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A B S T R A C T

In recent years, with the increasing demand for intelligent society, intelligent photonics has developed rapidly. 
Machine learning (ML), as a subset of artificial intelligence (AI), has played an important role in the intelligent 
evolution of optical fiber sensors. Its impact extends beyond enhancing sensor performance by introducing 
innovative problem-solving approaches. Specifically, ML algorithms have become instrumental in signal 
demodulation and elevating the efficacy of discrete and distributed sensors, and have also greatly promoted the 
development of optical fiber speckle pattern processing. This paper presents the latest advancements in ML-based 
optical fiber sensors, outlines the problems faced by conventional demodulation methods and the common ML 
algorithms applied in optical fiber sensors, and emphasizes key applications. Additionally, this paper delves into 
the challenges and future development of this emerging research direction.   

1. Introduction

Due to advancements in powerful computing tools, hardware,
widespread use of cloud data, and the evolution of the Internet of 
Things, the accessibility of large datasets has significantly improved. 
This has promoted the emergence of many efficient machine learning 
(ML) algorithms. These algorithms, aided by continuous advancements 
in data analysis technology, have demonstrated effectiveness in training 
models and solving specific problems. If ML algorithms are complex and 
deep enough in terms of layers, then ML can become so-called deep 
learning (DL) [1]. Regardless of the name, ML seems to have a wide 
range of applications in modern society, because the achievements of 
artificial intelligence (AI) often exceed those achieved by manual con-
trol design. 

In 2021, Nature Photonics further advanced its exploration of the hot 
topic of optics/photonics through a focused issue called “Machine 
learning of Light”. As an important type of microphysics, optics seems to 
have similarities in complexity with some of the “black box” processes in 
ML. In the Q&A session, David Pille and Aydogan Ozcan discussed the 
two primary drivers behind the current application of ML in photonics 
[2]. One direction is to use AI methods on hardware to design optical 
structures and devices with specific performance. Another direction is to 
use optical systems as fully optical/hybrid statistical inference models to 
achieve AI calculations. 

Optics and photonics applied to ML computing offer unique advan-
tages, allowing for ultrafast calculations at extreme frame rates and low 
energy consumption [3–6]. For instance, Feldmann et al. [7] proposed a 
fully optical neural synaptic system. They use wavelength division 
multiplexing technology to implement a scalable circuit architecture for 
photonic neural networks (NNs) and use optical pulse signals to regulate 
the phase change materials that encapsulate neurons. This phase change 
material can regulate transmittance and reflectivity through a control-
lable laser. This system can perform both supervised and unsupervised 
learning. The work successfully demonstrates direct pattern recognition 
in the full optical system. This photonic NN has the potential to leverage 
the inherent high-speed and high bandwidth of optical systems, thereby 
enabling the direct processing of full optical communication and visual 
data. However, logic gates, computation, and NNs are all linear (passive) 
systems that cannot address nonlinear (active) issues. The lack of 
effective nonlinear optical processes as activation functions for many 
nodes poses challenges for all-optical implementation [8]. 

Compared to fully optical systems that integrate perception, storage, 
and computing, hybrid systems use optical devices as the front-end, 
combine with back-end electronic hardware systems, and optimize 
computing through software algorithms [5]. Optical devices can provide 
richer, more relevant, and more specific inputs for algorithms. This 
hybrid system will optimize algorithms to maximize trainable optical 
data utilization, significantly reducing the computational burden on 
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electronic hardware systems. In addition, how to design hybrid optical 
systems is very important. Statistical methods are usually used to 
monitor and predict the optical performance of the system, ensuring 
system robustness against issues like noise and unknown inputs. To 
ensure the performance of the optical system, ML can be used to set the 
threshold for errors generated in the optical system and optimize the 
design of the optical system [9]. Furthermore, use the laws of physics as 
prior knowledge of the ML model to connect the ideas of statistical 
learning with physical reality, enhancing the detection efficiency of 
hybrid optical systems. Hybrid measurement systems have broad pros-
pects and application prospects, improving the speed and efficiency of 
hybrid optical systems, and are one of the influential exploration di-
rections of ML in optics. 

There are various forms of front-end data acquisition devices in 
hybrid optical systems, including microscopes, cameras, and optical 
fiber sensors. Optical fiber sensors, a type of optical sensor utilizing the 
principle of total light reflection, have numerous advantages such as 
high sensitivity, low loss, low cost, ease of operation, resistance to 
electromagnetic interference, and suitability for remote and online 
monitoring [10]. Fig. 1 shows the use of optical fiber sensors to collect 
signals, which can be analyzed by ML. Optical fiber sensors can be 
categorized into discrete/point and integrated distributed types based 
on the number of sensors. Discrete sensors can achieve high measure-
ment accuracy through structural design, and can also realize multi- 
parameter sensing through surface materials design. Plug-and-play on-
line sensing and monitoring have found widespread research on the 
applications of optical fiber sensors in wearable healthcare and indus-
trial process monitoring [10]. The reason why distributed sensors are 
becoming increasingly popular is that they can continuously monitor 
objects along long-distance optical fibers, which makes them attractive 
in structural health monitoring of pipelines and bridges, production gas 
leakage monitoring, and multi-parameter detection of ocean [11]. 
Conventional demodulation methods make it difficult for optical fiber 
sensors to face problems such as nonlinear interference and limited 
measurement range. ML solves the inherent cross-sensitivity issue of 
some sensors and assists in improving their performance. Another in-
dustrial challenge that ML can help solve is the development of optical 
devices. Training models with “portability” from optical devices to other 
similar devices in production can help with large-scale manufacturing 
and assembly systems for optical products [12]. 

The existing work in ML and optical fiber sensors have focused on 
specific sensor types or applications [11,13–16], this article provides a 

broader perspective by covering various sensors and their applications 
in different fields. The next section will introduce the application and 
requirements of optical fiber sensors in hybrid optical systems. The third 
section introduces some ML algorithms, while the fourth section in-
troduces the ML algorithms applied to optical fiber sensors. Finally, a 
conclusion is drawn, elaborating on the current problems and future 
development directions of ML in the application of optical fiber sensors. 

2. Hybrid optical system based on optical fiber sensors

The article focuses on employing optical fiber sensors as the front- 
end components in a hybrid optical system. Optical fiber sensors have 
gained widespread use in monitoring systems due to their simultaneous 
transmission and sensing capabilities. With the improvement of fiber 
fabrication technology, the fiber transmission loss is reduced. Optical 
fiber-based transmission offers long-term reliability and low-cost ad-
vantages. When properly packaged, these sensors exhibit high durability 
and entail lower maintenance costs compared to electronic devices [17]. 

Optical fiber sensors are prepared in optical fibers and the most 
widely studied optical fiber sensors include optical fiber interferometer 
sensors, sensors, optical fiber Bragg grating (FBG) sensors, and optical 
fiber surface plasmon resonance (SPR) [18–20]. Optical fiber interfer-
ometer sensors have been widely studied because of their advantages of 
diverse structures and simple manufacturing. Because of the changes in 
the external environment, the effective refractive index during beam 
propagation changes. This results in a change in the optical path dif-
ference, which leads to a change in the interference spectrum. However, 
the sensitivity of general optical fiber interferometers is not high. 
Enhancing their sensitivity requires coupling the optical light propa-
gating in the fiber into the surrounding medium through methods like 
bending, etching, or misalignment [10]. However, it makes the sensor 
structure more fragile and demands a more elaborate preparation pro-
cess. The refractive index in the core of the FBG exhibits periodic or 
quasi-periodic changes along the axis, resulting in light of a specific 
wavelength (Bragg wavelength) being reflected during propagation. 
Any change in physical quantities in the sensing area will cause the 
changes in refractive index or the FBG period, which will cause a shift of 
Bragg’s reflection wavelength. However, the production of FBG requires 
expensive and complex operating systems, which makes sensing probes 
expensive to produce. Optical fiber SPR sensors are covered with a layer 
of precious metal film on the surface of the optical fiber, and the surface 
plasma wave is excited when the resonance condition is met. The 

Fig. 1. Using optical fiber sensors to collect datasets, analyzed by ML algorithms.  
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conduction band electrons on the metal surface undergo resonance after 
being excited by an external electromagnetic field, usually with high 
sensitivity. However, the SPR sensor with an all-fiber structure has a 
wide resonant bandwidth, which is not conducive to high-precision 
demodulation. 

In the common near-infrared and visible light bands, the interference 
spectrum exhibits a sinusoidal distribution in the frequency domain 
(wavelength). Strictly speaking, the interference spectrum is a sinusoi-
dal distribution of wave numbers. The conventional demodulation of the 
spectrum means that utilizes the phase and amplitude information of 
light to separate and extract the desired frequencies from the spectrum. 
Conventional demodulation methods can be divided into dynamic 
demodulation and static demodulation. Dynamic demodulation typi-
cally involves more hardware in detection systems to extract the phase 
signal of the sensor and achieve signal demodulation [21]. The static 
demodulation method is based on the analysis of intensity changes or 
shifts of interference dip and has high resolution but slow demodulation 
speed. In the interference spectrum, there are multiple interference dips 
with different orders and similar shapes. The difficulty in extracting 
spectrum features hinders the demodulation of spectrums. In addition, 
due to the limitation of the free spectrum range, the spectrum is prone to 
an “interference dip mixing” phenomenon, which limits its application 
where high sensitivity and high measurement range are required. 
Moreover, in the demodulation of multi-parameter sensors, conven-
tional methods are linear and ignore the nonlinear effects between 
measurement parameters, which limits the accuracy of demodulation. 
Demodulation of optical FBG sensors typically calculates the shift of 
Bragg wavelength. In multi-parameter measurement, a sensor array is 
formed by multiplexing the FBG sensors into one or more optical fibers. 
However, the conventional demodulation of the FBG array requires a 
fixed operating wavelength range for each sensor and the range cannot 
overlap [22]. Although the number of FBGs can be increased by using a 
wavelength division multiplexing system, it is also limited by the 
operating range and total bandwidth of the light source [23]. Using ML 
algorithms for spectrum demodulation allows automatic feature 
learning and extraction, enabling comprehensive spectrum analysis. 

Distributed sensors are a network of sensors that utilizes the ad-
vantages of optical fiber sensors for long-distance transmission and en-
ables multi-sensor multiplexing within the same system. They can offer 
high spatial resolution for temperature, strain, and acoustic detection 
[24–26]. However, in distributed transmission, the system is more sus-
ceptible to interference, leading to chaotic signals, particularly evident 
in long-distance transmission scenarios. Taking wearable sensor devices 
as an example, the human body signal patterns generated by different 
individuals are weak and only have slight differences between them. The 
longer transmission process brings more unknown interference and 
some subtle signals may be covered by noise. Successful identification of 
individuals not only requires high-quality data (such as high signal-to- 
noise ratio (SNR)) but also powerful data analysis algorithms. More-
over, in long-distance optical fiber transmission, the capacity of the 
optical transmission system is limited. Introducing compensation 
methods through conventional methods such as digital signal processing 
will increase hardware complexity. ML algorithms can achieve 
compensation for systems without increasing hardware complexity. 

Since multimode fibers (MMFs) are highly scattering media, each 
mode that propagates independently in MMFs has a different speed. 
Because the light propagates along the fiber, resulting in a mixture of 
amplitude and phase, the output of the MMF at the other end appears as 
randomly arranged bright and black spots, known as speckle patterns. 
Due to the susceptibility of different modes of propagation in optical 
fibers, this speckle pattern is highly sensitive to external interferences 
such as vibration, temperature, or strain [27]. With the development of 
optical fiber networks, the use of optical fibers as a means of image 
propagation has gained more favor, but the accompanying noise issues 
and other impacts have become the main factors limiting the propaga-
tion of high-definition images. The application of ML in pattern 

recognition or pattern reconstruction provides a faster speed and high 
accuracy for analyzing large datasets [28–30]. Provide clearer analysis 
for classifying data and processing complex data, especially in the 
demodulation of distributed signals [21]. In addition, the ML algorithm 
is suitable for signals with large degrees of freedom and has been applied 
to quantum optics [29], optical communication [28], and super- 
resolution microscopy [30]. Additionally, in the application of optics, 
ML assists in analyzing complex multidimensional and nonlinear optical 
phenomena. Modeling using conventional methods is very challenging 
and sensitive to noise. Although we can eliminate some impacts through 
the design of spatial light paths, it will increase hardware complexity. By 
using the ML algorithm, it is easier and more consistent to analyze these 
data, ultimately achieving regulation of complex processes. 

