
Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

Available online 2 March 2024
1319-1578/© 2024 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

A hybrid approach to secure and compress data streams in cloud
computing environment

A.Abdo a, Taghreed S. Karamany b,c,*, Ahmed Yakoub b

a Arab Open University, Faculty of Computing, Cairo 11837, Egypt
b Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo 11795, Egypt
c Future Academy - Higher Future Institute for Specialized Technological Studies, 29 Ismailia Desert Rd, El Shorouk - Cairo 6363040, Egypt

A R T I C L E I N F O

Keywords:
Cloud Computing
Information security
Symmetric ciphers
Data Compression
Data streams
LZMA

A B S T R A C T

Cloud computing has revolutionized the way businesses and individuals manage and utilize computing resources,
providing significant benefits such as scalability, flexibility, and cost-effectiveness. However, the increasing use
of cloud computing to store and transmit sensitive data has raised concerns about data security. Ensuring
confidentiality and data integrity while enabling effective data transmission is a significant challenge. To
overcome this issue, the proposed approach integrates encryption and compression methods to enhance trans
mission performance in the cloud and prevent unauthorized access to confidential information. This approach
applies multiple layers of robust encryption algorithms, followed by LZMA, which aims to compress data size
while ensuring data security. The proposed approach is well-suited for real-time implementation and delivers
high encryption quality and compression capabilities. Various performance metrics evaluate its performance,
including space-saving percentage, processing time, and the NIST randomness test. It provides a substantial
improvement in space-saving percentage from 58.63% to 81.8%, ensuring efficiency. The security analysis
confirms that ciphertexts generated by this approach pass all NIST tests, generating a 99% confidence level
regarding the randomness of the ciphertext. The proposed hybrid approach offers an effective solution for
addressing the challenges of securing sensitive data while taking advantage of the benefits of cloud computing.

1. INTRODUCTION

Cloud computing has become an increasingly popular way in the
networking and computer science field. It has given small and medium-
scale businesses with a cost-saving opportunity to avoid the expense of
purchasing hardware resources. It gives us an equal opportunity to shine
as it enables users with access to a powerful computing resource without
having to invest in expensive hardware or software. Cloud computing
operates on the principle of virtualization, wherein a single large ma
chine is utilized by multiple clients with a view that they have their
dedicated resources. Due to the significant benefits of managing re
sources in unlimited storage in the most inexpensive way, business
continuity, and scalability, cloud computing has had rapid growth in the
IT industry, therefore, this technology has emerged as one of the most
powerful innovations that has attracted the interest of technologists
globally (Sajay, 2019). Cloud computing services can be classified into
three primary categories: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). SaaS provides software

packages, system software, and application-related server storage net
works to end users such as Gmail. PaaS is used by application developers
to create applications that are hosted in the cloud such as Google App
Engine. IaaS deals with hardware services, virtual machines, and
network architecture infrastructure such as Microsoft Azure (Mahesh
et al., 2023). The deployment models include private cloud, public
cloud, community cloud and hybrid cloud. Public clouds are available to
everyone while private clouds are used by organizations. Community
clouds are shared by multiple organizations and hybrid clouds combine
both private and public clouds (El-Booz and Attiya, 2017; Thabit et al.,
2021).

Although Cloud computing has become a magical target for
numerous benefits, but these benefits are limited due to several issues
concerning security (Thabit et al., 2021). Availability, integrity, and
accessibility are the three main cloud computing’s barriers; Cryptog
raphy techniques could be utilized to provide confidentiality, integrity,
and availability to the data stored or accessed through the cloud (Ale
mami et al., 2023). Compression, in addition to cryptography, is a

* Corresponding author.
E-mail address: taghreed.salem@fa-hists.edu.eg (T.S. Karamany).

HOSTED BY Contents lists available at ScienceDirect

Journal of King Saud University - Computer and
Information Sciences

journal homepage: www.sciencedirect.com

https://doi.org/10.1016/j.jksuci.2024.101999
Received 31 July 2023; Received in revised form 14 February 2024; Accepted 27 February 2024

mailto:taghreed.salem@fa-hists.edu.eg
www.sciencedirect.com/science/journal/13191578
https://www.sciencedirect.com
https://doi.org/10.1016/j.jksuci.2024.101999
https://doi.org/10.1016/j.jksuci.2024.101999
https://doi.org/10.1016/j.jksuci.2024.101999
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2024.101999&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

2

crucial technique for cloud computing since it helps reduce the size of
data that needs to be stored and transferred. Compression can help to
reduce storage costs, improve network performance, and reduce band
width usage.

1.1. Cryptography

Data security is crucial for preserving all of the features and advan
tages offered by cloud computing. In order to ensure data confidentiality
through the network, cryptography can be used. This is done by using
both encryption and decryption methods. The main goal of cryptog
raphy is to provide a set of security features that ensure the confiden
tiality of the system is protected. These goals can be categorized into the
five categories listed below (Sullivan, 2014).

• Authentication: Before sending the message, the sender and re
cipients’ identities must be verified.

• Confidentiality: The message can only be interpreted by author
ized users, and no one else can use it.

• Integrity: ensuring that the content of the transmitted data does not
contain any kind of modification.

• Service reliability and availability: since intruders can disrupt the
availability of services to users, the technology should be capable of
providing users with the expected quality of service.

• Non-repudiation: This function indicates that neither the sender nor
the recipient can deny that a particular message has been sent.

Cryptography is the technique of information security used to protect
information by converting it (encrypting it) into an unreadable format
known as encrypted text (cipher text). The encryption and decryption
technologies are available in three types: symmetric, asymmetric,
hybrid algorithms which may be utilized in cloud computing environ
ment to encrypt and decrypt data (Arora and Parashar, 2013).

