_Monitor operation slightly increases with the
number of properties that are involved in the operation and, from
1 to 5 properties, it is about 25K gas.

Table 5 shows the results of a fifth set of experiments in

which we measured the cost of the sell and buy operations,
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Table 4
Deployment costs of asset B and execution costs of the B_Monitor operation
arying the number of involved properties.
#Properties Deployment Execution cost

cost (gas) (gas)

1 3886494 24969
2 4027362 25053
3 4169401 25101
4 4268001 25112
5 4454143 25151

Table 5
Execution costs of sell and buy operations.
Operation Execution cost (gas)

Sell 24 405
Buy 23883

Table 6
Total deployment cost of a SCM system representing a sequential supply chain
varying the number of assets.
#Assets SCM system

deployment cost (gas)

2 7708450
3 10925263
4 14141651

Fig. 19. Example of supply chain Graphical Representation (scGR): sequence of
ransform operations.

sed to transfer the ownership of an asset among two users.
hese operations have an execution cost of about 24K gas. In
ur experiments, we verified that such costs do not depend on
he number of properties and operations that are defined on the
sset.
Finally, the last set of experimental results evaluate the de-

loyment cost of supply chains consisting of a sequence of n
ransform operations which, from an initial asset, produce a num-
er of intermediate ones and then produces the final assets.
ig. 19 shows an example performing a sequence of 3 transform
perations which involve 4 assets. Table 6 shows the total costs
n gas of the related SCM systems, which include the costs of the
mart contracts representing all the assets of the supply chain
nd of the smart contracts required for managing access control.
s expected, the cost increases proportionally as the number of
ssets in the supply chain increases.
To complete the experimental evaluation of our approach, in

he following we compare its costs with the ones of other SCM
ystems built on the Ethereum blockchain.
The authors of [22] propose a complete solution for blockchain

ased agrifood supply chains. In their solution they define a
ontract called addTransaction for tracing the execution of trans-
ctions on assets. From the results they show in the paper, we
an see that tracing a transaction costs about 27K gas. The exper-
ments were conducted on 2, 4, and 6 assets, and such cost does
ot increase significantly. The cost for one asset only is not given
n the paper, but since such cost does not increase significantly
arying the number of assets, we could assume that it would
e around 27K gas as well. This cost is somehow comparable
ith the cost of performing an asset_move or an asset_transform
peration on an asset in our framework (see Tables 1, 2, and 3)
hich ranges from about 25K to about 26K gas. Moreover, in

ur framework, we can execute an operation on multiple assets

695
Fig. 20. Example of ‘‘web3js interface’’ library code.

as in [22] by grouping a set of assets in a single container, and
executing operations on such a container. Furthermore, in [22]
the data describing an asset is actually stored off-chain (i.e., on
IPFS15) and only the related hash is stored on-chain. Hence,
although this solution guarantees the integrity of assets’ data and
allows to save gas, it does not guarantee that such data will be
permanently kept available to the users of the SCM system.

Another blockchain based SCM system is presented in [23],
and it concerns the oil supply chain tracing. In their system,
the authors define a smart contract, called CheckProgress which
provides a number of functions to keep track of some informa-
tion about the oil during the production process. In particular,
such smart contract provides three functions, called CheckPres-
sure, CheckTemperature, and CheckHumidity which register on the
blockchain the current value of pressure, temperature, and hu-
midity, and the execution of such functions cost, respectively,
about 30K gas, 14K gas, and 15K gas. The role of these functions
in the SCM system could be somehow similar to the role of
the asset_monitor function in our framework, which allows to
register on the SCM system the current value of a property of
an asset. The cost of the CheckPressure function (about 30K gas)
is comparable to the cost of the asset_monitor of our framework
(about 25K gas, see Table 4), while the other two functions,
CheckTemperature and CheckHumidity cost considerably less of the
CheckPressure function, and the authors of [23] do not describe
the reason. However, we observe that one reason for the higher
cost for the execution of asset_monitor function with respect to
the CheckTemperature and CheckHumidity ones could be that the
former also checks that the requesting user is the controller of the
asset and holds the role required for executing the asset_monitor
operation.

