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A B S T R A C T   

Distributed denial-of-service (DDoS) attacks pose a significant threat to computer networks and systems by 
disrupting services through the saturation of targeted systems with traffic from multiple sources. Real-time 
detection of these attacks has become a critical cybersecurity task. However, current DDoS attack detection 
methods suffer from high false positive rates and limited ability to capture the complex patterns of attack traffic. 
This research proposes an enhanced approach for detecting DDoS attacks using a hybrid feature selection 
technique in combination with an ensemble-based classifiers. The ensemble-based approach aggregates many 
decision trees to increase classification accuracy and reduce overfitting and model robustness. The feature se
lection technique uses correlation analysis, mutual information, and principal component analysis to identify the 
most useful characteristics for attack detection. The ensemble-based Random Forest classifier from the various 
ensemble-based approaches with the specified relevant features produces the best detection rates. Many datasets 
related to identifying DDoS attacks are used to evaluate the proposed model, and experimental findings 
demonstrate that it surpasses existing techniques in terms of accuracy, recall, precision, f1-score, and false 
positive rate, with other evaluation metrics. The proposed approach achieves almost 100 % accuracy, 100 % true 
positive rate, and 0 % error rate making it a promising solution for DDoS attack detection.   

1. Introduction 

A distributed denial of service (DDoS) attack uses a large number of 
compromised devices, sometimes those that are part of a botnet, to 
overload a targeted system or network with traffic and render it inac
cessible to authorized users [1,2]. The goal of a DDoS attack is to disrupt 
the normal functioning of the target system or network, denying access 
to its intended users [3,4]. In this DDoS attack, the attacking devices 
may be compromised computers, routers, or IoT devices that have been 
infected with malware or taken over by an attacker. These devices are 
then directed to send a large volume of traffic to the target system or 
network, making it unable to respond to legitimate requests. DDoS as
saults can originate from any location in the world, and since they are 
widespread, it may be difficult to effectively prevent or stop them. They 
are frequently employed by hackers or other criminals to demand money 
or to obstruct the work of a company, government, or organization. 
DDoS attacks can cause significant harm, including financial losses, 
reputational harm, and even legal consequences [5,6]. 

DDoS attacks raise significant ethical and legal concerns due to their 
potential to harm sensitive data and jeopardize user information. These 
attacks are on the rise in terms of both frequency and sophistication, 
which makes their identification and mitigation increasingly chal
lenging [7]. Attackers employ a variety of techniques and technologies, 
and the impact of DDoS attacks extends beyond the targeted organiza
tion. For instance, an attack on a critical infrastructure provider can 
have a far-reaching impact, affecting other organizations, governments, 
and individuals. Consequently, addressing the DDoS attack problem is 
not only essential for individual enterprises but also for the broader 
community and society at large. Thus, there is a pressing need to develop 
effective methods and tools to detect and minimize DDoS attacks [8,9]. 
As DDoS attacks continue to grow in complexity, they pose challenges 
for mitigation. Countermeasures are difficult to implement because 
these attacks can target multiple network levels and originate from 
diverse sources [10]. Moreover, distinguishing genuine traffic from 
attack traffic remains a challenge. To effectively reduce the impact of 
DDoS attacks, innovative and collaborative approaches are required to 
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address these evolving challenges [11,12]. 
In this research, we propose an improved method for identifying 

DDoS attacks by combining a novel feature selection method with 
ensemble-based classifier. Correlation analysis, mutual information, and 
principal component analysis are all integrated for the goal of selecting 
significant features. The random forest classifier is then used to the 
model from among the numerous ensemble-based machine learning 
techniques. The proposed approach aims to improve DDoS attack 
detection accuracy while decreasing false positives. We evaluate the 
proposed approach using various real-world datasets and show that all 
outperform existing techniques in terms of accuracy, recall, precision, 
and other evaluation metrics. Our key contributions to this research are 
listed below.  

• Researching the most recent DDoS attack detection techniques and 
evaluating their advantages and disadvantages.  

• Developing a combined approach for selecting the most relevant 
features.  

• Evaluate the performance of several classical machine-learning 
techniques for identifying DDoS attacks with the model.  

• Developing a machine-learning framework based on ensembles that 
combine several classifiers to increase detection accuracy.  

• Evaluating the effectiveness of the proposed ensemble-based strategy 
against current DDoS detection techniques for different publicly 
available datasets. 

The ability of the ensemble-based random forest strategy to integrate 
the predictions of many decision trees to increase the classification ac
curacy makes it superior to other approaches for detecting attacks 
involving DDoS. By using an ensemble of classifiers rather than a single 
classifier, the random forest technique can reduce the variance and bias 
of the classifier, prevent overfitting, and boost the resilience of the 
model [13]. Additionally, the ensemble-based methodology may more 
accurately detect assaults than previous techniques since it is better able 
to capture the complex structures of DDoS attack flow. Furthermore, the 
ensemble-based technique is highly suited for identifying attacks using 
DDoS in real-time environments due to its scalability and ability to 
effectively handle massive volumes of data [14]. Table 1 encompasses 
the abbreviated terminology employed throughout the research. 

The remaining section of this paper discusses related research for 
detecting DDoS attacks. In the next section, every part of the proposed 
model development is described. The fourth section contains the results 
and discussion along with essential figures and tables. The fifth section 
of the paper addresses the conclusion of this research. 

2. Related works 

Over time, a number of techniques, such as rule-based, statistical, 
machine-learning-based, etc., have been suggested to identify attacks 
involving DDoS. This section reviews the latest DDoS attack detection 
techniques as well as their advantages and disadvantages. 

