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A B S T R A C T

Despite providing unparalleled connectivity and convenience, the exponential growth of the Internet of Things
(IoT) ecosystem has triggered significant cybersecurity concerns. These concerns stem from various factors,
including the heterogeneity of IoT devices, widespread deployment, and inherent computational limitations.
Integrating emerging technologies to address these concerns becomes imperative as the dynamic IoT landscape
evolves. Machine Learning (ML), a rapidly advancing technology, has shown considerable promise in addressing
IoT security issues. It has significantly influenced and advanced research in cyber threat detection. This survey
provides a comprehensive overview of current trends, methodologies, and challenges in applying machine
learning for cyber threat detection in IoT environments. Specifically, we further perform a comparative analysis of
state-of-the-art ML-based Intrusion Detection Systems (IDSs) in the landscape of IoT security. In addition, we shed
light on the pressing unresolved issues and challenges within this dynamic field. We provide a future vision with
Generative AI and large language models to enhance IoT security. The discussions present an in-depth under-
standing of different cyber threat detection methods, enhancing the knowledge base of researchers and practi-
tioners alike. This paper is a valuable resource for those keen to delve into the evolving world of cyber threat
detection leveraging ML and IoT security.
1. Introduction

Brendan O'Brien astutely observed, ”If you think the Internet has
changed your life, think again. The Internet of Things is about to change
it all over again!” [1]. This is indeed the case, as the Internet of Things
(IoT) has heralded unprecedented connectivity. The advancements in
sensor technology, wireless communication, and data analytics have
spurred an exponential increase in connected devices. This influx of
connectivity, brought about by integrating IoT into various industries,
cities, and households, promotes unmatched efficiency and convenience.
As the backbone of IoT, sensors and actuators acquire and convert data
from the physical world into digital signals. These compact devices amass
a diverse range of data, thereby enabling real-time monitoring and
control of numerous systems and processes.

However, the rapid proliferation and extensive integration of IoT
devices into everyday life have ushered in various security challenges.
These issues must be robustly addressed to ensure the safety and reli-
ability of this expanding ecosystem. The sheer volume and variety of IoT
devices and their often inconsistent security features and protocols
wahedi), alyazia.aldhaheri@tii.a
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engender a fragmented environment teeming with potential attack vec-
tors. IoT devices frequently prioritize low cost and user simplicity over
security, making them susceptible to breaches and exploitation. As a
result, these devices are at risk of various cyber threats, including data
breaches, Distributed Denial-of-Service (DDoS) attacks, and malware
infections. Any security breach in these devices could significantly
compromise privacy and crucial infrastructure systems, given the sensi-
tive nature of the data they handle. Moreover, IoT devices, potentially
serving as entry points, might allow attackers to infiltrate broader net-
works, amplifying the potential impact of security breaches. Another
primary concern is the security of communication routes between IoT
devices and networks, as many IoT devices utilize wireless communica-
tion protocols susceptible to interception or manipulation. These vul-
nerabilities can be exacerbated by the resource constraints of specific IoT
devices, which prevent them from adopting contemporary encryption
and authentication techniques. Furthermore, the long lifespan and
widespread deployment of IoT devices compound the difficulty of man-
aging security upgrades and patches, as many devices may not receive
regular updates or may be difficult to access for maintenance. This could
lead to an increased number of outdated or vulnerable devices, further
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List of abbreviations

ADC Anticipated Distance-based Clustering
ANN Artificial Neural Network
BN Bayesian Network
CFS Correlation-Based Feature Subset Selection
CPS Cyber-Physical Security
DBScan Density-Based Spatial Clustering
DDoS Distributed Denial-of-Service attack
DL Deep Learning
DT Decision Tree
DTb Decision Table
FBPCM Full Bayesian Possibilistic C-mean Clustering
FGSM Fast Gradient Sign Method
FNN Feed-Forward Neural Network
GB Gradient Boosting
GWO Grey Wolf Optimization
GWO-PSO Grey Wolf Optimization and PSO
IDS Intrusion Detection Systems
InfoGain Information Gain
IoT Internet of Things
JRip Java Ripper
KNN K-Nearest Neighbor
KOAD Kernel Online Anomaly Detection
LightGBM Light Gradient Boosting Machine
LLM Large Language Model

LNB Likelihood Naïve Bayes
LR Logistic Regression
MI Mutual Information
ML Machine Learning
MLP Multilayer Perceptron
MKKM-IC Multi Kernel K-means
MOEFS Multi-Objective Evolutionary Feature Selection
MQTT Message Queue Telemetry Transport
NLP Natural Language Processing
NB Naive Bayes
OCSVM One-Class SVM
PPGO Perpetual Pigeon Galvanized Optimization
PSO Particle Swarm Optimization
REP Tree Reduced Error Pruning Tree
RF Random Forest
RFFI Random Forest Feature Importance
RT Random Table
SAE Stacked Auto Encoder
S-DPN Stacked Deep Polynomial Network
SL Simple Logistic
SMO Spider Monkey Optimization
SVM Support Vector Machine
UDP User Datagram Protocol
WVE Weighted Voting Ensemble
ZeroR Zero Rule
OneR One Rule
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exacerbating security concerns [2].
Given the aforementioned security challenges, machine learning (ML)

has surfaced as a potent instrument for fortifying and advancing IoT se-
curity. The escalating complexity in IoT ecosystems necessitates more
sophisticated security systems. ML can supply the requisite intelligence
by employing intricate algorithms and insights from gathered data. It
achieves this by discerning patterns, identifying anomalies, and
Fig. 1. A sample depiction of cyber threat detecti
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forecasting potential threats in real-time. This capability enables a pre-
emptive response to vulnerabilities and intrusions [3]. An instance of
such a system is depicted in Fig. 1.

A salient application of machine learning in IoT security is anomaly
detection. By scrutinizing their behavior, ML algorithms study the typical
operational patterns of IoT devices, networks, and communication
channels. Establishing a benchmark for normal behavior enables these
on environment based on Machine Learning.
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algorithms to swiftly pinpoint deviations or abnormal activities, thereby
flagging them as potential security risks. This methodology allows for
early detection and response to cyberattacks such as DDoS or malware
infections, preventing substantial damage.

Signature-based detection is another prevalent method that can be
ameliorated by integrating ML algorithms. This approach relies on
identifying known patterns or signatures of malevolent activities or
malware, forming a crucial first line of defense against recognized cyber
threats. By automating the signature generation and updates process,
machine learning can significantly enhance the effectiveness of
signature-based detection [4]. As new threats surface and evolve, ML
algorithms can scrutinize vast malware sample repositories, extracting
unique patterns and characteristics to generate and dynamically update
signatures. Consequently, security systems can stay abreast of the
evolving threat landscape, fostering a more robust defense against known
and emerging threats [5].

Furthermore, ML can assist in analyzing vast volumes of data gener-
ated by IoT devices. This allows security professionals to discern hidden
correlations, identify trends, and anticipate future threats [6]. Conse-
quently, organizations can make informed decisions based on data and
allocate resources more judiciously, bolstering their security. Integrating
machine learning into IoT security operations is a robust ally, aiding in
tackling the aforementioned challenges and vulnerabilities. This part-
nership has further contributed to the evolution of a more secure and
resilient IoT landscape, thereby safeguarding our progressively inter-
connected world [7].

In this survey paper, we make the following contributions.

● We provide an exhaustive survey and critical review of recent trends
in cyber threat detection methodologies.

● We present a range of ML techniques, emphasizing their respective
approaches, applications, and pros and cons.

● We conduct a comparative analysis of cutting-edge ML-based Intru-
sion Detection Systems (IDSs).

● We discuss the current unresolved issues and challenges within IoT
Security.

● We provide the future vision with Generative AI.

The paper's organization is as follows: Section I encompasses the
introduction, discussing the IoT, IoT security, and the integration of ML
into IoT security. This section also clearly outlines the contributions of
our paper. Section II offers a summary of recent works that are relevant to
ML-based cyber threat detection. Section III overviews current trends
applied to IoT security, showcasing specific examples and case studies. In
Section IV, we delve into numerous ML methods and techniques, eval-
uating them based on their recent implementations as illustrated in
various research papers. Section V provides an in-depth examination and
comparison of different cyber threat detection methods. Section VI dis-
cusses the open challenges that warrant attention. Lastly, Section pre-
sents the future vision of ML for Cyber Security in IoT environments, and
Section VIII offers a summary of the survey and concludes the paper with
final remarks.

1.1. Research strategy

The literature review for this paper was executed through a struc-
tured, multi-stage process with a specific focus on Machine Learning
(ML) applications in IoT Security. Initially, a broad collection or
screening of literature was conducted, drawing from an extensive pool of
22,688 potential sources related to IoT Security across scientific data-
bases like IEEE, Springer, Science Direct, Scopus, and Web of Science.
This initial collection included 16,036 conference papers, 5047 journal
articles, 759 magazine articles, 494 books, 320 early access articles, 22
standards, and 10 courses.

During the systematic selection phase, we focused on sources that
integrated ML in IoT Security, reducing the selection to about 10 % of the
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initial pool (approximately 2269 sources). The systematic selection phase
then followed, during which around 50 sources were selected based on
specific criteria: relevance to the ML for IoT Security topic, author, and
journal reputation (preferring those with an impact factor above 3),
originality of the content, publication date (prioritizing those published
within the last five years), and impact (considering papers with at least
50 citations).

The selected references were then classified into two main categories:
technical papers (about 90 % of the selected works) and survey papers
(10 %). In the final analysis phase, critical information was extracted
from approximately 80 % of the technical papers and 90 % of the survey
papers. This information was thoroughly analyzed and synthesized into
the comprehensive survey presented in this paper, offering a detailed
insight into the intersection of ML and IoT Security.

2. Related surveys

Thakkar and Lohiya [16] surveyed various Intrusion Detection Sys-
tems (IDS) strategies for IoT networks. The study underscored the ne-
cessity for robust security mechanisms to tackle the complex architecture
of IoT devices and their inherent communication capabilities, which
often lead to security vulnerabilities. The article delved into diverse
strategies for IDS placement analysis within the IoT architecture, the
broad spectrum of intrusions specific to IoT, and the application of ML
and Deep Learning (DL) methods in detecting attacks within IoT net-
works. The paper highlighted security challenges in IoT networks, sug-
gesting that additional research is warranted in areas such as expanding
the scope of attack types, IDS management, enhancing IDS communica-
tion security amongst devices, utilizing standardized datasets, and
developing techniques to correlate alerts.

Da Costa et al. [8] underscored the persistent challenge of intrusion
detection in the IoT context. As the Internet evolves into the IoT, atten-
tion has transitioned from mere connectivity to a more focused concern
on data security. Their paper scrutinized recent advancements in intru-
sion detection and the utilization of intelligent techniques for IoT data
security. The surveyed literature primarily discussed the apprehensions
and efforts of the scientific community and industry to devise optimized
security protocols that balance protection and energy consumption. The
study also exhibited intelligent techniques employed in computer
network security, specifically within intrusion detection, aimed at
improving recognition rates. Nevertheless, the reduction of false-positive
rates still poses a challenge. Specific techniques may lower these rates but
at the cost of extended training and classification time. In contrast, others
maintain a stable false positive rate but impose a significant computa-
tional burden during the training and testing phases. This dilemma is
particularly pertinent in intrusion detection, where real-time detection is
crucial.