A third implementation of a blockchain based SCM system is
described in [24]. This system is designed for the health care sce-
nario and it is aimed at fighting drug counterfeiting, falsification,

15 https://ipfs.tech/.

https://ipfs.tech/


S. Bistarelli, F. Faloci and P. Mori Future Generation Computer Systems 149 (2023) 679–700

a
e
w
i
t
p
e
t
t
a
t
w
t
o
c
t
t

9

m
o
a
r

d
u
c
w
c

m
c
a
d
t
a
s
i

s
i
s
c
o
t
s
i

t
l
r
a
f
i

m
t
c
e
t
s
i

nd black market. In this work, the authors focus on the drug
xchanges among the actors of the supply chain (manufacturers,
holesalers, distributors, pharmacies), while they do not take

nto account the drug production process. In particular, one of
he smart contracts composing the system provides the function
urchaseMedicine, which allows to track the transfer of the own-
rship of a given medicine from one stakeholder of the system
o another. The experimental results presented in [24] show that
he cost of executing the purchaseMedicine function goes from
bout 28K gas to about 30K gas. This cost is comparable with
he cost of the sell function of our framework, shown in Table 5,
hich is about 24K gas. However, in our framework we require
he execution of a second function, called buy, for finalizing the
wnership transfer of an asset, which introduces an additional
ost of about 24K gas. This function guarantees that the actor
o whom the seller wants to transfer the ownership of the asset
hrough the sell function actually accepts this transfer.

. Related work

Several other works in literature analyze SCM systems, but
ost of them are focused on the management of a single use case,
r, on best cases, they concern a specific SC topology. Surveys
nd other in-depth studies [25] analyze possible development,
emaining however theoretical studies.

An example of the power of representative modeling for SC is
escribed in [26]: here the authors develop a simulation model,
sing an object-oriented modeling framework to facilitate supply
hain representation. Their approach is strictly process-centric,
here the state or the maintenance of each asset is often not
onsidered.
Authors in [27] have introduced blockchain-based food infor-

ation security in SCM system. According to them, no solutions
an achieve the traceability accuracy required for the real market:
lthough a solution is provided, an implementation has not been
eveloped. In this approach, there is no mention of product
raceability but only to keep track of the finalized process. In
different way, our goal is to ensure product traceability: our

ystem tracks both the production steps of an asset, and monitors
ts state, and its properties and its geophysical localization.

A similar study, presented in [28], describes a tool that builds
mart contracts using precomposed functional blocks. The idea
s that composing such blocks is easier than developing complex
mart contracts. Unlike this approach, our solution does not in-
lude precomposed blocks but the users can define their low level
r high level operations on the graphical interface. We exploited
his idea, in order to build a model that can be translated into
mall conceptual building blocks, which can later be translated
nto functions within a smart contract.

Another approach, [29], involves the development of a con-
ract modeling language: this approach provides a high-level
anguage – very similar to natural language – capable of rep-
esenting some types of transactional operations. However, this
pproach makes it difficult for a user to design a supply chain:
irst of all, it requires learning the high-level language presented
n the study.

The Business Process Model and Notation [20] (BPMN) is a
odel language to design business processes. This model allows

o define the workflow, the participants, the choices of the pro-
ess flow. The drawn schemes are designed to be detailed, but
asy to read without training. A BPMN schema does not directly
ranslate to any specific language or implementation. The BPMN
chemes are process-oriented and often not consider or track the
nvolved asset.
696
In [30], a model for smart contract generation based on the
BPMN representation is shown. The proposed graphical DLS trans-
lates blockchain smart contracts using the DEMO modeling lan-
guage [18]. This graphical representation makes it easier for the
user to represent an operation workflow on the same asset.

