
Cyber Security and Applications 3 (2025) 100061

Contents lists available at ScienceDirect

Cyber Security and Applications

journal homepage: http://www.keaipublishing.com/en/journals/cyber-security-and-applications/

Survey of techniques to detect common weaknesses in program binaries

Ashish Adhikari ∗ , Prasad Kulkarni ∗

University of Kansas, Department of EECS, Lawrence, 66045, KS, USA

a r t i c l e i n f o

Keywords:

CWE detection

Static analysis

Software binaries

a b s t r a c t

Software vulnerabilities resulting from coding weaknesses and poor development practices are common. Attack-

ers can exploit these vulnerabilities and impact the security and privacy of end-users. Most end-user software

is distributed as program binaries. Therefore, to increase trust in third-party software, researchers have built

techniques and tools to detect and resolve different classes of coding weaknesses in binary software. Our work

is motivated by the need to survey the state-of-the-art and understand the capabilities and challenges faced by

binary-level techniques that were built to detect the most important coding weaknesses in software binaries.

Therefore, in this paper, we first show the most critical coding weaknesses for compiled programming languages.

We then survey, explore, and compare the static techniques that were developed to detect each such coding weak-

ness in software binaries. Our other goal in this work is to discover and report the state of published open-source

implementations of static binary-level security techniques. For the open-source frameworks that work as docu-

mented, we independently evaluate their effectiveness in detecting code vulnerabilities on a suite of program

binaries. To our knowledge, this is the first work that surveys and independently evaluates the performance of

state-of-the-art binary-level techniques to detect weaknesses in binary software.

1

M

d

A

w

l

g

t

n

n

[

p

t

i

g

m

g

i

g

l

l

C

a

o

n

o

a

r

t

a

i

b

M

s

u

1 https://www.tiobe.com/tiobe-index/ .

h

R

A

2

B

. Introduction

Technology and software have become integral to our daily lives.

ore software is now present in more systems, including many embed-

ed devices, like refrigerators and microwave ovens, to cars and planes.

dditionally, new software features continue to be added as the hard-

are, including the processor, memory, and storage, becomes faster,

arger, and/or more capable. Thus, software programs also continue to

row in size and perhaps, complexity.

Given this growth in the amount of software in use, it is no surprise

hat the number of reported code vulnerabilities has been increasing in

umber and severity for many years [1] . At the same time, software vul-

erabilities have been found to cause many disastrous real-world attacks

2,3] .

Software vulnerabilities are caused by weaknesses or flaws in the

rogram code. These weaknesses may then be exploited to compromise

he security or integrity of the system. Code in any language can be

nsecure when it is not developed with due care. However, some pro-

ramming languages are designed with features that make them im-

une or more resistant to certain types of weaknesses. Such safer lan-

uages typically provide built-in mechanisms for memory management,

nput validation, type safety, and other security-related features. Lan-
Peer review under responsibility of KeAi Communications Co., Ltd.
∗ Corresponding authors.

E-mail addresses: adhikariashish2@ku.edu , adhikariashish2@gmail.com (A. Adhik

ttps://doi.org/10.1016/j.csa.2024.100061

eceived 31 October 2023; Received in revised form 9 May 2024; Accepted 22 May

vailable online 28 May 2024

772-9184/© 2024 The Authors. Publishing Services by Elsevier B.V. on behalf of Ke

Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
uages like Rust and Go belong to this category of safe programming

anguages.

Alternatively, unsafe programming languages, like C and C++, are

ow-level languages with poor built-in memory, type, and thread safety.

ode bugs and missing safety oversight for vulnerable code constructs

re widespread in programs written using these languages [4] . In spite

f these safety concerns and even though memory-safe language alter-

atives are available, C/C++ remains popular due to the large amount

f existing legacy code, and low-level features of these languages that

re desired by many performance and memory critical, embedded, and

eal-time systems. Consequently, C and C++ separately and consis-

ently rank among the top five most popular programming languages

ccording to the TIOBE index 1 .

In spite of this existing state of affairs where code bugs, vulnerabil-

ties, and exploits are commonplace, most available software has not

een independently and rigorously evaluated for its security properties.

ost ordinary customers don’t have the option of knowing the security,

afety, and reliability properties of the software they buy and use. Such

nevaluated or under-evaluated third-party software libraries may also
ari), prasadk@ku.edu (P. Kulkarni) .

2024

Ai Communications Co., Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.csa.2024.100061
http://www.ScienceDirect.com/science/journal/27729184
http://www.keaipublishing.com/en/journals/cyber-security-and-applications/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csa.2024.100061&domain=pdf
mailto:adhikariashish2@ku.edu
mailto:adhikariashish2@gmail.com
mailto:prasadk@ku.edu
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1016/j.csa.2024.100061
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

b

d

i

m

A

w

t

t

c

t

e

w

o

n

t

s

s

T

6

S

e

o

h

i

t

b

m

1

s

d

c

H

a

n

i

o

a

t

t

a

a

b

c

t

t

r

s

w

t

t

v

n

t

w

W

a

t

f

s

2

n

w

t

i

c

t

d

s

l

[

n

m

e

i

t

o

s

t

a

w

f

f
e integrated into other products, that may then even be shipped by

evelopers we trust.

Researchers have made important strides to resolve the issues regard-

ng code bugs vulnerabilities, and software exploits. Efforts have been

ade to understand and categorize the important software weaknesses.

 curated community-developed list of the top software and hardware

eaknesses was made, which is called the Common Weakness Enumera-

ions (CWE) 2 . Each year, a new top CWE list is developed and released

hat lists the weaknesses that contributed most to the vulnerabilities dis-

overed. This list can help developers and security practitioners address

he top vulnerabilities by educating them and permeating the knowl-

dge on how they can be eliminated.

When source code is available, manual code reviews to identify soft-

are defects are still a common practice. Researchers have also devel-

ped many automated techniques and tools to find weaknesses and vul-

erabilities in high-level source code. Lint and PC-Lint may be some of

he oldest automated tools developed to detect programming errors and

tylistic defects in C and C++ programs [5] . Similar and more recent

ource-level tools, commonly called SAST or Static Application Security

esting tools, include Sonarqube 3 , CodeSonar 4 , Coverty 5 , Flawfinder
 , Klocwork 7 , and many others 8 . Most of the available source-level

AST tools are commercial and intended to be used at the developer’s

nd to improve software quality.

However, most software is distributed in its binary form and with-

ut access to the original source code. Binary-level software is typically

arder to comprehend and evaluate compared to source-level code that

s written in a higher-level programming language. Source-level SAST

ools cannot analyze third-party binary executables and libraries and are

lind to security-reducing decisions made by the compiler, including re-

oval of security checks and memory clearing operations 9 as dead code
0 . Thus, these SAST tools cannot be used to independently confirm the

ecurity of the distributed software for end-users of software.

A handful of binary-level SAST tools have also been developed to

etect weaknesses and vulnerabilities in software binaries. Examples in-

lude Grammatech’s CodeSonar for binaries 11 and Veracode SAST

12 .

owever, these tools are commercial and also intended to be employed

t the developer’s end to analyze the interaction of any third-party bi-

ary libraries with the developer’s code base. These tools are mostly

naccessible to independent evaluators and the precision and coverage

f these binary-level SAST tools has never been independently explored

nd evaluated.

Other researchers have also developed binary-level techniques to de-

ect weaknesses and vulnerabilities in binary software, to understand

he behavior of closed-source software and malware, to assess compli-

nce with standards, and to enhance software security. These techniques

re not only crucial for developers who frequently utilize third-party li-

raries in their software, but also useful for end-users of software when

hoosing between competing software options. Our goal in this work is

o survey and evaluate the current state-of-the-art techniques designed

o address the most important software weaknesses for program bina-

ies.

Specifically, we make the following contributions to this work.
2 https://cwe.mitre.org/ .
3 https://www.sonarqube.org/downloads/ .
4 https://www.grammatech.com/codesonar-cc .
5 https://www.synopsys.com/software- integrity/security- testing/

tatic- analysis- sast.html .
6 https://dwheeler.com/.
7 https://www.perforce.com/products/klocwork .
8 https://owasp.org/www-community/Source_Code_Analysis_Tools.
9 https://cwe.mitre.org/data/definitions/14.html .

10 https://cwe.mitre.org/data/definitions/561.html .
11 https://www.grammatech.com/codesonar- sast- binary .
12 https://www.veracode.com/products/binary- static- analysis- sast .

t

c

j

w

s

a

w

c

i

f

s

c

d

b

2

1. We present the top CWEs or weaknesses affecting compiled language

binaries.

2. For each top CWE, we survey and describe the cutting-edge static

approaches built to detect that weakness in program binaries.

3. We find the binary-level approaches that are available open-source,

build and independently evaluate them when possible, or reveal the

challenges when not.

4. We build working prototypes for two open-source binary-level tools,

and compare their accuracy and shortcomings for several important

CWEs using multiple standard benchmark programs.

The rest of this paper is organized as follows. We present related

ork in Section 2 . We describe the methodology we used to conduct

his survey in Section 3 . We discuss the major static binary analysis

echniques in Section 4 . We survey the techniques that have been de-

eloped to detect each of the top 10 CWEs for compiled language bi-

aries in Section 5 . We search for open-source implementations of the

echniques covered in Section 5 , attempt to build and evaluate them,

hen available, and report our results and observations in Section 6 .

e discuss the issues and directions for future advancement of static

nalysis techniques for vulnerability detection in Section 7 . We present

he limitations of our current work in Section 8 . Finally, we list avenues

or future work and present our conclusions in Sections 9 and 10 , re-

pectively.

. Related works

In this section, we review the existing literature on surveys and tech-

iques for detecting Common Weakness Enumerations (CWEs) and soft-

are vulnerabilities for binaries and compare them with our work in

his paper. A summary of the most relevant related works is presented

n Table 1 .

We did not find any previous work that compiled and presented a

omprehensive survey on techniques and tools for the detection of mul-

iple top CWEs. However, there are several studies that have surveyed

etection techniques for specific CWEs. A majority of these works only

tudy and evaluate source-level techniques. For example, Byun et al. uti-

ized the CMBC tool on the Juliet Test Suite to evaluate and detect CWEs

6] . Other research explored Natural Language Processing (NLP) tech-

iques to generate source code embeddings, that then aid in the auto-

atic detection and classification of software vulnerabilities [7] . Cruzes

t al. conducted a thorough survey investigating techniques for detect-

ng only the Buffer Overflow (BO) vulnerabilities [8] . They organized

he techniques into multiple categories and found common limitations

f the techniques in each of their categories. While comprehensive, their

tudy specifically focused on buffer overflow vulnerabilities and their

echniques focused on source-code level techniques.

In this work, we primarily focus on comparing (binary-level) static

nalysis based techniques for CWE detection. We found several other

orks that similarly focused on studying static analysis based techniques

or CWE detection. Lipp et al. conducted an empirical study on the ef-

ectiveness of static C code analyzers for real-world vulnerability detec-

ion [15] . They assessed the ability of several open-source tools and one

ommercial static C analyzer and found that all current tools do a poor

ob at detecting real-world vulnerabilities, even when they performed

ell on artificial/smaller benchmarks. Katherina et al. investigated the

trengths and weaknesses of static code analysis tools in detecting CWEs

nd other vulnerabilities [17] . Although the specific names of the tools

ere not mentioned, their evaluation revealed that the tested commer-

ial tools did not exhibit statistically significant differences in their abil-

ty to detect security vulnerabilities. They underscored the need for

urther advancements in vulnerability detection techniques. In another

tudy, Pereira et al. evaluated two static analysis tools for their appli-

ability in large projects [11] . They found that these tools exhibited

iverse performances, with Flawfinder having higher false alarms

ut fewer true negatives, while cppcheck showed high true negatives

https://cwe.mitre.org/
https://www.sonarqube.org/downloads/
https://www.grammatech.com/codesonar-cc
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.perforce.com/products/klocwork
https://cwe.mitre.org/data/definitions/14.html
https://cwe.mitre.org/data/definitions/561.html
https://www.grammatech.com/codesonar-sast-binary
https://www.veracode.com/products/binary-static-analysis-sast

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

Table 1

Summary of related works We categorize the Technique used in the research works as follows: SC – Source Code, BA – Binary Analysis, SA – Static Analysis, DA –

Dynamic Analysis, SE – Symbolic Execution and ML – Machine Learning.