Ashraf et al. [14] provided a comprehensive overview of the appli-
cation of ML and DL techniques in Intrusion Detection Systems (IDS)
specifically designed for IoT networks and systems. The paper elucidated
the IoT architecture, associated protocols, vulnerabilities, and potential
protocol-level attacks. It also surveyed many research efforts centered on
IDS methodology and attack detection techniques specific to IoT. More-
over, the paper sheds light on the available ML and DL techniques for IoT
IDS and offers an overview of datasets suitable for IoT security-related
research. In conclusion, the authors identified several ongoing chal-
lenges, suggesting that the available IDS for IoT are still imperfect and
require further refinement.

Ahmad and Alsmadi [17] conducted an examination of the prevailing
trends in the utilization of ML techniques for IoT security. They struc-
tured their approach to evaluating the most recent research and devel-
oping trends in IoT security through an in-depth analysis of the most
relevant and scholarly literature from 2019 to 2020. Their study was
focused on amalgamating three burgeoning domains: IoT, machine
learning, and information security, which consequently led to the
formulation of six research questions. This literature review allowed
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them to identify more recent studies focusing on machine learning
techniques to thwart large-scale attacks on IoT devices. The primary
objective of their research was to secure IoT devices from widespread
attacks such as Distributed Denial of Service (DDoS) and botnets. Both
machine and deep learning delivered promising results compared to
traditional intrusion detection methods. However, the rapid evolution of
IoT devices and cyber-attacks poses a significant challenge for detecting
zero-day threats. The paper offered a detailed background and analyzed
selected papers to extract methodology and performance results. The
review results addressed the six research questions to provide a
concentrated yet comprehensive understanding of the latest trends,
limitations, and challenges, all to aid in developing efficient intrusion
detection systems in the future. The research questions were as follows:
What are the primary security issues that render IoT devices vulnerable
to hostile incursions? What strategies are employed to secure IoT sys-
tems? What types of large-scale attacks have affected IoT devices? What
different machine learning and deep learning techniques have been uti-
lized by researchers? What preventative measures are taken against
broad-scale attacks? How often is deep learning proposed as a solution
for large-scale attacks on IoT?

Hossain et al. [15] delved into the application of ML and DL in the IoT
sphere from a security and privacy perspective. The paper emphasized
the security and privacy challenges, attack methods, and security needs
in IoT. The authors discussed different ML and DL techniques and their
application in IoT security, including the limitations of conventional ML
approaches. The paper also examined existing security solutions, point-
ing out current gaps and emerging research areas. To overcome the
limitations of ML in IoT security, the authors suggested strengthening the
core components of DL and Deep Reinforcement Learning (DRL). These
should be evaluated based on learning efficiency and computational
complexity. Furthermore, they proposed that innovative combinations of
learning strategies and data visualization techniques are vital for prac-
tical data interpretation.

Liang et al. [9] debated the pros and cons of deploying ML for
cyber-physical security (CPS) and IoT. They presented the benefits of
using ML to bolster security in Intrusion Detection Systems (IDS) and CPS
while highlighting specific issues and challenges. The paper detailed the
vulnerabilities of ML across different stages, including data collection,
pre-processing, training, validation, and implementation. Finally, they
raised serious concerns about the potential misuse of ML in launching
malicious attacks and proposed potential solutions to these issues.

Chaabouni et al. [10] thoroughly reviewed multiple topics pertinent
to Network Intrusion Detection Systems (NIDSs) for IoT, utilizing various
learning techniques. This review encompassed existing NIDS datasets,
implementation tools, and open-source sniffing tools, which were
meticulously evaluated. The discussion delved into NID's architecture,
deployment, and methodology in IoT systems, encompassing traditional
and ML based defense mechanisms. The authors scrutinized the
state-of-the-art learning NID for IoT ecosystems, introduced learning
terminologies, and compared different strategies. This state-of-the-art
review demonstrated high detection accuracy and low false favorable
rates. The paper compared leading IoT NID proposals and emphasized
potential future research directions, focusingmainly onmachine learning
algorithms.

To provide a comprehensive review, Al-Garadi et al. [11], presented
ML as separate sections, despite the latter being a subset of the former.
They meticulously examined ML and DL algorithms for IoT security,
discussing their applications, strengths, and weaknesses in detail.
Furthermore, the authors highlighted the challenges of employing ML
and DL for IoT system security. The paper also offered an overview of
general IoT systems (i.e., methodologies, characteristics, and security
threats) and deliberated on potential vulnerabilities and different attack
surfaces within IoT systems. Moreover, a comparison betweenML and DL
methods used for securing different layers of IoT was provided. Addi-
tionally, the authors discussed concerns regarding IoT data, learning
strategies, interconnected environment operations, and possible
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exploitation of ML and DL by attackers and underscored privacy and
security challenges in IoT.

Tahsien et al. [12] concentrated on Machine Learning-based security
solutions for IoT systems, incorporating the most recent publications up
to 2019. The authors initiated the discussion by introducing the layers of
the IoT system and the various security challenges these layers confront,
including different forms of cyber-attacks. The review discussed various
machine-learning techniques and how they could be employed to address
various attacks on IoT systems. The authors offered a state-of-the-art
review of security solutions for IoT devices, specifically focusing on
applying ML algorithms across the three layers of the IoT system.
Conclusively, the authors expounded on the challenges and limitations of
ML-based security solutions for IoT systems and proposed potential di-
rections for future research.

Wu et al. [13] conducted a comprehensive examination of the unique
characteristics and intricacies of IoT security protection while also
exploring how AI methods, including ML and DL, can be leveraged to
devise IoT security solutions. Furthermore, the study provided an
extensive overview of AI solutions, contrasting a variety of related al-
gorithms and technologies against four critical security threats: device
authentication, intrusion detection, malware detection, and defense
against both Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks. For future work, the researchers could explore the po-
tential challenges of employing AI in IoT security. In another insightful
work, Zeadally and Tsikerdekis (2020) [26] studied the various features
of IoT devices and the common security threats they frequently
encounter. In addition, they classified network-based and host-based
machine learning approaches, emphasizing the strengths and weak-
nesses of each to illuminate ways to improve IoT security. The study also
addressed challenges like adversarial ML and algorithm portability.

Compared to all the above-related works, our survey presents a novel
contribution to the field, uniquely encompassing all three dimensions of
IoT research: ML methods, adapted measures and functions, and IoT
challenges. Previous works such as those by Thakkar & Lohiya (2021)
[16], Ashraf et al. (2020) [14], Hussain et al. [15], Chaabouni et al. [10],
Al Garadi et al. [11], Tahsien et al. [12], Wu et al. [13], and Zeadally &
Tsikerdekis [26] included an examination of ML methods and IoT chal-
lenges, they did not incorporate a discussion on adapted measures and
functions. Similarly, studies by da Costa et al. [8], Ahmad & Alsmadi
[17], and Liang et al. [9] focused exclusively on IoT challenges. In
contrast, our survey uniquely combines all these components, providing
a comprehensive understanding of the complex IoT landscape, making it
a pioneering effort in the field. By integrating these aspects, our survey
adds a new depth to the existing literature, facilitating the exploration of
new research directions. In addition, this survey uniquely includes a re-
view of the most recent papers in the field, covering works published
from 2019 to 2023. This focus ensures that our analysis and conclusions
are drawn from the latest trends and developments in IoT. As such, our
work not only offers a broader perspective on the topic but also presents
an up-to-date overview of the cutting-edge research, making it a valuable
resource for anyone seeking to understand the current state of IoT
research, the application of ML methods in this domain, and the recent
trends in adapted measures and functions.

3. ML in IoT security: case studies

Machine learning (ML) models are revolutionizing the way we secure
IoT networks by providing real-time monitoring of network traffic to
detect anomalies indicative of security breaches. These models continu-
ously analyze data patterns from connected devices, identifying de-
viations from normal behavior that might signal a cyber threat. This
section overviews current trends applied to IoT security, showcasing
specific examples and case studies. These illustrate how ML methodolo-
gies are implemented in real-world scenarios.
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3.1. Anomaly detection systems

ML models are used for anomaly detection in IoT networks. They
monitor network traffic in real-time, identifying unusual patterns indic-
ative of security breaches and adapting to new threats using historical
data [5]. What sets ML apart is its ability to adapt and evolve; it uses
historical data to learn and recognize new and emerging threats, ensuring
that security measures evolve alongside the changing nature of cyber
attacks. This approach not only enhances the ability to identify potential
threats preemptively but also helps tailor the security protocols to the
unique characteristics of each IoT network, thereby offering a more
robust and responsive defense mechanism against a wide range of cyber
threats.
3.2. Predictive maintenance in industrial IoT

In modern industrial environments, applying ML algorithms for the
predictive maintenance of IoT devices has become increasingly signifi-
cant. This approach involves a proactive maintenance strategy that le-
verages the extensive sensor data collected by IoT devices to anticipate
and address potential equipment failures before they occur [27]. IoT
devices in industrial settings are equipped with various sensors that
continuously monitor and collect data regarding the performance and
condition of machinery. This data may include temperature, vibration,
pressure, and other operational parameters. ML algorithms analyze this
vast amount of data to identify patterns and anomalies that may indicate
potential failures or malfunctions.
3.3. Smart home security systems

In the rapidly evolving consumer space, ML has become a pivotal
technology in bolstering the security of smart home devices. This inte-
gration of ML into home security systems is transforming how security is
managed in residential spaces. One of the key applications of ML in this
domain is through advanced facial recognition technologies. Unlike
traditional security systems that rely on static passcodes or keys, ML-
enabled systems can dynamically recognize the faces of residents and
regular visitors, providing a more personalized and secure experience.
This technology continually adapts and learns, improving its accuracy
over time by analyzing the various faces it encounters [28]. Furthermore,
these smart security systems can learn and understand regular household
patterns and routines. By doing so, they can detect anomalies or unusual
activities. For example, if there's movement in the house when it's usually
empty or if a door is opened in an unusual manner or at an odd hour, the
system can alert the homeowner. This feature is particularly beneficial
for monitoring elderly family members or the house while away.
3.4. Automotive security

Connected vehicles represent a significant advancement in the auto-
motive industry, integrating communication technologies into vehicles.
These technologies enable cars to communicate with each other (V2V -
vehicle-to-vehicle), with infrastructure (V2I - vehicle-to-infrastructure),
and with other devices (V2X - vehicle-to-everything), enhancing over-
all transportation efficiency, safety, and convenience. Beyond security,
ML algorithms can predict potential vehicle faults before they occur [29].
By analyzing historical data, ML can identify patterns that typically
precede equipment failures, allowing for preemptive maintenance and
reducing the risk of malfunctions that cyber threats could exploit. While
ML significantly enhances automotive security, it also presents chal-
lenges. These include ensuring the privacy of collected data, guarding
against ML model manipulation, and the need for regular updates and
maintenance of the ML systems to keep up with evolving cyber threats.
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3.5. Healthcare IoT security

IoT devices, such as wearable health monitors, connected medical
equipment, and patient tracking systems, have become increasingly in-
tegral in the healthcare sector. These devices collect, transmit, and pro-
cess vast amounts of sensitive patient data, necessitating robust security
measures. ML algorithms can enhance the security of data transmission
between IoT devices and the central servers. This includes ensuring
encryption standards and identifying potential intercepts or data leak-
ages in real-time. In addition, ML can automate the process of responding
to security threats. For instance, an ML system could temporarily restrict
access or alert security personnel upon detecting suspicious activity,
reducing reliance on manual monitoring.