In the BPMN choreography scenario in [31], a particular ex-
tension of BPMN is used to empower the description of processes
with the participation of external parties or domain expert. The
presented methodologies are developed to ensure automation in
the creation of smart contracts for graphical models built with
BPMN choreography tools. In this case, the methodology uses pre-
viously built smart contracts, on which additional extensions and
functions are applied. Furthermore, the traceability problems of a
product are not taken into account, only the execution steps of a
process are traced by this method. In our framework, on the other
hand, the possibility of having an own graphical model – free of
fixed paradigms – allows us to develop a more adaptive translator
using blocks of a own language that are easy to understand, but
at the same time can represent complex semantics.

A similar approach is presented in [17], where common basic
elements of BPMN are used through the Choreography graphics
engine: these predetermined elements of the graphics engine
allow to represent various processes in simple diagrams. These
schemes are then parsed into Chaincode smart contracts for Hy-
perledger. In this scenario, the presented framework focuses on
tracing the process for the production of a good, instead to
trace the good itself. Moreover, different actors participate to
write the SC schema, introducing more complex levels of errors.
Furthermore, the blockchain technology on which the generated
smart contracts are adapted is Hyperledger Fabric, i.e. a private
permissioned BC. In a different way, our tool is developed for a
single domain expert, avoiding external influences. Also, the goal
is to generate smart contracts for Ethereum systems, which are
known not to represent private systems.

The comparative study presented in [32] analyzes the limits of
the BPMN and Case Management Model and Notation (CMMN)
approaches in the representation, schematization and possible
translation into smart contracts. The authors highlight how in
BPMN only specific types of processes can be easily represented,
limiting further abstractions or exceptions; while the represen-
tation in a more abstract model, the CMMN, is limited for what
concerns its representation on the blockchain.

In [16] the authors show how the Supply Chain Operations
Reference (SCOR) model, and the BPMN model can be combined:
both are process-oriented workflows. The study shows the obvi-
ous similarities of the two models, which see the supply chain
as a sequence of operations, focusing on the execution of being,
without keeping track of what and where the objects involved in
the operations are: in these models, there is no concept of ‘assets’,
nor of asset ownership. In our framework, the concept of asset
is fundamental: the objective is to keep track of the life cycle of
the asset, who owns it, and who has had the opportunity to use
and/or modify it.

In [33], blockchain and IoT based solutions are proposed for
agri-food supply chain tracing system. This study focuses on a
specific use case representing an SC to trace products ‘‘from farm
to table’’, and compares the results obtained implementing such
system on Ethereum and Hyperledger.

The authors of [34] propose a supply chain solution for the
wine industry based on blockchain technology. The solution ex-
ploits RFID tags and barcodes to identify the assets, and records
the data relevant for each stage of the supply chain on the Mul-
tichain platform in order to ensure the quality of the production
process. Despite it is close to ours, this proposal is specific for the
wine supply chain, and it is not aimed at being general supporting
the tracing of customized supply chains. Instead, our system is
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apable to track potentially each kind of supply goods, processes
nd workflow, included agricultural goods.
[35] shows another application of RFID tags using ‘‘Hazard

nalysis and Critical Control Points’’ (HACCP) for the tracing
f the crop supply chain. The main idea is to pair each stock
f harvested crops with an RFID tag, and then to follow the
ag movements recording such information on BigchainDB. The
emperature in the stocking area is monitored using IoT devices.
gain, this work is focused on a specific supply chain and, dif-
erently from our framework, the design of customized smart
ontracts implementing specific tracing system is not supported.
In [36], the authors present a comparative study and a practi-

al realization of a solution for the food traceability problem. In
his case they use both the RFID technology and an instant picture
f each asset under exam. This pair of information is recorded
hrough a single transaction on the blockchain at each step of the
upply chain process.
The authors of [37] present an automatic smart contract gen-

ration framework exploiting ontologies and semantic rules to
epresent the domain specific knowledge, from which smart con-
racts templates are derived. Abstract syntax trees are then ex-
loited to organize the constraints derived for each specific set-
ing, and are used to produce the final smart contracts. Similarly
o our framework, this proposal aims at being very general, not
ocused on a specific problem or domain. The main difference is
hat our framework allows its users to design their supply chains
hrough a user-friendly DSL implementing the general model we
efined.
An automated approach [38], deals with the translation of