• Symmetric Encryption: is a cryptographic method that encrypts and
decrypts data using a single secret key shared by the sender and
recipient (Sherief, 2022) as shown in Fig. 1.

• Asymmetric Encryption: is a type of cryptographic method that
employs a pair of related keys, consisting of a public key and a pri
vate key, to encrypt and decrypt data. As shown in Fig. 2. the
authorized receiver only is able to decode the message using the
private key (Sherief, 2022).

• Hybrid Encryption:is a type of encryption that combines multiple or
more encryption algorithms, using a combination of symmetric and
asymmetric encryption to take use of each type’s capability. This
hybrid cryptography method was created in order to provide an
efficient and secure encryption algorithm capable of encrypting and
decrypting data fast and safely (Akashdeep Bhardwaj, 2016).

1.2. DATA COMPRESSION

The way of reducing the size of the original data by using specific
encoding techniques, which saves storage capacity, increases file

transfer speed, and lowers the cost of storage hardware and network
bandwidth, can be classified into two types: lossy compression tech
niques and lossless compression techniques (Ignatoski and Lerga, 2020).

• lossy compression: discards some of the original data during
compression. Although this results in a smaller file size, the decom
pressed data is not an exact replica of the original data. Lossy
compression is often used for image and audio files include JPEG,
MP3 and MPEG.

• Lossless compression: allows for the original data to be restored
perfectly after decompressing, meaning that no data is lost in the
compression process. Examples of lossless compression techniques
include LZMA, Lempel-Ziv-Welch (LZW), Huffman Encoding, Run
Length Encoding, and Arithmetic Coding (Adedeji, 2020).

This study aims to experimentally investigate the impact of applying
compression and encryption to streams of text data in a cloud computing
environment. Specifically, this research aims to provide robust encryp
tion quality and acceptable compression capability, by identifying
Execution time, calculating the space-saving percentage %, and
comparing the result with the previous work, Furthermore, the resulting
security level is evaluated using the NIST randomness test.

The subsequent sections of this paper are structured as follows. The
related work will be discussed in Section 2. Section 3 presents the pro
posed technique and its various parts. Section 4 illustrates the simula
tion setup and the experimental results. Finally, Section 5 concludes the
paper and sketches out the future work.

2. RELATED WORK

This section reviews and examines previous work in cryptography
and compression to offer a better knowledge of the effectiveness of
encryption algorithms by using less storage space and therefore
improving performance and security level.

Nazia Shoukat et al. (2022) have implemented a new technique to
improve the effectiveness and security of the traditional Vigenère cipher
which is typically vulnerable to attacks. Their approach involves uti
lizing the Relative Frequency of Alphabetic Letters, arranging the
sequence of the letters according to the relative frequency, and arran
ging them in increasing order to improve the data confidentiality of
cipher text security features. Further improvements were made by
modifying the Vigenère cipher using the relative letter frequency tech
nique, and by compressing the text data using a lossless Huffman tech
nique. The result was shorter, and more secure than what was previously
achievable. Overall, this study significantly enhanced text message
confidentiality by using multiple layers of security procedures, including
encryption, decryption, and compression.

Sunil Kumar P et al. proposed a method (Kumar et al., 2023) that
employs a two-factor data encryption protection mechanism based on
Identity-based Encryption (IBE) algorithm that integrates unique
customer users. To ensure maximum security, the data and documents
are compressed and protected using the LZ4 algorithms, which offer
both encryption and compression. This compression, in particular, Fig. 1. Symmetric encryption.

Fig. 2. Asymmetric encryption.

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

3

reduces storage space requirements as well as ensuring efficiency, as
evidenced by a compression time of 0.15 s and a compression ratio of
0.949. These password-protected files will be kept on the cloud and the
key will be issued.

In another study, Padmapriya et al. (Padmapriya and Eric, 2023)
conducted an experiment to examine how data compression affects an
amino acid encrypted text while maintaining security. They applied
dictionary-based and entropy coding methods to compress ciphertexts of
varying sizes using two popular algorithms: Huffman (based on entropy
coding) and LZMA (a dictionary-based compression algorithm). The
compression ratio was calculated for each file size. The researchers
found that the entropy coding method saved 47 % of storage space,
while the dictionary-based method saved 60 %, resulting in improved
storage efficiency. These findings illustrate the benefits of this technique
and highlight its potential for enhanced data storage.

Usama et al. in (Usama et al., 2021) conducted a comprehensive
investigation into issues associated with combining data compression
and encryption techniques without compromising either. The study
involved utilizing an effective and secure data compression algorithm
with cryptographic capabilities that merged adaptive Huffman coding, a
pseudorandom keystream generator, S-Box, and a chaotic logistic map
to integrate key control. The resulting secure adaptive Huffman coding
can perform simultaneous secure compression and decompression, with
data substitution applied via a chaotic S-Box and masked pseudorandom
keystreams used to enhance encryption quality. The analysis revealed
that the proposed technique enables faster processing times compared to
separately running encryption and compression algorithms. The
approach successfully compresses secure data, making it suitable for
real-time applications, while the security evaluation demonstrates its
sensitivity to plaintext and key. Moreover, the generated ciphertexts
successfully pass all NIST tests with 99 % confidence in their random
ness. The compression efficiency analysis indicates that the proposed
method provides similar space-saving capabilities to standard tech
niques, while still ensuring adequate security.