Research Paper/ Tool Short Description Technique

Ahmed et al. (2022) [9] A survey about machine learning techniques and datasets being used for software vulnerability detection.

Research studies focused on were recent. CNN and RNN can give better performance than others.

ML

Yosifova et al. (2021) [10] Predicting vulnerability type in Common Vulnerabilities and Exposures (CVE) database with machine

learning classifiers. They gave their evaluation of different ML classifiers for the detection of CVE.

ML

Pereira et al. (2020) [11] Uses open-source C/C + static analysis tools on large projects. They use two static analysis tools and study

their applicability to detect data protection vulnerabilities and coding practices vulnerabilities.

SC, SA

Zaharia et al. (2021) [12] CWE pattern Identification using Semantical Clustering of Programming Language Keywords. They use source

code to detect the CWEs incorporating the programmers’ code behavior.

SC, ML

Tiantian et al. (2018) [13] A survey of automatic software vulnerability detection, exploitation, and patching techniques. Binary-based

techniques are also studied. Nice breakdown of techniques.

SA, DA, ML

Alenezi et al. (2020) [14] Machine Learning approach to predict computer operating systems vulnerabilities. They use five ML methods

to predict the vulnerabilities based on CVSS and evaluate them. Random forest seems to be a good classifier.

No neural network models.

ML

Byun et al. (2020) [6] Analysis of software weakness detection of CBMC based on CWE. Evaluate the ability of CBMC to detect the

CWEs. Found the tool to be effective on division by zero, conversion error, and buffer overflows.

SA

Saletta et al. (2020) [7] Use NLP in source codes for identifying CWEs. The classification of 13 CWEs was done. Some strictly related

CWEs are misclassified for a Java file.

SC, ML

Lipp et al. (2022) [15] Empirical study on the effectiveness of static C code analyzers. They evaluated five open-source and one

commercial static C code analyzer. They found that 47%-80% of the real-world vulnerabilities are missed by

them. A combination of static analyzers delivered better performance.

SC, SA

Cruzes et al. (2018) [8] Survey on techniques for detecting Buffer Overflow (BO) vulnerabilities. A comprehensive survey on buffer

overflow detection techniques where multiple techniques and tools are categorized and reviewed. The binary

analysis techniques are also discussed and according to their findings, few recommendations are made.

SC, SA, BA, DA, ML, SE

Lin et al. (2020) [16] Survey on deep learning-based approaches for software vulnerability detection. Recent studies adopting deep

learning techniques for software vulnerability detection are done with their challenges and weaknesses.

ML, SC, BA

Katherina et al. (2015) [17] Evaluation of static code analysis tools in detecting CWEs and vulnerabilities. The study evaluated three tools

and found no statistical difference in their ability to detect security vulnerabilities for C/C + and Java.

Shoshi- taishvili et al. (2016) [18] Comparison of binary analysis techniques and introduction of angr framework. Many different binary

techniques are studied and implemented in their framework;angr. The effectiveness of the techniques was

evaluated. The difficulties of combining many techniques are discussed.

SA, BA, SE,

Xue et al. (2020) [19] Study on machine learning-based analysis of program binaries with taxonomy and associated challenges. The

paper explores challenges in binary code analysis, discusses various machine learning techniques, and

presents a framework and its application.

ML, BA

b

f

e

t

h

1

n

h

t

t

a

a

n

r

v

p

t

t

o

p

t

s

c

v

s

d

i

T

i

b

i

b

B

p

C

l

t

d

i

s

a

o

2

c

a

i

c

g

d

o

i

a

o

l

e

g
ut lower false positives. This work is relevant to our evaluation of tools

or CWE detection as both tools are CWE-compatible. However, all these

arlier works only studied source code based tools. Instead, our goal in

his work is to study and evaluate binary-level CWE detection tools.

Given the popularity of machine-learning techniques, researchers

ave also explored their use for software vulnerability detection [10,12–

4] . These studies involved the classification and prediction of weak-

esses and vulnerabilities using machine learning methods. Notably, Za-

aria et al. employed the CWE classifier on the intermediate representa-

ion of source code to identify security patterns [12] . They demonstrated

he effectiveness of machine learning techniques in aiding the detection

nd characterization of software vulnerabilities. Recent developments

lso highlight the use of deep learning techniques to understand vul-

erable code patterns and semantics. Lin et al. conducted a survey that

eviewed the literature on deep learning-based approaches for software

ulnerability detection [16] . They examined both the techniques em-

loyed and the challenges faced by such techniques for accurately de-

ecting vulnerabilities.

All of these previous works only studied source-code based detection

echniques. Instead, our research aims to explore detection techniques,

pen-source tools, and associated challenges to detect CWEs for com-

iled language binary programs that can be detected without access to

he source code.

A limited number of previous studies have investigated binary analy-

is based techniques to uncover vulnerabilities and weaknesses in binary

ode. Shoshitaishvili et al. conducted a comprehensive comparison of

arious binary analysis techniques, such as symbolic execution, fuzzing,

tatic analysis and exploit generation, and hardening [18] . They intro-

uced angr, a powerful binary analysis framework capable of perform-

ng such analyses and aiding their comparison in a uniform framework.

his work also implemented and compared diverse approaches, includ-

ng fuzzing and static analysis, for identifying and mitigating vulnera-
3

ilities. Similar to angr, several other frameworks have been build that

mplement the building-block algorithms and provide an API to conduct

inary-level analysis, including Ghidra [20] , Radare [21] , IDA Pro [22] ,

AP [23] , and DynInst [24] . However, most of these tools are not im-

lemented with built-in algorithms and techniques to directly perform

WE detection. A comprehensive study by Xue et al. examined machine

earning-based analysis of program binaries, providing a taxonomy of

echniques along with their associated challenges [19] . Although we

id not find surveys that focus specifically on techniques to detect CWEs

n program binaries, the aforementioned studies are relevant to our re-

earch. Our emphasis lies in studying, collecting, and assessing works

nd tools, especially those that are open-source, to detect the presence

f the most important CWEs that occur in compiled binary code.

.1. Comparison with existing literature

Our survey paper stands out in the existing literature due to its spe-

ific focus on the detection of Common Weakness Enumerations (CWEs)

nd software vulnerabilities in binaries, a topic that has received lim-

ted attention in prior research. While much of the existing literature

enters on source-level analysis [7,11,12,15] , our work fills a crucial

ap by examining these issues specifically at the binary level.

In contrast to related surveys, such as the empirical studies con-

ucted by Lipp et al. on the effectiveness of static C code analyzers [15] ,

ur paper is dedicated to the exploration of static techniques for detect-

ng weaknesses and vulnerabilities in binaries. While some surveys cover

 broad range of topics that discuss a range of techniques implemented

n the source level [25] , our paper maintains a clear focus on binary-

evel techniques and tools for the detection of weaknesses, providing

valuations of the current state of the art.

Furthermore, while several other works focused on specific cate-

ories of weaknesses or techniques [8,16] , our survey provides a com-

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

p

b

w

p

d

a

e

d

e

3

i

r

w

s

d

g

i

w

n

s

c

b

o

a

w

v

s

w

w

b

i

a

v

t

(

a

c

o

w

o

C

t

m

s
rehensive overview of static analysis techniques for detecting vulnera-

ilities across various categories in the binary context.

Additionally, while some studies focused solely on binary analysis

ithout delving into weaknesses and vulnerabilities [18] , our paper ex-

lores the technical aspects of binary analysis and also specifically ad-

resses the detection of weaknesses and vulnerabilities, offering evalu-

tions of current tools.

Our overarching goal is to contribute to the dissemination of knowl-

dge about the current state of research and techniques in binary-level

etection of weaknesses and vulnerabilities, filling a critical gap in the

xisting literature.

. Methodology

The landscape of CWE detection techniques is diverse, encompass-

ng both well-studied and lesser-known approaches. To explore the cur-

ent state-of-the-art tools and techniques employed in CWE detection,

e conduct an extensive review of research papers and evaluate open-

ource tools. We describe our research methodology in this section. We

isplay a schematic of our methodology in Fig. 1 .

Selection of CWEs In our study, we primarily focus on compiled lan-

uages – that generate executable binary files. To identify the most crit-

cal weaknesses that could result in significant software vulnerabilities,

e refer to the top 25 CWEs, along with an additional set of 15 weak-

esses, published by the MITRE Corporation. Then, we narrow down this

et of weaknesses to the top 10 CWEs that are specifically applicable to

ompiled languages. The list of the top 10 CWEs relevant to compiled
inaries is shown in Table 2 . The first column shows their rank in the

Table 2

TOP 10 CWEs for compiled language program binaries.

Rank ID CWE

1 CWE-787 Out-of-bou

4 CWE-20 Improper I

5 CWE-125 Out-of-bou

7 CWE-416 Use After F

11 CWE-476 NULL Poin

13 CWE-190 Integer Ov

15 CWE-798 Use of Har

19 CWE-119 Improper R

31 CWE-843 Access of R

36 CWE-401 Missing Re

4

verall CWE database, while the remaining columns display their ID and

 short description, respectively.

Selection of relevant research studies

We conduct the following steps to find related research works. First,

e identify primary studies that are chosen based on their direct rele-

ance to the subject matter. This step involved identifying studies that

pecifically addressed CWEs, their detection techniques, and related

orks. Next, we selected papers based on their references to related

orks. This step allows for the broader inclusion of studies that have

een cited or referenced in the context of CWE detection.

We used a few other criteria to choose research works considered

n this study. In addition to works on CWE detection on binaries, we

lso found papers on CVEs (Common Vulnerabilities and Exposures) and

ulnerability detection techniques.

Our selection process also prioritized newer techniques, including

hose incorporating machine learning (ML) and artificial intelligence

AI) approaches. We gave a special preference to open-source projects

nd research studies to facilitate tool evaluation and repeatability and

omparison of results. The selected papers were further categorized into

pen-source research projects and closed-source projects.

Selection of research tools to study state-of-art One of our goals in this

ork is to conduct a fair comparison of the capabilities and performance

f the available open-source implementations of techniques to detect

WEs in software binaries. Therefore, for each selected CWE, we at-

empted to find, build, and evaluate the implementations of proposed

itigation techniques on a set of common standard benchmarks.

Unfortunately, we observed that the number of open-source tools

pecifically designed for detecting CWEs in binaries was limited. Fur-
Fig. 1. A flow-graph schematic of our research

methodology

nds Write

nput Validation

nds Read

ree

ter Dereference

erflow or Wraparound

d-coded Credentials

estriction of Operations within the Bounds of a Memory Buffer

esource Using Incompatible Type (’Type Confusion’)

lease of Memory after Effective Lifetime

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

t

d

T

m

i

t

g

r

i

S

f

c

o

i

b

d

a

p

c

4

s

t

w

t

n

a

a

o

4

t

b

p

a

m

r

s

i

4

a

t

fi

m

s

r

a

p

i

4

c

p

[

d

p

l

n

4

u

f

m

R

t

b

d

s

c

5

b

n

w

t

5

w

a

n

m

T

r

s

B

m

s

a

C

t

C

f

fl

p
hermore, many of these tools were not in working condition due to

ependency issues, configuration problems, or a lack of maintenance.

he dynamic nature of software, policy changes, and lack of developer

otivation are factors contributing to the usability issues of these tools.

Some tools required fulfilling multiple dependencies, making their

nstallation and usage demanding. Several others made various assump-

ions about the working environment or about the format of the pro-

rams tested. Despite the challenges, the tools that worked and were

elevant to the research were shortlisted, built, and used for benchmark-

ng and evaluation.

Benchmark selection Multiple benchmarks, such as SPEC2017 [26] ,

ARD [27] , and Juliet [28] test suite, were used to evaluate the per-

ormance of the selected CWE detection tools. All these programs were

ompiled with the Clang/LLVM compiler with no optimizations. Some

f the benchmarks, like SARD and Juliet, provide a ground truth regard-

ng errors and vulnerabilities in each program. For others, like the SPEC

enchmarks, we do not have information about any known software

efects. For such cases, and to compare the performance and detection

ccuracy of binary-level tools with a source-level approach, we also em-

loyed a popular and well-regarded source-level CWE detection tool,

alled Sonarqube [29] .

. Analysis techniques

Researchers have developed and used different techniques to detect

oftware vulnerabilities. In this section, we present a brief introduction

o the main methods used by vulnerability detection techniques for soft-

are binaries. We limit the scope of this work to static analysis based

echniques. We do not discuss dynamic analysis based software weak-

ess detection techniques, such as fuzzing [30,31] in this work. Dynamic

nalysis based techniques can produce fewer false positives, but only an-

lyze code traces that are reached during execution with the limited set

f provided inputs.