3.6. Supply chain monitoring

ML models in supply chain management monitor the integrity of
goods, especially in sensitive industries. They detect tampering or de-
viations in environmental conditions, enhancing supply chain security
and reliability [30]. Specifically, ML models can analyze data from
various sources, such as sensors and IoT devices attached to products or
packaging, to ensure that the goods remain in their intended state
throughout the supply chain. This could involve monitoring for signs of
tampering, damage, or unauthorized access to the products [31].

These case studies demonstrate the adaptability and effectiveness of
ML in enhancing IoT security across various sectors, providing innovative
solutions to complex security challenges (see Table 1).

4. Cyber threats’ detection methods

In this section, we delve into various strategies adopted by studies
within cyber detection. While some research employs mainstream
methodologies, many have leveraged specialized ML techniques. These
prevalent methodologies and distinct ML approaches are categorized
separately for comprehensive understanding. Fig. 2 visually represents
the methods discussed. In addition, Table II summarizes these methods,
the types of attacks they address, and the corresponding evaluations.

4.1. Deep learning

Otoum et al. [32] proposed a deep learning-oriented intrusion
detection framework designed to enhance IoT attack detection accuracy.
The traditional intrusion detection systems (IDS) presented in the liter-
ature tend to suffer from suboptimal feature selection and inadequate
dataset management. The framework proposed employs the Spider
Monkey Optimization algorithm (SMO) for optimal feature selection and
a Stacked-Deep Polynomial Network (SDPN) to detect data anomalies via
classification. Their DL-IDS model was assessed using the NSL KDD
dataset and demonstrated an impressive accuracy rate of 99.02 %.

Similarly, Ge et al. [33] suggested a DL oriented intrusion detection
system. This system utilized the Bot-IoT dataset for training and testing
and a Feed-Forward Neural Network (FNN) model for binary and
multi-class classification of various types of attacks, including recon-
naissance, information theft, DoS, and DDoS. The system's effectiveness
was evaluated on four parameters: recall, precision, accuracy, and the F1
score. The model achieved impressive results, exceeding 98 % across all
parameters for different attack detection.

4.2. Adversarial attacks

Papadopoulos et al. [34] conducted experiments on adversarial at-
tacks aimed at both traditional machine learning and deep learning IDS
models to assess their robustness. Two types of attacks were launched
against these models: label poisoning and the Fast Gradient Sign Method
(FGSM). The former attack induces incorrect classification, whereas the
latter evades detection measures. The aim was to determine if such



Fig. 2. Overview of State-of-the-art work in the cyber threat detection domain.

Table 1
Comparison with related surveys.

Year Authors ML methods IoT Challenges Generative AI

2019 da Costa et al. [8] x �C x
2019 Liang et al. [9] x �C x
2019 Chaabouni et al. [10] �C �C x
2020 Al-Garadi et al. [11] �C �C x
2020 Tahsien et al. [12] �C �C x
2020 Wu et al. [13] �C �C x
2020 Ashraf et al. [14] �C �C x
2020 Hussain et al. [15] �C �C x
2021 Thakkar & Lohiya [16] �C �C x
2021 Ahmad & Alsmadi [17] x �C x
2023 Ferrag et al. [3] �C �C x
2023 Aldhaheri et al. [18] x �C x
2023 Alex et al. [19] �C �C x
2023 Siwakoti et al. [20] �C �C x
2023 Mathur et al. [21] x �C x
2023 Issa et al. [22] x �C x
2023 Turner et al. [23] x �C x
2023 Ahmadvand et al. [24] x �C x
2023 Ahanger et al. [25] x �C x
/ This survey �C �C �C

x: Not Supported, �C: Fully supported.
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attacks would significantly impact model accuracy or precision. The ex-
periments confirmed that these attacks could considerably compromise
intrusion detection's effectiveness.

4.3. MQTT

Siddharthan et al. [35] proposed an IDS that utilizes Elite Machine
Learning (EML) algorithms and implemented the Message Queue
Telemetry Transport (MQTT) to uphold time constraints between de-
vices. They employed the SEN-MQTTSET dataset for their system, which
the authors themselves generated. Data were collected via a sensor under
three different DoS scenarios: normal case, attack on a subscriber, and
attack on a broker. The system evaluation involved multiple machine
learning algorithms such as Logistic Regression (LR), Random Forest
172
(RF), Naive Bayes (NB), K-Nearest Neighbor (k-NN), Decision Tree (DT),
Support Vector Machine (SVM), and Gradient Boosting (GB). Various
parameters, including accuracy and the F1 score, were considered during
the evaluation. The proposed model yielded promising results, particu-
larly with algorithms such as DT, RF, and GB, demonstrating an accuracy
exceeding 99 %.

Hindy et al. [36] proposed amachine learning-based IDS for detecting
Message Queue Telemetry Transport (MQTT) attacks. They generated a
unique IoT MQTT dataset for training and evaluation purposes, encom-
passing multiple attack types such as Sparta SSH brute-force, aggressive
scan, MQTT brute-force attack, and User Datagram Protocol (UDP) scan.
Several classification algorithms were employed, including NB, LR, RF,
k-NN, DT, and SVM. The research compared flow-based feature detection
with packet-based feature detection using multiple performance param-
eters (recall, precision, and the F1 score). The results suggested that
flow-based features were more suitable for MQTT-based networks than
packet-based ones due to the similarity between benign MQTT commu-
nication and attacks. This distinction was especially notable in benign
traffic and MQTT brute-force attacks.

4.4. Optimization techniques

Liu et al. [37] proposed an IoT intrusion detection model based on
Particle Swarm Optimization (PSO). They utilized the UNSW-NB15
dataset for training and testing and employed the One-Class SVM
(OCSVM) algorithm to recognize normal and abnormal data. The results
demonstrated that the PSO-LightGBM model exhibited a strong capacity
for effective detection of high-frequency data types such as Normal and
Generic, and it significantly improved the detection rate for Worms,
Shellcode, and Backdoors. Concerning accuracy and the rate of false
positives, the model also performed admirably. Its data detection, iden-
tification efficiency, robustness, and generalization demonstrated in
simulation experiments make it suitable for practical IoT applications.

Keserwani et al. [38] put forward an IDS based on machine learning,
named GWO-PSO-RF-NIDS, which uses a hybrid of Grey Wolf Optimi-
zation and Particle Swarm Optimization (GWO-PSO) for feature selec-
tion. The model was trained and tested using various datasets, including



Table 2
Deep learning approaches for cyber threat intelligence detection.

Reference Year Methods Attacks Accuracy Recall (or
detection rate)

F1 Precision

Otoum et al. [32] 2022 SMO
S-DPN

DoS, U2R, R2L, Probe 99.02 % 99.38 % N/A 99.38 %

Ge et al. [33] 2019 FNN DoS, DDoS, Reconnaissance,
Information theft

Binary classification:
(DoS/reconnaissance
attacks)
Above 99 %

Above 99 % Above 99 % Above 99 %

Papadopoulos
et al. [34]

2021 SVM
ANN

DoS, DDoS, Theft, Reconnaissance After Random: 0.441
targeted:
0.610

After Random:
0.613 targeted:
0.913

After Random:
0.612 targeted:
0.737

After Random:
0.610 targeted:
0.621

Siddharthan et al.
[35]

2022 LR, KNN, RF, NB
SVM, GB, DT

DoS DT ¼ Above 99 % DT ¼ 100 % DT ¼ 100 % DT ¼ 100 %

Hindy et al. [36] 2021 LR, Gaussian NB k-
NN, SVM, DT
RF

Brute-force attacks and Scanning
attacks

N/A Uni: 93.77 %
Bi:
98.85 %

Uni:
82.42 %
Bi: 98.46 %

Uni: 97.19 %
Bi: 99.04 %

Liu et al. [37] 2021 PSO-LightGBM
OCSVM

Backdoor, Shellcode, Generic, DoS,
Reconnaissance, Analysis, Fuzzers,
Worms, Exploits

86.68 % Backdoor ¼
51.28 %
Shellcode ¼
64.47 %
Worms ¼ 77.78
%

N/A N/A

Keserwani et al.
[38]

2021 GWO
PSO
RF

DDoS, DoS:slowloris,
DoS:Slowhttptest
DoS Hulk, DoS:GoldenEye,
Heartbleed,
PortScan, Bot, FTP-Patator, SSH-
Patator,
Web attack BruteForce, Web attack-
XSS,
Web attack-SQL injection,
Infiltration

CICIDS-2017 ¼ 99.88 %
NSL–KDD ¼ 99.24
KDDCup99 ¼ 99.66
Average ¼ 99.66 % (for
multiclass)

Binary
classification
CICIDS-2017 ¼
100 %

Binary
classification
CICIDS-2017 ¼
100 %

Binary
classification
CICIDS-2017 ¼
100 %

Shitharth et al.
[39]

2022 ADC, DBSCAN
PPGO, LNB

Different attacks for each dataset 89.56 %
In general.

93.89 %
In general.

NSL-KDD ¼
97.584 %
CICIDS2017 ¼
99.998 %
Bot-IoT ¼
99.993 %

N/A

Li et al. [40] 2022 FBPCM
AdaBoost

MITM, Reconnaissance,
DDoS, Exploit attack
Other datasets have different
attacks

82 % 80.3 % 79.7 % 79.2 %

Çakmakçı et al.
[41]

2020 Shannon entropy
KOAD
Mahalanobis
distance
Chi-square test

DDoS 99.55 % 95.24 % N/A 95.24 %

Bagaa et al. [42] 2020 J48, BN, RF
Hoeffding Tree
AdaBoost

DoS, U2R, R2L, Probe Between 98.7 % and 99.9
%

Between 98.7 %
and 98.9 %

N/A N/A

Anthi et al. [43] 2019 NB, BN, J48
ZeroR, OneR, SL
SVM, MLP, RF

Various reconnaissance, IoT-
scanner, various DoS, various
MITM, replay attack,
ARP/DNS spoofing, 4 multi-stage
scripts

N/A J48 ¼ 89.9 % J48 ¼ 88.8 % Binary
detection
J48 ¼ 90 %

Alqahtani et al.
[44]

2020 BN, NB, RF, DT
RT, DTb, ANN

DoS, U2R, R2L, Probe RF ¼ 94 % RF ¼ 93 % RF ¼ 97 % RF ¼ 99 %

Sarker et al. [45] 2020 IntruDTree (DT) Binary classification “anomaly” 98 % 98 % 98 % 98 %
Rahman et al.
[46]

2020 SAE, SVM, CFS
InfoGain, OneR
MLP, J48

Impersonation attack Semi ¼ 99.97 %
Distributed ¼ 97.80 %

Semi ¼ 99.96 %
Distributed ¼
98.26 %

Semi ¼ 99.97 %
Distributed ¼
97.81 %

N/A

Ferrag et al. [47] 2020 REP Tree, JRip
Forest PA

DoS, Brute-Force,
Web Attack (Several subcategories)

CICIDS2017:
96.665 %
Bot-IoT: 96.995 %

CICIDS2017:
94.475 %
Bot-IoT:
95.175 %

N/A N/A

Zhang et al. [48] 2021 MFFSEM, DT
RF

Dataset dependent CIC-IDS2017 ¼ 99.95 % CIC-IDS2017 ¼
99.95 %

N/A N/A

Alduailij et al.
[49]