A collection of rules is developed in rule-based strategies to identify 
attacks using DDoS. These rules are frequently based on the traffic flow 
factors, such as packet rate, packet size, and protocol type. Despite being 
clear and easy to use, rule-based approaches might not be able to 
recognize innovative or sophisticated DDoS assaults that do not adhere 
to specified criteria. Rule-based techniques may also mistake legitimate 
traffic for an attack due to their high false positive rate [15,16]. Statis
tical methods use statistical models to identify anomalies in network 
traffic. These techniques look at the flow of the traffic and look for de
viations from the norm. Because statistical methods can recognize both 
known and unknown assaults, they are preferable to rule-based systems. 
Statistical methods may require a large amount of training data to 
comprehend normal traffic patterns, which may be challenging to get. 
Additionally, statistical techniques may produce a large percentage of 
false alarms, leading to the labeling of genuine traffic as an attack [17, 
18]. 

In order to identify DDoS attacks, machine-learning approaches 
utilize different classifiers to understand the patterns of both legitimate 
and malicious traffic. The multi-scale base CNN technique presented by 
Cheng et al. [19] in 2020 to identify DDoS obtained 74 % accuracy, 
which is quite low, and a very low TPR. The same year, Sambangi and 
Gondi [20] introduced a method of multiple linear regression with a 75 
% accuracy rate and a very high FPR. Saini et al. [21] introduced a 
machine learning model that utilizes the J48 classifier to identify HTTP 
Flood, Smurf, UDP Flood, and SIDDoS type DDoS attacks. One note
worthy limitation was the relatively small dataset employed for training 
and testing the model. Additionally, the research reported a significant 
issue with a high FPR in their model’s performance. 

An IDS framework that integrates a group of feature engineering 
methods with the use of deep neural networks was suggested by Lopes 
et al. [22] in 2021. Nearly 99 % accuracy was attained. Despite having 
an IDS framework, it can only identify DDoS attacks. For the SDN 
environment, Rajesh et al.‘s approaches using Random forest give 97 % 
accuracy for DDoS attack detection [23]. To detect DDoS attacks, Dasari 
and Devarakonda suggested yet another ML-based model. They used 
different single ML-based classifiers [24]. The model with logistic 
regression produced the best result from the performance study, with an 
accuracy of 99.61 %. It is about 84 % in this case of specificity. Since it 
uses a single classifier, the performance varies depending on the type of 
DDoS attack. SVC-RF-based classifiers with a 98.8 % accuracy were 
proposed by Ahuja et al. Only the SDN environment is suitable for this 
complex model [25]. 

In 2022, Nuiaa et al. [26] suggested improved optimization tech
niques for the detection of DDoS attacks. The model with the KNN 
classifier produced a result of 89.59 %. Regarding their research, they 
recommended using additional methods like clustering or neural net
works to increase the detection rate and reduce the false alarm rate. A 
model with excellent accuracy but a very high false alarm rate of 0.05 % 
was proposed by Nalayini and Katiravan [27]. A methodology for the 
detection of DDoS assaults was put out by Chavan et al. [28]. They used 
multiple machine learning classifiers to evaluate their model. They 
discovered that the model with the greatest accuracy for the logistic 
regression classifier was 90.4 %. This accuracy % is unacceptable in the 
context of the current day. Because of the heavy traffic, the model is 
unable to huge pick up malicious traffics such as DDoS. The FPR will 
thus be quite high. The same year, Elgendy et al. [29] released DTEXNet, 
a cutting-edge method with a 95 % accuracy rate. This is more difficult 
since it combines two neural network models. In addition, the accuracy 
should be improved in relation to the dataset’s size. 

In 2023, Samaan and Jeiad [30] proposed a method that uses 

Table 1 
Notations and abbreviations to increase conciseness and clarity.  

Notations Abbreviations 

DDoS Distributed Denial-of-Service Attack 
HFS Hybrid Feature Selection 
ERF Ensemble-based Random Forest 
SVC Support Vector Classification 
CNN Convolutional Neural Network 
KNN K-Nearest Neighbors 
SDN Software-Defined Network 
IDS Intrusion Detection System 
GHLBO Gradient Hybrid Leader Optimization 
DSA Deep Stacked Autoencoder 
GBT Gradient Boosted Trees 
TPR True Positive Rate 
FPR False Positive Rate 
ROC Receiver Operating Characteristic 
CA Correlation Analysis 
MI Mutual Information 
PCA Principal Component Analysis  
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gradient-boosted trees techniques and achieves 93 % accuracy. The 
precision has to be raised. The TPR in this model is really low. Sabir [31] 
applied BayesNet, KNN, J48 classifiers to detect DDoS and found the J48 
classifer based model produce the best result with the accuracy of 98.31 
%. Some researchers have also suggested certain deep learning-based 
methods for different environments [32–35]. These strategies are less 
useful for deployment in situations with limited resources. Additionally, 
they have had difficulty identifying new and developing DDoS attacks 
when certain attack types are not covered by the training data. 

Most researchers proposed a model with a single machine-learning 
classifier. Single machine learning classifiers often struggle to detect 
newly designed DDoS attacks due to several key challenges. These 
include the lack of training data for novel attacks, the complexity and 
diversity of attack features, concept drift in network behavior, the 
adaptability of attackers, imbalanced data, and the potential overfitting 
of models. Additionally, accuracy and TPR should be improved in 
comparison to the current methods, while FPR should be minimized. 
Therefore, the creation of a DDoS attack detection model that is reliable 
against each attack is required [36]. 

The proposed methodology, employing a random forest ensemble- 
based classifier named HFS-ERF, shows promise in providing a 
comprehensive and efficient solution for safeguarding networks against 

various DDoS attacks. To enhance the model’s effectiveness, a novel 
feature selection approach has been introduced, which combines Cor
relation Analysis, Mutual Information, and Principal Component Anal
ysis. Notably, this feature selection technique yields improved results 
within a single classifier-based framework. Given the ever-evolving 
nature of technology and the changing landscape of DDoS attacks, the 
model has been augmented with enhanced ensemble-based classifiers. 
This integration ensures the model’s ability to adeptly detect newly 
designed and emerging types of DDoS attacks. Notably, this results in an 
increased TPR and a decreased FPR for the model. The model’s efficacy 
has been rigorously evaluated using various publicly available datasets, 
and it consistently demonstrates excellent performance in detecting all 
types of DDoS attacks. Particularly, the utilization of the random forest 
ensemble classifier proves highly effective in achieving this objective 
compared to the other ensemble approaches. 