.1. Static analysis

Static program analysis consists of algorithms and heuristics to ex-

ract information about the program, without executing the program

eing analyzed [32] . Static analysis is a popular technique for finding

rogram vulnerabilities. The binary code is statically analyzed to cre-

te detailed models of the application’s data and control flow. These

odels are then used for various tasks from vulnerability detection, and

ace condition detection to performance optimization. The static analy-

is enables inspection of the entire program code but is known to result

n several false positives and false negatives [33] .

.2. Symbolic execution

Symbolic execution was devised as a way of executing a program

bstractly, by replacing normal program inputs with arbitrary symbols

hat characterize a set of classes of inputs [34] . Symbolic execution can

nd abstract inputs to explore different paths of the program, which

akes this technique useful for vulnerability analysis. This is a popular

ecurity technique [35–37] . However, this technique suffers from a high

un-time overhead and the path explosion problem, which restricts its

pplicability [8] . Research is ongoing to determine ways to avoid the

ath explosion issue, such as filtering out the irrelevant dependencies

n symbolic values.

.3. Taint analysis

Taint analysis is a technique used to identify and monitor values that

ould be influenced by or derived from plausibly malicious program in-

uts. Taint analysis can be applied statically [38–40] or dynamically

41] . The tracking of tainted data and their propagation can be used to
5

etect program errors. The taint analysis method may find it hard to ex-

lore all paths, and some errors might go undetected. This technique de-

ivers few false positives but can have false negatives as all paths might

ot be explored.

.4. Machine learning

Recently, machine learning based techniques have gained much pop-

larity for vulnerability detection and other security tasks [42,43] . Dif-

erent ML models have been used in these studies, from classical ML

odels, like random forest and SVM, to deep learning models, including

NN and transformers [44] . Usually, a vulnerability database is needed

o train the dataset, which might not always be readily available. ML

ased techniques are often coupled with static analysis to gather the

atasets from the binary and then trained to get the classification re-

ults. Training the ML model can also be expensive in terms of time and

ompute resources, though inference is typically much faster.

. Survey of techniques to detect coding weaknesses in software

inaries

In this section we present a comprehensive survey of static tech-

iques and tools developed to detect the ten most important coding

eaknesses for binary software. We organize this section according to

he order of the top coding weaknesses as listed in Table 2 .

.1. Buffer overflow

Buffer overflow is a notorious memory error that has plagued soft-

are security for decades. Yet, even after much research and effort to

ddress this issue, errors related to buffer overflows are still the domi-

ating cause of failures and attacks in binary software.

The buffer overflow issue occurs when reading from or writing to

emory that exceeds the buffer or memory allocated at that region.

his flaw has numerous consequences like the execution of unautho-

ized code or commands. Attacks such as denial of service, crashes, re-

ource consumption, remote code execution, etc. are also possible [45] .

uffer overflows can expose sensitive data and cost businesses huge

onetary and reputation losses. These weaknesses have been respon-

ible for vulnerabilities in several instances, such as CVE-2021-22991

nd CVE-2020-29557.

Buffer overflow is a broad term that encompasses several distinct

WEs. Of these, CWE-787, CWE-125, and CWE-119 are in our list of

op 10 CWEs plaguing binary software, as listed in Table 2 . Others, like

WE-121 and CWE-122, are not in our top 10 list. Below, we provide

urther details about the more prominent CWEs related to buffer over-

ows.

• CWE-787 Out-of-bounds Write: This CWE tops the list of the 25

most dangerous software weaknesses. This error occurs when the

software writes the data past the end, or before the beginning of

the intended buffer. Usually, this unintended overwrite can result in

the corruption of data, program crashes, or incorrect execution of

code.

• CWE-125 Out-of-bounds Read: This weakness occurs when the pro-

gram code reads data past the end, or before the beginning, of the

intended buffer. Exploiting this weakness can allow attackers to read

sensitive information from other memory locations or cause a pro-

gram crash. When the excess data (out of the bound) is read, it can

expose sensitive program data.

• CWE-119 Improper Restriction of Operations within the Bounds of

a Memory Buffer: This is a more general weakness category that in-

dicates a memory read or write that is outside the intended buffer

boundary.

Static analysis techniques used to detect BO include program slicing,

ointer analysis, and delta debugging. Additionally, some researchers

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

Table 3

Summary of binary-level studies to detect the Buffer Overflow Weakness.

Research Open sour- ce? Technique Evaluation Results

Tools/Li- braries

Used Benchm- arks Limitations

Wang et al. (2021) [35] No Static analysis, Taint

analysis, concolic exec.

88% accuracy None Juliet and SARD Synthesized, small

benchmarks, poor evaluation

on real-world programs,

closed-source

Padaman-bhuni,

Tan(2014) [46]

No Static analysis, dynamic

analysis, ML

92% recall, 81%

precision

Pin, WEKA,

CodeSurfer

MIT Lincoln Small benchmarks, low

accuracy, closed-source

Padaman-bhuni,

Tan(2015) [48]

No Static analysis, ML 75% recall, 84%

precision

ROSE, WEKA,

IDA Pro

MIT Lincoln Small benchmarks, low

accuracy, closed-source

Gao et al. (2020) [50] No Taint analysis, static

analysis

94.3% precision,

86.2% recall

None Self-generated Small benchmarks, bigger

binaries take longer to

complete, many false

positive, closed-source.

Liang et al (2017) [51] No Dynamic taint analysis,

data recovery, dynamic

instrumentation

Nine out-of nine

real-world heap

overflow programs

QEMU, udis86 9 real-world

programs

Small benchmarks,

closed-source

Xiangkun et al. (2017)

[36]

No Dynamic, taint analysis,

symbolic execution,

fuzzing

47 new

vulnerabilities

QEMU, solver Z3 17 real-world

programs

Small benchmarks, misses

true vulnerabilities, slow,

huge trace size, closed-source

Dahl et al. (2020) [52] Yes RNN, static analysis CCR of 99% web scraper self-generated Restricted to small

benchmarks, cannot analyze

bigger programs

Gotovchits et al. (2018)

[53]

No Static analysis, static and

dynamic taint analysis

Five Zero day errors BAP, 𝜇flux COTS, Coreutils Small benchmarks, no

comparison with other

similar tools

Xu et al. (2022) [54] Yes Symbolic execution,

dynamic analysis

22 out of 29

program errors

angr, radare2 24 CTF and 5

CVE programs

Tool installation

issues,limited maintenance,

path explosion

Valgrind [55] Yes Synamic analysis and

instrumentation, JIT

- Memcheck - Limited support for stack,

static array overflow, slow

CWE Checker [56] Yes Static analysis, symbolic

execution

- Ghidra, BAP - Many false positives and

false negatives, slow

c

b

r

s

p

t

fi

i

p

n

w

a

a

w

t

i

t

o

g

a

I

n

c

f

t

n

n

T

b

e

X

c

b

a

h

c

o

t

s

p

i

e

t

b

w

i

C

p

m

i

t

i

n

r

t

fi

j

s
ombine multiple techniques to increase their effectiveness. There has

een less research on detecting buffer overflow issues for software bina-

ies compared to source-level techniques. In this section, we provide a

ummary of the binary-level research efforts on this topic, which is also

resented in Table 3 .

Wang et al. (2021) [35] developed a new tool, named BOF-Sanitizer,

o locate buffer overflows, where they combined a metric and rank to

nd the vulnerable locations where potential buffer overflow could ex-

st. Then the taint analysis method is used to find the vulnerable input

arameters that are symbolized by dynamic symbolic execution tech-

ology and sent to a detection engine and a custom memory model

here the buffer overflow is detected. Their approach achieved 88%

ccuracy on small benchmarks in the SARD and Juliet test suites. They

lso claimed to find 91 out of 100 vulnerabilities in some other real-

orld programs.

Padamanbhuni and Tan [46] proposed a vulnerability prediction

echnique by identifying potentially vulnerable program constructs dur-

ng program analysis and getting the buffer usage pattern from code at-

ributes extracted from those constructs. Then, machine learning meth-

ds were used to predict the buffer overflow. They performed their pro-

ram analysis to accurately model an instructions semantics using ROSE,

 binary analysis framework, and off-the-shelf tools like WEKA [47] and

DA Pro [22] . The same authors also combined static and dynamic tech-

iques to identify buffer overflows [48] . They automatically extracted

ode attributes from C/C++ programs and use the Pin tool [49] for per-

orming the dynamic analysis and the WEKA data mining tool to train

he vulnerability prediction models.

Gao et al (2020) [50] tried detecting buffer overflows based on ab-

ormal program execution. They took instances of successful and ab-

ormal executions where a group of input data is passed to a program.

hey took the memory of successful execution recovery as a buffer

oundary and judge whether the boundary has overflowed in abnormal

xecution.
6

Some researchers focus on specific sub-categories of buffer overflow.

iangkun et al. (2017) [36] , proposed a heap overflow detection tool

alled HOTracer which models heap overflows as spatial inconsistencies

etween heap allocation and heap access operations. They performed

nalysis on program traces and then recognized the heap allocation and

eap access operation pairs and checked whether there are spatial in-

onsistencies to detect the potential vulnerability. They tested their tool

n certain software programs like KM player, VLC, iTunes, etc.

Researchers developed a tool, named HCSIFTER (2017) [51] , to de-

ect heap overflows through dynamic execution without the need for

ource code. The tool detected five of the nine overflows in their tested

rograms. The tool can also assess the programs for their exploitabil-

ty by executing the program binary and analyzing the crash points and

xploit points.

Dahl et al. (2020) [52] , proposed a stack-based buffer overflow de-

ection method using recurrent neural networks. They treated the assem-

ly code as a natural language and process it using recurrent neural net-

orks based on long short-term memory cells. The dataset/benchmark

s self-generated and may not represent real-world data. The Correct

lassification Rate (CCR) was indeed similar but the dataset it used com-

rised small functions that resembled the SARD benchmarks.

Baradan et al. (2022) [37] , proposed a unit-based symbolic execution

ethod for detecting four classes of memory corruption vulnerabilities

n executable codes. The units are small program codes that might con-

ain vulnerable statements and they are statically identified. Each unit

s then subjected to symbolic execution to calculate the path and vul-

erable constraints of each statement. Solving these constraints would

eveal vulnerabilities, if any.

Gotovchits et al. (2018) [53] proposed a tool, named Saluki, for de-

ecting taint-based security properties in binary code. The tool tried to

nd different CWE types like missing sanitization checks, command in-

ection, or checks on buffer lengths. It used ôflux, a context and path-

ensitive analysis technique to recover data dependence facts in binaries

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

a

i

i

v

e

o

v

v

p

i

b

t

m

u

r

h

i

a

b

t

t

5

c

t

e

p

C

C

l

i

f

d

5

m

p

t

h

t

o

r

2

t

s

u

r

a

p

m

t

s

o

s

f

f

a

f

6

b

h

t

p

l

a

t

fi

p

p

l

[

t

a

l

M

o

t

5

e

a

i

u

fi

n

b

f

[

6

fl

t

r

t

i

H

e

a

c

g

v

p

h

a

c

a

e

t

i

i

w

o
nd tried to perform a sound logic system for reasoning over these facts

.e. if they satisfy a security property. Some of the CWEs it tries to find

nclude CWE-252, CWE-89, CWE-337/676, CWE-120, and CWE-78.

Xu et al.,(2022) [54] attempted to find the stack buffer overflow

ulnerabilities and generate an exploit. Their BofAEG tool used symbolic

xecution and dynamic analysis to detect vulnerabilities. Out of 24, 22

f the vulnerabilities were found in their self-collected programs.

BAP is a binary analysis platform developed at Carnegie Mellon Uni-

ersity that enables the analysis of binary programs [23] . It includes

arious different analyses, microexecution interpreters, standard inter-

reters, and a symbolic execution engine. There is a BAP toolkit repos-

tory that has different tools that perform different checks, including

uffer overflow detection. Although relatively easy to use, it only de-

ects heap overflows.

CWE_checker is a large suite of binary-level tools that can detect

ultiple classes of errors in program binaries [56] . The CWE_checker

ses Ghidra to disassemble binaries into one common intermediate rep-

esentation and then implements its analyses on this IR. CWE_checker

as implemented checks for many different bugs in program binaries,

ncluding those related to buffer overflows, such as CWE 119, CWE-125,

nd CWE-787.