2022 MI, RFFI, RF, GB
WVE, KNN, LR

DDoS 99.997 % LR ¼ 94 %
KNN �99 %
GB � 98 %
RF ¼ a
WVE ¼ 100 %

LR ¼ 94 %
KNN � 0.99 %
GB � 98 %
RF � 99 %
WVE ¼ 100 %

LR ¼ 95 %
KNN ¼ 0.99 %
GB � 98 %
RF � 99 %
WVE ¼ 100 %

Gu et al. [50] 2021 NB
SVM

Different attacks NSL-KDD ¼ 97.58 %
NB-SVM ¼ 99.35 %

NB-SVM ¼ 99.24
%

N/A N/A

(continued on next page)
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Table 2 (continued )

Reference Year Methods Attacks Accuracy Recall (or
detection rate)

F1 Precision

NB-SVM2 ¼ 99.36 % (best
result)

NB-SVM2 ¼
99.25 %

Hu et al. [51] 2021 MKKM-IC Dos, Probing, R2L, and U2R.
Fuzzers, Analysis, Backdoors,
Dos, Exploits, Generic,
Reconnaissance,
Shellcode, Worms, Flooding,
Impersonation, and Injection

AWID (best result)
95.60 %

N/A 89.11 % 88.24 %

Panigrahi et al.
[52]

2022 MOEFS
DTb
NB

Botnets, Port scan, DoS/DDoS
Brute force attacks
Web attacks (multiple)

96.8 % 96.70 % N/A 97.40 %
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NSL-KDD, KDDCup99, and CICIDS-2017. Multiple classifiers, including
Decision Tree, Logistic Regression, Random Forest, and Naïve Bayesian,
were employed for data classification in conjunction with the hybrid
GWO-PSO. A comparison of the results from these classifiers indicated
that the RF provided the highest average accuracy (99.66 %) across the
three datasets.

Shitharth et al. [39] introduced a novel clustering-based classification
method for network intrusion detection (NID) designed to overcome the
limitations of existing NIDs. They used three datasets for implementa-
tion: Bot-IoT, NSL-KDD, and CICIDS. The key idea behind the proposed
method is to include a clustering phase after data normalization to
enhance classification accuracy. The clustering methods used were
Anticipated Distance-based Clustering (ADC) and Density-Based Spatial
Clustering (DBScan), and the feature selection technique employed was a
novel approach known as Perpetual Pigeon Galvanized Optimization
(PPGO). The Likelihood Naïve Bayes (LNB) classifier was used, which
identified and integrated optimal parameters with the classifier to
enhance accuracy and efficiency. The results were particularly note-
worthy for the CICIDS 2017 dataset, where the proposed method ach-
ieved an accuracy of 99.99 %, surpassing other methods.
4.5. Online detection

Li et al. [40] proposed an online fuzzy Intrusion Detection System
(IDS) with enhanced adaptability, explicitly aiming to handle concept
drift, reduce noise impact, and prevent overfitting. In pursuit of these
objectives, the system employed Full Bayesian Possibilistic Clustering
(FBPCM) and multiple fuzzy decision trees consolidated under a sample
reweighting scheme. The systemwas trained and evaluated using various
datasets, including UNSW-NB15, KDD’99, CIC-IDS, and a novel dataset
developed by the authors. Model performance was assessed using pre-
cision, accuracy, F1 score, and recall. The researchers also compared the
performance of their model with that of different classification methods
on the mentioned datasets. The proposed system delivered commendable
results, with an accuracy of 82 %, highlighting the benefits of imple-
menting fuzzy systems within the IoT domain.

Çakmakçı et al. [41] introduced a novel adaptive IDS technique to
tackle online Distributed Denial of Service (DDoS) attacks. Their
approach integrates multiple methods, such as the Mahalanobis distance
metric, kernel-based anomaly detection, and the chi-square test, elimi-
nating data labeling. The proposed system was trained and evaluated
using the CICIDS2017 dataset, with model performance assessed through
various metrics, including precision, accuracy, and recall. The system
demonstrated promising results, boasting an accuracy of 99.55%, a recall
of 95.24 %, and a precision of 95.24 %.
4.6. General machine learning-based approaches

Bagaa et al. [42] proposed an innovative ML based security frame-
work for IoT systems. The core concept of their proposal involved inte-
grating Network Functions Virtualization (NFV) and Software Defined
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Networking (SDN) with ML to achieve optimal security through a
closed-loop automation process. This process comprises a monitoring
agent and an AI-reacting agent. Utilizing network patterns or IoT mis-
behaviors, the monitoring agent scrutinizes traffic and reports suspicious
activities to the AI-reacting agent. The AI agent then reacts by classifying
threats using the NSL KDD dataset and three distinct techniques:
distributed data mining system, supervised learning, and neural net-
works. The framework demonstrated impressive results, particularly
with the data mining technique, due to its high performance and low
costs. The framework was further incorporated into an anomaly-based
Intrusion Detection System (IDS), which utilized a One-Class Support
Vector Machine (SVM) and achieved a detection accuracy exceeding 98.

Anthi et al. [43] proposed a supervised 3-layer IDS employing ML.
The system possesses three functionalities: profiling the IoT device, bi-
nary classification (i.e., normal vs. malicious), and multi-classification
(i.e., specifying the type of attack). Empirical validation and a dataset
were compiled for training and testing. Multiple classifiers were
employed to evaluate the model, with J48 delivering the best perfor-
mance results across all three functionalities, scoring 96.2 %, 90.0 %, and
98.0 % respectively. The paper also furnished valuable resources to
facilitate IDS automation.

Alqahtani et al. [44] proposed an IDS leveraging a variety of promi-
nent machine learning classifiers, including Random Tree, Bayesian
Network, Artificial Neural Network, Decision Tree, Decision Table,
Random Decision Forest, and Naive Bayes classifier. The KDD’99 dataset
was used for training and testing. Various performance indicators, such
as recall, precision, F1-score, and overall accuracy, were assessed to
evaluate the model's performance. The random forest algorithm achieved
the most impressive results, which achieved 94 % accuracy, 99 % pre-
cision, 93 % recall, and a 97 % F1 score.

Sarker et al. [45] proposed a machine learning-based IDS, “IntruD-
Tree” which prioritizes security features based on their importance and
subsequently constructs a generalized tree-based model using these
selected vital features. A unique dataset was employed for training and
testing. The model provided anomaly-based binary classification.
Regarding performance evaluation metrics, accuracy, recall, F1, and
precision were all evaluated, with the model scoring 98 % across each
parameter.

Rahman et al. [46] introduced parallel ML-based IDS models using
two techniques - distributed and semi-distributed - to mitigate latency
issues found in centralized IDS models. The semi-distributed approach
conducts feature selection at the edge side, where the parallel models
operate, while the multi-layer perceptron classification occurs in the fog.
Conversely, the distributed method enables both the feature selection
and the multi-layer perceptron classification to be carried out by parallel
models on the edge side, reserving the final decision-making process for
the fog. Training and testing were performed on the AWID dataset, uti-
lizing various algorithms like SVM, SAE, OneR, CFS, Information Gain,
J48, and MLP for feature extraction, selection, and classification. Per-
formance evaluation parameters encompassed recall, accuracy, F1 score,
and others. The study compared the scores achieved by various
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approaches, finding the two proposed models to yield promising results:
the semi-distributed model delivered 99.97 % accuracy, and the
distributed model required 73.52 % CPU time to build the model
(TTBM).

Ferrag et al. [47] proposed a hierarchical IDS model (RDTIDS) that
amalgamates three classification algorithms - JRip, REP Tree, and Forest
PA - to minimize classification errors and enhance IDS performance. In
the proposed system, two classifiers process raw data in parallel, one
providing binary classification and the other offering multi-classification.
Furthermore, the third classifier processes the raw data alongside the
output from the first two classifiers to provide multi-classification. The
model was trained and tested on two datasets, namely CICIDS2017 and
Bot-IoT, and could classify various attacks grouped into three main cat-
egories: DoS, Brute-Force, and Web Attack. The results demonstrated an
accuracy exceeding 96 % and a detection rate above 94 % for both
datasets.

Zhang et al. [48] suggested a multi-dimensional feature fusion
stacking ensemble mechanism (MFFSEM) for network intrusion detec-
tion (NID), observing that existing ML methods do not sufficiently
consider the influence of different data types or sources and how they
might interact or complement each other. The proposed method seeks to
advance NID by effectively detecting anomalies. Several datasets were
used for training and testing, including CIC-IDS2017, NSL-KDD, KDD Cup
99, and UNSW-NB15. The MFFSEM method combines two classification
algorithms: Decision Tree, employed as a primary learning algorithm,
and Random Forest, used as a meta-learning algorithm. When compared
to the results of the primary and meta classifiers (DT and RF), it was
found that MFFSEM offered superior detection. Notably, the proposed
scheme outperformed other contemporary schemes regarding accuracy
and recall, particularly with the CIC-IDS2017 dataset (achieving 99.95 %
accuracy and recall).

Alduailij et al. [49] introduced a machine learning technique for
detecting DDoS attacks in cloud computing, intending to reduce
misclassification errors in DDoS detection. They used two versions of the
CICIDS dataset (CICIDS 2017 and 2019) for training and testing. Feature
selection was accomplished using the Random Forest Feature Importance
(RFFI) and Mutual Information (MI) methods. Classification was con-
ducted using various classifiers, including the Weighted Voting Ensemble
(WVE), Gradient Boosting (GB), K Nearest Neighbor (K-NN), Random
Forest (RF), and Logistic Regression (LR). The proposedmethod achieved
high accuracy (99.997 %) compared to other techniques.

Gu et al. [50] proposed an IDS incorporating data quality consider-
ations by utilizing an SVM coupled with naïve Bayes feature embedding
to enhance the system's performance. The researchers developed two
versions of the proposed system: The first version, NB-SVM, uses only the
transformed feature (i.e., the output data of naïve Bayes feature
embedding) with SVM classification, while the second version,
NB-SVM2, employs both the transformed and original features. Several
datasets were used to train and test the system, including NSL-KDD,
CICIDS2017, UNSW-NB15, and Kyoto 2006þ. The proposed system
exhibited excellent performance, achieving over 99 % accuracy and
recall in both versions.

Hu et al. [51] introduced a novel technique for IDSs using Multiple
Kernel Clustering (MKC). The technique addresses two common chal-
lenges in the field: data diversity and incompleteness. To manage these
issues, the proposed technique suggests estimating missing attribute
values by assessing the similarity of sampled data and generating a kernel
matrix from incomplete data, thereby enhancing detection accuracy.
Several datasets, including UNSW-NB15, NSL-KDD, and AWID, were
used in the study. Compared to other clustering techniques such as
Density Peaks, K-means, and Gaussian Mixture Models (GMMs), the
proposedmodel achieved high scores, with a 95.60% accuracy rate when
using the AWID dataset.

Panigrahi et al. [52] proposed a signature-based IDS that utilizes
Multi-Objective Evolutionary Feature Selection (MOEFS) for feature se-
lection and hybrid classification techniques, specifically a decision table
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and naïve Bayes. The system was trained and tested using the
CICIDS2017 dataset, enabling it to detect various attacks, such as bot-
nets, port scanning, DoS/DDoS attacks, multiple brute force attacks, and
several web attacks. The system's performance was evaluated using
various metrics, including recall, accuracy, and precision, and it yielded
impressive results: 96.80 %, 96.70 %, and 97.40 %, respectively.