ML into other languages. The study presents a tool capable of
emi-automatically translating a specific structured UML schema
nto an activity diagram (AD). The AD is then subjected to an
nalysis using the mCRL2 framework capable of both earning an
valuation of constraints over the model and granting further
ranslations in structures compatible with the XML language. The
tudy aims to provide to the UML schema a greater power of
epresentation, and allow to translate it – under certain structural
nd protocol constraints – into a generic format, useful for other
rocesses. However, the project is limited to the use of java
ibraries and the massive request for computation. There is also
o actual automation of the entire process, as only two of the
hree main parts are automated: the fundamental step through
he mCRL2 framework has not been implemented.

Instead of the classical product life-cycle model, [39] presents
process validation based on blockchain system: the idea is

o create an accurate digital representation of the end product.
physical good is represented as a collection of cryptographic

okens, and different combinations of tokens describe a different
hysical good. The list of cryptographic tokens of each product
escribes the recipe of the product.
[40] proposes an Ethereum-based network that works as a dig-

tal certificate of authenticity for 3D design intellectual property
ssets. They have integrated blockchain into OpenDXM GlobalX
oftware, which is used by manufacturers for sharing data. Each
icensor has a private key: a digital certificate of authenticity is
reated with this key. The certificate and the key are recorded in
he blockchain.

[41] proposes the Gcoin project16 to record transactions be-
ween pharmacies and consumers. Here the transactions on the
lockchain maintain information with the aim to identify drugs
nd possible illicit transactions. Only authorized users can sell/buy
pecific items through this platform, with the goal of avoiding
oth counterfeiters and unauthorized buyers.

16 www.gcoin.com/.
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[42] proposes a permissioned blockchain to track plasma. The
system records digital tokens representing donors of blood: each
blood donation is recorded as a token. This token records many
medical testings transforming the initial token. This approach
allows doctors to identify the origin of the plasma and minimize
the risks of using tainted plasma.

The authors of [22] propose a solution designed for the Agri-
Food context, with a generic example. The paper describes the
algorithms underlying the smart contracts building up the SCM
system, and evaluates the expected costs in gas and USD. How-
ever, the paper does not show any example of smart contract
implementing the presented algorithms. Unlike our implementa-
tion, in [22] each transaction involves a registration of the asset
data on the Interplanetary File Storage System (IPFS), which is
a secondary storage system, while only the hash of such data is
recorded in the blockchain.

Similarly to the previous approach, authors in [43] propose an
efficient strategy for Agri-Food supply chain traceability, where
goods provenance data (e.g., images, videos and data collected
from sensor) are stored in the Interplanetary File System, and
the blockchain is used to store the IPFS hash address of such
provenance data.

[44] proposes a decentralized storage beside the Ethereum
blockchain. The study highlights the risks of centralized storage:
sensitive data could be leaked, and the IPFS itself can lose infor-
mation in the event of a direct attack on the system. To solve
these problems, they propose to use a file encryption algorithm
and to record the obtained hash in Ethereum blockchain.

A case study on product traceability is presented in [45]
where the authors describe ‘‘originchain’’. The framework use two
blockchains: one is a private blockchain for off-chain transaction
recording. The hash of the off-chain recording is then saved in
a public blockchain (on-chain transaction recording). The idea of
mixed private–public blockchain is not at design level but can be
decoupled also in our framework and applied also in the context
of our automatic translations. It is enough to deploy additional
smart contract that transfer on the public blockchain information
saved on a private ones periodically.