3. Examples of ML algorithms

As more and more complex process data is collected by discrete
sensors or distributed sensors, the data preprocessing procedure requires 
more advanced analysis methods to extract useful information from 
them. ML, as an important branch of AI, can effectively handle data with 
complex characteristics like multidimensional and nonstationary, and 
provide powerful tools for meaningful interpretation of sensor data [8]. 
Many algorithms have been widely applied to various learning tasks in 
different applications, achieving many achievements [31–47]. This 
paper mainly introduces several algorithms that have been applied in 
optical fiber sensors, including linear regression [31], logistic regression 
(LR)[32], gaussian process regression (GPR) [33,34], decision tree (DT) 
[35,36], random forest (RF) [37,38], support vector machine (SVM) 
[39–42], K-means [43], and NN [44–47]. Fig. 2 provides schematic di-
agrams of some of these ML algorithms. In this paper, we classify them 
into three categories: regression, classification/clustering, and NNs. By 
introducing these algorithms, one can better understand the principles 
of ML and its applications in optical fiber sensors. 

In different works [48–50], the above-mentioned methods can be 
summarized in different ways from different perspectives. For example, 
in reference [49]. The authors tend to divide the ML algorithms ac-
cording to their training process and the authors divide these methods 
into unsupervised learning, semi-supervised learning, and self- 
supervised learning. While in reference [48]. the authors tend to 
divide the methods based on their implementation purposes, Thus the 
methods are divided into regression, classification, clustering, and so on. 
While in another reference [50], the authors tend to divide these 
methods in a more specific way. As for a researcher who wants to apply 
these methods to fulfill their actual needs as quickly as possible. What 
this method can do is the most important thing that they need to know. 
Thus, classifying these methods from the functionality perspective is 
more suitable for researchers, especially for those whose own areas of 
expertise are not related to the algorithm. Thus, in this work, we will 
summarize the above-mentioned methods from the functionality 
perspective of what they are used to do. 

3.1. Regression 

Regression methods are usually used to evaluate the relationship 
between the input and the output, and then quantitatively represent 
such a relationship with a regression model. Then, with this regression 
model, one can predict one or multiple variables with the corresponding 
input information. For example, the regression model can be imple-
mented in the soft sensory task [51,52], process monitoring task 
[53,54], and content analysis task [55]. The key point of these tasks is to 
predict an important but hard to be observed variable based on the other 
observed variables. Here is a brief introduction to some typical regres-
sion methods. 

We first introduce the linear regression method, it is a simple but 
effective regression method, where the linear means that the relation-
ship between the input and the output is assumed to be linear. Usually, 
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due to the linear characteristics, the parameters of this model can be 
easily obtained. The model can be represented as a linear mapping 
function. 

Y = WX+B (1)  

where X is the input, Y is the output. W and B denote the parameters of 
this model. Usually, the parameters can be obtained by optimizing the 
loss function with least squares estimation and its loss function is usually 
denoted as: 

loss =
∑n

i=1
(yi − ŷi)2

=
∑n

i=1
(yi − (wixi + bi))2 (2)  

where the subscript i denotes the ith sample of the corresponding matrix, 
yi is the target value of the ith sample, and ŷi is the predicted value of the 
ith sample. 

The second model we introduced is LR. Although LR is also known as 
a classification method, it can be used to establish a regression model. It 
can achieve binary or multi-classification tasks by mapping the output of 
the linear regression model to a probability value. The model can be also 
represented as a linear mapping function. 

z = wTx+ b (3)  

where w and b are the parameters of this model. Before making a pre-
diction, the LR uses logical functions (such as the sigmoid function) to 
convert the output into a probability value, where the sigmoid function 
represents as: 

g(x) =
1

1 + e− z
(4) 

The third model we introduced is GPR, which is a non-parametric 
model. This model uses kernel tricks to fit the relationship between 
the input and the output. GPR will use the entire sample information to 
perform predictions. Consequently, the GPR is not suitable for fitting the 
amount of data. The GPR model is commonly used to solve nonlinear, 
low-dimensional, and small sample problems. By adjusting and selecting 
appropriate kernel functions based on demand, the best prediction 
performance can be achieved. The brief model function of GPR is rep-
resented in Eq(5). 

f (x) = GP(m(x),
∑

(x)) (5)  

where GP denotes a Gaussian process, m(x) and 
∑

(x) denote the mean 
value and the covariance value of the process. 

The prediction result of GPR is illustrated in Eq(6), where the typical 
solution and the model structure can be found in reference [56]. 

m(x*) = KT
Xx*(KXX + δ2I)− 1Y

∑
(x*) = δ2 + k(x*, x*) − kTXx*(KXX + δ2I)− 1kXx*

(6)  

where KXx* denotes the kernel matrix with the element k(X,x*), and k(X,
x*) denotes the kernel function (the kernel function is selected manu-
ally) with input pair X and x*, δ2 denotes the noise variance; Y and X 
denote the historical target value and input variables. 

3.2. Classification/Clustering 

Different from the regression, the classification and clustering 
methods tend to mark each sample with an integer so one can divide 
them into different parts based on these integers. Thus, from the func-
tionality perspective, classification and clustering methods can be 
summarized in the same class. However, there are differences between 
them. Specifically, although they are usually used to do the same task, 
which is to separate the data into different parts, their model fitting 
procedures are different. Here is a brief illustration of the differences. In 
general, classification methods need the labeled data to develop a useful 
model in advance, and this is a supervised learning procedure. The 
clustering methods only need the modeling data that comes without 
corresponding labels or responses, and this is an unsupervised learning 
procedure. Although they have differences, considering that from the 
application perspective, they can do similar tasks, we summarized them 
together in this part. Here, we provide a detailed introduction to the two 
most representative methods: SVM (classification) and K-means 
(clustering). 

The classification method SVM handles classification tasks by map-
ping data into a high-dimensional space and finding a hyperplane to 
maximize the space between different categories. As shown in Fig. 2 (b), 
the linear equation of the hyperplane is wTx + b = 0, where w is the 
weight parameter and b is the bias, it determines the distance between 
the hyperplane and the data point. Therefore, the loss function of SVM is 
indicated as: 

max
w,b

a
‖w‖

s.t.yi(wTxi + b)⩾a,∀i
(7) 

SVM has a strong ability to separate the data which is linearly 
inseparable. By selecting different kernel functions, they can transfer the 
linearly inseparable data into a high-dimensional nonlinear space, and 

Fig. 2. ML algorithms (a) Convolutional neural network (CNN), (b) SVM, (c) K-means, (d) Artificial neural network (ANN), (e) DT.  
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thus transfer the task into a nonlinear classification task. However, SVM 
also has disadvantages, which are the training cost as the data increases 
(proportional prediction time to the number of support vectors) and 
high computational complexity. 

The clustering method K-means divides the given dataset into K 
clusters, the number of K is set manually, and continuously allocates 
sample points to each cluster. During the fitting process, the method will 
update the center of each cluster after each allocation is completed, and 
the center of each cluster is calculated based on the average distance 
contained in the cluster. The target function can be represented as: 

T =
∑k

i=1

∑

xi∈wi

‖xi − ci‖2ci =
1
n
∑

xi∈wi

xi (8)  

where cj is the center of the jth cluster. 
This algorithm attempts to find the K data points that minimize the 

distance T. The specific steps of K-means are as follows: 
Input: Number of clusters K, and the dataset to be processed; 
Output: The cluster results. 
Step 1. Randomly select K samples as the center point of the initial 

cluster; 
Step 2. Divide each sample into the closest clusters; 
Step 3. Update the cluster center cj for each cluster; 
Step 4. Repeat Step 2. and Step 3. until the T converges or the cluster 

center cj is stable. 
Although this method is easy to implement, it also has disadvantages. 

In practice, it is necessary to manually set the K value. However, with the 
unreasonable K values, the clustering performance may be very poor. 
Specifically, the inappropriate selection of initial clustering center 
points may lead the model to converge to local minimum values. Be-
sides, this method converges slowly while facing large-scale data, and it 
is sensitive to outliers and noisy data. Therefore, when applying this 
method, it is necessary to choose an appropriate clustering center and 
clean the outliers. 

3.3. NNs 

Here, leaving aside the functionality of methods, based on the 
concept of reference [45,57–60], different from the regression and 
classification/clustering methods, we have a general definition for the 
NNs. A network of neurons is the composition of nonlinear functions of 
two or more neurons, where a neuron is also a nonlinear, parameterized 
bounded function. Typically, ANN [58–61], recurrent neural network 
(RNN) [62], CNN [63–66], and backpropagation (BP) network [67,68] 
all belong to the NN model. In practice, we know that different NN 
models can do different tasks, like identifying multiple different images 
and then finding out what each of them is (classification/clustering) 
[69,70], predicting a following value of a time series (regression)[71]. 
What the NN model can do depends on the model designer (Most NN 
models can only do classification tasks, since this model needs to be 
trained with labeled data). Thus, we list and introduce this model solely 
here. In practice, the NN model usually has a flexible model structure, 
which means that the number of neurons and layers can be designed and 
changed according to the requirement. Consequently, as for a NN model, 
there are too many hyper-parameters that can be adjusted, which makes 
the design of a model over complicated. Typically, for the application of 
optical fiber sensors, there are three widely used models, which are 
ANN, RNN, and CNN. We will briefly introduce them here to illustrate 
the advantages and disadvantages of the NN model. 

ANNs can also be referred to as multi-layer perceptron, as the input 
only undergoes unidirectional forward processing, hence they are also 
known as feedforward NNs. The ANN consists of the input layer, hidden 
layer, and output layer. The input layer receives the input and usually 
has one layer, the hidden layer consists of a single or multiple layers to 
process the input features according to the needs of the task, and the 
output layer is responsible for generating the result. Each layer has 

numerous neurons. Basically, each layer needs to train weights. The 
output of each neuron is the sum of the input value multiplied by the 
weight. Nonlinear activation functions can achieve nonlinearity be-
tween the input and output of neurons, enhancing the expression ability 
of ANNs. Moreover, in image classification issues, ANNs need to convert 
two-dimensional (2D) images into one-dimensional (1D) vectors. As the 
image size increases, the number of network parameters increases 
dramatically. This algorithm will also miss the spatial features of the 
image. 

RNNs add loop connections on the hidden layer, which can capture 
sequential information in input data. However, conventional RNNs still 
face the problem of being unable to capture long-term dependencies and 
gradient explosions. More advanced models such as gated recurrent 
units (GRUs) [72,73] and long short-term memory (LSTM) networks 
[74,75] have replaced conventional RNNs. Typically, GRU controls the 
flow of information through learnable gates, better capturing de-
pendencies with larger time intervals in time series. LSTM effectively 
filters redundant information using storage units, achieving more effi-
cient information extraction and avoiding the problem of vanishing or 
exploding gradients in RNNs. 

CNNs are the most common in image processing because they can 
effectively capture and recognize features in images. CNN transforms a 
sliding window on the input image and uses convolution operations to 
extract relevant features from the image, which is the function of con-
volutional layers. The pooling layer is used to reduce the size of the 
feature, reduce computational burden, and address overfitting issues 
caused by redundant features. Finally, after passing through a fully 
connected layer and unfolding into a 1D vector, the final recognition 
probability is obtained after another calculation. The final recognition 
probability assists in determining the final classification result in the 
classification task. 

All the models tend to fit an accurate relationship between the input 
and the output, and thus, it is important to evaluate the accuracy of the 
fitting result. Besides, in practice, these evaluation indexes are usually 
set as the loss function of these models. Specifically, a suitable loss 
function can benefit the training process and thus one can obtain a 
model with good performance. Researchers choose different indicators 
according to different needs. The following is an introduction to several 
common evaluation indicators. R2 is the correlation coefficient, which 
indicates the degree of agreement between experimental data and the 
fitting function. The closer the R2 value is to 1, the higher the consis-
tency, and the closer it is to 0, the lower the consistency. R2 is repre-
sented as: 

R2 = 1 −

[∑n
i=1(yi − ŷi)2

∑n
i=1(yi − y)2

]

(9)  

where y is the average value. R2 is suitable for LR models, but its limi-
tation is that it only considers the relationship between the dependent 
variable and the independent variable, without considering other 
influencing factors. Therefore, when choosing R2, it is necessary to 
consider whether the model only explains a portion of the variation in 
the data. 