5. Classification of machine learning methods

Machine learning can be bifurcated into several categories delineated
by unique characteristics. These categories include supervised learning,
semi-supervised learning, unsupervised learning, self-supervised
learning (a subset of unsupervised learning), reinforcement learning,
and ensemble learning. Each category harnesses distinct methods and
techniques, many of which can significantly bolster cybersecurity mea-
sures. This paper will explore these machine learning types and their
respective techniques, as referenced in various technical publications. A
summary of the methods is presented in Table III.
5.1. Supervised learning

Supervised learning involves training a model using labeled data to
make accurate predictions or decisions when presented with new, unla-
belled data. Fig. 3 illustrates an overview of the Supervised Learning
methods. The objective of supervised learning models is to classify new
data into their correct labels, which can be achieved using a variety of
algorithms and techniques. Here are some of the methods employed in
supervised learning.

5.1.1. K-NN
The K-Nearest Neighbor (K-NN) is a non-parametric supervised

learning algorithm predominantly used for classification but can also be
applied for regression. It avoids making assumptions about the under-
lying distribution. Instead, it identifies the ’k’ closest training examples
in the feature space to the new observation and predicts the target var-
iable based on the majority label or mean, depending on the task—-
classification or regression. Several technical papers have utilized the K-
NN algorithm, including [38,39], and [46]. In Refs. [38,39], K-NN was
used for classification to train and test the proposed IDS models
(SENMQTT-SET, MQTT-IoT-IDS2020) on their specific datasets,
achieving high performance (99.89 %, 99.9 % accuracy, respectively). In
Ref. [46], K-NN was employed in the proposed IDS model for classifi-
cation using CICIDS 2017–2019 datasets and performed commendably,
with an accuracy exceeding 99 %.

5.1.2. ANN
The Artificial Neural Network (ANN) is a machine learning algorithm

modeled after the structure and functionality of the human brain. The
ANN, a deep learning model, consists of interconnected nodes (or arti-
ficial neurons) that process input data to produce output signals. ANN
can be employed in supervised and unsupervised learning tasks,
including classification, clustering, dimensionality reduction, and
anomaly detection. In Ref. [36], adversarial methods were deployed
using FGSM against binary and multi-class ANNs trained on the Bot-IoT
dataset. The results significantly impacted both ANN models regarding
detection accuracy and precision. ANN was also utilized for attack clas-
sification in Ref. [37] using the KDD’99 dataset, achieving commendable
accuracy (91 %), albeit surpassed by other algorithms (such as RF with
94 %).

● FNN A Feed-Forward Neural Network (FNN) is a type of ANN where
the information flows in one direction, from the input to the output
layer, without loops or feedback. FNNs can be used for supervised
learning tasks such as classification and regression but also unsu-
pervised learning tasks. The IDS in Ref. [34] used an FNN for binary



Table 3
Machine learning methods summary.

Method ML type ML tasks “security” Advantages Disadvantages

Decision Tree Supervised learning Cyber attacks' classification and
regression tasks

� Intuitive knowledge expression
�High classification accuracy
�Simple implementation

�Information gain bias towards
high-level categorical features

RF Supervised learning Classification and regression �Resistance to overfitting
�Feature selection isn't required
�Low number of control and model
parameters
�Variance reduction

�Low model interpretability
�Performance loss

RFFI Supervised learning Feature selection �Identifying biases
�Interpretability

�Model-specific

KNN Supervised learning Classification primarily (can be used
for regression)

�Simple
�Non-parametric algorithm

�Sensitive to neighbourhood order
�Feature reduction is often
required
�Bias towards dominant classes in
skewed class distributions

NB Supervised learning Classification (can be used for
regression)

�It is an online algorithm
�Linear time training
�Optimal for conditionally independent
features
�Simple to implement
�Arbitrary number of independent
features
�Fast and efficient

�Doesn't perform well on attribute-
related data

SVM Supervised learning Classification and Regression �Good accuracy
�Effective in high-dimensional spaces
�Global optimum (looks for results that
produce higher margin between classes)

�Computationally expensive if the
data dimensionality is large

OCSVM Unsupervised learning (can be semi-
supervised)

Anomaly and outliers' detection �Doesn't require labeled data.
�Can handle non-linear data.

�Assumes a single, compact
“normal” class

GB Supervised learning Classification and regression
(Classification for anomaly-based
and signature-based)

�Non-parametric
�Can handle missing values.
�Measures features importance

�Limited Interpretability
�Sensitive to outliers

LightGBM Supervised learning Classification and regression �Parallel and GPU support
�Categorical feature support

�No support for online learning

J48 Supervised learning Classification �Can handle missing values.
�Can handle categorical and continuous
data

�Sensitive to noise.
�Can cause overfitting

CFS Supervised feature selection
technique

Feature selection �Improve accuracy and interpretability.
�Reduce overfitting.

�Scope is limited.
�Sensitive to data prepossessing

SAE Unsupervised learning technique Feature extraction �Good for complex and high dimensional
data
�Dimensionality reduction

�Prone to overfitting
�Computationally expensive
�Black box model

JRip Supervised learning Classification algorithm to minimize
the classification error.

�Scalability
�Accuracy

�Sensitive to noise

REP Tree Supervised learning Classification and regression �Reduced error pruning “good accuracy”
�Interpretability
�Efficient for large datasets

�Sensitive to data distribution
�Prone to bias and overfitting

MLP Supervised learning Attacks and prediction classification,
regression, and pattern recognition

�Ability to model non-linear
relationships.
�Robust and scalable

�Requires hyperparameters tuning

InfoGain Supervised learning Feature selection �Unbiased
�Efficient for high-dimensional datasets

�Can't handle datasets with missing
values.

OneR Supervised learning Classification �Simple
�Interpretability.
�Baseline model.

�Prone to overfitting
�Limited scalability and feature
selection

LR Supervised learning Classification �Easy to construct.
�Efficient in training

�Can't deal with non-linear data

Gaussian
Function

Mathematical function to model
continuous data.

Classification �Can handle missing data
�Performs well with high-dimensional
data

�Vulnerable to irrelevant features
�Limited expressiveness

Bayesian
Network

Supervised and Unsupervised
learning

Classification and clustering �Can handle noisy and missing data.
�Can measure the uncertainty in the
prediction

�Computationally expensive

SMO Optimization algorithm (aids in
enhancing supervised learning
algorithms performance)

Feature selection Clustering
Hyperparameter optimization

�Requires few numbers of control
parameters (feasible for solving complex
optimization problems).
�Global search capability

�Sensitivity to initial conditions
�Lack of theoretical guarantees

S-DPN Supervised learning Classification �Robust to Adversarial Attacks
�Regularization (improve generalization
performance and reduce overfitting)
�Accuracy

�Complexity
�Lack of Interpretability.

Hoeffding Tree Supervised learning Classification and regression
(Anomaly Detection þ attacks
attribution)

�Incremental learning (model can be
updated instead of retraining from
scratch.”

�Sensitive to hyperparameters
�Limited expressiveness.

(continued on next page)
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Table 3 (continued )

Method ML type ML tasks “security” Advantages Disadvantages

�Online learning
�Interpretability

ANN Supervised and Unsupervised
learning

Classification, clustering,
dimensionality reduction, and
anomaly detection

�It can model non-linear relations such as
EX-OR logic.
�Can handle noisy data efficiently.

�Long runtimes during learning

FNN Supervised learning Classification and regression �Parallel processing
�Nonlinear Mapping
�Universal approximation

�Requires careful selection of the
architecture.
�Black box model
�Overfitting
�Training Data Dependencies

k-means Unsupervised learning Clustering �Adapts well to linear data.
�Strong interpretability and fast
convergence speed

�Sensitive to the initialization
condition and the parameter K.
�Isn't ideal for nonconvex data

Multi-kernel k-
means

Unsupervised learning Clustering �Flexibility
�Can handle non-linear data
�Better clustering performance

�Limited interpretability
�Higher computational complexity

PSO Optimization algorithm Feature selection, Clustering,
Regression

�Robustness
�Adaptability
�Strong distributed ability
�Quick convergence
�Can be combined with other algorithms

�The convergence and convergence
rate are not proven mathematically
yet

GWO Optimization algorithm Feature selection, Clustering,
Regression

�Versatility and simplicity
�Fast convergence
�Robustness

�Premature convergence
�Limited scalability

AdaBoost Supervised learning Classification �Versatility
�Robustness to noise
�High accuracy

�Sensitivity to hyperparameters
and outliers
�Risk of overfitting

MI Supervised learning Feature selection �Captures nonlinear relationships
�Robust to feature scaling

�Sensitive to estimation methods.

KOAD Unsupervised learning Anomalies and outliers' detection �Can handle high-dimensional and non-
linear data.
�Online learning

�Sensitivity to kernel choice

Shannon
Entropy

Measure of randomness or
“surprise”

Feature selection and Anomaly
detection

�Impurity Measure
�Clustering Evaluation

�Limitations in Non-Discrete Data
�Sensitivity to Data Distribution

Mahalanobis
distance

Measure of distance between a point
and a distribution

Classification, Clustering,
dimensionality reduction, feature
selection

�Scale Invariance
�Robustness to Multicollinearity

�Sensitivity to Covariance
Estimation
�Limited Applicability for Non-
Linear Relationships

Chi-square test Statistical test Feature selection, Dimensionality
reduction, Test of independence

�Non-parametric
�Identifying associations
�Simplicity

�Inability to identify causation
�Sensitive to data distribution

ADC Unsupervised learning Clustering �Distance metric flexibility
�Robustness
�Can handle clusters of arbitrary shapes

�Computational complexity
�Sensitivity to parameters

DBSCAN Unsupervised learning Clustering �Handles noise and outliers
�Density-based clustering
�Minimal parameter tuning

�Sensitivity to parameters
�Handling varying densities
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and multiclass classifications on the BoT-IoT dataset, achieving high
accuracy (99 % for multiclass classification).
– MLP A Multilayer Perceptron (MLP) is a type of FNN that contains
multiple layers of nodes. These nodes process input signals to
generate output signals. Typically implemented for supervised
learning tasks, an MLP can also be adapted for unsupervised
learning tasks. More generally, MLPs can be used for classification,
regression, and pattern recognition tasks, including cyber security
applications such as attack classification and prediction. In their
IDS [42], used an MLP as a binary classifier for the final stage after
feature selection from the AWID dataset using other classifiers in
semi-distributed and distributed approaches. Both approaches
achieved impressive results (99.97 % and 97.80 %, respectively).

– SAE Despite being a type of FNN, a Stacked Autoencoder (SAE) is
an unsupervised learning technique composed of numerous layers
of autoencoders. These autoencoders are forms of neural networks
trained to recreate their input. To create a hierarchical represen-
tation of the input data, the output of the encoder in one layer is
utilized as input to the following layer. This hierarchical form can
be used for classification, regression, or clustering applications.
Furthermore, SAE can also be used for feature extraction and
dimensionality reduction or as a pre-training step for supervised
learning algorithms to improve their performance. In Ref. [42], an
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SAE was implemented for the feature extraction task for both
distributed and semi-distributed models proposed by the authors.
The models were designed for impersonation attack detection and
were trained on the AWIS dataset. In the proposed models, the
feature extraction phase followed data pre-processing and preceded
feature selection and classification, with the models achieving
promising results.