Valgrind [55] is a popular run-time framework that provides several

inary-level debugging and profiling tools. Memcheck is one Valgrind

ool that can help find memory leaks in program binaries during execu-

ion.

.2. CWE-20 – improper input validation

CWE-20 is caused when the program input is not validated or is in-

orrectly validated. Proper input validation requires the input supplied

o be checked to determine if it is valid and conforms to the program’s

xpectations The absence of input validation can result in severe ex-

loits, including buffer overflow and resource consumption attacks. This

WE has been linked to many CVEs, including CVE-2021-22205 and

VE-2008-3477. Researchers have claimed that developers often over-

ook this issue due to inadequate knowledge and training, even though

t is relatively easy to detect and fix [57] .

We found the detection and fixing of this weakness is typically per-

ormed at the source code level. Unfortunately, we did not find any

edicated binary analysis tools designed for the detection of CWE-20.

.3. CWE-416 – use after free

The CWE-416 error occurs when the program tries to reference the

emory that has already been freed. Thus, there are three things the

rogram must do to trigger this error, (a) allocate heap memory, (b) free

he memory, and (c) access the freed heap memory again. This error can

ave multiple consequences like corruption of valid data, crashes, execu-

ion of arbitrary code, denial of service, execution of unauthorized code

r commands, etc. This weakness is also called the dangling pointer er-

or. Some CVEs associated with this CWE are CVE-2020-6819 and CVE-

021-0920.

Zhang et al. [58] , presented a multi-level directed greybox fuzzing

ool, called MDFuzz, to detect the use-after-free errors by covering only

pecific heap operations. Although this is a fuzzing-based technique, it

tilizes static analysis to automatically recognize three critical targets

elated to heap operations: allocating heap memory, freeing memory,

nd accessing the heap memory. It then improves the directed fuzzing

rocess by using a novel seed selection strategy and probability-based

ulti-level seed queue. The tool was evaluated on 7 real-world applica-

ions.

Zhu et al. [59] developed the UAFDetector tool that also combines

tatic analysis techniques with dynamic mechanisms. This paper focused

n improving the CFG construction with the help of dynamic binary in-

trumentation techniques to resolve indirect jumps. The technique per-

orms alias analysis and pointer tracking. They use IDA Pro and BinNavi
7

or building their tools. This tool is evaluated on the Juliet benchmarks

nd real-world programs with known vulnerabilities. The evaluation

ound 2.39% false negative with the Juliet benchmarks, and 5 out of

 real-world cases were detected.

GUEB [60] is a static analyzer to perform use-after-free detection on

inaries. It uses value set analysis and tracks pointers and states of the

eap objects. The program sub-graph is extracted when GUEB detects

he use of the freed pointer. This tool also uses IDA Pro and BinNavi to

erform its analysis. Large binaries cannot be analyzed using this tool.

Yan et al. [61] introduced a static UAF detector called Tac, that uti-

ized machine learning to bridge the gap between typestate and pointer

nalyses. They utilized support vector machines to learn the correla-

ion between program features and UAF-related aliases. They tried to

nd the true UAF bugs with reduced false positives by removing im-

recise aliases using machine learning. They used program slicing and

erformed their path-sensitive type state analysis in addition to machine

earning to get the desired output.

In addition, the open-source tools we used earlier, cwe_checker

56] and BAP [23] also detect use-after-free errors in binary code. Both

hese tools have a high false positive rate.

Many other execution-time tools have also been built to detect use-

fter-free errors in binary code. Such tools include dynamic fuzzers,

ike UAFUZZ [62] , and instrumentation frameworks, like Valgrind [55] .

emcheck is one of the tools that employ Valgrind to find several mem-

ry leaks in C and C++ program binaries. These are out-of-scope for

his paper.

.4. CWE-476 – null pointer dereference

A NULL pointer dereference occurs when the application derefer-

nces a pointer that it expects to be valid, but is NULL, typically causing

 crash or exit. When a program is trying to dereference a null pointer,

t is accessing memory at an invalid address, which typically can lead to

nexpected behavior, crashes, and security vulnerabilities. It can be dif-

cult to detect and fix this error in the case of large programs. This weak-

ess can be exploited to cause serious attacks that include the ability to

ypass the security logic, make the program reveal some debugging in-

ormation, or cause abnormal program crashes and other DoS attacks

63] . Some vulnerabilities associated with this CWE include CVE-2020-

078 and CVE-2020-29652.

Static and dynamic taint analysis, symbolic execution, fuzzing, data

ow and control flow analysis, and dynamic binary instrumentation

echniques are some popular mechanisms to address CWE-476 in recent

esearch. Again, we only focus on presenting binary-level static analysis

echniques in this work.

The CWE-Checker tool can find this error for cases where a pointer

s explicitly set to Null before the pointer is used in the function [56] .

owever, we found that this tool does not yet find the null pointer deref-

rence if a NULL parameter sent to a function is dereferenced.

A tool, called NPDHunter uses an intra-procedural pointer and taint

nalysis based approach to detect null pointer dereferences in binary

ode [64] . This work uses an improved pointer aliasing analysis to cate-

orize and identify untrusted source cases, and then perform taint-style

ulnerability testing to detect whether the data from an untrusted source

ropagates to a sensitive sink without proper sanitization. The authors

ere note that static detection methods on binaries, including their own,

re limited due to challenges caused by complex code structures in-

luding loops, indirect calls and jumps, etc. Even so, their technique

chieved no false negatives for benchmarks in the Juliet suite. How-

ver, there were a large number of false positives. They also evaluated

he cwe_checker tool and reported that cwe_checker had 70% false pos-

tives for this check with the same benchmarks. Unfortunately, this tool

s not available as open-source, and our attempts to contact the authors

ere unsuccessful. They use BAP for IR generation.

Tobais et al. developed a tool, called TEEREX that uses a combination

f symbolic execution and static analysis to identify potential sources of

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

n

r

a

d

t

c

T

s

i

t

fi

c

u

e

a

a

o

i

e

w

i

l

e

a

r

5

n

t

t

n

i

m

h

i

[

c

a

a

t

t

d

l

p

b

a

[

M

b

i

t

b

p

t

p

p

e

i

f

e

g

T

f

5

t

t

T

s

i

t

T

C

c

c

l

a

c

d

m

t

s

a

c

a

p

5

i

t

p

e

c

C

l

i

q

t

a

T

o

f

d

s

[

l

s

o

d

d

a

w

ull pointer dereference errors in SGX enclaves in binary code; later

un-time instrumentation is used to monitor the execution to detect any

ctual null pointer accesses [65] . The authors showed that null pointer

ereferences can be used to cause memory corruption and compromise

he security of the enclave.

Gotovchits et al. proposed a taint-style tool, Saluki, for statically

hecking security properties and detecting different vulnerabilities [53] .

hey combined static analysis with taint analysis to perform path-

ensitive and context-sensitive recovery of the data dependence facts

n binaries. They then checked if the data dependence facts adhere to

heir rules to report potential vulnerabilities. They applied their tool to

ve real-world applications and the ARM coreutils binaries. They can

heck for numerous potential errors, including “Unchecked Return Val-

es ”. This error can be associated with the Null pointer dereferencing

rror as denoted by CWE-690. They also use BAP for IR generation. BAP

nd CWE_checker also provide tools to detect CWE-476.

We have found that standalone static analysis techniques are gener-

lly not used to detect this error. Static techniques are often coupled with

ther techniques such as taint analysis, dynamic analysis, or fuzzing. For

nstance, Vishnyakov et al. presented an approach that uses symbolic

xecution, dynamic analysis, and hybrid fuzzing to detect various real-

orld software flaws, including null pointer dereferences [66] . They

mplemented their hybrid fuzzing tool by combining the Sydr [67] with

ibFuzzer [68] and AFL++ [69] . They used slicing to improve symbolic

xecution. This work used their self-created OSS-Sydr-Fuzz repository

nd showed that their approach achieved higher coverage than other

elated tools.

.5. CWE-190 – integer overflow or wraparound

Integer overflow is one of the most common types of software vul-

erabilities that occurs when a calculation or operation results in a value

hat is outside the range of values that can be stored in an integer data

ype. When this occurs, the value can wrap to become a very small or

egative number. These integer overflows can cause the program to use

ncorrect numbers and respond in unintended ways. For instance, if the

alformed value generated by integer overflow is used to determine

ow much memory to allocate, it will cause a buffer overflow which

s known as Integer Overflow to Buffer Overflow (IO2BO) vulnerability

70] . Other attacks that are possible by exploiting these weaknesses in-

lude denial of service, program crashes, resource consumption issues,

nd arbitrary code execution. CVE-2018-10887 and CVE-2019-1010006

re examples of actual vulnerabilities that were caused by CWE-190 In-

eger Overflow. Below, we review static approaches devised to detect

his code weakness.

Wang et al. presented a tool, called IntScope, that can automatically

etect the integer buffer overflow vulnerabilities in x86 binaries [71] . It

ifts the disassembled code into its intermediate representation (IR) and

erforms a path-sensitive data flow analysis and identifies the vulnera-

le points for the integer overflow using symbolic execution and taint

nalysis. Their mechanism used various tools like IDA Pro [22] , Bestar

72] , GiNaC [73] , and STP [74] . This tool was evaluated on two of the

icrosoft programs and was successful in detecting all known vulnera-

ilities. Additionally, it found more than 20 zero-day integer overflows

n these programs along with several false positives.

Muntean et al. built a tool, named INTREPAIR, to detect and fix in-

eger overflows in software Binaries [75] . This technique employs sym-

olic execution. The tool only focuses on program paths that are fault-

rone like assignment or multiplication. They conducted their evalua-

ion on the Juliet test suite and another synthesized benchmark set of 50

rograms. This tool successfully detected all actual overflows, but also

roduced many false positives (the actual number is not reported).

Huang et al. proposed a hybrid method to detect integer overflow

rrors [76] . They used static taint analysis to find the program points to

nstrument. The instrumented test code at each use and def site checks

or the overflow. The delayed runtime test minimizes the false positives.
8

Zhang et al. also proposed a hybrid method that combines symbolic

xecution, static analysis, and dynamic taint analysis to detect the inte-

er overflow to buffer overflow vulnerabilities in program binaries [77] .

hey used the Juliet test suite to evaluate their approach and found zero

alse positives and zero false negatives.

.6. CWE-798 – use of hardcoded credentials

This weakness occurs when the developer uses hard-coded creden-

ials, such as passwords or cryptography keys, which it uses for sensi-

ive purposes, for both inbound and outbound variant authentication.

his weakness can allow an attacker to bypass the authentication. A

imple string search could sometimes reveal the hard-coded credentials

n the binary. This weakness can cause attacks, such as gaining unin-

ended privileges and execution of unauthorized code or commands.

his CWE has been associated with real-world vulnerabilities, including

VE-2022-30314 and CVE-2010-2772.

This error can be mitigated by storing the passwords, keys, and other

redentials outside of the code in a strongly protected and encrypted

onfiguration file or a restricted database. The access control should be

imited in the case of the hard-coded credentials.

Binary analysis tools such as IDA Pro [22] , Ghidra [20] , Radare [21] ,

nd Angr [18] can be utilized to detect possible strings that reveal hard-

oded credentials in the binary. Various debuggers can also be used to

etect the hardcoded credentials. But both these approaches need some

anual work.

There are not a lot of research papers or released tools that propose

echniques to detect the presence of hard-coded credentials in binary

oftware. The BAP binary-level tool claims to detect this weakness [23] .

Source code level SAST tools, like Sonarqube [29] , Veracode [78] ,

nd Checkmarx [79] use static analysis techniques to detect the hard-

oded values in the program. GitGuardian [80] is another source-level

pproach that detects the hard-coded secrets in code repositories and

erforms real-time monitoring to detect secrets in every new commit.

.7. CWE-843 – access of resource using incompatible type

CWE-843, also called Type Confusion , occurs when a program initial-

zes a resource, such as a pointer, object, or variable, using one data

ype but later accessing it with an incompatible type. This issue can

otentially cause other logical errors as the resource may not have the

xpected properties, and can also result in out-of-bounds memory ac-

esses. This bug has caused several real-world vulnerabilities, such as

VE-2010-4577 and CVE-2011-0611.