3. Proposed model 

The proposed approach for identifying attacks using DDoS is thor
oughly described in this section. The proposed machine learning 
model’s pipeline, including the appropriate feature selection and 
ensemble-based Random Forest classifier, is shown in Fig. 1. 

Fig. 1. Proposed model development pipeline.  
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3.1. Dataset 

The model is trained on various datasets to learn patterns and re
lationships in the data, and it is then tested on separate sets of data to 
evaluate its performance. Several publicly available datasets are utilized 
to evaluate the model’s performance. Below is a very short observation 
on each of the following. 

3.1.1. CIC-DDoS2019 
The CIC-DDoS2019 dataset, which closely resembles genuine real- 

world data, contains the most recent and benign attacks using DDoS. 
Additionally, it contains the outcomes of a CICFlowMeter-V3 network 
traffic analysis with flows labeled according to the time stamp, desti
nation, and source IP addresses, source and destination ports, protocols, 
and attack. This dataset contains two forms of DDoS attacks: reflection- 
based and exploitation-based. TCP and UDP assaults were carried out 
differently by each type. Table 2 presents a comprehensive list of DDoS 
attack types of this dataset, along with the corresponding feature with 
used entries utilized in this research [37]. 

3.1.2. DDoS-SDN 
Since the model is effective for all types of DDoS attacks and envi

ronments. So, it is trained and tested by an SDN-related dataset also. 
There are 23 features and 104,345 rows available in the DDoS-SDN 
dataset and created in 2020. Network simulation is done for malicious 
traffic like TCP flooding attack, UDP flooding attack, and ICMP assault 
as well as for normal traffic like UDP, TCP, and ICMP. The last column’s 
class name, which indicates whether the traffic is malicious or not, is 
displayed. Label 1 indicates malicious traffic, while label 0 indicates 
benign traffic [38]. 

3.1.3. CSE–CIC–IDS2018 
The CSE–CIC–IDS2018 [39] dataset is a publicly available dataset 

that contains network traffic data collected from a simulated environ
ment for the purpose of evaluating IDSs. In our experimental setup, we 
exclusively utilized the ‘02-21-2018.csv’ file, primarily due to its in
clusion of both DDoS attacks and normal network traffic data. This 
particular dataset offers a comprehensive and balanced representation 
of network activities. At the outset of our investigation, we commenced 
with this dataset comprising a total of 1,048,575 entries, each encom
passing a rich set of 80 distinct features. These features encompassed a 
wide range of network-related attributes, allowing us to thoroughly 
explore and analyze the dataset’s intricacies. Its inclusion of both 
normal traffic and DDoS attack data provided a well-rounded and 
challenging environment in which to evaluate the model’s performance 
and effectiveness. 

3.1.4. APA-DDoS 
As the number of connected devices grew, the main problem was 

identifying attacks since an intrusion detection system had been devel
oped. Different DDoS attack types are included in the APA-DDoS attack 
dataset. Most of the attacks involving DDoS in the dataset are ACK and 

PUSH-ACK. The APA-DDoS attack dataset is being used to evaluate a 
model for the detection of DDoS attacks [40]. 

3.1.5. DDoS-botnet 
For evaluating and predicting harmful packets from DDoS botnet 

attacks, there is a dataset called DDoS-botnet [41]. 1927101 entries and 
47 features are utilized in this research to evaluate the model. DDoS 
attacks sometimes involve the usage of botnets because they provide the 
attacker access to a big resource pool that may be utilized to produce a 
lot of traffic. Computers, cellphones, and other internet-connected de
vices that are under the attacker’s control and infected with malware 
can all be found in a botnet. For this reason, this dataset is chosen to test 
the model. 

3.2. Data preprocessing 

Data preprocessing is essential for a machine-learning model since it 
aids in cleaning and converting raw data into a form that the model can 
readily interpret. Preprocessing procedures including managing missing 
values, eliminating outliers, scaling, and normalizing may considerably 
increase the accuracy and efficiency of the model. The quality of the 
input data directly influences the model’s performance. Additionally, 
preprocessing helps in lowering the chance of overfitting and improving 
the data’s interpretability. As a result, data preprocessing is a crucial 
stage in the machine-learning pipeline that enables models to produce 
predictions that are accurate and trustworthy [42]. 

In this model, the preprocessing steps involve eliminating duplicates, 
substituting NaNs for infinite and large values, deleting rows that 
contain NaNs, separating numerical and categorical columns, normal
izing numerical columns, encoding categorical columns, and changing 
the target variable into a discrete variable. Using the “duplicated” 
function from pandas, we first examine the dataframe for duplicate 
entries. The method returns true for those rows if any duplications are 
discovered. The duplicate rows are then removed from the dataframe 
using the “drop_duplicates” function of the Pandas library. The “dropna” 
function of pandas was then used to remove any rows that had NaNs. 
The remaining dataframe is divided into columns for numbers and cat
egories. The types “float64” and “int64” denote numerical columns, 
whereas the type “object” denotes categorical columns. After that, we 
used the “StandardScaler” function from the sklearn package to 
normalize the numerical columns. This guarantees that each feature has 
a unit variance and zero mean. Utilizing the “LabelEncoder” function 
from the sklearn package, the category columns are encoded. This 
changes categorical variables into numerical variables by assigning a 
unique integer value to each distinct value [43]. 

3.3. Relevant features selection 

By eliminating unnecessary and redundant features, lowering the 
model’s complexity, and enhancing its interpretability, relevant feature 
selection is crucial to enhancing the accuracy and effectiveness of ma
chine learning models [44]. Using correlation analysis (CA), mutual 
information (MI), and principal component analysis (PCA), the relevant 
features in this model have been chosen. 