Based on the one-time pad algorithm, the authors in (Al-Smadi et al.,
2021) proposed a practical file cryptography mechanism by controlling
the data type in the encryption key. This methodology overcomes the
management issues with Vernam algorithm’s encryption keys, where
the output file size was reduced by applying the Huffman algorithm. The
output file was both password-protected and AES-encrypted, resulting in
improved security against potential attacks. The study utilized different
file types, including (txt, pdf, doc, bmp, mp4, and exe). The results also
showed that using a cryptographic key produced from integers reduced
the time required for file encryption and decryption when compared to
using an ASCII table for the key. However, the file size had little impact
on the encryption time without compression.

A hybrid approach for securing SMS is presented in (Mahmoud et al.,
2009). This method combines the compression and encryption pro
cesses. The SMS data is compressed using a lossless method. After this,
the compressed SMS data is encrypted with the RSA technique. The
benefit of this approach is to achieve protection criteria such as confi
dentiality and authenticity between two communication parties while
also reducing message lengths. When compared to a technique that only
uses the RSA encryption algorithm to protect SMS, the results show that
the technique does not exceed the standard SMS length.

Makala Et al. (Makala et al., 2017) proposed another mechanism for
compressing and encrypting data at the same time, achieving a mini
mum of 12 % compression. Their symmetric key encryption method uses
a table of characters and their order. The table itself becomes the key
and doesn’t have to be sent every time. The 81 positions in the table
make it difficult for intruders to break their mechanism. This method is
well-suited for compressing SMS messages and provides a speedy
approach for compressing, encrypting, and creating a cipher file.

The combination of RLE and knapsack was proposed by Marto, et al.
in (2020). According to tests, the Run Length Encoding approach can
successfully compress text if it has a large number of repeated letters.

This method performs poorly when compressing text with minimal to no
letter repetition due to the final file size being larger than the original.
When used for text encryption, the Knapsack algorithm can successfully
secure messages. The combination takes precedence Encryption fol
lowed by text compression is preferable since the combination of the two
successfully compresses data better than prioritizing compression fol
lowed by encryption, even though the time to execute plaintext is
longer. If there is a lot of character repetition in plaintext (the original
message), the combination of Knapsack and RLE Algorithms in the Text
file is appropriate.

N Sangwan (Sangwan, 2012) introduced a different mechanism to
find out a method of making text data or messages highly secured and
smaller in size than the original. To accomplish this goal, it combined an
existing most effective Huffman Compression Technique on text data (to
reduce file size) with a newly developed Block type Symmetric Key Al
gorithm (to ensure security). Two private keys have been used, which
are known to both the sender and the receiver but are unknown to the
outside world, that is why it is known as Secret Key Cryptography. The
entire system achieves the goals of cryptography, is simple, and does not
overlook security concerns. Because of its large key domain, it is not
vulnerable to brute-force attacks.

Although Text File Services is still viable for sending messages, it
lacks certain security features present in Instant Messengers, such as
cryptography. Therefore, Kuswanto, D (Kuswanto, 2020) proposed the
addition of a cryptography feature using the RSA algorithm to Text File
Services. However, this algorithm can increase the plaintext’s character
count, so a compression algorithm called Shannon Fano was also added.
The RSA and Shannon Fano methods were implemented in Text File
Services, and the length of the key used was positively correlated with an
average Test Compression Ratio of 1.41 and a space-saving of 29.37 %.
The study concluded that as the key length increased, the decryption
process took longer, and the average value of the avalanche effect
ciphertext and the Compression result remained relatively the same.

Ruchita et al. (Sharma and Bollavarapu, 2015) used compression and
encryption techniques to secure data, employing various cryptography
algorithms in the process. Run-length encoding with RC4 and Caesar
Cipher was used on text files of different sizes, but this combination is
less effective when there are fewer consecutive characters present.
Huffman with RC4 and DES had the best compression ratio among all
compression algorithms for these five different text file sizes, reducing
file size by about half. While LZW and Arithmetic techniques produced
good results, Huffman was still much better. Compression was followed
by encryption to improve security, and the authors discovered that
Huffman provided a higher Compression Ratio than all other approaches
by almost 50–80 %. In conclusion, Huffman compression algorithm is
the best for text compression, followed by LZW, Arithmetic, and run
length.

B. Carpentieri (Carpentieri, 2018) conducted a study that combined
compression and encryption techniques on various digital data. The
Calgary corpus was used as input, along with four encryption algorithms
(DES, 3DES, AES, RC4), and four standard compression algorithms
(Huffman coding, Arithmetic coding, Lempel-Ziv-welch coding, and run
length encoding) were used. Two rounds of testing were performed. The
first involved compression followed by encryption, while the second
involved encryption followed by compression. The study demonstrated
that the cost of encryption after compression for text data is negligible.
Also, compressing after encryption does not help and even increases
both the file and encrypted sizes. Furthermore, due to the randomness
introduced by the encryption algorithms, the results revealed that
arithmetic coding nearly doubled the original file size.

M. R. Ashila et al, (Ashila et al., 2019) proposed a combination of
AES - Huffman code method to produce secure file encryption and
minimize file size to reduce storage space and expedite the transmission
of file transfers. Whereas encryption is performed first, followed by
compression. To measure the level of file security, the avalanche effect
(AE) and entropy after encryption and compression were measured. The

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

4

findings of this study showed that AES encryption increases the file size
by around 25 % of the original, but the encrypted file size shrinks by
roughly 30 % after implementing Huffman compression, and results
show that the compressed file was lower than the original file size.
Where it has been noticed that Huffman compression has a positive ef
fect on AES encryption, Huffman can also increase file security based on
measurements of AE and entropy values.

Based on what was discussed in the previous sections, the most
effective way for cloud computing is to combine cryptography and
compression algorithms. Table 1 demonstrates the main features and
limitations of all previous techniques.