The mean absolute error (MAE) is used to measure the average ab-
solute error between predicted values and real values. A smaller MAE 
indicates a better model. MAE is represented as: 

MAE =
1
n
∑n

i=1
|yi − ŷi| (10) 

MAE is more sensitive to outliers as they can seriously affect the 
average error. However, the calculation of MAE is relatively simple and 
has good applicability for continuous variable data. 

The mean square error (MSE) is expressed as: 
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MSE =
1
n
∑n

i=1
(yi − ŷi)2 (11) 

MSE is the average square of the prediction error, with a higher 
penalty for larger errors. The result of MSE differentiation is easier to 
calculate than MAE, so MSE is usually used as the loss function when 
training NNs and other models that require differentiation. MAE is 
commonly used for regression problems, while MSE can be used for both 
regression and classification problems. 

Root mean squared error (RMSE) is the square root of MSE. RMSE is 
used to measure the deviation between the predicted value and the real 
value. RSME is represented as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)2

√

(12) 

RMSE imposes significant penalties for large errors. In RMSE, the 
error is squared before averaging, which means that RMSE assigns 
higher weights to larger errors. This indicates that RMSE is more useful 
when there are major errors that greatly affect the performance of the 
model. 

Choosing appropriate indicators needs to be considered based on 
specific application scenarios and models. MAE, MSE, and RMSE are 
mainly used in regression problems to measure the error between pre-
dicted and actual values. The smaller the MSE, RMSE, and MAE, the 
better the performance of the regression model. R2 is suitable for eval-
uating the degree to which the model interprets the data; MAE is suitable 
for continuous variable data; MSE is suitable for situations that are 
sensitive to errors; RMSE is suitable for evaluating the performance of 
regression models compared to other stochastic models. 

4. Application of ML in optical fiber sensors

The steps of using ML for spectrum demodulation are shown in Fig. 3,
including data acquisition, data preprocessing, feature extraction, model 
selection and training, model evaluation, and model application. Data 
acquisition is the collection of raw spectrums under different responses 
using a hybrid optical system. Data preprocessing is aimed at improving 

data quality, including steps such as noise elimination, filtering, and 
spectrum smoothing. Feature extraction often involves extracting the 
most relevant feature information to the target response from complex 
spectrums, with principal component analysis being the most commonly 
used. Model selection and training include selecting appropriate ma-
chine learning algorithms to train the extracted features and establishing 
predictive models. Model evaluation is the process of selecting appro-
priate evaluation indicators based on objectives to evaluate a model, and 
optimizing the model based on the evaluation results to improve pre-
dictive performance. The model application uses trained models for 
tasks such as predicting and classifying unknown spectrums. In spectrum 
demodulation, the training and evaluation of models are usually carried 
out separately, by dividing the data into training and testing sets. The 
training set is used to train the model, while the test set is used to 
evaluate the performance of the model. Compared to the million-level 
datasets obtained from industrial sites, the sample sizes involved in 
spectrum demodulation are relatively small. For small-scale data, the 
data is usually divided into 60 % − 80 % of the training set, and the rest is 
used for the testing set. To better adjust the model, a validation set can 
also be added. The usual partitioning ratio is to use 70 % − 80 % of the 
data for the training set, 10 % − 15 % for the validation set, and the 
remaining portion for the testing set. This ratio can be adjusted based on 
the complexity of the specific task and the amount of available data. 

The entire process of using ML algorithms for spectrum demodula-
tion not only requires knowledge of spectroscopy, ML, and data pro-
cessing but also requires expertise in experimental design and data 
analysis. In practical applications, data labeling and model overfitting 
issues also need to be considered to ensure the accuracy and reliability of 
the results. 

4.1. Discrete/Point optical fiber sensors 

Discrete/point sensors have a relatively clear signal compared to 
distributed sensors. However, taking interferometric sensors as an 
example, when their sensitivity is high or the measurement range is 
large, there will be an “interference dip mixing” phenomenon. Con-
ventional demodulation methods cannot solve this problem, which 
limits the sensor’s application in situations where high sensitivity and 
large measurement range are required. In multi-parameter sensing, 
conventional linear demodulation methods cannot solve the impact of 
nonlinear effects between different measurement parameters. ML algo-
rithms can not only conveniently solve those problems, but also effec-
tively reduce noise in different applications. To facilitate an intuitive 
comprehension for readers, we have summarized the sensors mentioned 
in this section from the algorithm types, sensor types, measurement 
objects, sensitivity, and algorithm effects. The summary is presented in 
Table 1. 

4.1.1. Demodulation performance 
There are two conventional demodulation methods for discrete op-

tical fiber sensors: static demodulation and dynamic demodulation. 
Static demodulation limits the speed of demodulation, while dynamic 
demodulation brings higher complexity hardware requirements, which 
is not conducive to the development trend of real-time, miniaturization 
and portability of sensing systems. With the assistance of ML, the signal 
demodulation process of sensors is not only more convenient, but also 
brings improvements in demodulation accuracy, measurement range, 
and anti-interference performance to the sensors. 

To achieve a larger dynamic range, Yin et al. utilized nonlinear 
regression to demodulate the spectrum of the interferometric optical 
fiber sensors [76]. However, they are only focused on nonlinear 
regression in a polarization state, with each polarization state corre-
sponding to different parameters. The increase in polarization state not 
only easily reduces measurement accuracy, but also requires the use of 
polarization maintaining fibers or the addition of polarizers to ensure 
the existence of only one polarization, which increases the system costs. Fig. 3. Machine learning based spectrum demodulation flowchart.  
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Table 1 
Discrete/point sensors combined with different ML algorithms.   

Type of 
algorithm 

Structure Measurement Sensitivity Evaluation of model performance Ref 

Demodulation 
performance 

ANN SMF-NCF-HCF-SMF Curvature 
(Regression) 

16.34 dB/m− 1 Expand dynamic range from 0.5-1.5 m-1to 
0.5–3.87 m− 1 

[77] 

ANN SMF-HCF-SMF Curvature 
(Regression) 

– Expand dynamic range to − 13.67–13.67 m− 1 [78] 

GPR FP Strain 
(Regression) 

288 kHz/με Simplify the hardware design of the detection 
system 

[79] 

LSTM Michelson 
interferometer based 
on SMF 

Glycerol 
concentration 
(Classification) 

– Accuracy of 97.5 % [80] 

SSA-LSTM SMF Stress 
(Regression) 

0.286 rad/MPa Expand the measurement range (to 3492 με) and 
improve the accuracy 

[81] 

GAF-LSTM Side hole fiber Pressure 
(Regression) 

20.57 nm/MPa R2 was 0.9999908 and RMSE was 4.365 × 10-3 

MPa 
[83] 

K-NN SMF Liquid volume 
(Regression) 

RMSE of 0.211 mL Accuracy of 99.4 % [84] 

SVM ECF Directional bending 
(Classification) 

– 100 % identified accuracy and estimated the 
flexible rod trajectory 

[85] 

SVM FP (SMF-SMF-SMF) Reflective index 
(Classification) 

– Large measurement range and anti-interference [86] 

ANN FP (UV glue, hollow 
silica tubes, and SMF) 

Pressure 
(Regression) 

– Reconstruction error of 0.039 nm [88] 

ELM FBG Strain 
(Regression) 

– Reduced the offline training time and enhanced 
the detection accuracy 

[89] 

QPSO- 
KRELM 

FBG Strain 
(Regression) 

– Few sample points provide high precision [91] 

CNN TFBG Reflective index 
(Regression) 

MSE was 2.818 × 10− 7 

RIU 
Test accuracy of 99.82 % [92] 

GPR FBG Weight 
(Regression) 

The average error in 
weight estimation of 
2.7 g 

improve the measurement speed and accuracy [93] 

DT FBG Strain 
(Classification) 

– Accuracy of 94 % [94] 

OS-ELM FBG Temperature 
(Regression) 

The absolute error of 
the long/short-term 
stability 
of ~0.5 ℃ 

Improved the accuracy and generalization 
performance 

[96] 

CNN FBG Temperature 
(Regression) 

MSE was 0.1080 ◦C Accuracy of 99.95 % [97] 

DT FBG Temperature 
(Regression) 

– Accuracy of 99.83 % [99] 

GPR FBG Temperature 
(Regression) 

– Lower error and higher detection accuracy [100] 

Multiparameter 
demodulation 

MUSIC and 
NN 

SMF-MMF-SMF Strain and 
curvature 
(Regression) 

– R2 values of 0.994 [101] 

K-NN Four FBG Magnetic 
field position and 
intensity 
(Regression) 

– Accuracy of magnetic field position classification 
was higher than 86 %, and the error of intensity 
estimation was less than 5 % 

[102] 

Gradient 
boosting 

FBG Strain and 
temperature 
(Regression) 

– Accuracy of 90 % [103] 

SVR Tapered fiber half- 
covered with PDMS 

Temperature, 
salinity, and pressure 
(Regression) 

− 2.312 nm/℃, 0.631 
nm/‰, and 3.775 nm/ 
MPa 

Errors of TSP were 10.67 %, 5.25 % and 16.76 %, 
respectively 

[104] 

NN TFBG Strain and 
temperature 
(Regression) 

– RMSEs were 2.31 ℃ and 21.84 με [105] 

K-NN U shaped fiber Curvature and 
pressure 
(Regression) 

– Accuracy of 99.375 % [107] 

SVR PDMS covered SMF- 
MMF-SMF 

Radial artery and 
brachial artery 
(Regression) 

The average deviation 
was 0.06 mmHg and 
standard 
deviation was 1.54 
mmHg 

R2 values of 0.98 [108] 

BP Two FBG Force and 
temperature 
(Regression) 

9 pm/N and 9.32 pm/ 
℃ 

Gesture recognition accuracy of 97.02 % [109] 

CNN FBG Curvature and 3D- 
shape 
(Regression) 

– Accuracy of 91 % [110]  
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Zhu et al. designed a highly sensitive curvature sensor and established a 
simple ANN to demodulate the spectrum [77]. They addressed the 
limited dynamic range problem in conventional phase demodulation 
methods by establishing a one-to-one correspondence between ML and 
curvature. The dynamic range of sensors in the range of 0.55 to 1.45 m− 1 

was extended to 0.55 to 3.87 m− 1. Based on this idea, a structure of fused 
capillary tubes between two single-mode fibers (SMF) was prepared, and 
ANN was used to achieve wide dynamic range directional bending 
sensing without sacrificing sensor performance [78]. Moreover, by 
reducing sampling points (as shown in Fig. 4 (a), (b)) and inputting 
different wavelengths spectrum (as shown in Fig. 4 (c), and (d)), the 
ANN model was used to analyze the sensor spectrum. The results show 
that ML-based analysis does not require careful selection of the band-
width of the light source and the resolution of the spectrometer. Fig. 4 
(e) shows the error histogram between the real curvature and predicted 
curvature obtained from the model, which indicates most of the data 
samples were predicted with an error of less than 0.07 m− 1. Zhu et al. 
utilized the overlap of vernier interferograms and micro delay vernier 
interferograms to obtain data through the self-vernier effect [79]. The 
application of GPR significantly reduces the frequency observation 
range and the sampling points number, which improves the measure-
ment speed without affecting the sensor measurement accuracy. Fig. 4 
(f) is an overview of the algorithm. 