5.1.3. SVM
A Support Vector Machine (SVM) is a supervised learning algorithm

for classification and regression tasks. An SVM classifier separates data
points into two or more classes by constructing a hyperplane in high-
dimensional space. While primarily performing binary classification,
SVM can also handle multiclass classification by training each class
against all other classes (i.e., one-vs-all) or constructing a binary classifier
for each pair of classes (i.e., one-vs-one).

In [36], adversarial attacks (specifically, label noise attacks) were
launched against an SVM IDS model trained on the Bot-IoT dataset. The
experimental results suggested that manipulating labels with a high
margin significantly impacts SVM's classification performance.
Conversely [38], utilized SVM to train an IDS model for attack classifi-
cation using their proprietary dataset, where the SVM model demon-
strated high accuracy (99.73 %).



Fig. 3. Supervised Learning methods used by surveyed work to detect Cyber intrusion. *Also considered an unsupervised method. **Also considered an
ensemble method.
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The SVM classifier was also employed in Ref. [39], utilizing RBF and
linear kernels, and it achieved strong results (96.61 %, 98.5 % accuracy)
for bidirectional features. Similarly [42], used the SVM method for
feature selection and employed the AWID dataset to detect impersona-
tion attacks. The results indicated that SVM delivered strong perfor-
mance in distributed and semi-distributed IDSs.

Finally, in Ref. [49], SVM was implemented to classify transformed
data (i.e., the output of naive Bayes feature embedding) in what can be
considered an ensemble learning model. The “NB-SVM” model achieved
high accuracy (exceeding 93 %).

5.1.4. Correlation-based feature subset selection (CFS)
Correlation-based feature subset selection (CFS) is a feature selection

method used as a preprocessing step to enhance the performance of su-
pervised learning algorithms. CFS capitalizes on the correlation between
features and the target variable to pinpoint relevant features. Bagaa et al.
(2020) [42] applied CFS in their distributed and semi-distributed models
for feature selection, resulting in satisfactory outcomes.

5.1.5. Stacked deep polynomial network (S-DPN)
The Stacked Deep Polynomial Network (S-DPN) is an advanced deep

neural network architecture that utilizes polynomial activation functions
rather than conventional ones. It is engineered to address common issues
associated with deep neural networks, such as vanishing gradients and
the complexity of high-dimensional features. S-DPN operates using su-
pervised learning and can be implemented for classification tasks. Ge
et al. (2019) [33] utilized S-DPN for binary attack classification in the
Intrusion Detection System (IDS), following the extraction of the most
pertinent features using Spider Monkey Optimization (SMO) from the
NSL-KDD dataset. The S-DPN model achieved an impressive accuracy of
99.02 %.

5.1.6. Bayesian Network (BN)
A Bayesian Network (BN) is a probabilistic graphical model that il-

lustrates a system's potential relationships between variables. Here, the
nodes signify variables, and the directed edges between them depict the
probabilistic dependencies between these variables. BN can be employed
for supervised and unsupervised learning tasks such as classification and
clustering. Otoum et al. (2022) [32] used BN for attack classification in
their proposed model embedded within an AI-based reaction agent. In
contrast, Liu et al. (2021) [37] utilized BN in their proposed IDS for
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attack classification using the KDD’99 Cup dataset, achieving an accuracy
of 90 %. Meanwhile, Zhang et al. (2021) [48] employed Full Bayesian
Possibilistic Clustering in their IDS for pattern recognition in IoT traffic.
Subsequently, they combined fuzzy decision trees with a sample
reweighting scheme to boost accuracy. When tested on their dataset and
compared with other models, the results indicated that their model
outperformed others, achieving the highest scores.

● Naïve Bayes Naïve Bayes (NB) is a type of Bayesian Network that
depends on Bayes' theorem, which allows it to calculate the proba-
bility of a hypothesis given some observed evidence. Although a
Bayesian Network can be implemented for supervised and unsuper-
vised learning, Naïve Bayes (NB) is a supervised learning algorithm
because it requires labeled training data. NB is mainly used for clas-
sification, but it can also be used for regression. In Ref. [35], NB was
used for a classification task to classify data from three aspects: device
profiling, attack detection, and attack type. The paper used their
dataset, and the NB model achieved good results in the attack
detection and attack type (above 90 recall score for both) but not very
well in device profiling (above 50 recall) [37]. used NB to train their
IDS on the KDD’99 cup dataset for attack classification and the NB
model achieved 91 % accuracy [38]. also trained their IDS using their
dataset on multiple machine learning methods, including the NB
classifier. The results were good but not the best compared to other
classifiers (97.8 % accuracy). In Ref. [39], the authors implemented
NB in their model for attack classification, and they used their dataset.
NB classifier achieved good accuracy (97.55 %) for bidirectional
feature classification. For attacks classification [47], didn't use the
standard NB in their proposed IDS; instead, they used Likelihood
Naïve Bayes (LNB), which is a variant of naïve Bayes that can deal
with continuous features by estimating probabilities using Gaussian
distribution. In their model, they processed the data in three different
stages: clustering, feature selection, and attack detection. LNB was
used in the last stage for binary classification. They compared the
results of the proposed system that implements LNBwith the standard
NB classifier, and LNB achieved better accuracy (76.74 % vs. above
80 %) [49]. used NB feature embedding. This technique transforms
data from the original feature space to a new one using Naive Bayes
probabilities to enhance the features' quality before training the
model using the SVM classifier. The model achieved good accuracy
(above 93 %). The proposed IDS in Ref. [52] implemented NB with a
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decision table (DT) as a hybrid technique for attack classification. The
CIDS2017 dataset was used for training, and the model achieved
96.80 % accuracy.

5.1.7. LR
Logistic Regression algorithm (LR) is a supervised learning algorithm

for binary classification tasks. We can consider LR as a generalized linear
model that uses a logistic function to model the probability of the binary
outcome [38]. implemented LR for attack classification in their proposed
IDS, and the classifier achieved 90.36 % accuracy [39]. also used the LR
classifier in their model, and it achieved 99.44 % accuracy for bidirec-
tional feature classification [46]. deployed the LR classifier on selected
features for DDoS detection, achieving good accuracy (approximately 94
%).

5.1.8. Decision trees
Decision trees (DT) are supervised machine learning algorithms in

classification and regression. DT recursively splits the data into smaller
subsets based on the features or attributes of the data until a prediction or
decision can be made [37]. implemented the DT algorithm in their IDS
for attack classification. The IDS used the KDD’99 cup dataset and the DT
model achieved 92 % recall which is higher than most other classifiers
used in the experiment. Several types of DT are used for cyber security
tasks in the research papers, some of which will be mentioned here.

● Hoeffding Tree

Named after the mathematician Wassily Hoeffding, the Hoeffding
Tree is one of the DT types that is built incrementally and can handle
large datasets and adapt to new arriving data by using a statistical test to
determine when a split should be made in the tree instead of examining
all the data at once. Hoeffding Tree can be implemented in cyber security
for classification and regression tasks such as attack attribution and
anomaly detection [32]. deployed the Hoeffding Tree algorithm in their
IDS for attack classification, and the model showed stable performance
but achieved very low precision for Root (U2R) attacks (11.5 %).

● J48

J48 is a widely used decision tree algorithm that implements the C4.5
tree algorithm. Each node in the tree represents a decision based on one
or more features. The best features to split are selected using a heuristic
approach based on criteria like information gain. The J48 algorithm is
used mainly for classification as a supervised learning algorithm. In
Ref. [32] J48 and other classifiers were deployed for intrusion detection,
and the model was trained on the NSLKDD dataset. The results of J48
were great (above 90 % precision) except for the user-to-root attacks
(U2R) as the classifier didn't score good precision (70 %) in this attack
[35]. also used J48 for device profiling, binary, and multiclass attacks
classification, and the algorithm was the best among the others with very
high results (above 97 % P,R,F) [42]. implemented J48 in their
semi-distributed IDS for feature selection on the AWID dataset, and the
classifier scored 99.87 % recall for impersonation attacks.

● REP Tree

Reduced Error Pruning Tree (REP Tree) is a supervised learning al-
gorithm for classification and regression. This algorithm is similar to the
C4.5 algorithm but with some modifications to the pruning step as it
simplifies the process and improves the generalization ability [43].
deployed REP Tree in their hybrid IDS for binary attack classification and
combined it with other classifiers. They trained their model on the
CICIDS2017 dataset and BoT-IoT dataset and the hybrid model achieved
better results than the results achieved using the regular REP Tree al-
gorithm (both over 90 % recall).
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● RF

Random Forest (RF) is a supervised learning algorithm for classifi-
cation and regression tasks. RF is an extension of decision tree algo-
rithms, and it also can be considered ensemble learning because it
combines multiple decision trees and aggregates their predictions,
resulting in a final prediction [37]. implemented RF in their IDS for
attack classification and the classifier achieved the best results among all
other used classifiers on the KDD’99 cup dataset (94 % accuracy) [38].
deployed RF in their proposed IDS for attack classification. The model
was trained on their dataset, and the RF classifier achieved 100 % ac-
curacy [39]. also implemented RF in their IDS, and the classifier achieved
99.97 % accuracy for bidirectional feature classification [44]. imple-
mented RF as a meta-learning algorithm in their IDS, proposing a novel
hybrid technique that combines RF and decision tree algorithms. The
authors trained the model and tested it using different datasets like
UNSW-NB15, NSL-KDD, and others, and the model achieved good results
[45]. deployed RF in their IDS for attack classification after doing feature
optimization using two algorithms (i.e., GWO, PSO) to different datasets
such as CICIDS-2017 and NSL–KDD. Other classifiers were used for
comparison, but RF provided the best accuracy (average of 99.66 %) for
all used datasets. Moreover [46], used RF in their IDS model for classi-
fication to detect DDoS attacks and the RF classifier achieved high ac-
curacy (above 98 %).

– RFFI Random Forest Feature Importance (RFFI) is a method used for
determining feature importance in a dataset when building an RF
model. The method depends onmeasuring the decrease in the model's
performance when a specific feature is removed or its values are
randomized such that the significant drop in the model's performance
when changing certain features indicates its high importance and vice
versa [46]. used RFFI in their IDS model for feature selection (i.e.,
Random Forest Feature Importance (RFFI)) with an RF classifier, and
the model achieved good accuracy (above 98 %).

5.1.9. OneR
One Rule (OneR) is a simple supervised learning method for classi-

fication tasks. OneR provides the most straightforward and precise
approach for producing a single rule matching to a single predictor of the
data and then selects the most reliable rule as “one rule.” In Ref. [42]
OneR was implemented in the proposed distributed and semi-distributed
IDS for feature selection from the AWID dataset. The classifier scored
good accuracy (above 99 %).

5.1.10. JRip
JRip is a classification algorithm used for supervised learning tasks. It

is based on the Repeated Incremental Pruning to Produce Error Reduc-
tion (RIPPER) algorithm. And it minimizes the classification error by
repeatedly pruning the decision rules learned by RIPPER. In Ref. [43],
JRip was deployed in their hybrid IDS as a second classifier for multiclass
attack classification, and the model achieved good recall (above 90 %).