From the comparative study, the study in (Usama et al., 2021)
showcased an efficient technique that combined data compression and
encryption without compromising either process. By integrating adap
tive Huffman coding, a pseudorandom keystream generator, and S-Box,
this approach reduced processing time and achieved comparable
compression efficiency to standard techniques, the Security analysis
confirmed its sensitivity to the plaintext, and the generated ciphertexts
passed all NIST tests for randomness.

3. The proposed approach

This Research focuses on incorporating existing encryption and data
compression techniques to enhance the security and efficiency of storing
and transferring data streams within the cloud computing environment,
utilizing multiple layers of security through the use of Rc4 Encryption
Algorithm, AES Encryption Algorithm, and Vigenère polyalphabetic
substitution cipher with utilizing secret keys for them, as each key is
different from the other. To securely share the secret keys for encryption
and decryption processes, the sender and recipient should generate a
random, complex key. They then exchange this key via a secure
communication channel, such as a private network or secure messaging
platform, to prevent interception or tampering during transmission.
While the keys must be kept secret and must not be disclosed to the
public or given to any unauthorized parties to ensure confidentiality.
While LZMA compression algorithm is used to minimize storage re
quirements, it also facilitates the efficient uploading and transferring of
data to the cloud. As demonstrated below in Fig. 3, the proposed
framework comprises two components: the sender side and the receiver

side. Each side comprises seven phases. On the sender side, these phases
include initial encryption, decomposition, substitution, data size treat
ment, compression, encryption 2, and uploading encrypted-compressed
data in the cloud. The receiver side follows the inverse processes of
downloading encrypted-compressed data from the cloud, decryption 2,
decompression, data size un-treatment, substitution decipher, compo
sition, and decryption 1. The step-by-step processes involved in the
proposed approach are illustrated in detail in the following subsections.
As Fig. 4 illustrates the sender side implementation.

3.1. SENDER SIDE

3.1.1. INITIAL ENCRYPTION

In step 1, the sender first encrypts the data using the RC4 algorithm,
which is commonly used as a fast encryption algorithm due to its
lightweight and results in low memory usage, power consumption,
lower complexity, and higher throughput compared to several other
cryptographic methods (Abdulameer, 2023). RC4 (Jindal and Singh,
2015) operates byte by byte with a secret key agreed upon by the sender
and the receiver. RC4 comprises two main components: the Key
Scheduling Algorithm (KSA) and the Pseudo-Random Generation Al
gorithm (PRGA) (Jindal and Singh, 2015). The KSA generates a 256-byte
initial state known as the permutation, which is used by the PRGA to
generate a keystream. To generate the ciphertext, the keystream is
XORed with the plaintext message one byte at a time as shown in Fig. 5.
This process is repeated until encrypting the entire plaintext message
and the size of ciphertext becomes same as the original plaintext in bi
nary format.

3.1.2. DECOMPOSITION PHASE

During Step 2 of the methodology, the encrypted data obtained from
Cipher1, each byte (8 bits) is divided into four equal parts, each part
consisting of 2-bits binary combination, with the possibilities being ’00′,
’01′, ’10′, and ’11′. After that replacing each set of 2- bits binary with a
corresponding character, for instance, ’00′ is replaced with ’A’, ’01′ with
’B’, ’10′ with ’C’, and ’11′ with ’D’ as illustrated in (Fig. 6 and pseu
docode 1), but this replacement led to a 4-fold increase (400 %) in its
original size.

Table 1
Comparison between related studies.

References Data
used

Methodology used Results Limitations

(Padmapriya and
Eric; Kumar et al.,
2023)

Text LZMA, Huffman coding The entropy coding method saves 47 % of storage space,
while the dictionary-based coding method saves 60 %.
storage efficiency is also doubled

The security level is not clear.

(Usama et al., 2021) Text,
image

Adaptive Huffman coding, chaotic
logistic map.

This method proved useful for real-time implementation
as it minimized data storage and transmission
consumption while successfully passing all NIST tests,
demonstrating its reliability and effectiveness.

—————

(Al-Smadi et al.,
2021)

Text,
Image,
Audio

one-time pad, Vernam algorithm,
Huffman, and AES

The approach made the output file more difficult to
attack and reduced the amount of time to encrypt and
decrypt a file.

Not taking into account the potential
impact of data compression on the
accuracy of the encrypted text

(Marto Hasugian
et al., 2020)

Text RLE then Knapsack Text Compression using the Run Length Encoding
algorithm can be compressed well if there are many
sequential letters in the text.

RLE performs poorly when
compressing text with little to no letter
repetition.

(Sharma and
Bollavarapu,
2015)

Text Run length with RC4 and Caesar,
Huffman with RC4 and DES, LZW &
Arithmetic with RC4 & DES.

The best compression algorithm is Huffman then LZW
then Arithmetic then run length give better result for text
compression.

A text file with fewer consecutive
characters may result in lower quality
output.

(Carpentieri, 2018) Text Huffman coding, Arithmetic coding,
Lempel-Ziv-welch coding, and run
length encoding. DES, 3DES, AES, and
RC4

The cost of encryption after compression was negligible
for text data. However, the opposite case, where files
were compressed after encryption, did not help.

Encrypting data after compression had
minimal cost, while compressing data
after encryption did not provide any
benefit.

(Ashila et al., 2019) Text,
images

AES, Huffman code AES encryption increases file size by 25%, but Huffman
compression shrinks the encrypted file code by 30%.