Unlike conventional RNNs, LSTM effectively filters redundant in-
formation using memory units, leading to more efficient information 
extraction. Xue et al. prepared a Michelson interferometer, and to 
improve demodulation accuracy and avoid the impact of tilt angle se-
lection on a measurement range and demodulation accuracy [80], the 
LSTM algorithm was used for demodulation. Fig. 5 (a) shows the com-
parison of real data and predicted results, the insert is the RMSE (red) 
and loss function (blue) during the training process. Compared with 
conventional peak wavelength tracking, it was more stable and accurate, 
achieving a prediction accuracy of 97.5 %. Yu et al. designed a new 
strain demodulation model based on the LSTM algorithm and used the 
sparrow search algorithm (SSA) to optimize the LSTM model [81]. The 
addition of a sparrow search algorithm effectively reduces the feature 
extraction time of the network and reduces noise interference by 

extracting features more relevant to test parameters, preventing LSTM 
from falling into local optima. The optimized demodulation model can 
accurately illustrate the relationship between the strain applied to the 
sensor and the phase difference. The demodulation sensitivity has been 
increased from 0.257 rad/MPa to 0.286 rad/MPa. However, the sample 
size was relatively small, the amplitude of gestures changed signifi-
cantly, and the signal features were pronounced. Filosadengren et al. 
proposed a wearable FBG device for predicting respiratory flow, using 
LSTM to construct a prediction model [82]. The RMSE of the test set was 
10.99 L/min when only two FBGs were used. The work considers 
breathing situations under different postures but does not consider the 
additional pressure on FBG sensors during additional challenging ac-
tivities such as exercise. More heterogeneous subjects and more respi-
ratory behaviors should be considered to improve the performance of 
the sensing system. Mei et al. used an improved LSTM to expand the 
measurement range of optical fiber pressure sensors [83]. They used a 
low-cost spectrometer to record and construct 1D spectrum data using 
scaled spectrum intensity, the LSTM model predicts an R2 of 0.9996148 
and RMSE of 2.559 × 10-2 MPa. Fig. 5 (b) is the schematic structure of 
the LSTM memory block. Utilizing the Grauman angle field (GAF) 
enhancement of the LSTM algorithm to obtain 2D data, reveals more 
relevant information by establishing 2D data compared to the 1D 
spectrum. The improved model R2 was 0.9999908 and RMSE was 4.365 
× 10-3 MPa. Compared with the model trained on the 1D spectrum, the 
prediction error of this model had increased by nearly an order of 
magnitude, but the demodulation speed has slowed down. In practical 
applications, a balance needs to be made between accuracy and speed. 

The assistance of ML algorithms can help researchers achieve more 
accurate classification. Duque et al. studied liquid volume measurement 
of optical fiber sensors [84]. The accuracy of using k-nearest neighbor 
(k-NN) to determine liquid volume was 99.4 %. Manuel et al. collected a 
specific spectrum of multimode elliptical core fibers (ECFs) under 
different bending degrees and used SVM for identification [85]. Fig. 5 
(c) is the schematic diagram of the entire experimental system and 
process of the algorithm. The motion trajectory of the flexible rod can be 
estimated through algorithms. Rodolfo et al. used SVM to eliminate the 
ambiguity in sample measurements between effective refractive indices 

Fig. 4. (a) 501 points, (b) 21 points, (c) 1540–1560 nm, (d) 1590–1610 nm, (e) Error histogram [78], (f) Overview of sensor GPR demodulation methods [79].  
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above and below the fundamental mode of optical fiber sensors [86]. 
Moreover, they eliminated the influence of light source intensity on the 
spectrum (as shown in Fig. 5 (d) and (e)). While their approach showed 
promising results with 10 experimental samples, its limitation lay in 
focusing solely on discrete measurement objects. The transferability of 
ML models is also an important criterion for measuring the practicality 
of demodulation methods. Chubchev et al. utilized the ML algorithm to 
assist in SPR sensor data processing [87]. The model realized the transfer 
between different sensors produced with the same process parameters 
and achieved a resolution of 10-6 RIUs in the demodulation of sensors 
not involved in model training. However, its transferability was limited, 
it was only suitable for the spectrum characteristics between sensors (as 
shown in Fig. 5 (f)) were still similar. Ren et al. proposed a simple 
spectrum reconstruction method that utilizes an optical system to 
convert the spectrum into transmission intensity, which reduces re-
quirements for optical instruments [88]. The model based on ANN 
learned the nonlinear relationship between intensity signals and spec-
trums, achieving spectrum reconstruction. This work supplements the 
entire spectrum by adding an unsupervised linear unit to the network, 
based on nonlinear relationships and masking labels, without the need 
for additional labeling or computational work. The experimental 
reconstruction error was 0.039 nm, and the reconstruction range was 73 
nm. 

The spectrum changes caused by the external environment in FBG 
sensors are mainly reflected in the shift of Bragg wavelength. The con-
ventional demodulation methods calculate the shift of wavelength to 
determine the changes in the measured object. ML algorithms directly 
achieve one-to-one mapping between spectrum and measurement pa-
rameters, while reducing the requirements for instruments. Jiang et al. 
established a regression model and solved the detection problem of 
Bragg wavelength in FBG sensing networks using extreme learning 

machines (ELMs). Fig. 6 (a) shows the sensing principle diagram [89]. 
The Bragg wavelength of the sensor can be accurately detected even 
when the FBG spectrum overlaps entirely. ELM is an improved algorithm 
based on single hidden layer (SHL) feedforward networks. ELM pro-
duces better generalization performance by obtaining the minimum 
weight norm and runs fast. The training time of ELM was 56.14 times 
faster than that of the least squares support vector regression (LS-SVR). 
The inspection times for ELM and LS-SVR were 0.215 s and 0.578 s, 
respectively. Elliathy et al. used adaptive threshold algorithms to assist 
FBG based strain detection in low SNR scenarios [90]. When the ratio of 
the short-term window average energy to the long-term window average 
energy of the signal exceeds the set threshold, a peak was detected and 
interference was identified using LR. The adaptive threshold improves 
classification performance, with an accuracy of 99.17 % when the SNR 
was less than 0.5 dB. Xu et al. proposed a FBG demodulation method 
based on a quantum particle swarm optimization kernel regularized 
ELM (QPSO KRELM) [91]. As shown in Fig. 6 (d), (e), (f), and (g), the 
proposed algorithm provides higher demodulation accuracy compared 
to others. The use of the QPSO algorithm overcomes the problem of the 
difficult selection of KRELM hyperparameters and reduces the impact of 
artificial experience on model demodulation accuracy. Reducing the 
sampling point from 126 to 25 can also achieve high-precision demod-
ulation. Cao et al. proposed a new tilted fiber Bragg grating (TFBG) 
sensor spectrum demodulating method using residual block CNN [92]. 
The model can be applied to the demodulation of under the same process 
parameters sensors with slight spectrum differences through transfer 
learning, and can still maintain a high MSE at low sampling rates. Pal 
et al. analyzed the performance of FBG strain sensors using linear 
regression, SVM, NN, and GPR, as shown in Fig. 6 (h), (i), (j), and (k) 
[93]. The prediction accuracy of these four algorithms was compared. 
Mapping between sensor Bragg wavelength changes and application 

Fig. 5. (a) Comparison of actual and predicted data of different samples (insert is the RMSE and loss function) [80],(b) Schematic structure of LSTM memory block 
[83], (c) Schematic diagram of the experimental system and algorithm [85], (d) Detection signals under different light source intensities, (e) The detection signal 
after performing self-reference processing [86], (f) Transmission spectrum of different sensor [87]. 
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weights through ML to improve accuracy and measurement range. 
Pegorini et al. established a classification system for experimental 
chewing patterns in ruminants [94]. The FBG sensor measures the 
biomechanical strain during mandibular movement, and DT was 
responsible for classifying the relevant chewing patterns. In the exper-
iment of identifying 5 chewing processes, the pattern classification al-
gorithm achieved an accuracy of 94 %. 

The calibration process of FBG sensors is crucial to optimizing sensor 
performance. There is a nonlinear relationship between Bragg wave-
length and temperature, and the manufacturing process also affects the 
sensor’s dependence on temperature [95]. Therefore, it is necessary to 
calibrate the fiber Bragg grating sensors. Shang et al. continuously 
updated the dynamic calibration model using online sequence limit 
learning machines, reducing computational complexity and improving 
prediction speed [96]. The absolute error of both long-term and short- 
term stability experiments was about 0.5 ℃. During the detection pro-
cess, the model did not require further training but was constantly 
updated, reducing tedious calculations and improving prediction speed. 

Real-time samples can continuously help improve the model, solving the 
problem of insufficient training samples during static calibration. This 
method enhances the long-term stability of FBG sensors, ensuring model 
prediction accuracy and generalization ability. Cao used CNNs to 
demodulate the FBG spectrums, with a measurement accuracy of 99.95 
% and the MSE of 0.1080 ℃ [97]. Ren et al. utilized a genetic algorithm 
(GA) optimized SVR to achieve high-precision rapid demodulation of 
large-scale temperature changes [98]. As shown in Fig. 7 (a), the 
training and testing stages of the GA-SVR model. Obtain the external 
environmental temperature and growth rate when the external envi-
ronment reaches thermal equilibrium from the transient spectrum. The 
algorithm can predict external environmental temperature before the 
FBG reaches thermal equilibrium. The detection range of the sensor was 
expanded to 400–1000 ◦C, with an accuracy of 4.8 ◦C above 700 ◦C. The 
demodulation time has been reduced to about 15 s, which was only 3.14 
% of the time for the sensor to reach thermal equilibrium. Fig. 7 (b) and 
(c) show the percentage error and RMSE of different external environ-
mental temperatures, respectively, indicating that the demodulation 

Fig. 6. (a) Schematic diagram system (up) and spectrum of the sensor (down) (b) different strains were applied to FBG2, the Bragg wavelengths shift of the two FBGs, 
(c) Input and output after applied the ELM [89], generalization performance comparison of the (d) centroid, (e) curve fit, (f) BP, and (g) QPSO-KRELM [91], 
comparison between the (h) linear regression, (i) SVM, (j) NN, and (k) GPR [93]. 

Fig. 7. (a) Training and testing stages of the model, (b) RMSE, and (c) Error percentage at different external temperatures [98].  
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accuracy of this method was close to the actual situation. Dhanalakshmi 
et al. used FBG to monitor the temperature of solar photovoltaic panels 
and compared the demodulation performance of linear regression, RF, 
and DT. The hyperparameter tuning assisted DT algorithm achieved the 
best results with an accuracy of 99.83 % [99]. Djurhus et al. proposed an 
alternative algorithm for temperature measurement signal processing 
based on FBG, which uses GPR to provide more accurate temperature 
calculations when there were fewer sampling points in the spectrum 
[100]. Due to the less time required for measurement, this algorithm 
helps to perform queries faster. 

The conventional spectrum acquisition and processing of discrete 
sensors are independent, and the accurate and fast identification of 
multi-point discrete signals poses challenges to conventional methods. 
From the above works, compared with conventional demodulation 
methods, the ML algorithm not only improves the measurement range, 
and achieves higher demodulation accuracy without sacrificing sensor 
performance. The assistance of the ML algorithm eliminates the influ-
ence of noise, making prediction results more accurate than conven-
tional demodulation methods. Even with fewer sampling points (less 
measurement time and lower instrument requirement), they can achieve 
reliable accuracy. 

4.1.2. Multiparameter demodulation 
Multi-parameter sensors have complex structures, which leads to 

greater noise impact on the spectrum, and conventional demodulation 
methods also need to consider the sensitivity matching between 
different parameters. These problems bring more difficulties to the 
multi-parameter demodulation of optical fiber sensors using conven-
tional demodulation methods. 