Accurate type detection for binaries, especially after stripping , is chal-

enging due to factors such as vanished type casting operators, miss-

ng class information, and unknown runtime type information. Conse-

uently, most previous research to detect this error assumes access to

he program source code. For instance, Haller et al. proposed TypeSan,

 type confusion detection tool that extends the LLVM compiler [81] .

ypeSan identifies invalid casts by instrumenting the code to monitor

bject allocations and potentially unsafe casts. Similarly, tools like Ef-

ectivesan [82] , Htade [83] , and Hextype [84] also rely on compilers to

etect this weakness.

Kim et al. introduced a hybrid tool called BinTyper, which combines

tatic and dynamic analysis to detect type confusion in C++ binaries

85] . Through static analysis, BinTyper recovers the class hierarchy and

ayout of the binary. It then uses dynamic analysis to identify type confu-

ion when an application accesses a member variable of a polymorphic

bject. BinTyper was evaluated with Google PDFium and successfully

etected some type confusion bugs. However, this method is limited to

etecting errors when objects access polymorphic objects, and the cover-

ge is restricted to executed code. This is the only binary-level approach

e found to detect CWE-843, and this tool is not open-source.

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

5

m

s

h

a

b

e

t

s

i

3

t

a

B

y

t

p

n

p

t

t

l

o

s

t

t

j

c

l

t

a

s

y

W

e

d

s

n

[

e

l

6

t

s

r

t

p

g

t

i

d

p

d

i

c

fi

i

r

6

o

A

fl

t

p

T

t

m

fl

a

l

d

w

i

l

s

t

h

t

n

t

c

i

s

c

g

E

t

fl

c

fl

S

f

J

s

S

a

o

b

s

b

n

e

t

c

i

s

t

a

p

m

.8. CWE-401 – missing release of memory after effective lifetime

This weakness, also called a Memory Leak , occurs when allocated

emory is not released after it has been used, and which slowly con-

umes the remaining memory. This error is often caused by improper

andling of malformed data or unexpectedly interrupted sessions. It can

lso be caused by confusion over which part of the program is responsi-

le for freeing the memory. This error can cause denial of service, and

xcessive resource consumption (both CPU and memory). Additionally,

his issue can be hard to detect and fix quickly since the effect can take

ome time to show itself. This CWE has been identified as the underly-

ng cause of several vulnerabilities, like CVE-2005-3119 and CVE-2022-

8177.

We found that most techniques to detect memory leaks operate on

he source code and many have a dynamic component. We did not find

ny approach that is both binary-level and uses only static analysis.

inary-level techniques to detect this error often conduct static anal-

sis to identify and insert instrumentation points, which then monitor

he code at run-time to detect or prevent leaks.

Andrzejak et al. introduced an intriguing machine learning ap-

roach to detect memory leaks [86] . This is a source-level tech-

ique where they instrument the malloc and free calls in C/C++

rograms to gather data on allocated memory fragments, their life-

imes, and sizes to compute feature vectors. These properties were

hen used to train a machine learning classifier to detect memory

eaks.

A number of approaches instrument program binaries to detect mem-

ry leaks during program execution. For example, Trishul et al. pre-

ented a tool named SWAT that instruments the program binary to

race memory allocation and free requests [87] . The profiling is used

o construct a heap model and to monitor load/stores to allocated ob-

ects with low overhead. They monitor the staleness of each object and

heck if relevant instructions have been executed to predict memory

eaks.

In another work, Koizumi et al. presented the BIGLeak algorithm

hat performs dynamic binary analysis to group objects based on their

llocation context and monitors each group’s size using I/O-based snap-

hots [88] . Their detection algorithm incorporates intermittency anal-

sis, enabling the rapid identification of both low and high-risk leaks.

hen combined with dynamic binary analysis using context-aware ex-

cution sampling, they claim to achieve low run-time overheads. They

emonstrated nearly 100% precision in detecting leaks when real-world

oftware was employed.

Popular binary instrumentation frameworks, like Valgrind and Dy-

amoRio also provide tools, called Memcheck [55] and Dr. Memory

89] , respectively to detect memory leaks. Other tools to detect this

rror include Electric Fence [90] , mtrace [91] , PurifyPlus [92] , and De-

eaker [93] .

. Evaluation of open-source tools

In the previous section we surveyed the static techniques and tools

hat were developed to detect the most common weaknesses in binary

oftware. Along with publishing their work, it is now not uncommon for

esearchers to also release an open-source version of their implementa-

ion on platforms such as github . To better understand and evaluate the

erformance of these techniques on a common set of benchmark pro-

rams, we attempted to find, build, and test each technique implemen-

ation, if available, for our benchmark set that was previously described

n Section 3 . We also contacted the authors if we encountered issues

uring this process.

Of the ten most common binary-level weaknesses we survey in this

aper, we do not find any open-source implementation of techniques to

etect the improper input validation (CWE-20) and access of resource using

ncompatible type (CWE-843) software errors. Therefore, we do not in-

lude them in this section. In the remainder of this section we report our
9

ndings on the availability, status, and performance of the open-source

mplementations of the techniques for the other common software er-

ors.

.1. Buffer overflow detection

In this section, we report our findings on the availability and ability

f open-source tools for buffer overflow detection for software binaries.

s mentioned previously, the top CWEs that correspond to buffer over-

ow detection include CWE-787, CWE-125 and CWE-119.

We found that many of the released tools for buffer overflow de-

ection did not work as documented or as expected. Dahl et al. (2020)

ublished an open-source implementation of their published work [52] .

he released software scripts were designed to compile datasets of func-

ions with potential vulnerabilities, which were then fed into an RNN

odel for classification. We found that the underlying code and work-

ow were relatively easy to understand. Likewise, the provided datasets

nd results were readily accessible. However, when we attempted to uti-

ize our independent benchmarks, we encountered many difficulties. We

iscovered that the programs required source-level modifications that

ent against our primary focus on analyzing unmodified binaries. For

nstance, functions without arguments couldn’t be used. Also, analyzing

arge programs was deemed impractical according to the authors.

Baradan et al. have released an open-source implementation of their

ymbolic execution based technique [37] . This tool required an installa-

ion of the angr framework, which we installed. However, this tool too

ad limitations when source code was unavailable. Most notably, func-

ions with default constant data or void datatype were not analyzed and

eeded to be modified for evaluation. This prevented us from using this

ool to assess other benchmarks, as it stalled during the symbolic exe-

ution step.

Another open-source tool released by Xu et al. appeared to have lim-

ted maintenance, as the associated GitHub page was inactive [54] . Not

urprisingly, this software required non-trivial installation steps. We en-

ountered challenges due to dependency issues, necessitating the down-

rading of Angr and other dependencies for specific library versions.

ven after sustained effort, we were unable to successfully execute this

ool.

BAP and CWE_checker are the only binary-level static buffer over-

ow detection open-source tools that worked for us. Additionally, for

omparison of binary-level and source-level approaches to buffer over-

ow detection, we used a popular source-code analysis tool, named

onarqube [29] . Sonarqube is a commercial tool that also provides a

ree cloud-based service.

The results of our evaluation on the SARD (SARD-88 and SARD-89),

uliet, and SPEC benchmarks are shown in Table 4 . The SARD and Juliet

uites contain small programs with ground-truth results. Programs in the

ARD benchmark are available in different categories based on their size

nd type (bad and benign, min, med, and large). The Juliet Test Suite has

ver 3000 programs. SPEC benchmarks are larger real-world programs,

ut do not provide a ground truth. Therefore, we use the results from the

ource-level Sonarqube as the baseline results for the SPEC benchmarks.

Thus, our results reveal that both the binary-level tools offer poor

uffer overflow detection accuracy with many false positives and false

egatives, even for the small SARD and Juliet benchmarks. Surprisingly,

ven the source code analyzer, Sonarqube, is not able to detect all of

he weaknesses performing just slightly better than binary tools in some

ases. BAP shows decent performance for heap overflow detection, but

t does not support buffer overflow detection in other memory regions.

Overall, we find that there is a scarcity of reliable and effective open-

ource buffer overflow detection tools for binary analysis. Our evalua-

ion revealed significant limitations and challenges associated with the

vailable open-source tools. The tools exhibit poor accuracy, limited ap-

licability to real-world scenarios, and challenges in installation and

aintenance.

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

Table 4

Evaluation of open-source tools to detect Buffer Overflows.

Buffer Over Ground CWE_checker BAP Sonarqube

Benchmarks Truth TP FP FN TP FP FN TP FP FN

SARD 88_bad 14 2 2 10 0 0 14 2 0 12

SARD 88_benign 14 12 2 2 0 0 14 12 2 0

SARD 89_min 291 1 0 290 0 0 291 183 0 108

SARD 89_med 291 1 0 290 0 0 291 183 0 108

SARD 89_large 291 9 0 282 0 0 291 182 0 109

SARD 89_benign 291 291 0 0 0 0 291 291 0 0

Juliet Stack 3198 331 573 2867 0 0 3198 561 0 2637

Juliet Heap 3870 1470 3349 2400 517 21 3353 535 0 3335

SPEC 399∗ 1 160 398 7 0 392 399∗ 0 0

Table 5

Evaluation of open-source tools to detect Use After Free defect.

Benchmarks Ground Truth CWE_checker BAP Sonarqube

UAF TP FP FN TP FP FN TP FP FN

Juliet Test Suite 394 17 18 377 96 42 298 333 0 61

spec 10∗ 0 2 10 1 306 9 10∗ 0 0

6

a

i

a

o

i

o

T

a

W

m

b

t

i

t

v

t

t

n

t

i

a

t

6

a

m

r

t

W

t

m

s

s

t

b

h

e

t

t

h

w

t

o

6

m

i

m

C

t

e

4

I

1

t

s

6

t

b

a

O

i

s

d

.2. CWE-416 – use after free

In this section, we review and test open-source binary-level static

nalysis based tools to detect use-after-free errors.

The GUEB tool developed by Josselin Feist [94] is one such tool that

s available on GitHub. However, it has not been actively maintained for

 long time. We found that the tool’s installation process involves numer-

us dependencies, making it challenging to use for evaluation purposes.

We again use BAP and cwe_checker to determine the accuracy of ex-

sting state-of-the-art tools to detect UAF errors. We did not find any

ther open-source binary-level tools to detect UAF that worked for us.

he Juliet test-suite includes many UAF benchmarks. Additionally, we

lso use the bigger SPEC 2017 benchmarks to conduct our evaluation.

e use the Sonarqube source-level SAST tool to compare the perfor-

ance of the binary-level tools and use the Sonarqube results as the

aseline for the SPEC benchmarks.

Our evaluation results are displayed in Table 5 . Thus, we can see

hat while Sonarqube with access to the source-code performs well, it

s not fully accurate in detecting use after free vulnerabilities. The BAP

ool demonstrated better accuracy than cwe_checker in detecting UAF

ulnerabilities in the Juliet benchmarks. The cwe_checker tool only de-

ected 17 out of 394 total cases in the Juliet test suite. Additionally,

he false positives were notably higher for the BAP tool, while the false

egatives were significantly higher for cwe_checker.

In summary, our evaluation findings indicate that the accuracy of all

he analyzed tools is limited when assessing use after free vulnerabilities

n both small and large benchmarks. False positives and false negatives

re prominent, highlighting the need for improved algorithms and tools

o increase the accuracy and effectiveness in detecting UAF weaknesses.

.3. CWE-476 – null pointer dereference

In this section, we review and test open-source binary-level static

nalysis based tools to detect null pointer dereferences. We found that

ost researchers did not make their works public or maintain their

epositories. Therefore, again, the BAP toolkit and cwe_checker were

he only tools available to use to evaluate NPD detection for binaries.

e again use Sonarqube to compare the results from the binary-level

ools and use the Sonarqube results as the ground truth for SPEC bench-

arks.

Table 6 shows the results of our evaluation of the binary-level open-

ource tools for NPD detection on program binaries. For the Juliet test
10
uite, cwe_checker detected 186 out of 306 NPD cases, while the BAP

oolkit outperformed all other tools by detecting 240 cases. However,

oth tools had a significant number of false positives, with cwe_checker

aving around half of the total cases as false positives. The BAP toolkit

xhibited a lower false positive rate of 80. Both cwe_checker and the BAP

oolkit achieved the same detection rate of 13 out of 200 NPD cases for

he larger SPEC benchmarks. However, cwe_checker had a significantly

igher false positive rate.

Interestingly, the source code analyzer, Sonarqube, did not perform

ell in NPD detection with about half of the cases being correctly iden-

ified. Thus for NPD detection, binary analysis based tools outperformed

ur source code based tool in terms of detection accuracy.