AES encryption increases file size by
25%

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

5

Algorithm to replace each 2-bits with 1 letter (stream of binaries)

Input: Sequence of 8 bits in its binary format (stream of zeros and ones)
Output: Sequence of letters (A, B, C, D)
step 1: Initialization phase
start = 0
end = 2
array1 = []
array2 = []
step 2: Divide each 8-bit binary into four equal part of 2-bits
for i in range (0, len(input_str), 2):
array1.append(input_str[start:end])
start += 2
end += 2
step 3: Replace each 2-bit binary with a letter
for j in array1:
if j == ’00′:
array2.append(’A’)
else if j == ’01′:
array2.append(’B’)
else if j == ’10′:
array2.append(’C’)
else if j == ’11′:
array2.append(’D’)
return array2

Pseudocode for replacing
each 2-bit binary with 1
letter.

3.1.3. SUBSTITUTION CIPHER PHASE

In step 3 of the methodology, a character sequence consisting of
letters A, B, C, and D undergoes substitution cipher using the Vigenère
polyalphabetic substitution cipher. This cipher involves the use of a key
letter to determine the shift applied to each letter in plaintext with the
agreement of both the sender and the receiver on the shared secret key.
This results in a more robust form of encryption when compared to
simple substitution ciphers (Imanda et al., 2023). According to the secret
key, this substitution process produces a sequence of four distinct
characters as output. These new letters could be any combination of four
letters in a sequence, such as E, F, G, and H. as shown in Fig. 7,based on
the presumption that the key is the letter “E,” though it could be any
other letter in the alphabet, and therefore the sequence generated will
differ.

3.1.4. DATA SIZE TREATMENT

In Step 4, convert each character in the streams of E, F, G, and H into
a 2-bit binary format of ’01′, ’10′, ’11′, or ’00′, as depicted in (Fig. 8 and
pseudocode 2). This action returns the data size to its original size and
resolves the issue that occurred in Step 2 thus the data is 25 % com
pressed. Following that, replace each 8-bit binary with its corresponding
ASCII character. as shown in (Fig. 9 and pseudocode 3). But it has been
noticed that various ASCII codes signify nulls or white spaces. It is
crucial to determine precisely which byte corresponds to these values to
accurately reverse binary code into its original textual form while
maintaining the data’s original size. As per the ASCII table (ASCII
Table), the initial 32 characters are comprised of unprintable control

Fig. 3. The framework of the proposed approach to encrypt and compress data streams in the cloud.

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

6

Fig. 4. The Sender Side implementation.

Fig. 5. RC4 Encryption Algorithm.

Fig. 6. Replacing Each 2Bits of Binaries With 1 Letter.

Fig. 7. Substitution cipher phase using Vigenère with a key letter ’E’.

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

7

codes that can manage input/output devices like printers, keyboards,
etc. Identifying these values is crucial to ensuring correct data handling.
Therefore, we have developed a Pseudocode algorithm for converting
binary code into its corresponding characters, including specific condi
tions for these exceptional cases. This algorithm is used in the proposed
technique to effectively reverse the binary code into its original textual
form without any scrambling or increasing the original size.

Algorithm to convert each letter in the sequence of E, F, G, and H into a 2-bit of
binaries

Input: Sequence of characters (input_str)
Output: Sequence of the corresponding 2-bit of binaries
Step 1: Initialization phase
output_str = “”
indices = {“E”: “01″, ”F“: ”10″, “G”: “11″, ”H“: ”00″}
Step 2: Loop through each letter in the input string and replace with 2-bit binary
representation
for char in input_str:
output_str += indices[char]
Step 3: Return a Sequence of the combination of 2-bit of binaries
return output_str

Pseudocode 2 for con
verting each letter into a
combination of a 2-bit
binary.

Algorithm to convert each 8-bit of binaries into its character in ASCII

Input: Sequence of Zeros and ones
Output: Sequence of Strings
Step 1: Initialization.
start = 0
end = 8
array1 = []
array2 = []
Step 2: Loop to divide each 8-bit of binaries
for i in range (0, len(input_sequence), 8):
array1.append(input_sequence[start:end])
start += 8
end += 8
Step 3: Convert each set of 8-bit binary into its corresponding letter based on the
ASCII table.
Unprintable= {’00000000′:’⓪’,’00000001′:’①’,’00000010′:’②’,’00000011′:’③’,
’00000100′:’④’, ’00000101′:’⑤’,’00000110′:’⑥’,’00000111′:’⑦’,’00001000′:’⑧’,
’00001001′:’⑨’,’00001010′:’⑩’,’00001011′:’⑪’,’00001100′:’⑫’,’00001101′:’⑬’,
’00001110′:’⑭’,’00001111′:’⑮’,’00010000′:’⑯’,’00010001′:’⑰’, ’00010011′:’⑲’,
’00010100′:’⑳’,’00010101′:’21′,’00010110′:’ 22′,’00010111′:’23 ’, ’00010010′:’
18′,
’00011000′:’24′,’00011001′:’ 25′,’00011010′:’ 26′,’00011011′:’27′,’00011100′:’28′,
’00011101′:’29′, ’00011110′:’30′,’00011111′:’ 31′}
for r in array1:
if r in unprintable:
array2.append(unprintable[r])
else:
ascii_value = “. join([chr(int(r[i:i + 8], 2)) for i in range(0, len(r), 8)])
array2.append(ascii_value)
Step 4: Return the final sequence of ASCII values as Strings
return array2

Pseudocode 3 for replac
ing each 8-bit of binaries
into its character in
ASCII.