Ushakov et al. improved the processing efficiency of interference 
signals by using the MUSIC algorithm and used NNs to predict signal 
components from the covariance matrix distribution of the signal to 
improve the anti-interference performance of the original signal 
demodulation [101]. Compared with the fast Fourier transform pro-
cessing method, it was more suitable for multi-parameter perception and 
improved tuning accuracy. However, the algorithm analyzed the linear 
response and did not consider the phenomenon of multi-parameter 
cross-nonlinear optics. Moreover, the model’s accuracy can also be 
enhanced by prior knowledge judgment or other algorithm assistance. 
Leal et al. proposed a sensor based on ML assistance that utilizes an array 
of four FBGs to simultaneously measure magnetic field position and 
intensity [102]. By using the K-NN algorithm, the Bragg wavelength 
shift was calculated and the magnetic field position was classified. 
Estimated magnetic field intensity through signal changes in the FBG at 
the closest magnetic field position. Because the signal change of the 
nearest FBG was the most significant. The accuracy of the position 
classification was higher than 86 %, and the relative error of the mag-
netic field intensity prediction was less than 5 %. Sarkar et al. reduced 

the variance of the model by using bagging and RF averaging, enhanced 
it using AdaBoost and gradient tree enhancement algorithms, and made 
the final prediction by sequentially combining multiple weak prediction 
factors, reducing the algorithm’s bias [103]. Fig. 8 (a) reveals the basic 
model of the boosting method. The algorithm uses the independent 
estimator to train the training spectrum dataset and combines the results 
of all estimators to make the final prediction. Fig. 8 (b) presents the 
comparison of the testing and training errors for the four types of 
methods on both experimental and simulation data. The experimental 
results have shown that the model is stable and well fitted, and the 
difference between the testing and training errors of the algorithm was 
less than 10 %. This achieved 90 % accuracy in predicting strain and 
temperature. 

Compared to conventional demodulation methods, ML algorithms 
can provide more accurate demodulation. Liu et al. developed an optical 
fiber sensor for the detection of the temperature, salinity, and pressure 
(TSP) of the ocean [104]. Due to the impact of cross-sensitivity on signal 
demodulation, a combination of SVR and sensitivity matrix method was 
used to reduce measurement errors in the multi-parameter demodula-
tion process. The errors of TSP measurement were 10.67 %, 5.25 %, and 
16.76 %, respectively. Fig. 9 (a), (b), and (c) show the comparison of 
predicted TSP with electronic device measurement results. Because the 
sensitivity between the three parameters was not on the same order of 
magnitude, there may be differences in errors under the same demod-
ulation method. Kikuchi et al. used NNs and SVR to determine tem-
perature and strain from the transmission spectrum [105]. Compared 
with the demodulation method of calculating the shift of interference 
dip, this algorithm had higher accuracy and was less than one-fifth of the 
RMSE value obtained by other methods (Fig. 9 (d) and (e)). Reyes used 
plastic optical fiber sensors to collect spectrum in gait classification 
experiments [106]. 14 different models analyzed the experimental re-
sults. Among them, the RF model with adjacent mean features had the 
best classification performance, with an average validation score of 
90.84 % ± 2.46 %. The monitoring of curvature was crucial for 
geotechnical structures, bridge safety, and building safety. Huang et al. 
developed a flexible optical fiber curvature sensor that combines light- 
emitting diodes and photodetectors to form a measurement system 
[107]. Bending the optical fiber will change the spectrum intensity. 
Using supervised learning algorithms including K-NN, SVM, LR, and 
unsupervised learning algorithms K-means for classification, almost all 
algorithms have demodulation accuracy above 85 %. The classification 
results of the K-NN algorithm are shown in Fig. 9 (h), (i), and (j). 

Human health monitoring is a dynamic process, and due to the 
complexity of the measurement environment and the diversity of feature 
parameters, signal demodulation of multi-parameter human health 
sensors poses challenges. Pang et al. proposed a dual channel inter-mode 
interferometer sensor encapsulated in polydimethylsiloxane (PDMS) for 
simultaneous detection of brachial and radial artery blood pressure 

Fig. 8. (a) Overview of boosting method;(b) Comparison of training and testing errors for applied four algorithms on simulation and experimental datasets [103].  
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[108]. Continuous quasi-lateral monitoring of systolic and diastolic 
blood pressure through SVR achieved the effect of predicting the subject 
blood pressure. However, their implementation was to detect objects 
under static conditions without considering the unexpected situations in 
the dynamic process of human motion and actual usage environment. Li 
et al. developed a wearable flexible optical fiber sensor by weaving FBG 
sensors with yarn [109]. A gesture recognition program based on 
wearable sensors was developed using dual FBG signal acquisition and 
BP model, with an accuracy of 97.02 %. With the long-term monitoring 
of wearable sensors, with many available signals collected, the behavior 
patterns of the wearer can be determined through classification feed-
back, and timely intervention can be taken when assistance is needed. 
Gruionu et al. reconstructed the three-dimensional (3D) path of the FBG 
probe through CNNs to verify the feasibility of a FBG-based pulmonary 
airway navigation system for early cancer diagnosis [110]. The average 
prediction accuracy for identifying 10 lung airways was 91 %, with a 
standard deviation of 5 %. The entire instrument did not require radi-
ation or electromagnetic navigation and meets non-invasive biopsy re-
quirements, providing new feasible solutions for the health, low-cost, 
and miniaturization of medical equipment. 

Compared with linear static demodulation or dynamic demodulation 
methods, the ML algorithm using nonlinear compensation provides 

higher demodulation accuracy without increasing hardware complexity, 
and improves the learning speed of multi-parameter demodulation, 
achieving one-to-one correspondence between input and output. The ML 
demodulation is not limited by the conventional demodulation method 
to match the multi-parameter sensitivity of the sensor. The accuracy of 
ML in signal classification has also been verified. 

To better facilitate readers’ understanding, we have summarized the 
algorithms appearing in Table 1 according to different abilities in 
Fig. 10, and it can be seen that NNs are the most frequently used model. 
The good adaptability, nonlinear mapping ability, self-learning, self- 
organization, and self-adaptability, make it more preferred in the 
spectrum demodulation of point optical fiber sensors. 

4.2. Speckle patterns processing 

Compared to electrical imaging, optical imaging transmits different 
modes through optical fibers and outputs speckle patterns with different 
characteristics. These patterns measure the amplitude and phase of each 
input mode corresponding to the output mode, constructing a complex 
matrix for demodulation [111,112]. However, this method introduces 
an external reference beam into the fiber output to generate an inter-
ferogram and extract complex light fields (amplitude and phase) from it. 

Fig. 9. Comparisons of SVM predicted (a) temperature, (b) salinity, and (c) pressure with electronic device measured results [104], (d)temperature and (e)strain 
RMSEs of different algorithms at different peak numbers, (f)cross-section of the lower jig, (g) photograph of a test rig [105], Clustering results in recognition for (h) 
object shape, (i) weight, and (j) size [107]. 
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Careful phase tracking is required to correct phase drift, which makes 
the implementation more complex. To address these challenges, a 
speckle pattern demodulation algorithm based on ML has been pro-
posed, mainly focusing on deep CNNs. In contrast to conventional dense 
neural networks, CNN uses convolutional operations within the neural 
network layer instead of general matrix multiplication [113], Inspired 
by biological processes in visual perception. CNN has achieved great 
success in computer vision, making it natural to study the use of them for 
speckle pattern reconstruction. 

4.2.1. Interference identification 
The primary challenge faced by optical fibers to transmit the speckle 

pattern signals is the susceptibility to external interference, impacting 
signal authenticity and recognition at the output. Gu et al. etched a se-
ries of fluid channels on optical fibers to enhance the interaction be-
tween light and detection object [114]. They used a CNN model to 
classify the speckle patterns (Fig. 11 (a)). The demodulation accuracy 
reached 99.68 % within the refractive index range of 13326–1.3679. 
When external disturbances affect transmission, it is particularly 
important to figure out the bending degree and disturbance position of 
the optical fiber to guide how to solve the problem. Lu et al. introduced a 
plastic fiber bending sensor capable of detecting multi-point bending 
without additional hardware [115]. Using CNN to classify output 
speckle patterns under different bending states. When the bending range 
was 15◦, 10◦, and 5◦, the recognition accuracy of the model was 99.2 %, 
96.1 %, and 93.5 %, respectively. Fig. 11 (b) shows the speckle patterns 
and feature maps extracted by CNN. However, ensuring the stability of 
the entire experimental system remains crucial during experiments. The 
system’s instability may lead to fluctuating speckle patterns, impacting 
the accuracy of speckle recognition. This underscores the algorithm’s 
need to consider anti-interference measures for reliable performance. 
Cuevas et al. investigated the problem of using speckle patterns to locate 
the external disturbances of optical fiber sensors [116]. When using CNN 
to process collected speckle patterns, it was necessary to classify them 
between 3 different positions, with a classification accuracy of up to 99 
%. When the number of positions increases, any minor modifications to 
environmental conditions or alignment of the optical fiber with the 
camera will result in significant misclassification. It had been observed 
that disturbance identification generated near the sensing element was 
more accurate, which may be due to higher light intensity and more 

Fig. 10. Bar chart of algorithms summarized by function in Table 1.  

Fig. 11. (a) Speckle patterns correspond to different refractive indexes [114], (b)Visualization of speckle grams and CNN extracted feature maps [115], (c) Time 
domain waveforms of the seven events and their grayscale images, ROC curves of (d) handcrafted model, (e) 2D-CNN model, (f) 2DCNN-LSTM model [118]. 
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pronounced characteristics compared to small signals that propagate 
further. Yang et al. used speckle patterns to characterize pattern inter-
ference changes caused by curvature in optical fibers and used CNNs to 
identify bending states and disturbance positions [117]. The trained 
model exhibited an accuracy of 99.13 %. The classification accuracy of 
the model was similar on both the training and testing sets, indicating 
that the model had satisfactory generalization ability. Sun et al. devel-
oped an improved algorithm based on a serial fusion feature extraction 
model [118]. This approach transformed time-domain signals into 
grayscale images and extracted convolutional features within each 
frame and temporal features between frames. Identification of 7 com-
mon sensing modes (as shown in Fig. 11 (c)) collected from vibration 
systems based on optical fiber. This algorithm can automatically extract 
effective features and perform precise recognition, as shown in Fig. 11 
(d), (e), and (f). The 2D-CNN-LSTM model shows better performance. 
The average accuracy of this algorithm reached 96.16 %. The recogni-
tion response time of each sample was reduced to 11 ms. 

Using ML algorithms for speckle patterns demodulation not only 
achieves anti-interference, and enhances sensor robustness, but also 
facilitates interference source identification, ensuring more precise 
recognition and resolution. Moreover, ML-based approaches signifi-
cantly enhance response times compared to conventional methods. 

4.2.2. Pattern reconstruction 
In recent years, the development of endoscopes for image trans-

mission utilizing lightweight and compact optical fibers has gained 
traction. The application of CNN in complex speckle pattern recon-
struction caused by modal mixing and modal dispersion has long been 
confirmed. However, multimodal transmission in MMF may lead to 
stacking and dispersion, which does not affect individual points but 
rather the entire transmitted image [119]. CNN performs well in local 
features but performs poorly in global feature processing [120]. 
Generally speaking, the greater the difference in features between the 
test set and the training set, the worse the model performance will be. 
How to improve CNN or preprocess collected data to improve perfor-
mance may become a solution. 

Rahman et al. demonstrated that CNN can learn the nonlinear rela-
tionship between the amplitude (phase information loss) of speckle 
patterns and the phase or amplitude [121]. Compared with the speckle 
patterns recovered using a system characterized by complex measure-
ment matrices, the image fidelity (correlation) was ~98 % and the 
image projection was ~94 % when reconstructing images in MMF. Zhu 
et al. utilized a SHL dense NN to accurately reconstruct speckle patterns 
collected within a week after the training set stopped [65]. The SHL 

network’s efficacy proved comparable to CNN’s performance across the 
entire cycle. The proposed SHL-CNN model achieved the same structural 
similarity index measurement (SSIM) in only 8 % of the conventional 
method’s time (16 min). Fig. 12 (a), (b), and (c) show the SSIM, vari-
ance, and classification accuracy of SSIM, respectively. The image 
reconstruction fidelity of SHL-CNN was good, requiring less computa-
tional resources and shorter training time compared to conventional 
algorithms. Liu et al. introduced an all-fiber structure integrating fiber 
output pulse lasers, fiber probes, and side pump couplers [122]. This 
innovative setup leverages high-mode dispersion in MMF to convert 2D 
spatial information into 1D temporal pulse streams for high-speed all- 
fiber imaging. By training the CNN model, the speckle pattern was 
reconstructed from the time waveform recorded by the ultra-fast 
photodiode connected to the fiber output. Fig. 12 (d) shows an 
example image of letters and clothing, as well as the restored image. In 
Fig. 12 (f), the time signals collected at MMF lengths of 1000 m and 400 
m had high frame rates. The experimental verification accounted for 
effects due to bending and temperature changes in the endoscope 
application. When the bending radius range was 22 cm to 28 cm, the 
average fidelity can be maintained at over 70 %. For temperature 
changes within 0.5 ℃, the image fidelity reaches 70 % and has high 
robustness. 