.4. CWE-190 – integer overflow or wraparound

CWE-190 Integer Overflow is a widely recognized issue with nu-

erous detection techniques proposed. Yet, the error is challenging to

dentify statically as it can be deeply embedded within a program and

ay only become evident under specific input conditions. We found

WE_checker to be the sole open-source tool that uses static techniques

o detect integer overflows in software binaries.

Our evaluation results for CWE_checker are displayed in Table 7 . The

valuation was conducted using the Juliet test suite benchmark. Almost

000 cases were analyzed, of these only 252 were successfully detected.

nterestingly, Sonarqube only detected 100 of these instances of CWE-

90. Thus, the prevalence of a large number of false negatives even in

he small Juliet programs suggests that existing approaches may not be

ufficiently accurate for effectively identifying this issue.

.5. CWE-798 – use of hardcoded credentials

Although both Sonarqube and BAP claim to detect this error, both

hese tools were unable to detect any cases in our set of Juliet and SPEC

enchmarks. We found that BAP only checks for the hard-coded socket

ddresses, but does not support the detection of hard-coded passwords.

ne likely reason for the inability of existing tools to detect this error

s that detection of the hard-coded passwords in the form of character

trings is difficult as it can detect all other strings as the potential cre-

entials resulting in a large number of false positives.

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

Table 6

Evaluation of open-source tools to detect Null Pointer Dereference defect.

Benchmarks Ground Truth Cwe_checker BAP Sonarqube

NPD TP FP FN TP FP FN TP FP FN

Juliet Test Suite 30 186 147 120 240 80 66 180 0 126

SPEC 200∗ 13 228 187 13 19 187 200∗ 0 0

Table 7

Evaluation of open-source tools to detect Integer Overflows.

Benchmarks Ground Truth Cwe_checker Sonarqube

Integer Overflow TP FP FN TP FP FN

Juliet Test Suite 3960 252 0 3708 100 0 2860

SPEC 0∗ 0 53 0 0 0 0

Table 8

Evaluation of open-source tools to detect Memory Leaks.

Benchmarks Ground Truth valgrind Sonarqube

Memory leak TP FP FN TP FP FN

Juliet Test Suite 565 98 0 467 357 83 208

SPEC 22∗ 13 3 9 22∗ 0 0

6

s

p

t

t

m

t

S

b

p

7

i

i

t

o

i

s

o

b

i

c

c

c

t

p

u

c

c

c

c

d

w

i

s

[

l

c

n

c

8

e

l

s

a

s

t

w

f

w

r

b

J
.6. CWE-401 – missing release of memory after effective lifetime

We did not find a static analysis based binary-level approach or open-

ource tool to detect this weakness. Therefore, in this section, we com-

are the detection accuracy of one popular binary-level memory de-

ection tool (Valgrind’s memcheck) with that of the source-level SAST

ool, Sonarqube. Our results with the Juliet test suite and SPEC bench-

arks are displayed in Table 8 . We find that Valgrind was only able

o detect about 17% of errors correctly for the small Juliet benchmarks.

onarqube performs better with an accuracy of around 63% for the same

enchmarks. Thus, new techniques and tools may be necessary to im-

rove the detection accuracy of this bug, especially for program binaries.

. Discussion

Static analysis techniques are often used during code analysis and

nspection. However, they often suffer from a high number of false pos-

tives and false negatives [95] . Lipp et al. reported that even state-of-

he-art source-level static analysis tools that produce accurate results

n small programs still miss a significant percentage of vulnerabilities

n real-world benchmarks, ranging from 47% to 80% [15] . Most of these

tudies were conducted with source-level static code analysis techniques
r tools. b

Table 9

Summary of Vulnerabilities and Tools.

Vulnerability Tool

Buffer Overflow RNN for Vulnerability Detection [52]

UBSYM [37]

bofAEG [54]

Use After Free GUEB [94]

UBSYM [37]

Null Pointer Dereference No other open-source tools found.

Integer Overflow or Wraparound No other open-source tools found.

Use of Hardcoded Credentials No other open-source tools found.

Memory Leak No static source-open tools found.

11
Intuitively, this challenge is exacerbated when statically analyzing

inary programs due to the loss of crucial program information, includ-

ng types, names, and high-level code syntax and structure in binary

odes. Yet, binary analysis is important in several contexts when source

ode is either unavailable (viruses and other malware, or third-party

ode) or is lost (old/legacy binaries), or to examine the actual program

hat runs on a machine after compiler optimizations. Unfortunately, the

revalence of false positives and false negatives has led to an under-

tilization of static analysis tools and techniques due to the costs asso-

iated with further manual inspection [96] . Our evaluation in this work

onfirms that these issues regarding accuracy and scalability persist in

urrent state-of-the-art tools. Resolving this challenge is one of the most

ritical future frontiers for binary-level static analysis research.

In this study, we find that several researchers are currently ad-

ressing this challenge by exploring combinations of static techniques

ith other methods. Many recent works show a shift towards integrat-

ng static analysis with other techniques. Some studies have combined

tatic and dynamic analysis to mitigate weaknesses in both approaches

36,48,53] , while others have leveraged machine learning and deep

earning alongside static techniques, dynamic fuzzing, and symbolic exe-

ution [50–52,54,56] . This trend reflects the recognition that static tech-

iques alone have limitations and can benefit from synergies with other

omplementary code analysis methods.

. Limitations and threats to validity

Our current study has several limitations that should be consid-

red when interpreting the results. Firstly, our evaluation of binary-

evel static analysis tools was constrained by the availability of open-

ource options. Several techniques have proprietary implementations

nd the codes are not available online. Additionally, even some open-

ource projects have outdated dependencies and unmaintained reposi-

ories that make it challenging to evaluate those techniques. In Table 9 ,

e report the other open-source tools that we attempted to employ, but

ailed to build and/or use in this study for different reasons. Thus, we

ere unable to assess many of the tools and techniques that have been

eported in the literature.

Secondly, our benchmark suite used to evaluate the performance of

inary-level static analysis tools has a few limitations. The SARD and

uliet test-suites provide a ground truth regarding errors and vulnera-

ilities in the codes. However, these are small programs that may not
Issue

Only works with provided source code, not others.

Tool installs but does not run on our benchmarks, requires source code

change.

Tool installs, but none of our benchmarks finish execution due to path

explosion issue.

Code is not maintained, Installation errors due to dependencies.

Installs but does not run on our benchmarks, requires source code change.

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

b

p

v

v

m

e

l

r

a

m

9

e

p

p

s

t

a

r

C

l

U

t

t

e

b

c

a

e

u

m

r

A

w

i

a

s

s

(

s

s

1

p

p

t

i

n

c

t

r

t

r

t

p

i

f

t

t

o

i

fi

D

i

t

C

P

W

o

A

S

R

[

[

[

[

[

[

[

[

e representative of real-world programs. In contrast, the larger SPEC

rograms lack ground truth information for assessing the presence of

ulnerabilities. We rely on the source-level analyzer, Sonarqube, to pro-

ide a ground truth for the SPEC benchmarks. However, as we have

entioned before, source-level analyzers are not completely accurate

ither.

Finally, our focus on binaries produced by the C/C++ languages

imits the generalizability of our findings to other languages and bina-

ies compiled using multiple languages. Future research should aim to

ddress these limitations by incorporating a wider range of tools, bench-

arks, and language-specific analyses.

. Future work

There are many avenues for future work. First, we plan to explore

rror categories beyond the top 10 CWEs for program binaries. We also

lan to review dynamic and run-time error detection approaches to com-

lement our static analysis focus from this work.

Second, a major finding from this work is that there is a lack of open-

ource research and state-of-the-art tools to accurately detect the impor-

ant CWEs in program binaries. Our future goal is to learn from existing

pproaches to construct such an open-source tool to precisely detect er-

ors in binary software. Likewise, we plan to develop tools to detect

ommon Weakness Enumeration (CWE) vulnerabilities that currently

ack dedicated tools or research, such as CWE-843 (Access of Resource

sing Incompatible Type) and CWE-798 (Use of Hard-coded Creden-

ials).

Third, we plan to develop advanced deobfuscation and decompila-

ion techniques that can handle obfuscated and optimized code more

ffectively, aiming to recover higher-level abstractions from low-level

inary representations.

Fourth, developing static analysis techniques that can handle exe-

utables built using different languages and multiple architectures, such

s ARM, x86, and others, can also be one of the crucial future works that

nable comprehensive analysis of modern software systems. We plan to

ndertake this research in the future.

Fifth, improving the accuracy of binary-level static analysis tools re-

ains a critical challenge in the field. Enhancing true positives while

educing false positives is essential for reliable vulnerability detection.

n emerging approach involves combining the results of static analysis

ith other techniques, such as run-time monitoring or machine learn-

ng algorithms. This integration has shown promise in improving over-

ll accuracy and reducing false positives by leveraging complementary

trengths.

Finally, it is crucial to understand how inaccuracies in binary-level

tatic analysis can impact dependent tasks like Control-Flow Integrity

CFI). Identifying and mitigating these impacts will be essential for en-

uring the effectiveness of security mechanisms that rely on accurate

tatic analysis results.

0. Conclusions

Our goal in this work was to comprehensively review and compare

ast research in static analysis based approaches to detect the most im-

ortant CWE categories for program binaries. Another major goal was

o evaluate the accuracy of open-source tools built to detect each stud-

ed program’s weaknesses. We made many significant, interesting, and

ovel discoveries and observations in this work. First, we found that we

urrently lack tools and techniques to accurately detect many impor-

ant classes of errors in binary software. Second, we found that much

esearch is not available in the open-source domain, and even the tools

hat exist are often not maintained and lack critical support. Third, many

esearch works only evaluate their techniques on small benchmarks, and

heir results may not adequately represent performance in real-world ap-

lications. Fourth, many CWE detection techniques suffer from a high

ncidence of false positives and false negatives, underscoring the need
12
or refinement and enhancement of existing techniques and tools. Thus,

his work distinguishes itself as the first survey of binary-level CWE de-

ection techniques, and the first independent assessment of binary-level

pen-source tools for identifying software weaknesses, offering valuable

nsights and setting the stage for further advancements in this critical

eld.

eclaration of competing interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

RediT authorship contribution statement

Ashish Adhikari: Writing – review & editing, Supervision, Software,

roject administration, Methodology, Investigation. Prasad Kulkarni:

riting – original draft, Visualization, Validation, Software, Methodol-

gy, Investigation, Data curation, Conceptualization.

cknowledgements

This work is sponsored in part by the National Security Agency (NSA)

cience of Security Initiative.

eferences

[1] N. N. V. Database, Cvss severity distribution over time, (https://nvd.nist.gov/

general/visualizations/vulnerability- visualizations/cvss- severity- distribution- over-

time , Retrieved June 9, 2023).

[2] C. (Cybersecurity, I. S. A. Advisory, AA22-117A: conti ransomware, (https://www.

cisa.gov/news- events/cybersecurity- advisories/aa22- 117a). Retrieved May 17,

2023.

[3] CISA (Cybersecurity and Infrastructure Security Agency), AA22-216A: conti

ransomware, (https://www.cisa.gov/news- events/cybersecurity- advisories/aa22-

216a). Retrieved May 17, 2023.

[4] L. Szekeres, M. Payer, T. Wei, D. Song, Sok: eternal war in memory, in: 2013 IEEE

Symposium on Security and Privacy, 2013, pp. 48–62, doi: 10.1109/SP.2013.13 .

[5] S.C. Johnson, M. Hill, Lint, a c program checker (1978). https://api.semanticscholar.

org/CorpusID:59749883 .

[6] M. Byun, Y. Lee, J.-Y. Choi, Analysis of software weakness detection of cbmc based

on cwe, 2020, pp. 171–175, doi: 10.23919/ICACT48636.2020.9061281 .

[7] M. Saletta, C. Ferretti, A neural embedding for source code: security analy-

sis and cwe lists, in: 2020 IEEE Intl Conf on Dependable, Autonomic and Se-

cure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf

on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), 2020, pp. 523–530, doi: 10.1109/

DASC- PICom- CBDCom- CyberSciTech49142.2020.00095 .

[8] D.S. Cruzes, M.L. Chaim, D.S. Santos, What do we know about buffer overflow detec-

tion? a survey on techniques to detect a persistent vulnerability, Int. J. Syst. Softw.