3.1.5. COMPRESSION PHASE

Step 5 involved compressing a sequence of ASCII characters using
the LZMA compression algorithm. LZMA (Lempel-Ziv-Markov chain
algorithm) (Pavlov, 2024) is a type of lossless data compression algo
rithm. It is generally considered to be one of the most effective
compression algorithms available, achieving higher compression ratios.
The LZMA algorithm uses a dictionary-based compression system (Ste
cuła et al., 2022). It finds matches using dictionary data structures and
produces a stream of literal symbols and phrase references, where the
range encoder encodes one bit at a time. Range encoding is implemented
in binary and divides integers using shift operations rather than slow
division methods; allowing it to efficiently compress both repetitive and
non-repetitive data. It is commonly used to compress large amounts of
data. It has become one of the most widely used compression algorithms
due to its efficiency and versatility.

3.1.6. ENCRYPTION 2
In step 6, the compressed data is encrypted using AES (Advanced

Encryption Standard) encryption algorithm after being compressed with
LZMA with the agreement of both the sender and the receiver on the
shared secret key. AES (Abdullah, 2017) is a widely used symmetric
block cipher encryption algorithm, known for its effectiveness in
securing sensitive data. AES supports key lengths of 128, 192, or 256 bits
and operates on plaintext in blocks of 128 bits (Al-Amri et al., 2023).
Accordingly, AES applies a series of substitution and permutation op
erations to encrypt and decrypt data (Matta et al., 2021). The security of
AES encryption relies on the difficulty of determining the key from the
ciphertext. This step ensures that the compressed data is securely pro
tected from unauthorized access and any malicious activities such as
hacking and data theft using the AES algorithm with a 128-key length.

The combination takes precedence Data Compression followed by
Encryption2 is preferable. The reason is that the combination of LZMA
then AES is more effective at compressing data and securing it more than
prioritizing encryption then compression and this has been proven by
the results of the experiment.

3.1.7. UPLOADING ENCRYPTED-COMPRESSED DATA TO THE CLOUD

In step 7, After completing the previous steps, the compressed and
encrypted data can now be securely uploaded to a cloud storage pro
vider. Whereas, these steps provide a reliable way of securing the
integrity of valuable data while it’s stored remotely.

3.2. RECEIVER SIDE

To decode the incoming data streams and retrieve the original text
content, the receiver needs to carry out certain steps. These steps involve
downloading and analysing the encoded text data and converting it into
its original unencoded form using the shared secret key agreed upon by
the sender. As Fig. 10 illustrates the receiver side implementation in
below.

3.2.1. DOWNLOADING ENCRYPTED-COMPRESSED DATA FROM THE CLOUD

Step 1, the recipient should download the compressed, encrypted
data while also taking care to ensure the data’s integrity. Because the
data is encrypted and compressed, it must be decoded to be under
standable using the steps outlined below.

3.2.2. DECRYPTION 2
Step 2, the downloaded encoded text data will be first decrypted by

the receiver by utilizing the AES algorithm (Abdullah, 2017) and the
shared secret key that was provided during the Encryption2.

3.2.3. DECOMPRESSION PHASE

Step 3, involves reconstructing the original data that was com
pressed using the LZMA algorithm by extracting the compressed data
and transforming it back to its original uncompressed form. The

Fig. 8. Replacing each letter with a combination of 2-bit binary.

Fig. 9. Replacing each 8-bit in binary into its letter in ASCII Table.

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

8

resulting data will be a sequence of characters represented in the ASCII
character set.

3.2.4. DATA SIZE UN-TREATMENT

Step 4, the receiver should transform every character in a sequence
that belongs to the ASCII character set into its corresponding binary
representation (ASCII Table), as shown in (Fig. 11 and pseudocode 4).
Each pair of binary bits in the sequence will be changed with a corre
sponding character to complete the transformation.’01′ will be replaced
with the character ’E’, ’10′ with ’F’, ’11′ with ’G’, and ’00′ with ’H’ as
shown in (Fig. 12, pseudocode 5).

Fig. 10. The Receiver Side implementation.

Fig. 11. Converting each character into its binary representation in ASCII table.

Fig. 12. Replacing each 2-bit of binaries with 1 letter.

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

9

Algorithm to convert each character into its binary format in the ASCII table
(input sequence)

Step 1: Initialization
start = 0
end = 1
array1 = []
array2 = []
Step 2: Loop to divide each ASCII character
for i in range(len(input_sequence)):
array1.append(input_sequence[start:end])
start += 1
end += 1
Step 3: Replace each character with its binary representation in the ASCII table
for r in array1:
result = ’’.join(format(ord(i), ’08b’) for i in r)
array2.append(result)
Step 4: Return sequence of zeros and ones (binary format)
return array2

Pseudocode for convert
ing each character into its
binary representation in
ASCII table.

Algorithm to replace each 2-bits binary with 1 letter (input sequence)

Step 1: Initialization
start = 0
end = 2
array1 = []
array2 = []
Step 2: Loop to divide each 1-byte(8-bit) into four equal parts of 2-bits
for i in range (0, len(input_sequence), 2):
array1.append(input_sequence[start:end])
start += 2
end += 2
Step 3: Substitute each 2 bits with a letter (’E’, ’F’, ’G’, ’H’)
for r in array1:
if r == ’00′:
array2.append(’H’)
else if r == ’01′:
array2.append(’E’)
else if r == ’10′:
array2.append(’F’)
else if r == ’11′:
array2.append(’G’)
Step 4: Return the final sequence of letters
return array2

Pseudocode 5 for replac
ing each 2-bit of binaries
with 1 letter.

3.2.5. SUBSTITUTION DECIPHER PHASE

Step 5, the receiver should decrypt a character sequence using the
Vigenère substitution cipher algorithm with the same key letter as the
one used for Step 3, result in each letter in the sequence of letters ’E’, ’F’,
’G’, and ’H’ will be switched to another sequence of ’A’, ’B’, ’C’, and ’D’
as shown in Fig. 13.