By reconstructing optical fiber transient signals into images and 
distinguishing them through ML algorithms, various feature information 
in the signals can be identified. Reconstructing transient data under 
continuous sampling into multiple images can achieve analysis and 
classification of dynamic processes. Naku et al. used the optical fiber 
sensor to observe the process of liquid evaporation, immersing the 
sensor into the liquid and pulling it out immediately [123]. As droplets 
evaporate, the length of the liquid chamber decreases. The entire pro-
cess of change can be described by observing the changes in the inter-
ference spectrum. Transient response was converted into an image by 
continuous wavelet transform, and CNN was used for classification. The 
classification of different liquids was achieved through the evaporation 
process, with an accuracy rate of over 98 %. There were relatively few 
detected 7 types of objects, and there were significant differences in the 
sample evaporation process. It was still worth studying how to identify 
the evaporation process under lower concentration differences of water/ 
alcohol mixtures. Based on their earlier work, Naku proposed an algo-
rithm for identifying volatile organic liquids [124]. The temporal tran-
sient response of 11 different liquids’ evaporating droplets was 
monitored. The diversity of information collected using three sensors 
provides more features for ML-based methods, which perform better in 
classification accuracy. 

Fig. 12. (a) SSIM. (b) Variance of SSIM, (c) Classification accuracy, (d) Examples and their recovered [65], (e) Average fidelities with different fiber lengths. (f) Time 
signals with different fiber lengths (1000 m (up) and 400 m (down)) [122]. 
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ML algorithms not only ensure that complex speckle patterns trans-
mitted using optical fiber sensors have good fidelity after reconstruction 
but also enable rapid model training while ensuring model portability. 
The multi-objects processing and dynamic process recognition also show 
good performance. 

4.2.3. 3D 
The transmission of optical fibers in multimodal transmission allows 

the capture of 2D image information from detected objects. However, 
these optical fiber sensors exist within 3D space, offering the potential to 
acquire 3D information as well. Wang et al. used K-NN to identify the 3D 
geometric shape information of MMF output speckle data, achieving 
nearly 100 % classification accuracy [125]. Despite the absence of 
considerations for temperature and vibration changes, they attained a 
spatial resolution of 0.3 mm and a 3D resolution of 1◦. Similarly, Raz-
myar et al. investigated the deflection direction of the MMF tip by 
scrutinizing speckle pattern shapes and structures [126]. Their study 
explored diverse strategies for integrating information from sensor ar-
rays within the CNN model. Most estimated values differ by ± 5 degrees 
from the real values, and the accuracy of the model was not affected by 
temperature changes of 2–3 ℃. As mentioned in the [122], due to the 
increased transmission rate of lasers, there is the possibility of extending 
this principle to the reconstruction of 3D information using captured 
signals. This process of identifying 3D information concealed within 2D 
data can be termed data mining, representing a domain where the po-
tential of ML is significantly harnessed. 

4.3. Distributed optical sensors 

The optical fiber can not only be used to prepare the discrete/point 
sensors, because the surrounding environment can affect the change of 
transmission state in the fiber, a long-distance optical fiber can provide 
thousands of “virtual sensors” distributed along the fiber. Distributed 
optical fiber sensors mainly collect and analyze scattered signals in 
optical fibers. There are three main scattering processes in optical fibers: 
Brillouin scattering, Rayleigh scattering, and Raman scattering. Their 
relationship is shown in Fig. 13 (b). As shown in Fig. 13 (a), changes in 
vibration and other factors from the surrounding environment can alter 
the scattering state of nearby optical fibers, leading to changes in fiber 
strain and refractive index. These scattered signals are weak, and in 
actual environments, longer fibers are more affected by different inter-
ference sources. The problem with distributed acoustic sensors is signal 
clutter. How to extract effective information from a complex spectrum is 

the most important situation faced by ML. To provide readers with a 
more accessible grasp of the sensors and algorithms discussed in this 
section, we have summarized some references based on algorithm types, 
sensor types, measurement objects, sensitivity, and algorithm imple-
mentation effects, and presented these details in Table 2. 

4.3.1. Optical Time-Domain reflectometry (OTDR) 
OTDR has the advantages of simple structure, high spatial resolution, 

and high location accuracy. But the SNR of signals is usually low because 
it is inevitably affected by background noise. In pursuit of enhancing 
denoising capabilities, Kong et al. developed a phase unwrapping al-
gorithm based on quasi-Graman matrices and deep convolutional neural 
networks (DCNNs), which had the advantages of strong robustness, and 
low SNR, but multiple parameters [127]. Subsequently, an extended 
algorithm based on length and memory networks was proposed [128], 
which was one order of magnitude lower than [127]. The algorithm had 
two steps which are shown in Fig. 14 (a). The first step was to encode the 
1D phase into a 2D array based on the quasi-Graman matrix. The second 
step used DCNN for phase unwrapping, with an SNR less than 4 dB. The 
RMSEs of the 5 algorithms at different SNR levels are shown in Fig. 14 
(b). Saleh et al. improved the SNR by combining wavelet and normalized 
differentiation methods and used SVM to classify four types of human 
activities. The classification accuracy was greater than 95 % [129]. Pan 
et al. introduced lightweight NNs for distributed optical fiber vibration 
pattern recognition [130]. By extracting time–frequency sequence cor-
relations from signals and spectrograms, and achieving better perfor-
mance with fewer additional parameters and calculations. This study 
includes 8 different scenarios with a classification accuracy of 96.02 %. 
This processing method of time–frequency domain features can be 
flexibly integrated with different model architectures to improve clas-
sification performance and have universality. Huang et al. used the 
extremum gradient boosting (xgboost) algorithm to identify feature 
vectors of different vibration events [131]. Fig. 14 (c) shows the struc-
ture of the xgboost algorithm. This algorithm was based on a DT. 
Compared with SVM and k-NN, the proposed method had better 
learning ability and noise resistance. It performs better in dealing with 
classification and regression issues. The average recognition accuracy of 
the xgboost was 93.3 % for 8 event types. Fig. 14 (d) shows the classi-
fication performance of 5 algorithms with different sub-band intervals. 
Liu et al. reconstructed the distributed optical fiber system signal using 
an improved wavelet denoising algorithm and a dual threshold algo-
rithm tailored to the characteristics of vehicle vibration signals [132]. 
By extracting features, they estimated the number of vehicles and the 

Fig. 13. (a) The Brillouin wavelength of the optical fiber is shifted due to external strain, (b) Common scattering phenomena.  
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vehicle’s speeds. Then the SVM algorithm was used to classify the ve-
hicles. The experiment results showed that the accuracy of determining 
whether it is a vehicle was greater than 80 %, and the estimation error of 
vehicle speed was less than 5 %. On this basis, vehicle classification has 
also been implemented. 

In addition to denoising through algorithms, signal optimization can 
also be achieved through feature selection. Jia et al. used a recognition 
method combining ELM and Fisher scoring feature selection to reduce 
the interference alarm rate of OTDR [133]. Fig. 15 (a) shows the 
implementation process of OTDR identification based on the proposed 
model. By selecting 25 features, the average recognition rate of 5 
interference events exceeded 95 %, accomplished within a recognition 
time of less than 0.1 s and a false alarm rate of 4.67 %. Fig. 15 (b) shows 
the effect of adjusting the activation function and neurons on the model 
performance. Fig. 15 (c) shows the recognition time of hardlim as an 
activation function in different numbers of neurons. Xu et al. enhanced 
the vibration signal through variational mode decomposition (VMD) 
and fused different statistical features to obtain a selection factor (SF) 
[134]. Using SF as the standard for selecting different event signals. 
Then, the affinity propagation (AP) clustering method was used to 
identify the disturbance event types. The flowchart of the proposed 
method and cluster results are shown in Fig. 15 (e) and (d), respectively. 
Nevertheless, Zhao et al. proposed an innovative method for classifying 
vibration events and measuring vibration frequencies in OTDR distrib-
uted vibration sensors, incorporating image processing techniques 

[135]. The normalized time series of signals are converted into Markov 
transition field images, and then the images are classified using CNN. 
The accuracy of the model can reach 97 %. 

ML can accurately classify events by extracting different features 
between samples. However, most methods focus on the recognition of 
closed datasets. When there are unknown events, the model may make 
misclassification, thereby reducing recognition accuracy. Zhou et al. 
used OpenMax’s 1D residual learning CNN (1D RL-CNN) to achieve an 
open set classification accuracy of 91.19 %, which was 18.47 % higher 
than the 1D CNN under SoftMax [136]. The utilization of OpenMax 
enabled system managers to receive timely reminders, prompting 
human intervention to recalibrate the model when necessary. Rizzo 
et al. took inspiration from faster region-based CNNs (R-CNN) and 
proposed the first 1D-NN for OTDR trace detection [137]. Their test 
results revealed further success in identifying unknown events 
compared to OpenMax’s ability to report unknown events. By con-
ducting a preliminary analysis of traces, unknown events were detected 
to identify candidate regions, indicating rare and unforeseeable situa-
tions that need to be reported. 

In some applications where data samples are scarce, data samples 
need to be expanded. Wu et al. used CNN to learn features from the 
spectrum and introduced a method to enhance data by incorporating 
intensity and phase parameters [138], which expanded the dataset and 
achieved a classification accuracy of 88.2 %. Fig. 16 (a) shows the 
training flow of the proposed model. Fig. 16 (b)-(f) show the 

Table 2 
Distributed sensors combined with different ML algorithms.   

Type of 
algorithm 

Measurement Evaluation of model performance Ref 

OTDR DCNN predict the true phase Work stably at negative SNR [127] 
LSTM-DCNN predict the true phase The parameter amounts 1 order smaller than the DCNN [128] 
SVM Classification (3 Acoustic 

disturbance events) 
Classification accuracy higher than 95 % [129] 

CNN Classification (8 Acoustic 
disturbance events) 

Classification accuracy of 96.02 % and achieved better performance with a lower number of 
extra parameters and computations 

[130] 

xgboosting Classification (8 acoustic 
disturbance events) 

Average recognition rate of 93.3 % [131] 

SVM Classification and vehicle speed Detection accuracy was higher than 80 %, the vehicle classification accuracy was higher than 70 
% and the speed estimation error was less than 5 % 

[132] 

ELM Classification (5 acoustic 
disturbance events) 

Average identification rate of 95 %, shorter identification time (<0.1 s) [133] 

VMD + AP Classification (3 acoustic 
disturbance events) 

Accuracy of ~97 % [134] 

1-D RL-CNN Classification (6 acoustic 
disturbance events) 

Accuracy of 91.19 % [136] 

CNN Classification (5 acoustic 
disturbance events) 

Accuracy of 91.6 % [137] 

IP-CNN Classification (9 acoustic 
disturbance events) 

Accuracy of 88.2 % [138] 

kS-DCGAN Classification (2 acoustic 
disturbance events) 

Average accuracy of 97 % [139] 

K-means Classification (8 acoustic 
disturbance events) 

High spatial resolution and classification accuracy of 77.65 %. [141] 

PCA + K-means Classification (4 acoustic 
disturbance events) 

The cluster number was 4, the accuracy was 87.1 %; when the 
cluster number was 3, the accuracy was 89.4 % 

[142] 

BOTDA/ 
BOTDR 

ANN BOTDR Acoustic Acquisition time was 5.5 % of the normal sampling, temperature measurement uncertainty was 
0.2 ℃, and 3 m spatial resolution 

[144] 

K- 
ELM 

BOTDA Temperature Better measurement accuracy of 0.3 ◦C, processing speed over 120 times [145] 

CNN BOTDA Improve SNR SNR improvement of 13.43 dB [146] 
GLM BOTDA Temperature Improving the signal processing time (655 s to 1 s) and temperature prediction accuracy was 

1.32℃ 
[147] 

SVM BOTDA Temperature Extraction accuracy of temperature information was improved about 4 ◦C [148] 
FBGs BP Strain The best interrogation precision was ± 4 pm [151] 

DCNN Temperature MAE of the predicted reflectance peak position was 7.8 pm [154] 
CNN – RMSE of the predicted reflectance peak position was lower than 0.05 pm [150] 
PSO-SVM Strain Test accuracy of 100 % [155] 
GRU Strain Distinguishing overlapped spectrum with only 3 % intensity difference of FBG peaks [153] 
SVM Acoustic Fault identification rate of 99 % [152] 
DT Temperature Average accuracy of 89.54 % [156] 
ANN Impact Average errors were 0.98 cm [158]  
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classification results of different enhancement techniques, clearly indi-
cating that the (f) method mentioned in the work has a more pronounced 
classification effect. Shang et al. used the K-means clustering-synthetic 
minority oversampling technique deep convolutional generative 
adversarial network (kS-DCGAN) data augmentation method to increase 
the quantity and quality of small sample event data and meet the needs 
of classification network training [139]. The number of small sample 
events was increased after augmentation, and the accuracy of the clas-
sification task reached 97.22 %. 