Because it identifies strongly correlated features that could lead to 
model overfitting or redundancy, correlation analysis is crucial for 
feature selection in ensemble techniques. Using closely related charac
teristics can lead to several models generating similar predictions, 
decreasing the diversity of the ensemble [45]. Ensemble approaches 
integrate multiple models to increase predictive accuracy. Finding and 
removing highly correlated features via correlation analysis will 
improve the performance and stability of the ensemble technique. Cor
relation analysis is performed to choose appropriate features for pre
diction throughout our model’s implementation. We first compute the 
correlation matrix “corr” for the features in X, and only select the fea
tures with an absolute correlation coefficient over 0.5. The correlation 

Table 2 
Different attacks in CIC-DDoS2019 dataset.  

Sr. No. Attacks Used Entries No. of Features 

1. MSSQL 1048575 87 
2. SSDP 2611374 88 
3. LDAP 2181542 88 
4. NetBIOS 1048575 87 
5. NTP 1217007 88 
6. SNMP 1217007 88 
7. UDP Flood 3136802 88 
8. Syn Flood 1582681 88 
9. TFTP 1048575 87 
10. UDPLag 725165 88  
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coefficients meaning is the covariance between two variables, X and Y, 
divided by the product of their standard deviations. This can be 
expressed mathematically in the form of Equation (1).  

corr(X, Y) = cov(X, Y) / (std(X) * std(Y))                                             1 

The absolute value of the correlation matrix “corr” is taken to pro
duce the “corr_abs” variable in the implementation. This is true because 
the correlation coefficient’s absolute value, regardless of whether it is 
positive or negative, indicates the strength of the linear connection be
tween the two variables. The index of the columns (i.e., features) with an 
absolute correlation coefficient larger than 0.5 is then used to produce 
the “relevant_features_corr” variable in Equation (2). On the portion of 
the correlation matrix that meets the threshold, this is accomplished by 
using the “.index.tolist()” method:  

relevant_features_corr = corr_abs[corr_abs >0.5].index.tolist()                  2 

The names of the features that are highly associated with one another 
and may thus be redundant are listed in the relevant_features_corr list 
that is produced. The performance of our model can be enhanced by 
removing or combining these features in order to decrease the dataset’s 
dimensionality. 

Mutual information is a metric used to assess the dependency be
tween two random variables. In the context of feature selection, it 
evaluates how much information a feature contributes to the target 
variable [46]. The top k features that are most informative about the 
target variable y are chosen in our implementation. Equation (3) de
scribes the mutual information between a feature Xi and a desired var
iable y.  

I(Xi, y) = H(Xi) - H(Xi|y)                                                                    3 

Where H(Xi) is the entropy of feature Xi, and H(Xi|y) is the conditional 
entropy of feature Xi given the target variable y. 

The level of uncertainty or randomness in a random variable is 
measured by entropy. It is calculated using the following Equation (4):  

H(X) = -sum(p(x) * log2(p(x)))                                                            4 

Where p(x) is the probability of observing the value x in the random 
variable X. 

Conditional entropy determines the level of uncertainty in a random 
variable X based on the value of another random variable Y. It is 
computed using Equation (5) as follows:  

H(X|Y) = -sum(p(x,y) * log2(p(x|y)))                                                    5 

Where p (x,y) is the joint probability of observing the values x and y in 
the random variables X and Y, and p (x|y) is the conditional probability 
of observing the value x in X given the value y in Y. 

The mutual information between each feature and the target variable 
y is determined using the “mutual_info_classif” function from the 
“sklearn.feature_selection” package. The top k features with the best 
mutual information scores are then chosen using the “SelectKBest” 
function from the same module. The features are expected from mutual 
information to have the strongest statistical relationship with the target 
variable, making them crucial for modeling and analysis. Selected by 
using equations (6) and (7).  

mutual_info = SelectKBest(mutual_info_classif, k = 20).fit(X, y)              6  

relevant_features_mutual = X.columns[mutual_info.get_support()].tolist()   7 

Principal Component Analysis (PCA) [47] is a critical method for 
feature selection as it allows us to reduce the dimensionality of the input 
data by identifying the most significant features that capture the most 
variance in the data. The fundamental formula for PCA is as follows, 
When given a data matrix X with n samples and m features, PCA at
tempts to locate a set of k orthogonal vectors u1, u2,…, uk in the 
m-dimensional space such that the data’s variance is maximized when 

projected onto the subspace spanned by these vectors, as shown in the 
equation below.  

Y = XUk                                                                                          8 

Where the top k eigenvectors of the X covariance matrix are represented 
by the matrix Uk. The columns of the Y matrix, which reflect the addi
tional features acquired by projecting the original data onto the sub
space covered by the eigenvectors, make up the main components. 

In our implementation, the PCA analysis on the input data X is car
ried out using the “PCA” class from the “sklearn.decomposition” pack
age [43]. The number of components is set to 20. The “pca.components_” 
attribute of the “PCA” object yields the matrix Uk, and the indices of the 
features with the greatest absolute values in each component are ob
tained using the “argmax()” function. The most crucial features are then 
obtained by mapping these indices back to the original feature names 
using the input data’s “X.columns” property shown in equations (9) and 
(10).  

pca = PCA(n_components = 20)                                                          9  

relevant_features_pca = X.columns[pca.components_.argmax(axis = 1)].tolist 
()                                                                                                   10 

Finally, we generate a single list from the relevant features chosen 
from each of the three approaches - correlation analysis (CA), mutual 
information (MI), and principal component analysis (PCA). The final 
combination of the above three techniques is performed by equation 
(11).  

relevant_features = list(set().union(relevant_features_corr, relevant_featur
es_mutual, relevant_features_pca))                                                      11 

We developed a more trustworthy and accurate collection of features 
that accurately capture the most crucial data by merging relevant fea
tures from multiple feature selection methods. The model’s performance 
is improved as a result and new information about the underlying re
lationships between the features and the target variable is discovered. 
One of the key components for this model’s improved DDoS detection 
performance is this feature selection technique. 