3.2.6. COMPOSITION PHASE

Step 6, After decrypting the sequence of ’E’,’ F’, ’G’, and ’H’ into the

sequence of ’A’, ’B’,’ C’, and ’D’ using a Vigenère cipher algorithm, each
resulting character should be transformed into a binary format consist
ing of 2-bits. Specifically, characters that were ’A’, ’B’, ’C’, and ’D’ will
be converted into their corresponding binary values ’00′, ’01′, ’10′, and
’11′ as shown in Fig. 14 and pseudocode 6. As a result of this trans
formation, the size of the sequence will be reduced by approximately 25
%.

Algorithm to replace each letter into 2-bit binary (String)

Input: a string of characters (input_str)
Output: stream of the corresponding 2-bit of binaries
Step 1: Initialization phase
output_str = “”
indices = {“A”: “00″, ”B“: ”01″, “C”: “10″, ”D“: ”11″}
Step 2: Iterate through each character in the input string and replace with 2-bit
binary representation
for char in input_str:
output_str += indices[char]
Step 3: Return the output string
return output_str

Pseudocode 6 for replac
ing each letter into a bi
nary combination of 2-
bits.

3.2.7. DECRYPTION 1
Step 7 The receiver should use the RC4 decryption algorithm to

restore the original text with the same shared key to decrypt the streams
of zeros and ones and return the original message.

4. Experiment analysis

The experiment setup, datasets and software specifications will be
discussed in detailed in the following sections. The proposed technique’s
performance is evaluated to demonstrate its superiority over other
similar existing techniques. Additionally, the paper analyses the pro
posed technique’s strength as well as its various parts concerning rele
vant parameters, as defined in the study.

4.1. EXPERIMENT DESIGN

The proposed approach is implemented using Python integrated with
the ctypes library, a foreign function library that offers C compatible
data types to allocate characters in 1 byte of memory. A Personal
Computer running Windows 11 with 8.00 GB RAM and 11th Gen Intel
(R) Core (TM) i7-1165G7 @ 2.80 GHz processor is used. As the standard
benchmark input data, the Calgary Corpuses dataset is commonly used
to assess the effectiveness of any compression technique. The proposed
approach was evaluated using standard Calgary Corpuses (Witten et al.,
1990) to assess its performance and various aspects including 14 files
use ASCII encoding. AC, LZW, and AHC are data compression techniques
known for achieving high compression efficiencies (Gupta and Nigam,
2021) and were thus used as a benchmark to compare the proposed
technique’s performance. Furthermore, the proposed technique’s

Fig. 13. Substitution decipher phase using Vigenère cipher with a key letter. Fig. 14. Replacing each letter into a binary combination of 2-bits.

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

10

performance was evaluated by comparing it to previous data compres
sion and encryption methods such as Chaotic Mutated Adaptive Huff
man Tree (CMAHT) (Zhu et al., 2012), Chaotic Huffman Tree (CHT)
(Hermassi, 2010), Chaos and Adaptive Huffman Coding (CAHC) (Usama
et al., 2021), and Simultaneous Arithmetic Coding and Encryption
(SACE) (Wong et al., 2010).

4.2. COMPRESSION EFFIECIENCY

The evaluation of compression techniques involves assessing their
capability to reduce the size of data, using metrics such as compression
efficiency, compression ratio, or space-saving capability. This evalua
tion approach has been documented in previous literature studies (Klein
and Shapira, 2014; Usama et al., 2021; Wenfa Zhan and Aiman, 2012).
According to research studies, compression techniques that result in a
greater percentage of space savings are generally considered effective
and efficient in terms of saving disk space and reducing transmission
overheads, and this is supported by previous literature (Klein and Sha
pira, 2014; Usama et al., 2021; Wenfa Zhan and Aiman, 2012). In this
section, we will discuss the space-saving (%) metrics to evaluate and
demonstrate the efficiency of the proposed method compared to well-
known compression methods and previous techniques for performing
compression and encryption together using Equation. (1) (Fauzan et al.,
2023).

Space Saving (%) =

(

1 −
Compressed size

Un − compressed size

)

× 100 (1)

In Table 2, The proposed technique’s performance was compared to
that of several other techniques discussed in the literature (Usama et al.,
2021), including AC, LZW, AHC, CHT, CMAHT, SACE, and CAHC. Our
results show that the proposed method achieves a higher range of space-
saving percentage (58.63 % to 81.8 %), demonstrating a superior
compression efficiency while also offering sufficient security. The se
curity analysis section contains a more detailed analysis of the security
implications.

4.3. PROECESSING TIME ANALYSIS

The processing efficiency provided by various techniques, including
the proposed method is discussed in this section. In any data storage and
communication system, processing time is critical and important factor.
To demonstrate the performance efficiency of the proposed technique,
the processing time must be measured. Processing time is calculated
using Equation (2):

Processing time = Process end time − Process start time(2).
In this analysis, the effectiveness of the proposed method is

compared to other existing data compression and security techniques,

such as CHT, CMAHT, SACE, and CAHC, using processing times. When
tested on standard Calgary Corpus input files, the proposed technique
adeptly outperformed the other techniques by delivering the fastest data
compression and encryption performance simultaneously as shown in
Tables 3 and 4.

The standard AC and AHC methods were used to compress and
encrypt the test files for the Calgary Corpus with AES.The processing
time for the proposed technique, AC, and AHC with AES techniques are
shown in Tables 5 and 6. The results show that the proposed method was
the fastest and required the least amount of processing time when
compared to performing the two operations separately.