At present, the main work of distributed optical fiber signal classi-
fication is mainly based on supervised learning, which requires manual 
annotation and collection of many samples. For complex environments 
and some special applications, a large amount of labeled data may be 
difficult to obtain. Due to the lack of labeled data, supervised learning 
cannot be achieved. Therefore, the research on unsupervised learning is 
very meaningful because it can reveal the performance level of ML al-
gorithms without too much prior knowledge [140]. Peng et al. explored 
the identification of distributed optical fiber sensing signals with 

Fig. 14. (a) The proposed algorithm flows, (b) The anti-noise performance of the five algorithms [128], (c) The basic structure of the xgboost algorithm, (d) The 
classification performance of various algorithms [131]. 

Fig. 15. (a) The process of the proposed method, (b) Model performance comparison of different activation functions and neurons, (c) The identification time with 
different numbers of neurons [133], (d) Flowchart of the proposed method, (e) 3D-Scatter plots of clustering results [134]. 
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enhanced Rayleigh backscattering caused by human motion vibration 
[141]. The femtosecond induced Rayleigh scattering centers improve 
the SNR of the signal. Using unsupervised and supervised ML algorithms 
to identify specific sound times, supervised learning achieved a recog-
nition rate of 76.25 % using DCNN. The unsupervised K-means clus-
tering algorithm achieved a recognition rate of over 77.65 %. However, 
these learning algorithms have been preprocessed by fast Fourier 
transform, and combined with some pre-classification. Zhang et al. 
proposed an unsupervised learning method for classifying OTDR vi-
bration events [142]. In data processing, the principal component 
analysis dimensionality reduction method was used, while the k-means 
algorithm was used to cluster different vibration events. In the identi-
fication of 4 vibration events, when the clustering number was 4, the 
accuracy was 87.1 %. ML can play a more powerful role in processing 
large amounts of data without the need for preprocessing. 

ML ensures good demodulation accuracy at different SNR levels and 
achieves better performance through prior knowledge, avoiding false 
positives. Accurate classification in extreme situations can be achieved 
with unsupervised learning methods. ML algorithms not only reduce the 
false alarm rate of classification but also provide solutions for classifi-
cation needs in special situations such as demodulation with few sam-
ples and unlabeled data. 

4.3.2. Brillouin optical time domain analysis (BOTDA)/Brillouin optical 
time domain reflectometer (BOTDR) 

BOTDR detects backscatter signals from released Brillouin scattering. 
Conversely, BOTDA requires pulse light and continuous pump light to be 
incident from both ends of the fiber. When the frequency difference 
between the two lights is equal to the Brillouin frequency shift in the 
fiber, stimulated Brillouin method effects will occur, leading to energy 
transfer between beams. Fig. 17 (a) and (b) show the working principles 
of BOTDR and BOTDA, respectively. 

The conventional Lorentz curve fitting (LCF) method requires con-
verting the Brillouin frequency shift into temperature changes for 
analysis, but ML algorithms do not require this complex process and the 
input spectrum directly outputs temperature. Wang et al. used the ELM 
to train BOTDR data [143]. Compared with the LCF, ELM networks also 
have higher accuracy and better measurement error tolerance under 
large-frequency scanning steps. In addition, Zhang et al. proposed a 

temperature measurement method based on sparse frequency sampling 
of the Brillouin scattering spectrum (BSS) [144]. The NN was used to 
utilize the symmetry of BSS without increasing hardware complexity to 
restore BSS under sparse sampling. Fig. 18 (a) is a schematic diagram of 
the entire process. Significantly shortened the acquisition time of Bril-
louin optical time-domain sensors based on scanning frequency. 
Compared with normal sampling time, the data acquisition time was 
reduced by 5.5 %, and the temperature measurement error was 0.2 ℃. 
Zhang et al. proposed a raw spectrum partitioning method based on 
kernel ELM (K-ELM) [145]. The performance of this algorithm was 
studied through simulation and experiments under different SNRs, 
pump pulse widths, and frequency scanning steps. Compared with the 
LCF, K-ELM balanced the prediction accuracy and processing speed of 
temperature measurement, with an accuracy of 0.3 ◦C and a processing 
speed increase of more than 120 times. For different data sizes, the al-
gorithm architecture was unchanged. Wu et al. applied CNN to denoise 
data images from the BOTDA across different sampling rates [146]. 
Collecting data from the BOTDA system at sampling rates of 500 MSA/s, 
250 MSA/s, and 125 MSA/s, the trained CNN denoiser improved its SNR 
by 13.43 dB, 13.57 dB, and 12.9 dB, respectively. Improved the speed of 
denoising algorithms and spatial resolution at low sampling rates. 
Nordin et al. compared and analyzed 5 algorithms (generalized linear 
model (GLM), DL, RF, Gradient Enhancement Tree, and SVM) to 
improve the signal processing time and prediction accuracy of BOTDA 
[147]. Fig. 18 (b) and (c) show the comparison of temperature distri-
bution and heating position error along the fiber after the GLM method 
and LCF demodulation, respectively. Research has found that the GLM 
method was significantly superior to the LCF method. GLM was 655 
times faster than LCF. Although RF and SVM require a relatively long 
time, their prediction accuracy was high. The minimum RMSE of RF was 
about 0.48 ℃, and the SVM was about 0.69 ℃. If higher sampling ac-
curacy is required, more time may be required. Zhu et al. investigated 
three optimization algorithms: PSO, GA, and firefly algorithm (FA) to 
optimize SVM parameters [148]. They evaluated the performance of the 
optimized SVM in simulations and experiments for temperature 
extraction under various Brillouin gain spectrum acquisition conditions. 
When the SNR was as low as 2.5 dB, the accuracy of temperature 
extraction was improved by about 4 ℃ compared to conventional SVM. 
When the SNR was greater than and less than 10 dB, PSO-SVM and GA- 

Fig. 16. (a) Training flow of the proposed algorithm, (b)-(f)Feature embedding from different augmentation [138].  

Fig. 17. Schematic diagram of (a) BOTDR and (b) BOTDA.  
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SVM had the best performance, respectively. The FA-SVM algorithm had 
the fastest processing speed. Although the optimized SVM algorithm 
requires more processing time compared to conventional SVM, the 
processing speed was more than 20 times faster than curve fitting 
methods, and the temperature accuracy was higher. 

ML algorithms prove effective in recovering spectrum under sparse 
sampling, ensuring demodulation accuracy while substantially reducing 
distributed optical fiber sensor sampling times, and establishing a direct 
correspondence between spectrum and output without necessitating 
Brillouin frequency shift. 

4.3.3. FBGs 
The sensor array formed by carving multiple series connected FBGs 

onto an optical fiber can be called a quasi-distributed optical fiber 
sensor, where each FBG functions as an individual sensing unit. In 
addition to the significant differences in sensor demodulation technol-
ogy, the biggest difference from the above-mentioned distributed sys-
tems lies in the existence of gaps and blind spots between sensors. 

To solve those problems, Chen et al. introduced a wavelength 
detection method for FBG sensor networks based on LS-SVR [149]. 
Fig. 19 (a) illustrates how the model directly uses the spectrum as input 
to predict the Bragg wavelength as output. When the spectrum of any 
two FBGs in the FBG array overlap, the Bragg wavelength can also be 
determined separately, as shown in Fig. 19 (b). When the SNR was 20 
dB, even in noisy environments (20–100 dB), the spectrum before and 
after using the LS-SVR model can be accurately determined. The LS-SVR 

Fig. 18. (a) Low-resolution BSS with sparse frequency sampling is restored to a high-resolution BSS [144], (b) Temperature distribution along the fiber, and (c) 
Absolute error of heating position [147]. 

Fig. 19. (a) Schematic diagram of the LS-SVR model, (b) Spectrum before and after the ML model [149].  
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algorithm makes up for the shortcomings of SVM, such as too many 
support vectors and complex modeling. Moreover, it eliminates the need 
for insensitive parameters during the training process which improves 
the model convergence efficiency. Li et al. proposed an extended CNN 
model for the demodulation of FBG signals, with a RMSE of < 0.05 pm in 
peak wavelength measurement and the demodulation time of 15 ms 
[150]. The demodulation model can achieve a RMSE of < 0.47 pm even 
when the SNR was as low as 15 dB. Ren et al. proposed an efficient FBG 
array demodulation system based on NNs [151]. A low-cost data 
augmentation strategy has been introduced to enable NNs to achieve 
excellent performance when processing small-scale data. The demodu-
lation model established the nonlinear relationship between emission 
intensity and actual wavelength, enabling precise peak wavelength 
determination in response to stress changes. But the method’s applica-
bility might be limited as the number of FBGs increases due to the 
interplay between FBG sensitivity and excitation band length. 

A single FBG can be considered as a loss device in the FBG array. The 
loss of the single FBG and the multiple reflections between the FBGs can 
interfere with the reflection signal of the FBG array, limiting the number 
of integrated FBGs. With the increase of optical fiber network users and 
the continuous expansion of the scale of optical fiber networks, effective 
monitoring of optical link failures has become more important. OTDR 
detectors cannot simultaneously recognize many reflected signals, 
therefore they are not suitable for fault characterization in point-to- 
point networks. Usman et al. identified fiber defects in optical net-
works by deploying a distributed FBG network and evaluated the data by 
using the SVM algorithm [152], achieving a defect evaluation accuracy 
of 99 %. Fig. 20 (a) is the schematic diagram of the SVM-based system. 
However, the limitation of the study lies in its experimental setup, which 
included only four FBGs distributed across different links. The effect of 
cascading FBGs in series, where downstream gratings can be influenced 
by upstream grating transmission, leading to spectrum distortion, was 
not considered. This spectrum shadow effect can significantly impact 
demodulation. Manie et al. utilized intensity wavelength division mul-
tiplexing (IWDM) technology to increase the total number of FBG sen-
sors multiplexed in sensor networks and utilized the GRU to solve the 
problem of large measurement errors caused by spectrum overlap and 
crosstalk in IWDM [153]. Fig. 20 (b) is the schematic diagram of the 
GRU unit. The strain sensing signal measurement performance of the 
GRU algorithm was verified under the conditions of 10 % (as shown in 
Fig. 20 (c)) and 3 % (as shown in Fig. 20 (d)) intensity differences 

between two overlapped FBG spectrums. Their proposed method 
demonstrated increased reliability and accuracy of the signal, concur-
rently expanding the number of FBG sensors in the system. The study 
conducted by Kokhanovskiydenrgen et al. applied CNNs to demodulate 
the problem of spectrum distortion caused by mutual interference in 
densely arranged FBG arrays [154]. The average absolute error of this 
work was 7.8 pm, which was higher than the 5 pm of the hardware 
multiplexing interrogator. The experimental content was to predict the 
Bragg wavelength by arranging dense sensors around sparsely arranged 
sensors, which increases the amount of FBG used but does not fully 
utilize each one’s capabilities. 