In [23], the authors propose a smart contract based oil sup-
ply chain management system, running on top of private and
consortium blockchains. The proposed tracing system is based
on a smart contract, called CheckProgress which is exploited to
monitor and record on the blockchain the relevant information
about the oil during the production process. The paper provides a
table showing the execution costs in gas and USD of the functions
defined by system smart contracts. Unlike our approach, besides
being tailored for a specific scenario, this work is only focused
on measuring some relevant parameters during the production
steps.

The authors of [24] propose a solution for drug supply chain
traceability. The proposed system aims at tracing the purchase
and the delivery of drugs among the stakeholders of the health-
care scenario, in order to fight black market and drug counterfeit-
ing. Hence, this system is not aimed to trace the drug production
process. A test use case is proposed as a proof of concept, and
the gas costs of the execution of the main functions of the smart
contracts implementing the system are provided. As in previous
cases, this system is not general since it is very specific for the
auto retail industries.

The study in [46] presents an integration of the BCautoSCF
framework, which deals with the management of the financing
platform for the auto retail industry, from the gathering of the
components to the sale. The proposed tool aims to automat-
ically track the steps described by the BCautoSCF framework.
The framework we developed is proposing the creation of three
user interfaces, allowing the domain expert to manage the SC
comprehensively: both in terms of monitoring or usage.

http://www.gcoin.com/
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0. Conclusion and future work

We presented *-chain, a framework defining a model, a DSL,
nd a set of tools for helping supply chain domain experts in
esigning and developing their supply chain Management Sys-
ems on top of blockchain technology. Our framework allows
omain experts to easily represent the main types of supply
hains through a simple and user-friendly graphical interface, and
once designed – to translate such supply chain scheme into:

i) a set of smart contracts skeletons implementing the related
upply chain Management System, and (ii) two web interfaces for
perating on such management system: one for the supply chain
dministrator, and the other for the supply chain participants.
hese interfaces allow supply chain administrators to register the
articipants to their Supply Chain Management systems assign-
ng them roles and rights, and supply chain participants to the
egister the operations they executed on assets according to the
esigned supply chain and to the required roles.
We validated our framework, by using it to represent a well-

nown supply chain use case: the soybean traceability study
ase [7]. We built the corresponding model, adding more de-
ail to the original schema, introducing role-based authoriza-
ion controls and also other constraints on operations. We used
ur framework to translate the supply chain schema into so-
idity code, and to produce the supply chain Administrator and
articipants interfaces.
We envisage a number of future works for enhancing the

roposed framework. At first, we plan to better analyze the po-
ential of the DSL, translating other specific use cases for agrifood
upply chains: Protected Designation of Origin (PDO17) olive oil
nd beef steak. To further improve the usability of the framework,
e plan to introduce the possibility of defining macro-functions,

.e., composition of existing operations. The goal is to reduce
rocedural costs and earn an easier and clearer design.
We are also considering integrating Self-sovereign identity (SSI)

echnology for GDPR-compliant identity management, instead of
utsourcing the storage of sensitive data to off-chain systems.
Finally, we plan to investigate whether the adoption of dif-

erent data structures to represent the asset history reduces the
eployment and execution costs of the proposed solution.
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Appendix. List of acronyms

Acron. Full name Sec
SC Supply Chain 1
SCM system Supply Chain Management system 1
DSL Domain Specific graphical Language 1
BT Blockchain Technology 1
DLT Distributed Ledger Technology 2.1
scGM supply chain General Model 3
scDI supply chain Design Interface 3
scGR supply chain Graphical Representation 3
scJR supply chain JSON Representation 3
scMT supply chain Model Translator 3
scMIB supply chain Managing Interfaces Builder 3
scAI supply chain Administration Interface 3
scPI supply chain Participant Interface 3
RBAC Role-Based Access Control 4
SBP Soy Beans Producer 5
BPMN Business Process Model and Notation 9
CMMN Case Management Model and Notation 9
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