Secur. Protect. 9 (3) (2018) 1-33, doi: 10.4018/IJSSSP.2018070101 .

[9] S.J. Ahmed, D.B. Taha, Machine learning for software vulnerability detection: a sur-

vey, in: 2022 8th International Conference on Contemporary Information Technol-

ogy and Mathematics (ICCITM), 2022, pp. 66–72, doi: 10.1109/ICCITM56309.2022.

10031734 .

10] V. Yosifova, A. Tasheva, R. Trifonov, Predicting vulnerability type in common vul-

nerabilities and exposures (cve) database with machine learning classifiers, 2021,

doi: 10.1109/ELECTRONICA52725.2021.9513723 .

11] J.D. Pereira, M.P.A. Vieira, On the use of open-source c/c++ static analysis tools

in large projects, 2020 16th European Dependable Computing Conference (EDCC)

(2020) 97–102 .

12] S. Zaharia, T. Rebedea, S. Trausan-Matu, Cwe pattern identification using semantical

clustering of programming language keywords, 2021, pp. 119–126, doi: 10.1109/

CSCS52396.2021.00027 .

13] T. Ji, Y. Wu, C. Wang, X. Zhang, Z. Wang, The coming era of alphahacking?: a survey

of automatic software vulnerability detection, exploitation and patching techniques,

in: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC),

2018, pp. 53–60, doi: 10.1109/DSC.2018.00017 .

14] F. Alenezi, C. Tsokos, Machine learning approach to predict computer operating

systems vulnerabilities, 2020, pp. 1–6, doi: 10.1109/ICCAIS48893.2020.9096731 .

15] S. Lipp, S. Banescu, A. Pretschner, An empirical study on the effectiveness of static

c code analyzers for vulnerability detection, Association for Computing Machinery,

New York, NY, USA, 2022, doi: 10.1145/3533767.3534380 .

16] G. Lin, S. Wen, Q.-L. Han, J. Zhang, Y. Xiang, Software vulnerability detection using

deep neural networks: a survey, Proc. IEEE 108 (10) (2020) 1825–1848, doi: 10.

1109/JPROC.2020.2993293 .

17] K. Goseva-Popstojanova, A. Perhinschi, On the capability of static code anal-

ysis to detect security vulnerabilities, Inf. Softw. Technol. 68 (2015) 18–33,

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-117a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a
https://doi.org/10.1109/SP.2013.13
https://api.semanticscholar.org/CorpusID:59749883
https://doi.org/10.23919/ICACT48636.2020.9061281
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00095
https://doi.org/10.4018/IJSSSP.2018070101
https://doi.org/10.1109/ICCITM56309.2022.10031734
https://doi.org/10.1109/ELECTRONICA52725.2021.9513723
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0007
https://doi.org/10.1109/CSCS52396.2021.00027
https://doi.org/10.1109/DSC.2018.00017
https://doi.org/10.1109/ICCAIS48893.2020.9096731
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1109/JPROC.2020.2993293

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

doi: 10.1016/j.infsof.2015.08.002 . https://www.sciencedirect.com/science/article/

pii/S0950584915001366

18] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,

S. Feng, C. Hauser, C. Kruegel, G. Vigna, Sok: (state of) the art of war: offensive

techniques in binary analysis, in: 2016 IEEE Symposium on Security and Privacy

(SP), 2016, pp. 138–157, doi: 10.1109/SP.2016.17 .

19] H. Xue, S. Sun, G. Venkataramani, T. Lan, Machine learning-based analysis of

program binaries: a comprehensive study, IEEE Access 7 (2019) 65889–65912,

doi: 10.1109/ACCESS.2019.2917668 .

20] National Security Agency, Ghidra, (GitHub repository). https://github.com/

NationalSecurityAgency/ghidra , Retrieved May 13, 2023.

21] R. Team, Radare2 github repository, (https://github.com/radare/radare2 , Retrieved

May 13, 2023).

22] Hex-Rays, IDA Pro, (https://hex- rays.com/ida- pro/ , Retrieved May 3), 2023.

23] Cifuentes, Cristina and Levin, Mark and Ramos, Jaime and others, BAP (binary analy-

sis platform), (https://github.com/BinaryAnalysisPlatform/bap). Retrieved May 13,

2023.

24] Dyninst Development Team, Dyninst, (GitHub repository). https://github.com/

dyninst/dyninst Retrieved May 13, 2023.

25] A.C. Eberendu, V.I. Udegbe, E.O. Ezennorom, A.C. Ibegbulam, T.I. Chinebu, A sys-

tematic literature review of software vulnerability detection, Eur. J. Comput. Sci.

Inf. Technol. 10 (1) (2022) 23–37 .

26] SPEC CPU2017, (Standard Performance Evaluation Corporation). https://www.

spec.org/cpu2017/ , Retrieved March 2, 2023.

27] National Institute of Standards and Technology (NIST), Software assur- ance refer-

ence dataset (SARD) benchmarks, NIST Software Assurance Metrics And Tool Eval-

uation (SAMATE). https://samate.nist.gov/SARD/test-suites/89 .

28] National Institute of Standards and Technology (NIST), Juliet Test Suite, (NIST Soft-

ware Assurance Metrics And Tool Evaluation (SAMATE)b). https://samate.nist.gov/

SARD/test-suite/JULIET.html .

29] SonarQube, (https://www.sonarsource.com/products/sonarqube/). Retrieved Jan-

uary 4, 2023.

30] X. Zhu, S. Wen, S. Camtepe, Y. Xiang, Fuzzing: a survey for roadmap, ACM Comput.

Surv. 54 (11s) (2022), doi: 10.1145/3512345 .

31] P. Godefroid, Fuzzing: Hack, art, and science, Commun. ACM 63 (2) (2020) 70-76,

doi: 10.1145/3363824 .

32] P. Thomson, Static analysis, Commun. ACM 65 (1) (2021) 50-54, doi: 10.1145/

3486592 .

33] T. Muske, A. Serebrenik, Survey of approaches for postprocessing of static analysis

alarms, ACM Comput. Surv. 55 (3) (2022), doi: 10.1145/3494521 .

34] J.C. King, Symbolic execution and program testing, Commun. ACM 19 (7) (1976)

385-394, doi: 10.1145/360248.360252 .

35] W. Wang, M. Fan, A. Yu, D. Meng, Bofsanitizer: efficient locator and detector for

buffer overflow vulnerability, in: 2021 IEEE 23rd Int Conf on High Performance

Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int

Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data

Systems & Application (HPCC/DSS/SmartCity/DependSys), 2021, pp. 1075–1083,

doi: 10.1109/HPCC- DSS- SmartCity- DependSys53884.2021.00168 .

36] X. Jia, C. Zhang, P. Su, Y. Yang, H. Huang, D. Feng, Towards efficient heap

overflow discovery, in: 26th USENIX Security Symposium (USENIX Security 17),

USENIX Association, Vancouver, BC, 2017, pp. 989–1006 . https://www.usenix.org/

conference/usenixsecurity17/technical-sessions/presentation/jia .

37] S. Baradaran, M. Heidari, A. Kamali, M. Mouzarani, A unit-based symbolic execution

method for detecting memory corruption vulnerabilities in executable codes, Int. J.

Inf. Secur. 22 (2023) 1–14, doi: 10.1007/s10207- 023- 00691- 1 .

38] T. Yavuz, C. Brant, Security analysis of iot frameworks using static taint analysis, in:

Proceedings of the Twelfth ACM Conference on Data and Application Security and

Privacy, in: CODASPY ’22, Association for Computing Machinery, New York, NY,

USA, 2022, p. 203-213, doi: 10.1145/3508398.3511511 .

39] D. Boxler, K.R. Walcott, Static taint analysis tools to detect information flows, in:

Proceedings of the Int’l Conf. Software Eng. Research and Practice (SERP’18), 2018 .

40] GrammaTech Inc., GrammaTech, (Official Website). https://www.grammatech.

com/ Retrieved May 1, 2023.

41] E.J. Schwartz, T. Avgerinos, D. Brumley, All you ever wanted to know about dynamic

taint analysis and forward symbolic execution (but might have been afraid to ask),

in: 2010 IEEE Symposium on Security and Privacy, 2010, pp. 317–331, doi: 10.1109/

SP.2010.26 .

42] A. Aumpansub, Z. Huang, Learning-based vulnerability detection in binary code, in:

2022 14th International Conference on Machine Learning and Computing (ICMLC),

in: ICMLC 2022, Association for Computing Machinery, New York, NY, USA, 2022,

p. 266-271, doi: 10.1145/3529836.3529926 .

43] S.M. Ghaffarian, H.R. Shahriari, Software vulnerability analysis and discovery using

machine-learning and data-mining techniques: a survey, ACM Comput. Surv. 50 (4)

(2017), doi: 10.1145/3092566 .

44] N.S. Harzevili, A.B. Belle, J. Wang, S. Wang, Z. Ming, Jiang, N. Nagappan, A survey

on automated software vulnerability detection using machine learning and deep

learning, 2023, 2306.11673

45] Open Web Application Security Project (OWASP), OWASP Buffer Overflow,

(OWASP). https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

Retrieved May 13, 2023.

46] B.M. Padmanabhuni, H.B.K. Tan, Buffer overflow vulnerability prediction from x86

executables using static analysis and machine learning, in: 2015 IEEE 39th Annual

Computer Software and Applications Conference, volume 2, 2015, pp. 450–459,

doi: 10.1109/COMPSAC.2015.78 .

47] University of Waikato, Weka Data Mining Tool, (Weka Wiki). https://waikato.

github.io/weka-wiki/ , Retrieved August 20, 2023.
13
48] B.M. Padmanabhuni, H.B. Kuan Tan, Auditing buffer overflow vulnerabilities using

hybrid static-dynamic analysis, in: 2014 IEEE 38th Annual Computer Software and

Applications Conference, 2014, pp. 394–399, doi: 10.1109/COMPSAC.2014.62 .

49] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi,

K. Hazelwood, Pin: building customized program analysis tools with dynamic in-

strumentation, in: PLDI ’05, Association for Computing Machinery, New York, NY,

USA, 2005, p. 190-200, doi: 10.1145/1065010.1065034 .

50] T. Gao, X. Guo, Buffer overflow vulnerability location in binaries based on abnor-

mal execution, in: 2020 4th Annual International Conference on Data Science and

Business Analytics (ICDSBA), 2020, pp. 29–31, doi: 10.1109/ICDSBA51020.2020.

00015 .

51] L. He, Y. Cai, H. Hu, P. Su, Z. Liang, Y. Yang, H. Huang, J. Yan, X. Jia, D. Feng, Au-

tomatically assessing crashes from heap overflows, in: 2017 32nd IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE), 2017, pp. 274–279,

doi: 10.1109/ASE.2017.8115640 .

52] W.A. Dahl, L. Erdodi, F.M. Zennaro, Stack-based buffer overflow detection using

recurrent neural networks, 2020, 2012.15116.

53] I. Gotovchits, R. Van Tonder, D. Brumley, Saluki: finding taint-style vulnerabilities

with static property checking, in: Proceedings of the NDSS Workshop on Binary

Analysis Research, volume 2018, 2018 .

54] S. Xu, Y. Wang, L. Coppolino, Bofaeg: automated stack buffer overflow vulnerability

detection and exploit generation based on symbolic execution and dynamic analysis

2022 (2022), doi: 10.1155/2022/1251987 .

55] N. Nethercote, J. Seward, Valgrind: a framework for heavyweight dynamic bi-

nary instrumentation, SIGPLAN Not. 42 (6) (2007) 89-100, doi: 10.1145/1273442.

1250746 .

56] N.-E. Enkelmann, T. Barabosch, CWE Checker, (GitHub repository). https://github.

com/fkie-cad/cwe_checker Retrieved May 1, 2023.

57] L. Braz, E. Fregnan, G. Çalikli, A. Bacchelli, Why don’t developers detect improper in-

put validation? ’; drop table papers; –, in: 2021 IEEE/ACM 43rd International Confer-

ence on Software Engineering (ICSE), 2021, pp. 499–511, doi: 10.1109/ICSE43902.

2021.00054 .

58] Y. Zhang, Z. Wang, W. Yu, B. Fang, Multi-level directed fuzzing for detecting use-

after-free vulnerabilities, in: 2021 IEEE 20th International Conference on Trust, Se-

curity and Privacy in Computing and Communications (TrustCom), 2021, pp. 569–

576, doi: 10.1109/TrustCom53373.2021.00087 .