5.2. Unsupervised learning

In unsupervised learning, the model is provided with unlabelled data
and depends on finding patterns or relationships between data. Fig. 4
illustrates an overview of the Unsupervised Learning methods. Two main
categories fall under unsupervised learning, namely clustering and
dimensionality reduction. In clustering similar instances are grouped
based on their features, while the dimensionality reduction goal is to
reduce the number of features in the data while retraining as much data
as possible.

5.2.1. Clustering
Clustering is the most common unsupervised learning technique in

which mathematical, probabilistic, or statistical methods are used to



Fig. 4. Unsupervised Learning methods used by surveyed work to detect
Cyber intrusion.
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group data. It includes different types such as K-means clustering, Multi-
kernel k-means, and Density-based clustering. Such techniques are usu-
ally implemented for anomaly detection tasks in IoT environments.
Sometimes, they are also used as a preliminary step before classification
to enhance the overall performance [9].

● K-means

The k-means clustering algorithm is an unsupervised learning method
used to partition a set of data points into K clusters, where K is a pre-
defined number of clusters. Initially, K data points are selected randomly
as clusters’ centroids. Then, Euclidean distance is calculated between the
data points and centroids to assign the nearest centroid to each data
point. This leads to frequent change in the centroids and the algorithm
stops when there is no more change or if there is a predefined maximum
number of iterations. Although unsupervised, this method still needs
human involvement for output interpretation. Also, such methods could
detect zero-day attacks by putting unknown patterns in separate clusters
[26].

● Multi-kernel K-means

Multi-kernel k-means can be considered an extension of the k-means
clustering algorithm with some differences such as the ability to handle
non-linearly separable data and complex data distribution by facilitating
multiple kernel functions [51]. implemented multi-kernel K-means
clustering in their IDS to solve the data diversity and incompleteness
issues. The authors tested their model on different datasets such as AWID
and UNSW_NB15 and the model achieved better accuracy than the
normal K-mean model (93.80 % vs. 84.20 %).

● ADC

Anticipated Distance-based Clustering (ADC) is a clustering algorithm
that groups similar data points based on their similarity (measured by
anticipated distance). ADC falls under unsupervised learning techniques
such as other clustering algorithms [47]. deployed ADC and another
clustering algorithm (i.e., DBSCAN) in their IDS.

● DBSCAN
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Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is an unsupervised clustering algorithm that groups data
points based on their density. DBSCAN is beneficial for finding clusters of
arbitrary shapes and identifying noise in datasets. In Ref. [47], DBSCAN
and ADC were implemented for clustering as a predecessor phase to
feature selection and classification to enhance the classification's accu-
racy. The proposed model achieved good accuracy (99.99 %).

● OCSVM

One-class SVM (OCSVM) is an extension of the SVM algorithm.
However, it is an unsupervised (or semi-supervised) learningmethod that
is used for detecting anomalies or outliers in datasets. The primary
objective of OCSVM is to identify the smallest hyperplane or hypersphere
that encloses most of the data points, effectively separating normal data
from possible anomalies. This is accomplished by training the model
using only normal or non-outlier instances without needing labeled
anomaly examples. Once trained, the OCSVM can identify new instances
that fall outside the learned decision boundary as potential anomalies
[40]. integrated OCSVM (for anomaly detection) with other machine
learning techniques like PSO and LightGBM in their proposed IDS. The
proposed model scored good accuracy on the UNSW-NB15 dataset
(86.68 %).

● KOAD

Kernel-based Online Anomaly Detection (KOAD) is an unsupervised
learning algorithm that depends on kernel functions to map the input
data and its underlying structure to high-dimensional space, allowing the
capture of complex patterns and relationships. The main task of the al-
gorithm is detecting anomalies, and its ability to adapt to changes and
update its internal representation continuously makes it suitable for real-
time applications [51]. used an enhanced version of the KOAD algorithm
(E-KOAD) in their proposed IDS merged with other methods in a novel
algorithm to detect DDoS attacks. In the proposed algorithm, E-KOAD
was used specifically to identify the suspicious points. The model was
trained using the CICIDS2017 dataset, achieving a good accuracy of
99.55 %
5.3. Ensemble learning

Ensemble learning is a technique for machine learning that integrates
the predictions of different models to increase the final prediction's ac-
curacy and resilience. Fig. 5 illustrates an overview of the Ensemble
Learning methods. By utilizing several models' variety and complemen-
tary qualities, ensemble learning aims to attain superior performance
than any single model. Examples of ensemble learning techniques are RF
(mentioned above) and Gradient Boosting.
Fig. 5. Ensemble Learning methods used by surveyed work to detect
Cyber intrusion.
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5.3.1. GB
Gradient Boosting (GB) is an ensemble learning technique that com-

bines multiple weak models to create a robust ensemble mode. The
objective of gradient boosting is to reduce the overall error of the
ensemble model by training each weakmodel on themistakes of the prior
model. GB can be considered a supervised learning technique because it
requires labeled training data to learn and make predictions. Hence, it
can be used for classification and regression tasks [38,46]. implemented
the GB algorithm in their IDS for classification and the classifiers ach-
ieved good accuracy (100 %, above 98 %).

● LightGBM

Light Gradient Boosting Machine (LightGBM) is an open-source high-
performance GB framework developed by Microsoft. As an extension of
the GB algorithm, LightGBM follows GB principles in addition to several
optimizations and features for performance, speed, and memory usage
enhancement. Several techniques are used for this enhancement such as
leaf-wise tree growth, GB one-side sampling (GOSS), and exclusive
feature bundling (EFB) [40]. used LightGBM with PSO for
double-dimension reduction and feature extraction, aiming to reduce the
size of the dataset.

5.3.2. AdaBoost
Adaptive Boosting (AdaBoost) is an ensemble learning algorithm that

falls in the supervised learning category as it requires labeled data for
classification tasks. AdaBoost algorithm iteratively trains a series of weak
classifiers on different weighted versions of the training data and the
weights of the misclassified instances are increased after each iteration.
The purpose of this process is to force the next weak classifier to focus
more on the instances that are harder to classify. Doing so forms a robust
final classifier representing the weighted combination of the weak clas-
sifiers. In Ref. [32] AdaBoost was implemented in a distributed classifi-
cation system (for cyber-attacks on IoT) for merging the models obtained
by JRip algorithm and the AdaBoost model achieved 99.8793 % preci-
sion [48]. also deployed AdaBoost to combine base fuzzy decision trees
with online learning to accommodate the concept drift in their IDS
model. The model scored good accuracy when used for their dataset (82
%, real source traffic).

5.4. Optimization algorithms

Optimization algorithms are mathematical techniques used to deter-
mine the optimal solution to a problem, often by minimizing or opti-
mizing an objective function. Optimization algorithms are used in
machine learning to alter the parameters of a model to enhance its per-
formance on a particular task. Usually, they are used for feature selection.
Several optimization algorithms, such as PSO, GWO, and SMO, were
inspired by animals’ behavior.

5.4.1. PSO
Particle Swarm Optimization (PSO) is a common optimization tech-

nique inspired by the social behavior of flocks of birds or schools of fish.
It is a stochastic optimization method that mimics the movement of a
collection of particles across a high-dimensional search space, where
each particle represents a potential solution to an optimization problem.
PSO can be used for supervised and unsupervised learning tasks such as
feature selection, classification, clustering, and regression [40]. used PSO
and a Light Gradient Boosting Machine (LightGBM) in their proposed IDS
for feature extraction from the UNSW-NB15 dataset. The reason behind
this combination is to avoid the problem of uneven distribution of
large-scale datasets. The model's accuracy was better than all other
methods (86.68 %) [45]. also implemented PSO in their IDS for feature
selection together with another optimization algorithm (GWO) and
validated it using different datasets such as NSLKDD and CICIDS-2017.
Their model achieved an accuracy of 99.66 % for multiclass
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classification.

5.4.2. GWO
Grey Wolf Optimization (GWO) is a metaheuristic population-based

optimization algorithm inspired by grey wolves’ social hierarchy and
hunting behavior in the wild. 2014 marked its introduction by Mirjalili
et al. Each wolf symbolizes a possible solution to the optimization issue.
GWO can be used in clustering, feature selection, and in conjunction with
classifiers to optimize their performance. In Ref. [45], the combination of
GWO and PSO as hybrid GWO–PSO has been employed to enhance
feature subset selection.

5.4.3. SMO
Spider Monkey Optimization (SMO) is a metaheuristic optimization

method inspired by spider monkeys’ social behaviour and foraging
technique. Mirjalili et al. introduced SMO in 2015, which has been
applied to various optimization issues. Like other metaheuristic optimi-
zation methods, SMO does not require previous knowledge of the issue
area and may be used in various optimization situations. The method is
based on the social behavior of spider monkeys, in which they collabo-
rate and coordinate their food hunt by following the most successful
monkey. In Ref. [33] SMOwas utilized in the proposed IDS for the feature
selection phase before using S-DPN for classification to achieve higher
accuracy. The NSL-KDD dataset was used to validate the model, and the
results were very promising with an accuracy of 99.02 %.

5.5. Functions and measures

5.5.1. Gaussian function
A Gaussian function, usually called a Gaussian or normal distribution,

is a mathematical function defining a continuous probability distribu-
tion. It was introduced by the mathematician Carl Friedrich Gauss in the
early 19th century and bears his name. In machine learning and data
analysis, the Gaussian function can model the probability distribution of
data and estimate the likelihood of different outcomes [39]. used the
Gaussian function to model the probability distribution in the Gaussian
Naïve Bayes classifier in their proposed IDS. The classifier scored 97.55%
accuracy for bidirectional features.

5.5.2. InfoGain
Information gain is a statistic used in decision trees and other ma-

chine learning methods to assess the amount of information supplied by a
feature or attribute in a dataset regarding the target variable (i.e., the
output variable). To maximize the information gain and minimize the
data's entropy (i.e., uncertainty), it is used to pick the optimum feature or
attribute for dividing the data in a decision tree. In decision tree algo-
rithms such as C4.5 and ID3, the InfoGain function is frequently used to
pick the optimal feature or characteristic for dividing the data at each
tree node. It is also utilized by other machine learning methods, such as
Random Forest and Gradient Boosting, to choose the best features or
characteristics for model construction. In Ref. [42], InfoGain was
deployed in the proposed IDS to evaluate the relevance of any given
feature to the class label and this feature selection method scored above
94 % accuracy.

5.5.3. MI
Mutual Information (MI) is a measure used in supervised learning

tasks, often for feature selection. MI helps to identify the most informa-
tive features for a particular target variable by quantifying the depen-
dence or statistical relationship between random variables [46].
deployed MI and RFFI in their IDS for feature selection before feeding the
selected features to several classifiers, including RF, GB, WVE, KNN, and
LR. The proposed model achieved good accuracy (99.997 %).

5.5.4. Shannon entropy
Shannon entropy is a fundamental concept in information theory,
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named after Claude E. Shannon (an American mathematician and elec-
trical engineer). The entropy value represents a measure of uncertainty or
randomness in a single random sample where the correlation between
the entropy value and uncertainty level is negative [51]. used Shannon
entropy in their proposed IDS algorithm to utilize feature construction.
For the proposed system to detect DDoS attacks, the entropy will either
increase or drop significantly in DDoS attacks, and the value will remain
uniform when the traffic is normal. Other measures are also combined
within the proposed algorithm, such as E-KOAD (mentioned earlier),
which identifies suspicious points after calculating Shannon entropy.