3.4. Ensemble-based random forest classifier selection 

With better detection rates and attack resistance, ensemble-based 
machine learning classifiers are an option for intrusion detection sys
tems [48], particularly in the detection of DDoS attacks. These classifier 
integrate many separate models to increase the prediction’s overall ac
curacy and resilience. Since there are so many different classifiers in the 
ensemble, DDoS attack detection may identify a variety of attack types 
and patterns. The proposed model employs both a variety of single 
classifiers and a variety of machine learning ensemble classifiers. From 
the various ensemble based approaches the random forest offers the best 
results. The ensemble-based Random Forest classifier is employed in 
DDoS attack detection by combining multiple decision trees to enhance 
accuracy and robustness. It leverages the diversity of individual trees to 
collectively identify attack patterns, making it particularly effective at 
distinguishing between normal network traffic and various DDoS attack 
types, ultimately bolstering the security of network environments [11]. 
The Random Forest ensemble classifier for the detection of DDoS attacks 
using the relevant features is described in short detail below. 

Combining many decision trees with the ensemble-based machine 
learning approach known as random forest results in a final classifica
tion conclusion. The random forest builds each decision tree indepen
dently using a randomly selected subset of the training data and 
attributes in order to reduce overfitting and improve generalization 
performance. The result of the random forest method is determined by 
the majority vote of the different decision trees. Each decision tree in the 
forest casts a vote for the estimated class of the input data point, and the 
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predicted class with the most votes is the result [49]. Algorithm 1 de
scribes how the Random Forest classifier works on DDoS attack-related 
datasets to determine normal or attack instances. 

Algorithm 1. Working process of the Ensemble-based Random Forest 
classifier for DDoS attack detection  

Table 3 lists the hyperparameters utilized by the Random Forest 
classifier to implement the proposed model. 

4. Experimental results and analysis 

In the following section, we evaluate how well the proposed DDoS 
attack detection model performs. Before moving into that, the envi
ronmental setup, as well as evaluation metrics, are sort of described 
below. 

The Scikit-learn package and the Python programming language are 
used throughout the whole experiment for this research. Google Cola
boratory, commonly referred to as “Colab”, is a tool developed by 
Google Research that was used for the experiment. The Scikit-Learn 
package’s StandardScaler, LabelEncoder, and other preprocessing 
modules are implemented. To choose relevant features, the mutua
l_info_classif, PCA, and SelectKBest methods are employed. The 
ensemble module’s classifiers are BaggingClassifier, AdaBoostClassifier, 
RandomForestClassifier, GradientBoostingClassifier, XGBClassifier, and 
StackingClassifier tested. Classical classifiers include GaussianNB from 
naive_bayes, MLPClassifier from neural_network, KNeighborsClassifier 
from neighbors, LogisticRegression from linear_model, and SVC from 
svm are applied. The model is further assessed using the ROC curve, ROC 
auc score, Cohen kappa score, confusion matrix, accuracy score, preci
sion, FPR, recall score, BCC, and f1-score of the Scikit-learn (python li
brary) infrastructure [43]. 

The “train_test_split” function from the scikit-learn (sklearn) package 
divides the whole dataset for the model into training and testing data. 
While 80 % of the data is used for training, the remaining 20 % is used 
for testing for each classifier. 

4.1. Evaluation metrics 

Evaluation metrics are used to assess the performance of a model. In 
the case of the proposed DDoS attack detection model, the evaluation 
metrics used include accuracy, recall, precision, f1-score, false positive 
rate (FPR), true positive rate (TPR), Balanced Accuracy (BACC), The 
AUC (Area Under the Curve), error rate, training accuracy, test accu
racy, cohen’s kappa etc [50,51]. These metrics provide a comprehensive 
view of the model’s performance and can help assess its usefulness in 
detecting DDoS attacks with high accuracy and low false positive rates. 
A confusion matrix displays the number of correct and incorrect pre
dictions made by the model, compared to the actual outcomes (or true 
labels) in the test data. The table is usually a square matrix, where the 
rows represent the actual class labels, and the columns represent the 
predicted class labels. The four outcomes that are possible in a binary 
classification problem are true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN).  

• True Positive (TP): The positive class is appropriately predicted by the 
model.  

• False Positive (FP): The positive class is mistakenly predicted by the 
model.  

• True Negative (TN): The negative class is appropriately predicted by the 
model.  

• False Negative (FN): The model predicts the negative class wrongly. 

Using the values in the confusion matrix, we can compute several 
evaluation metrics listed in Table 4. Other metrics with proper equations 
are also listed. 

It is possible to evaluate the model’s robustness and reliability in 
identifying DDoS attacks in various situations and environmental factors 
by utilizing evaluation metrics. 

4.2. Analysis of the findings 

Table 5 shows the evaluation findings for the proposed DDoS attack 
detection model on several types of DDoS attacks using the CIC- 
DDoS2019 dataset. The attacks are classified as either reflection or 
exploitation attacks and are tested for accuracy, recall, precision, f1- 

Table 3 
Hyperparameters in the Random Forest classifier.  

Parameter Values Parameter Values 

n_estimators 10 min_impurity_decrease 0.0 
bootstrap True warm_start False 
criterion ‘gini’ max_depth None 
n_jobs None oob_score False 
max_features ‘sqrt’ min_samples_split 2 
min_samples_leaf 1 random_state 42 
min_weight_fraction_leaf 0.0 verbose 0 
max_leaf_nodes None class_weight None  
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score, and AUC score. The model achieved a perfect score of 1.0 on all 
metrics for the reflection attacks: MSSQL, SSDP, LDAP, NetBIOS, NTP, 
SNMP, and TFTP. For the exploitation attacks, UDP Flood and Syn Flood, 
the model also achieved perfect scores of 1.0 on all metrics. For the 
UDPLag attack, the model achieved an accuracy of 0.9999, which is still 
a very high score. The recall and f1-score were both 1.0, meaning the 
model was able to correctly identify all instances of the attack. The high 
degree of performance from the table shows that the model has practical 
applications in real-world cybersecurity systems, where it could help to 
prevent or mitigate the effects of DDoS attacks. 