59] K. Zhu, Y. Lu, H. Huang, Scalable static detection of use-after-free vulnerabilities in

binary code, IEEE Access PP (2020) 1–1, doi: 10.1109/ACCESS.2020.2990197 .

60] J. Feist, Finding the Needle in the Heap: Combining Binary Analysis Techniques to

Trigger Use-After-Free, Université Grenoble Alpes, 2017 Ph.D. thesis . https://theses.

hal.science/tel-01681707v2/document

61] H. Yan, Y. Sui, S. Chen, J. Xue, Machine-learning-guided typestate analysis for static

use-after-free detection, Association for Computing Machinery, New York, NY, USA,

2017, doi: 10.1145/3134600.3134620 .

62] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, M. Lemerre, Binary-level directed

fuzzing for Use-After-Free vulnerabilities, in: 23rd International Symposium on

Research in Attacks, Intrusions and Defenses (RAID 2020), USENIX Association,

San Sebastian, 2020, pp. 47–62 . https://www.usenix.org/conference/raid2020/

presentation/nguyen .

63] OWASP, Null dereference, https://owasp.org/www-community/vulnerabilities/

Null_Dereference Retrieved May 10, 2023.

64] W. Jin, S. Ullah, D. Yoo, H. Oh, Npdhunter: efficient null pointer dereference vul-

nerability detection in binary, IEEE Access 9 (2021) 90153–90169, doi: 10.1109/

ACCESS.2021.3091209 .

65] T. Cloosters, M. Rodler, L. Davi, TeeRex: discovery and exploitation of mem-

ory corruption vulnerabilities in SGX enclaves, in: 29th USENIX Security Sympo-

sium (USENIX Security 20), USENIX Association, 2020, pp. 841–858 . https://www.

usenix.org/conference/usenixsecurity20/presentation/cloosters

66] A. Vishnyakov, D. Kuts, V. Logunova, D. Parygina, E. Kobrin, G. Savidov, A. Fe-

dotov, Sydr-Fuzz: continuous hybrid fuzzing and dynamic analysis for security de-

velopment lifecycle, in: 2022 Ivannikov ISPRAS Open Conference (ISPRAS), IEEE,

2022, pp. 111–123, doi: 10.1109/ISPRAS57371.2022.10076861 .

67] Google, Google OSS-Fuzz: Continuous Fuzzing for Open Source Software, (https:

//github.com/google/oss-fuzz , Retrieved July 12), 2023.

68] L. Project, LibFuzzer - LLVM 13 documentation, 2023, https://llvm.org/docs/

LibFuzzer.html , Retrieved July 12, 2023.

69] A. Fioraldi, D. Maier, H. Eißfeldt, M. Heuse, AFL++ : combining incremen-

tal steps of fuzzing research, 14th USENIX Workshop on Offensive Technolo-

gies (WOOT 20), USENIX Association, 2020 . https://www.usenix.org/conference/

woot20/presentation/fioraldi

70] The MITRE Corporation, CWE-680: Integer Overflow to Buffer Overflow (IO2BO),

(MITRE CWE). https://cwe.mitre.org/data/definitions/680.html Retrieved July 20,

2023.

71] T. Wang, T. Wei, Z. Lin, W. Zou, Intscope: automatically detecting integer overflow

vulnerability in x86 binary using symbolic execution, 2009 .

72] T. Wei, J. Mao, W. Zou, Y. Chen, A new algorithm for identifying loops in decom-

pilation, in: H.R. Nielson, G. Filé (Eds.), Static Analysis, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007, pp. 170–183 .

73] C. Bauer, A. Frink, R. Kreckel, Introduction to the ginac framework for symbolic

computation within the c++ programming language, ArXiv cs.SC/0004015 (2000) .

74] V. Ganesh, D.L. Dill, A decision procedure for bit-vectors and arrays, in: Proceedings

of the 19th International Conference on Computer Aided Verification, in: CAV’07,

Springer-Verlag, Berlin, Heidelberg, 2007, p. 519-531 .

75] P. Muntean, M. Monperrus, H. Sun, J. Grossklags, C. Eckert, Intrepair: informed

repairing of integer overflows, IEEE Trans. Softw. Eng. 47 (10) (2021) 2225–2241,

doi: 10.1109/TSE.2019.2946148 .

https://doi.org/10.1016/j.infsof.2015.08.002
https://www.sciencedirect.com/science/article/pii/S0950584915001366
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/ACCESS.2019.2917668
https://github.com/NationalSecurityAgency/ghidra
https://github.com/radare/radare2
https://hex-rays.com/ida-pro/
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/dyninst/dyninst
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0016
https://www.spec.org/cpu2017/
https://samate.nist.gov/SARD/test-suites/89
https://samate.nist.gov/SARD/test-suite/JULIET.html
https://www.sonarsource.com/products/sonarqube/
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3486592
https://doi.org/10.1145/3494521
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00168
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jia
https://doi.org/10.1007/s10207-023-00691-1
https://doi.org/10.1145/3508398.3511511
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0026
https://www.grammatech.com/
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/3529836.3529926
https://doi.org/10.1145/3092566
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://doi.org/10.1109/COMPSAC.2015.78
https://waikato.github.io/weka-wiki/
https://doi.org/10.1109/COMPSAC.2014.62
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ICDSBA51020.2020.penalty -@M 00015
https://doi.org/10.1109/ASE.2017.8115640
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0035
https://doi.org/10.1155/2022/1251987
https://doi.org/10.1145/1273442.1250746
https://github.com/fkie-cad/cwe_checker
https://doi.org/10.1109/ICSE43902.2021.00054
https://doi.org/10.1109/TrustCom53373.2021.00087
https://doi.org/10.1109/ACCESS.2020.2990197
https://theses.hal.science/tel-01681707v2/document
https://doi.org/10.1145/3134600.3134620
https://www.usenix.org/conference/raid2020/presentation/nguyen
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://doi.org/10.1109/ACCESS.2021.3091209
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://doi.org/10.1109/ISPRAS57371.2022.10076861
https://github.com/google/oss-fuzz
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://cwe.mitre.org/data/definitions/680.html
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0048
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0049
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0050
http://refhub.elsevier.com/S2772-9184(24)00027-4/sbref0051
https://doi.org/10.1109/TSE.2019.2946148

A. Adhikari and P. Kulkarni Cyber Security and Applications 3 (2025) 100061

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
76] Z. Huang, X. Yu, Integer overflow detection with delayed runtime test, 2021, pp. 1–6,

doi: 10.1145/3465481.3465771 .

77] B. Zhang, C. Feng, B. Wu, C. Tang, Detecting integer overflow in windows binary

executables based on symbolic execution, in: 2016 17th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and Par-

allel/Distributed Computing (SNPD), 2016, pp. 385–390, doi: 10.1109/SNPD.2016.

7515929 .

78] Veracode, (https://www.veracode.com/). Retrieved May 1, 2023.

79] Checkmarx, (https://checkmarx.com/). Retrieved April 4, 2023.

80] GitGuardian, (https://www.gitguardian.com/). Retrieved May 10, 2023.

81] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, E. van der Kouwe, Typesan:

practical type confusion detection, in: CCS ’16, Association for Computing Machin-

ery, New York, NY, USA, 2016, p. 517-528, doi: 10.1145/2976749.2978405 .

82] G.J. Duck, R.H.C. Yap, Effectivesan: type and memory error detection using dy-

namically typed c/c++, in: Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementation, in: PLDI 2018, Association

for Computing Machinery, New York, NY, USA, 2018, p. 181-195, doi: 10.1145/

3192366.3192388 .

83] X. Fan, S. Long, C. Huang, C. Yang, F. Li, Accelerating type confusion detection by

identifying harmless type castings, in: Proceedings of the 20th ACM International

Conference on Computing Frontiers, in: CF ’23, Association for Computing Machin-

ery, New York, NY, USA, 2023, p. 91-100, doi: 10.1145/3587135.3592205 .

84] Y. Jeon, P. Biswas, S. Carr, B. Lee, M. Payer, Hextype: efficient detection of type

confusion errors for c++, in: CCS ’17, Association for Computing Machinery, New

York, NY, USA, 2017, p. 2373-2387, doi: 10.1145/3133956.3134062 .

85] D. Kim, S. Kim, Bintyper: type confusion detection for c++ binaries,

BlackHat Europe, 2020 . https://www.blackhat.com/eu-20/briefings/schedule/

bintyper- type- confusion- detection- for- c- binaries- 21351
14
86] A. Andrzejak, F. Eichler, M. Ghanavati, Detection of memory leaks in c/c++ code

via machine learning, in: 2017 IEEE International Symposium on Software Relia-

bility Engineering Workshops (ISSREW), 2017, pp. 252–258, doi: 10.1109/ISSREW.

2017.72 .

87] M. Hauswirth, T.M. Chilimbi, Low-overhead memory leak detection using adaptive

statistical profiling, SIGPLAN Not. 39 (11) (2004) 156-164, doi: 10.1145/1037187.

1024412 .

88] Y. Koizumi, Y. Arahori, Risk-aware leak detection at binary level, in: 2020 IEEE

25th Pacific Rim International Symposium on Dependable Computing (PRDC), 2020,

pp. 171–180, doi: 10.1109/PRDC50213.2020.00028 .

89] D. Bruening, Q. Zhao, Practical memory checking with dr. memory, in: International

Symposium on Code Generation and Optimization (CGO 2011), 2011, pp. 213–223,

doi: 10.1109/CGO.2011.5764689 .

90] ElectricFence, (https://github.com/kallisti5/ElectricFence , Retrieved March 4),

2023.

91] mtrace, (https://man7.org/linux/man-pages/man3/mtrace.3.html , Retrieved May

3), 2023.

92] PurifyPlus, (https://www.ibm.com/docs/en/announcements/archive/ENUS204-

063 , Retrieved May 3), 2023.

93] Deleaker, (https://www.deleaker.com/ , Retrieved May 3), 2023.

94] J. Feist, GUEB: a static analyzer performing use-after-free detection on binary, 2018,

(https://github.com/montyly/gueb Retrieved July 12), 2023.

95] I. Elkhalifa, B. Ilyas, Static code analysis: a systematic literature review and an in-

dustrial survey, 2016,

96] T. Muske, A. Serebrenik, Survey of approaches for postprocessing of static analysis

alarms 55 (3) (2022), doi: 10.1145/3494521 .

https://doi.org/10.1145/3465481.3465771
https://doi.org/10.1109/SNPD.2016.7515929
https://www.veracode.com/
https://checkmarx.com/
https://www.gitguardian.com/
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3587135.3592205
https://doi.org/10.1145/3133956.3134062
https://www.blackhat.com/eu-20/briefings/schedule/bintyper-type-confusion-detection-for-c-binaries-21351
https://doi.org/10.1109/ISSREW.2017.72
https://doi.org/10.1145/1037187.1024412
https://doi.org/10.1109/PRDC50213.2020.00028
https://doi.org/10.1109/CGO.2011.5764689
https://github.com/kallisti5/ElectricFence
https://man7.org/linux/man-pages/man3/mtrace.3.html
https://www.ibm.com/docs/en/announcements/archive/ENUS204-063
https://www.deleaker.com/
https://github.com/montyly/gueb
https://doi.org/10.1145/3494521

	Survey of techniques to detect common weaknesses in program binaries
	1 Introduction
	2 Related works
	2.1 Comparison with existing literature

	3 Methodology
	4 Analysis techniques
	4.1 Static analysis
	4.2 Symbolic execution
	4.3 Taint analysis
	4.4 Machine learning

	5 Survey of techniques to detect coding weaknesses in software binaries
	5.1 Buffer overflow
	5.2 CWE-20 - improper input validation
	5.3 CWE-416 - use after free
	5.4 CWE-476 - null pointer dereference
	5.5 CWE-190 - integer overflow or wraparound
	5.6 CWE-798 - use of hardcoded credentials
	5.7 CWE-843 - access of resource using incompatible type
	5.8 CWE-401 - missing release of memory after effective lifetime

	6 Evaluation of open-source tools
	6.1 Buffer overflow detection
	6.2 CWE-416 - use after free
	6.3 CWE-476 - null pointer dereference
	6.4 CWE-190 - integer overflow or wraparound
	6.5 CWE-798 - use of hardcoded credentials
	6.6 CWE-401 - missing release of memory after effective lifetime

	7 Discussion
	8 Limitations and threats to validity
	9 Future work
	10 Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	References