Due to the differences in data features, the most effective ML algo-
rithms may not be the same for different problems. Shao et al. estab-
lished four intelligent detection models: CNN, PSO-SVM, DT, and RF, to 
analyze road leakage data collected by FBG sensor arrays [155]. Fig. 21 
(a) displays the accuracy of the training set and the test set of these 4 
models. Although several models showed excellent detection accuracy, 
DT and RF models demonstrated overfitting, as their training accuracy 
was notably higher than the testing accuracy. Fig. 21 (b) shows the 
different error rates of 4 models. PSO-SVM stood out as the best- 
performing model in detecting various error types, achieving a 
remarkable testing accuracy of 100 %. Nascimento et al. proposed using 
a FBG array to estimate fluid level, using DT to classification [156]. 
Fig. 21 (c) presents the diagram of the analysis with the proposed FBG 
array. The classification accuracy was 89.54 %. Furthermore, the re-
searchers incorporated a combination of techniques, including weighted 
linear regression, SVR, and kernel selection minimum cost SVR 
(SVRmin), at various stages of the classification process. This combi-
nation allowed them to achieve the lowest RMSE in estimating liquid 
levels (as shown in Fig. 21 (d)). Liu et al. introduced a sparse Bayesian 
learning mechanism based on data uncertainty of FBG sensors, which 
can describe the probability characteristics of uncertainty in a Bayesian 
framework [157]. Taking the time series of noise strain sensors of a 
certain highway bridge and railway bridge as an example, regression 
analysis and uncertainty analysis were conducted. The results have 
shown that the proposed sparse Bayesian learning mechanism was more 
effective than SVMs and least squares methods. 

The impact between spacecraft and orbital debris or stars in space 
helps detect spacecraft faults and analyze and repair them. Jin et al. 
proposed a method based on the FBG array, which combines ANN and 
Markov distance for impact detection and localization of 

Fig. 20. (a) The schematic diagram of the monitoring system [152], (b) The structure of the GRU unit, The signal using GRU when the intensity difference between 
FBGs is (c) 10% and (d) 3% [153]. 

Y. Zhou et al.                    



Measurement 228 (2024) 114391

21

micrometeoroids and orbital debris [158]. Using Markov distance and 
collision point coordinates as inputs and outputs of the ANN, respec-
tively. In 360 impact experiments, the average positioning error of this 
method is 0.89 cm. Compared to using the Markov distance discriminant 
analysis method and ANN alone, the error was reduced by 39 % and 31 
%, respectively. 

Unlike OTDR systems, if the central wavelength remains separated, 
the distributed FBG array can achieve mixed measurements of multiple 
parameters. However, the conventional demodulation method also re-
quires bandwidth modulation and wavelength division multiplexing, 
and there is also an impact between sensor sensitivity and measurement 
range. The demodulation method of ML not only reduces the require-
ment for data SNR, but also directly establishes the complex relationship 
between actual wavelengths and measurement parameters. The 
demodulation method is not limited by the separation of the central 
wavelength, increasing the number of sensors in the sensor array, and 
expanding the sensing range. 

To better facilitate readers’ understanding, we have summarized the 
algorithms appearing in Table 2 according to different abilities in 
Fig. 22, and it can be seen that NNs are the most frequently used. 
Compared to the point optical fiber sensors’ spectrum, the spectrum 
characteristics of distributed optical fiber sensors are more chaotic and 
prone to noise interference. NNs have strong adaptability and learning 
ability, which can automatically adjust the weights based on the input 
spectrum, thereby achieving accurate demodulation of the spectrum. 
Secondly, NNs can process large-scale distributed optical fiber sensor 
spectrums through parallel processing mechanisms, improving demod-
ulation efficiency. Therefore, NNs play an important role in the spec-
trum demodulation. 

4.4. Others 

In addition to helping with signal demodulation in the optical fiber 
sensors mentioned earlier, ML can also help optimize the design of op-
tical fiber sensors and accelerate design time. Lee et al. used NNs to 
analyze the reflectance of different sicknesses of SiO2 films grown on Si 
substrates, guiding the design and production of optical devices. ANN 

Fig. 21. (a) The training and test accuracy of 4 models, (b) The error rates of 4 models [155], (c) Block diagram of the method, (d) RMSE for the different studied 
levels of 3 models [156]. 

Fig. 22. Bar chart of algorithms summarized by function in Table 2.  
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returned the optical refractive index, absorption coefficient, and film 
thickness related to multiple output frequencies, providing accurate 
production information for special requirements [159]. Sridevi et al. 
used NNs to guide the design of photonic crystal fibers (PCFs), and 
solved the problem of long calculation time and repeated design pa-
rameters in existing numerical simulation software based on finite 
element methods [160]. A PCF temperature sensor optical parameter 
prediction method based on acoustic emission and NN was proposed, 
which utilizes an automatic encoder network to increase data and pro-
vide enough data for network training. Fig. 23 (a) shows the cross- 
section of the PCF, indicating that many parameters need to be opti-
mized in the design. Compared to the running time of finite element 
simulation, this model had a higher R2 and lower computational time. In 
addition, compared to the NN model without self-coding, this model had 
a low MSE. Nithish et al. proposed a rectangular PCF sensor for detecting 
reproductive hormones in female blood samples in the terahertz band 
[161]. The optimal structure’s identification was achieved by simulating 
various parameters of PCF to attain high performance. However, as 
shown in Fig. 23 (b), many parameters need to be optimized in the 
design, and simulation requires a certain amount of time. Therefore, 
local weighted linear regression was used for prediction and hyper-
parameter optimization. Dey et al. demonstrated a rapid training feed-
forward algorithm for studying the key characteristics of different FBGs 
and predicting their output spectrum [162]. This model efficiently 
identified nonlinearity and complexity within the output spectrum of 
FBGs. The model can accurately and effectively predict the effective 
refractive index, bandwidth, reflectance and wavelength of different 
types of FBG, and generate an accurate reflection spectrum to help and 
guide the production of FBG under different needs. Dwivedi et al. 
established a GPR model to adjust the design parameters of optical fiber 
plasma sensors, assisting researchers in rapid sensor design for different 
demands [163]. Kim et al. utilized NNs and Bayesian regularization 
algorithms to optimize the design of ultra-compact SPR optical fiber 
sensors using multi-guided waves [164]. For different applications, data 
has different characteristics, so the most suitable algorithm is different. 
However, it is undeniable that the use of ML algorithms is more efficient 
and quicker than conventional design processes. 

5. Conclusion and future perspectives

This paper reviews the application of the ML algorithm in optical
fiber sensors. In recent years, the advent of ML has greatly impacted 
optical development. Compared with static demodulation algorithms 
and complex spatial optical paths, the ML algorithm offers better signal 
processing mechanisms for optics. ML algorithms enable automated 
processing, analysis, and recognition of spectrums, thereby enhancing 

the efficiency and accuracy of spectrum analysis. Using ML algorithms to 
classify and identify the spectrum of different substances, enabling 
qualitative and quantitative analysis of substances. By learning from 
known corresponding spectrums and building models, ML algorithms 
can predict and analyze unknown spectrums. ML algorithms can extract 
and recognize features from the spectrum, analyze the content and 
proportion of various components, and reveal the intrinsic nature of 
substances. With the continuous development of spectroscopy and ML 
algorithms, the application prospects of ML in spectroscopy will become 
increasingly widespread. This advancement will contribute to more 
efficient and accurate analytical methods in chemical analysis, envi-
ronmental monitoring, food safety, and other fields, promoting progress 
in scientific research and expanding application fields. 

While the capability of ML algorithms to achieve demodulation 
without additional hardware circuits represents a significant advance-
ment, the reliance on large amounts of labeled data for training poses 
challenges. Acquiring extensive labeled data for spectrum demodulation 
is particularly difficult, as it necessitates professional expertise and en-
tails high measurement costs. To minimize data complexity and ensure 
accurate identification and classification of spectrums, application fea-
tures often need expert annotation. The lack of labeled data limits the 
generalization ability of models as they cannot learn accurate patterns 
from limited data. Spectrum can be affected by various noises such as 
instrument noise, environmental interference, drift, etc., which can 
adversely affect the performance and robustness of ML algorithms. 
Dealing with data quality and noise requires appropriate preprocessing 
and noise reduction methods to improve data reliability and accuracy. 
ML algorithms can optimize spectrum, improving spectrum resolution 
and SNR. Meanwhile, because the ML algorithm relies on the distribu-
tion of training data, it is often difficult to accurately detect and handle 
outliers. Outliers are common in the spectrum and can have a significant 
impact on the analysis results. In such cases, prior knowledge is also 
required for the preprocessing spectrum. The DL algorithm may offer a 
solution by autonomously learning advanced features from the data. 
This eliminates the need for domain specific knowledge and core feature 
extraction. The pursuit of self-learning models is an important direction 
for the application of ML in optical fiber sensors. ML has been widely 
used in the signal processing of optical fiber sensors, particularly in 
predicting measurement parameters. Due to the cross-sensitivity prob-
lem in optical fiber sensors, conventional demodulation methods for the 
output (such as temperature) are prone to errors if other parameters 
(such as strain or humidity) change. ML demodulation avoids this 
problem and can achieve accurate demodulation. ML algorithms can 
also solve the nonlinear relationship between measurement parameters 
and spectrum by selecting nonlinear models such as SVMs and NNs. 

Spectrum demodulation requires extracting useful features from the 

Fig. 23. (a) Cross-sectional view of dual-core PCF [160],(b) Cross-section view of the designed PCF [161].  
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original spectrum. However, feature extraction from the spectrum is a 
challenge, as the spectrum is typically high-dimensional and contains a 
large amount of feature information. Effectively processing and utilizing 
this information is one of the challenges that ML faces in spectroscopy. 
The large amount of labeled data also brings huge computational re-
quirements, requiring powerful computing resources, including graphic 
processing units—similar to challenges faced by ML in other research 
fields. Feature selection and dimensionality reduction methods can help 
reduce the number of features while retaining important information 
and increasing the efficiency of data computation. 

Choosing an appropriate ML model is also an important issue in 
spectrum demodulation, as different models come with distinct advan-
tages and disadvantages. and the selection of models usually needs to be 
adjusted according to specific demodulation tasks. Selecting the 
appropriate model correctly requires a comprehensive consideration of 
factors such as data size, feature representation, and computational re-
sources based on the specific spectrum demodulation tasks. Most ML 
algorithms can be applied to optical fiber sensors, whether they are 
demodulated in the time domain or frequency domain. Special ML al-
gorithms can be applied according to special requirements, such as 
spectrum recovery under sparse sampling, to improve data acquisition 
speed. The application of ML algorithms in high-precision recovery of 
low-resolution signals and prediction of monitoring process trends 
makes the performance of optical fiber sensors more attractive. How-
ever, challenges in large-scale production of optical instruments impact 
model selection, training, maintenance, and standardization, under-
scoring the need for robust and adaptable ML models. This is not only an 
algorithmic problem, but also an industrial challenge. Due to the 
possible differences in spectrum under different conditions, the perfor-
mance of a model on one dataset often cannot be well generalized to 
other datasets. To improve the generalization ability of the model, it is 
necessary to use more complex models (such as transfer learning) and 
use more data to train the model. Real-time signal processing and 
analysis capabilities are crucial for practical monitoring models. Most 
model training discussed in the paper is offline, while online monitoring 
encounters unexpected states, raising questions about model updating 
and maintenance. Although the decision process of many ML models is 
difficult to explain, this lack of interpretability may limit the reliability 
of the model. Despite the challenges, compared with conventional 
demodulation methods, the ML demodulation method offers better 
performance and remains an exciting prospect. Researchers are studying 
more interpretable ML algorithms. With the improved explanation of the 
ML model, the demodulation of the spectrum will become more 
persuasive. 

In this paper, the limitations of different optical fiber sensors in 
conventional demodulation methods are introduced, and then examples 
of ML algorithms are introduced. Then, we emphasized the achieve-
ments of ML in optical fiber sensors and explained the challenges faced 
in further advancing this direction in the future. In general, the appli-
cation of ML in spectrum demodulation still faces some challenges and 
shortcomings. But, by optimizing existing ML algorithms, and 
strengthening cross research in the fields of spectrum demodulation and 
ML, these problems are gradually being overcome. The development of 
better data acquisition methods, feature extraction techniques, model 
selection strategies, and interpretive ML algorithms will help improve 
the practicality and reliability of ML in spectrum demodulation. We 
believe that shortly, the advantages brought by the synergy between 
hybrid optical systems and AI technology can be better utilized, thereby 
better constructing a green intelligent world. 
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