The identical procedures, as elaborated in the section titled “Pro
posed Model”, are employed for documenting the outcomes produced by 
the model when it is deployed on diverse datasets. In the pursuit of 
appraising the model’s efficacy, only the datasets are modified. The 
model’s performance in detecting DDoS attacks is subsequently assessed 
by contrasting it with alternative detection models across various 
datasets. 

Fig. 2 displays a comparison results of the performance of various 
classical machine learning (ML) classifiers, including logistic regression 
(LR), Gaussian naive Bayes (GNB), k-nearest neighbor (KNN), artificial 
neural networks (ANN), and support vector machines (SVM), with the 
proposed ERF classifier based model for the detection of DDoS attacks. 

The figure is generated for the type of DrDoS_NTP under the CIC- 
DDoS2019 dataset. The performances of the model with the classical 
machine-learning classifier are varies for different datasets but the re
sults with the ERF classifier are always high. The ERF classifier achieved 
a perfect score of almost 100 % for all evaluation metrics, indicating that 
it performed exceptionally well in detecting DDoS attacks than classical 
machine-learning classifiers. Another significant observation that 
emerges from the figure is the consistently high accuracy achieved by 
various classifiers. This notable performance can be largely attributed to 
the relevant feature selection process we employed. It becomes evident 
that our novel approach to identifying and utilizing relevant features 
plays a pivotal role in enhancing overall model accuracy. 

Table 6 presents a comparison of the performance of four ensemble- 
based classifiers, including Random Forest, Bagging, Adaboost, and 
Simple Stacking, for the detection of DDoS attacks. The results are 
included for the DrDoS_NTP dataset under the CIC-DDoS2019 dataset. 
The evaluation metrics used in the comparison include Recall, F1-score, 
False Positive Rate (FPR), and Testing Time (in seconds). The Random 
Forest classifier achieved a perfect score of 1.0 for both Recall and F1- 
score, indicating that it performed exceptionally well in detecting 
DDoS attacks. It also had the lowest FPR score of 0.0, indicating that it 
had a very low false-positive rate. Additionally, it had a relatively low 

Table 4 
Formulas and clarifications of measurement metrics for performance.  

Metrics Formulas Clarifications 

Accuracy (TP + TN)/(TP + FP + FN + TN) Evaluates the model’s performance in terms of effectively detecting instances. 
Recall TP/(FN + TP) Evaluates the model’s accuracy in identifying the fraction of positive cases that are actually 

positive. 
Precision TP/(FP + TP) Measures the exactness of a model’s positive predictions 
F1-score 2 * (recall * precision)/(recall + precision) Determines the balance between the model’s capacity for accurate positive instance 

identification (recall) and its capacity for reducing false positives (precision). 
AUC Score 

∫
TPR(FPR) dFPR AUC Curve provide insights into the model’s ability to distinguish between positive and 

negative instances, and identify the optimal classification threshold for the model. 
FPR FP/(TN + FP) Determines the percent of negative occurrences that the model misclassifies as positive 
BACC (St + Sp)/2 Balanced Accuracy measures the average of sensitivity and specificity, providing a single value 

that represents the overall model performance [52]. 
Training 

accuracy 
Training Accuracy = (Number of Correctly Classified Instances in 
Training Data)/(Total Number of Instances in Training Data) 

Training accuracy is a metric used to measure how well a machine learning model performs on 
the same data it was trained on. It indicates the proportion of correctly classified instances in 
the training dataset 

Test 
accuracy 

Test Accuracy = (Number of Correctly Classified Instances in Test 
Data)/(Total Number of Instances in Test Data) 

Test accuracy is used to evaluate how well a machine learning model performs on data that it 
has never seen during training. It measures the proportion of correctly classified instances in a 
test dataset. 

Error Rate Error Rate = (Number of Misclassified Instances)/(Total Number of 
Instances in the Dataset) 

Error rate, is a metric that quantifies the proportion of misclassified instances in a dataset. It 
represents the model’s predictive errors as a percentage of the total instances. 

Cohen’s 
Kappa 

K =
Po − Pe
1 − Pe 

K (Kappa) represents the Cohen’s Kappa statistic. 

Cohen’s Kappa is a statistic that measures the level of agreement between two raters between a 
model’s predictions and the true labels for a classification problem [52]. It accounts for the 
possibility of agreement occurring by chance, which makes it particularly useful for evaluating 
classification performance when dealing with imbalanced datasets or when simple accuracy 
might be misleading. 
Po(Observed Agreement) is the proportion of observed agreement between the model’s 
predictions and the true labels. It is typically calculated as the ratio of the number of 
agreements to the total number of instances. 
Pe (Expected Agreement by Chance) is the proportion of agreement expected to occur by 
chance. It takes into account the class distribution and is calculated as the product of the 
marginal probabilities of each class’s prevalence.  

Table 5 
Evaluation findings for several DDoS attack datasets under the CIC-DDoS2019.  

Attacks Type of Attacks Accuracy Recall Precision F1-score AUC 

MSSQL Reflection (TCP) 1.0000 1.0000 1.0000 1.0000 1.0000 
SSDP Reflection (TCP) 1.0000 1.0000 1.0000 1.0000 1.0000 
LDAP Reflection (TCP/UDP) 1.0000 1.0000 1.0000 1.0000 1.0000 
NetBIOS Reflection (TCP/UDP) 1.0000 1.0000 1.0000 1.0000 1.0000 
NTP Reflection (UDP) 1.0000 1.0000 1.0000 1.0000 1.0000 
SNMP Reflection (TCP/UDP) 1.0000 1.0000 1.0000 1.0000 1.0000 
UDP Flood Exploitation (UDP) 1.0000 1.0000 1.0000 1.0000 1.0000 
Syn Flood Exploitation (TCP) 1.0000 1.0000 1.0000 1.0000 1.0000 
TFTP Reflection (UDP) 1.0000 1.0000 1.0000 1.0000 1.0000 
UDPLag Exploitation (UDP) 0.9999 1.0000 0.9867 0.9933 1.0000  
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testing time of 0.16216 seconds, making it computationally efficient. 
Based on the results presented in the table, the Random Forest classifier 
outperforms the other ensemble-based classifiers in terms of detecting 
DDoS attacks with high accuracy, low false-positive rate, and compu
tational efficiency. And also higher for other datasets. Therefore, the 
ERF classifier in this model is the best choice for identifying DDoS 
attacks. 