5.5.5. Mahalanobis distance
Named after the Indian statistician Prasanta Chandra Mahalanobis,

Mahalanobis distance measures the distance between a point and a dis-
tribution. By taking into account the shape and orientation of the dis-
tribution, the Mahalanobis distance can distinguish between points that
are genuinely distant from the mean and those that appear distant due to
the shape or orientation of the distribution [51]. have utilized Mahala-
nobis distance in their proposed anomaly detection algorithm to measure
the distance between suspicious points and the distribution of dictionary
members (which represent normal behavior).

5.5.6. Chi-square test
The chi-square test is a statistical test used to indicate a significant

association between two categorical variables in a sample by comparing
observed frequencies (actual) and expected frequencies (under the
assumption of no association between variables). As mentioned above
[51], have deployed multiple measures in their proposed anomaly
detection algorithm. A tsome point in the algorithm, the Chi-square test is
used to examine the significance of the calculated Mahalanobis distance.
The significant difference in the test indications implies that the suspi-
cious vector is likely an anomaly or DDoS attack.

5.6. Other categories

5.6.1. Semi-supervised learning
Semi-supervised learning lies between supervised and unsupervised

learning so that it can use labeled and unlabelled data for training. This
approach is beneficial in real-world applications because obtaining only
labeled data is infeasible, and unlabelled data are abundantly available.
The ability to benefit from labeled and unlabelled data improves the
learning process and performs better than using only one. To use unla-
belled data, multiple techniques are used such as bootstrapping, self-
training, co-training, and graph-based methods to find the underlying
patterns and relationships between data. Semi-supervised learning can be
used for different tasks such as classification, anomaly detection, and
natural language processing (NLP).

5.6.2. Self-supervised learning
Self-supervised learning is a subcategory of unsupervised learning

because it doesn't rely on labeled data for training. In contrast, it uses
unlabelled data to learn useful representations that can be used later for
different supervised or unsupervised tasks such as clustering, classifica-
tion, and regression. In self-supervised learning, pseudo-labels or “tar-
gets” are generated from the data by leveraging its inherent structure or
properties using several techniques including autoencoders, predictive
learning, and contrastive learning. There are many applications for self-
supervised learning like anomaly detection and computer vision, but one
of the most prominent and impactful applications is in natural language
processing (NLP).

5.6.3. Reinforcement learning
Reinforcement learning (RL) is a type of machine learning where the

model learns to make decisions by interacting with its environment in a
trial-and-error approach. The model's actions either lead to “reward” or
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“penalty” feedback from the environment. The main target for the model
is to learn a “policy” that maximizes the cumulative reward value over
time by continuously updating the policy and optimizing its actions
based on the environment's feedback. RL is better if the optimal solution
is not obvious or difficult to determine using traditional supervised
learning techniques. Different algorithms are used for RL such as Q-
learning and Deep Q-Networks and others.

6. Challenges

Implementing machine learning for detecting cyber threats in the IoT
environment poses several significant challenges.

1) Data Complexity: The foremost challenge arises from the nature of
data generated by IoT devices. This data is often overwhelming in
volume, variety, and velocity, posing a substantial challenge to
traditional ML techniques. Therefore, there's a pressing need for
efficient and scalable algorithms capable of handling this complexity.

2) Device Heterogeneity: The diversity in IoT devices, encompassing
various architectures, protocols, and operating systems, forms a sec-
ond major hurdle. This heterogeneity makes it difficult to develop
universally applicable solutions, as each device may require a tailored
approach.

3) Dynamic Nature of Threats: Cyber threats constantly evolve,
necessitating continuous learning and adaptation in threat detection
methods. This dynamic nature often requires manual intervention,
which can be a limiting factor in the efficiency of these systems.

While unsupervised learning methods offer a partial solution by
identifying patterns and anomalies without data labeling, they are un-
reliable. These techniques may struggle to ascertain the significance of
their findings, often necessitating manual analysis and interpretation.
Another concern is privacy. Using sensitive user data for training ML
models raises privacy issues, necessitating the development of secure
techniques that protect user data while ensuring efficient threat detec-
tion. Deep learning methods might address some of these issues but are
not a panacea. Given that many IoT devices have limited computational
resources, the resource-intensive nature of DL methods introduces
additional complications.

Alternate approaches like transfer learning, federated learning, and
edge computing offer promising avenues to mitigate some challenges.
However, they do not present complete solutions to all problems. A
critical aspect often overlooked is the security of ML models themselves.
Adversaries may exploit vulnerabilities in these models, making it
imperative to develop robust methods against adversarial attacks and
manipulation.

In summary, while ML presents a viable path for enhancing IoT cyber
threat detection, it is fraught with challenges that require innovative
solutions and ongoing research to ensure effectiveness, security, and
privacy.

7. Future vision with generative AI and LLMs

A language language model (LLM) represents a category of AI algo-
rithms employing deep learning methods and extensive data collections
to interpret, summarize, produce, and forecast novel content. The
concept of generative AI is intimately linked to LLMs. These models are a
specialized form of generative AI, explicitly designed to facilitate the
creation of text-based material. The future of IoT security, powered by
Generative AI and large language models (LLMs), promises a more
secure, intelligent, and adaptive approach to protecting the ever-
expanding universe of IoT devices and networks. The key will be to
harness these advanced technologies responsibly, balancing innovation
with ethical considerations [3].



F. Alwahedi et al. Internet of Things and Cyber-Physical Systems 4 (2024) 167–185
7.1. Generative AI and LLMs

The current landscape of LLMs is diverse and rapidly evolving,
reflecting significant advancements in natural language processing and
AI research. Among the notable models, BERT [53], introduced by
Google in 2018, stands out for its transformer-based design and ability to
convert data sequences, influencing Google search enhancements.
Claude, developed by Anthropic, is notable for its focus on constitutional
AI, ensuring outputs are helpful, harmless, and accurate.

Other notable models include Ernie by Baidu, notable for its Man-
darin proficiency and extensive user base; Falcon 40B/180b [54] from
the Technology Innovation Institute, an open-source model available on
Amazon SageMaker. OpenAI's GPT series is particularly influential, with
GPT-3 introducing a massive scale of 175 billion parameters in 2020 and
becoming exclusively available through Microsoft. GPT-3.5, an upgrade
with fewer parameters, powers ChatGPT and was integrated into Bing
search. The latest GPT-4, released in 2023, is a multimodal model
capable of handling language and images.

Llama [55], Meta's model released in 2023, is notable for its
open-source availability and variety in model sizes. Orca by Microsoft
demonstrates efficiency with fewer parameters. Palm from Google spe-
cializes in complex reasoning tasks across various fields. Smaller,
specialized models like Phi-1 from Microsoft focus on quality over
quantity in data training. Stability AI's StableLM series aims for trans-
parency and accessibility. Finally, Vicuna 33B, trained by fine-tuning
LLaMA, is an influential open-source model with a smaller parameter
count but effective capabilities.
7.2. Cyber threat detection

Generative AI is set to revolutionize IoT security through advanced
threat detection techniques. These models can use deep learning and
natural language processing (NLP) to analyze unstructured data from
various sources, including IoT device logs and network traffic. For
example, an LLM can parse through gigabytes of log data from a smart
home system to identify unusual patterns that might indicate a cyber-
attack, such as a sudden spike in outbound data suggesting data
exfiltration.
7.3. Reinforced encryption and authentication

In the realm of encryption and authentication, LLMs can aid in
developing more sophisticated protocols tailored to IoT devices' unique
constraints. For example, an LLM can optimize lightweight encryption
algorithms for low-power IoT sensors, ensuring secure data transmission
without overburdening the device's limited resources.
7.4. Blockchain-based systems

Generative AI can significantly enhance the security of blockchain-
based systems for IoT in several ways. LLMs can assist in automatically
generating and verifying smart contracts. By analyzing and understand-
ing the nuances of contract language, LLMs can identify potential vul-
nerabilities or logic flaws in smart contracts before they are deployed on
the blockchain. In addition, in threat detection, LLMs can be trained to
monitor and analyze blockchain transactions and IoT communication
patterns to detect anomalous or potentially malicious activity. By
leveraging their vast knowledge base and pattern recognition capabil-
ities, LLMs can alert system administrators to suspicious behavior,
enabling rapid response to security threats. Finally, as mentioned before,
LLMs can contribute to developing more robust encryption and authen-
tication protocols for IoT devices interacting with blockchain networks,
enhancing overall system security.
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7.5. Access control

Generative AI can significantly enhance access control in IoT devices
through their advanced natural language understanding and contextual
analysis capabilities [56]. LLMs allow for intuitive user interactions with
IoT systems by processing and interpreting natural language commands.
They can analyze usage patterns and context to make informed access
decisions, bolstering security through anomaly detection for potential
unauthorized access [57]. Furthermore, integrating LLMs with biometric
systems like voice recognition can add layer of secure user authentica-
tion. These models can also automate and refine access control policies
by learning from user behaviors and preferences, ensuring a personalized
and efficient user experience [58]. However, implementing LLMs in this
domain requires careful attention to data privacy, security, and the po-
tential for model manipulation [59].

7.6. IoT software security

Generative AI can be applied to enhance IoT software security
through advanced vulnerability detection. They excel in static code
analysis, identifying common and complex vulnerabilities such as
buffer overflows and SQL injections in IoT software by analyzing code
patterns and anomalies [60,61]. LLMs streamline the detection process,
allowing quicker and more thorough software audits, which is crucial in
the dynamic IoT environment. Continuously updated with the latest
security research, LLMs adapt to new threats, ensuring ongoing pro-
tection. This integration of LLMs in vulnerability detection offers a
robust solution for maintaining the security of increasingly complex IoT
software systems.

7.7. Penetration testing

Generative AI can significantly enhance penetration testing in IoT
networks by automating and optimizing various process aspects. These
AI tools can generate realistic phishing emails and social engineering
content, simulate sophisticated cyber-attacks to test network defenses,
and even predict potential vulnerabilities by analyzing code or system
configurations [62]. They can also assist in generating custom scripts for
testing applications and networks and, in some cases, use natural lan-
guage processing to interpret and analyze the results of penetration tests,
offering insights and recommendations for strengthening security.
Moreover, LLMs can be trained on the latest cybersecurity trends and
exploits, ensuring that the penetration tests are up-to-date and cover a
wide range of potential threats.

8. Conclusion

IoT devices have become fundamental to everyday life, offering
increased connectivity and convenience. However, this accelerated
development in IoT devices also brought several security challenges that
need to be addressed to guarantee the safety and reliability of these
interconnected systems. The survey was organized into five sections
detailing the role of machine learning in enhancing IoT security. We have
provided an overview of the current trends in ML for cyber threat
detection in IoT environments. Furthermore, we survey recent cyber
detection methods, define them, highlight the approach, and detail the
attack surface utilized along with their evaluations. The utilized ML
techniques are also discussed, defined, and compared regarding advan-
tages and drawbacks in the relevant use cases. Moreover, open issues
were discussed briefly, concluding that further research and develop-
ment is required as no current solution can address the issues related to
IoT cyber threat detection. A holistic strategy combining diverse tech-
niques and strategies is required as a final recommendation. We present
this survey as a reference for the current advancements in the field and
point out the direction being taken. Our goal is for the survey to create a
more secure and resilient IoT environment by identifying the current
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issues, understanding their root causes and possible implications, and
developing innovative solutions.
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