The ROC curve, shown in Fig. 3, serves as a visual representation of 
the crucial trade-off between a classifier system’s TPR and FPR as the 
discrimination threshold undergoes variation during the process of 
identifying DDoS attacks [53]. In the figure, the TPR is plotted on the 
vertical axis (y-axis), while the FPR is plotted on the horizontal axis 
(x-axis), with the optimal classifier ideally achieving a TPR of 1 and an 
FPR of 0. The ROC curve in the figure showcases the performance of 
different classifiers on the CIC-DDoS2019 (DrDoS_NTP) dataset. 

The Area Under the Curve (AUC) score associated with each ROC 
curve quantifies the classifier’s effectiveness. A higher AUC score, 
approaching 1, indicates superior classifier performance [54]. Notably, 
the model with the Random Forest classifier exhibits the highest AUC 
score of 1.00000 among the evaluated classifiers. It is followed by 
Bagging, Gradient Boosting, Stacking, ANN, Gradient Boosting, KNN, 
Adaboost, SVM, LR, and GNB classifiers AUC scores. Consequently, the 
Random Forest classifier emerges as the top-performing choice for DDoS 
attack detection. Importantly, this observation holds true not only for 

Fig. 2. Model performance with classical ML classifiers and ERF.  

Table 6 
Model performance using various ensemble-based ML classifiers.  

Model with Ensemble 
Classifier 

Recall F1- 
score 

FPR Testing Time 
(seconds) 

Random Forest 1.00000 1.00000 0.00000 0.16216 
Bagging 0.99631 0.99815 0.00369 0.86145 
Adaboost 0.99631 0.99815 0.00369 0.44962 
Simple Stacking 0.99631 0.99815 0.00369 12.58364  

Fig. 3. ROC curve of the model for various classifier for CIC-DDoS2019 (DrDoS_NTP) dataset.  
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the CIC-DDoS2019 (DrDoS_NTP) dataset but also for various other 
datasets, consistently yielding nearly identical AUC scores across 
experiments. 

Table 7 presents the evaluation findings for the model used to detect 
DDoS attacks in various public datasets like CIC-IDS2018, DDoS-SDN, 
APA-DDoS, and Botnet-DDoS. These experimental results have been 
taken into account to evaluate the model’s performance across a range 
of scenarios and datasets. The model achieves a perfect accuracy of 1.0 
for all four datasets, indicating that it correctly classifies all instances in 
the test set. Similarly, the model’s recall, precision, and f1-score are all 
perfect, indicating that the model correctly identifies all instances of 
DDoS attacks without incorrectly classifying any benign traffic as an 
attack. The FPR is also 0.0 for all four datasets, indicating that the model 
does not incorrectly classify any benign traffic as an attack. The AUC is 

1.0 for all four datasets, which indicates that the model has an excellent 
performance in distinguishing between DDoS attacks and benign traffic. 
The BACC is also 1.0 for all datasets, which indicates that the model is 
equally good at correctly classifying both DDoS attacks and benign 
traffic. From the higher results for different datasets, it is clear that the 
model is highly robust and can accurately detect DDoS attacks even in 
previously unseen datasets or unknown attack scenarios. 

Fig. 4 offers an in-depth view of the confusion matrix generated from 
our analysis of the tested datasets. These matrices are exclusively asso
ciated with the test data, constituting 20 % of the entire dataset. The 
results unveiled by these matrices are undeniably impressive, as the 
model consistently demonstrates near-perfect classification across all 
four key metrics: TP, TN, FP, and FN. This remarkable accuracy serves as 
strong evidence of the model’s exceptional performance in 

Table 7 
Evaluation findings for other dataset to detect DDoS attacks.  

Dataset Accuracy Recall Precision F1-score FPR AUC BACC 

CSE–CIC–IDS2018 [39] 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 
DDoS-SDN [38] 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 
APA-DDoS [40] 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 
Botnet-DDoS [41] 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000  

Fig. 4. Confusion matrix for all tested datasets.  
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distinguishing between different classes. The precision with which it 
identifies TP, TN, FP, and FN instances underscores its robustness. Given 
these nearly flawless outcomes, it is evident that the model’s pre
dictions, when coupled with the confusion matrices, consistently yield 
highly favorable results across various evaluation metrics. 

The comprehensive evaluation of these metrics highlights the 
model’s outstanding ability to detect DDoS attacks when applied to a 
diverse range of publicly available datasets. Its consistent, high-level 
performance across these datasets underscores its reliability and effec
tiveness in identifying and mitigating such attacks. 

The findings of more evaluation metrics for the HFS-ERF model on 
various datasets for the detection of attacks with DDoS are presented in 
Table 8. These additional results have been included in the table to 
evaluate the model’s effectiveness across several datasets and to see how 
it performs under various DDoS attack scenarios and environmental 
factors. The model’s training accuracy is perfect (1.0) for all datasets, 
indicating that the model has learned the training data well. The test 
accuracy is also very high, indicating that the model is performing well 
on the unseen test data [55]. The error rate is almost zero for most of the 
datasets, which is a good indication of the model’s performance. 

The observed accuracy (Po) and expected accuracy (Pe) are calcu
lated using Cohen’s Kappa, a statistical measure of inter-rater agree
ment. Po represents the observed agreement between the model’s 
predictions and the actual values, while Pe represents the expected 
agreement by chance. In general, a higher value of Po indicates better 

model performance. The model achieved very high observed accuracy 
(Po) values ranging from 0.99999 to 1.0 for all datasets, indicating 
excellent performance in detecting DDoS attacks. Moreover, the ex
pected accuracy (Pe) values are relatively high, indicating that the 
model’s performance is not due to chance alone. 

Fig. 5 depicts the relationship between the number of trees in a 
Random Forest Classifier and the corresponding training and test ac
curacy scores. The figure presented in this analysis is derived from the 
test data of the CIC-DDoS2019 (NTP) dataset. It’s worth noting that 
similar results have been observed when applying the Random Forest 
Classifier in this model to other publicly available datasets. The X-axis 
represents the number of trees (decision trees) in the Random Forest 
Classifier. The Y-axis represents the accuracy of the model. The training 
accuracy line shows how accurately the model fits the training data as 
the number of trees in the forest increases. In this case, the training 
accuracy starts at an extremely high value (close to 1) and remains 
consistently high as the number of trees increases. The test accuracy 
demonstrates how well the model generalizes to unseen data as the 
number of trees changes. The ensemble-based Random Forest classifier’s 
optimal estimator is 10 since this number of trees results in the model 
producing the best training and test accuracy. Like the training accu
racy, the test accuracy is also very high, and it remains consistently high 
regardless of the number of trees in the forest. The high and consistent 
accuracy scores indicate that the model is capable of learning and 
generalizing effectively to make accurate predictions. The lack of a 
significant difference between training and test accuracy (overfitting) 
suggests that the model generalizes well and is not likely to suffer from 
overfitting issues [56], even with a large number of trees. These 
consistent patterns of accuracy across different datasets are indicative of 
the model’s robust performance. This consistency underscores the 
model’s ability to generalize effectively, making it a strong model for 
real-world security, especially in the context of detecting various DDoS 
attacks. 

4.3. Comparing the performance with the existing models 

Table 9 presents a comparison of different machine learning models 
for the detection of DDoS attacks, based on four evaluation metrics. Each 
model’s performance is reported for each metric, and the proposed HFS- 
ERF model outperforms all other models in terms of all four metrics. For 
comparing the performance of the, very recently published models in 
2023 are listed. In most of the models, the researchers used the CIC- 
DDoS2019 dataset. Our model provides better results for any publicly 
available datasets. Based on the results in the table, we can conclude that 
the proposed HFS-ERF model is the best-performing model for detecting 
DDoS attacks. In addition, it is effective for any type of DDoS attack 

Table 8 
Results of other metrics for the model for various datasets.  

Datasets (Type of DDoS Attacks) Training Accuracy Test Accuracy Error Rate Cohen’s Kappa 

Observed Accuracy (Po) Expected Accuracy (Pe) 

APA-DDoS 1.00000 1.00000 0.00000 1.00000 0.37583 
CSE–CIC–IDS2018 1.00000 1.00000 0.00000 1.00000 0.54348 
CIC-DDoS2019 (MSSQL) 1.00000 1.00000 0.00000 1.00000 0.99882 
CIC-DDoS2019 (SSDP) 1.00000 1.00000 0.00000 1.00000 0.99962 
CIC-DDoS2019 (LDAP) 1.00000 1.00000 0.00000 1.00000 0.99884 
CIC-DDoS2019 (NetBIOS) 1.00000 1.00000 0.00000 1.00000 0.99947 
CIC-DDoS2019 (NTP) 1.00000 1.00000 0.00000 1.00000 0.99732 
CIC-DDoS2019 (SNMP) 1.00000 1.00000 0.00000 1.00000 0.99982 
CIC-DDoS2019 (UDP Flood) 1.00000 1.00000 0.00000 1.00000 0.99955 
CIC-DDoS2019 (Syn Flood) 1.00000 1.00000 0.00000 1.00000 0.99952 
CIC-DDoS2019 (TFTP) 1.00000 1.00000 0.00000 1.00000 0.99931 
CIC-DDoS2019 (UDPLag) 1.00000 0.99999 0.00001 0.99999 0.99884 
DDoS-SDN 0.99999 1.00000 0.00000 1.00000 0.52708 
Botnet DDoS 1.00000 1.00000 0.00000 1.00000 0.99942 

Based on the results of the table for various datasets, the HFS-ERF model performs very well in detecting DDoS attacks, as shown by the high accuracy, low error rate, 
and high values of Po and Pe for all datasets. 

Fig. 5. Effectiveness of the model for different no. of trees.  
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detection for any environment. 
It is clear that the proposed DDoS detection model is effective based 

on the outcomes of the various evaluation metrics for the datasets of 
diverse environments stated above. It may also be used to identify at
tacks using DDoS from botnets and IoT devices. For currently available 
models to detect DDoS attacks, the Proposed HFS-ERF model also offers 
improved results. 

5. Conclusion and future direction 

The advanced approach presented for DDoS attack detection, 
employing a hybrid feature selection method and an ensemble-based 
Random Forest machine learning classifier, has showcased exceptional 
performance compared to existing techniques. The fusion of various 
feature selection methods and ensemble-based classifiers has yielded 
remarkable results, with near-perfect accuracy and outstanding perfor
mance across a range of evaluation metrics, making it a highly prom
ising solution for real-world DDoS attack detection. The model’s 
consistent excellence in handling diverse DDoS datasets, including 
Botnet DDoS, APA-DDoS, DDoS-SDN, and others, underscores its 
versatility and effectiveness. As DDoS attacks continue to evolve in 
complexity and frequency, the demand for innovative and efficient ap
proaches to identify and mitigate these threats has become imperative. 
The proposed model represents a significant leap in this domain and 
holds the potential to deliver substantial benefits to cybersecurity 
practitioners and organizations. Its applicability in real-time scenarios 
and its capability to effectively mitigate DDoS attack impacts ensure the 
uninterrupted availability and functionality of vital systems and 
services. 

The methodologies and principles outlined in this research can be 
extended to identify and mitigate other network threats beyond DDoS 
attacks. Investigating its applicability to various cybersecurity chal
lenges is a promising direction. Developing a comprehensive framework 
that not only detects attacks but also initiates adaptive responses and 
countermeasures in real-time can enhance network security. This pro
active approach will be pivotal in addressing evolving cyber threats. 
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