As presented in Table 7, the proposed technique outperforms the
CAHC technique discussed in literature (Usama et al., 2021), which
applies compression-then-encryption. Besides, the proposed technique
displays promising time efficiency as compared to the existing methods
performing simultaneous compression-then-encryption or encryption-
then-compression. These observations imply that the proposed method
is a superior solution for reducing Overheads in terms of space and time
for performing encryption-then-compression and compression-then-
encryption procedures.

4.4. SECURITY ANALYSIS

The design of the proposed technique focuses on achieving high-
security measures while reducing the associated costs of storing and
transmitting data. In this section, through randomness tests, the security
analysis of the proposed technique and its various components is

Table 2
Comparing proposed and existing methods in terms of space savings (%).

Compression techniques Existing simultaneous compression and encryption techniques
AC LZW HC CHT CMAHT SACE CAHC

bib 69.91 51.64 31.96 31.96 3 1 . 8 6 3 1 . 9 9 3 1 . 8 5 72.64
Book 1 65.87 49.15 40.46 40.46 40.41 40.03 40.41 66.02
Book 2 63.47 43.28 37.42 37.42 37.23 36.70 37.23 72.18
news 60.96 38.27 32.68 32.68 32.47 31.81 32.47 68.58

paper1 62.64 41.32 34.65 34.65 33.79 33.57 33.82 67.4
paper2 64.54 49.29 39.41 39.41 39.10 38.79 39.10 66.83
Paper3 37.20 48.60 38.51 38.51 38.19 37.57 38.19 63.23
Paper4 31.06 43.97 36.47 36.47 36.47 36.19 36.02 58.92
Paper5 27.46 41.24 33.46 33.46 32.42 32.86 32.42 58.63
Paper6 32.50 38.83 34.10 34.10 32.60 33.31 32.69 67.07
progc 61.39 38.21 32.12 32.12 31.30 31.41 31.35 68.16
progl 73.29 51.29 37.01 37.01 36.01 36.01 36.03 79.02
progp 72.22 52.81 35.70 35.70 34.98 36.85 34.98 78.93
trans 49.68 46.06 27.71 27.71 26.69 27.59 26.73 81.8

Average 56.58 43.92 35.05 35.12 32.82 34.45 32.87 66.87

Table 3
Processing time (seconds) provided by proposed and existing methods for per
forming secure data compression.

File Existing simultaneous compression and
encryption techniques

Proposed Technique

CHT CMAHT SACE CAHC

bib 393.73 988.26 218.43 137.32 16.77
Book 1 998.53 1593.58 375.88 192.33 78.27
Book 2 303.96 744.48 272.00 125.12 65.96
news 155.90 342.90 158.66 115.19 42.9

paper1 25.89 33.82 18.56 14.38 11.56
paper2 31.01 46.69 18.37 18.59 13.4
Paper3 20.95 23.50 33.64 12.81 6.45
Paper4 9.27 12.53 13.29 7.71 3.6
Paper5 8.17 26.89 5.16 7.48 3.11
Paper6 22.94 68.14 4.25 12.73 6.31
progc 19.01 29.80 13.71 12.83 8.87
progl 29.75 86.85 26.51 17.57 12.7
progp 22.26 26.54 20.56 14.57 8.89
trans 87.45 281.30 147.87 26.83 14.9

Average 159.27 319.57 97.03 715.96 20.97

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

11

assessed.
RANDOMNESS ANALYSIS OF THE PROPOSED TECHNIQUE.
The NIST SP800-22 (AndrewRukhin, 2010) test suite is widely used

to analyse the randomness of the data. This research used the NIST test
suite to analyse the randomness of the proposed technique. It consists of
15 statistical tests with p-values between 0 and 1. By determining a
significance level, these p-values were used to assess the randomness of
the ciphertext. When p < α, this means the ciphertext is considered non-

random; otherwise, it is considered random. For this study, a signifi
cance level of α = 0.01 was chosen to confirm a 99 % confidence level for
the randomness analysis of the proposed technique. These 15 statistical
tests were performed using Python, utilizing the numpy, base64, and
scipy.stats libraries. numpy played a crucial role in the analysis by
generating random numbers, performing various statistical operations,
and creating arrays to store and manipulate the data. The base64 library
was used to decode a base64-encoded string, which was then converted

Table 4
Processing time (seconds) provided by proposed and existing methods for performing secure data decompression.

File Compression techniques Encryption technique Sequential compression and encryption Proposed Technique
AC HC AES AC + AES HC + AES

bib 115.38 74.98 405.93 290.44 286.42 12.27
Book 1 298.13 90.40 1806.12 1424.10 1169.79 73.02
Book 2 197.64 47.19 1480.98 1101.37 947.99 61.64
news 127.66 63.98 852.26 729.25 669.72 37.68

paper1 17.65 4.32 121.88 100.96 81.18 5.5
paper2 26.03 6.79 224.20 140.99 135.36 8.56
Paper3 15.24 3.80 99.81 90.41 71.07 5.27
Paper4 7.53 3.25 30.73 27.33 25.58 1.34
Paper5 4.14 1.39 27.42 32.04 25.82 1.24
Paper6 21.11 4.54 131.73 90.22 110.73 4.27
progc 17.99 4.24 90.51 87.13 73.97 4.048
progl 26.52 7.11 171.33 157.86 130.67 8.47
progp 18.02 4.40 129.87 109.88 80.33 5.37
trans 50.98 7.55 216.06 208.55 179.55 10.13

Average 54.86 23.07 341.35 320.75 292.03 17.06

Table 5
Processing time (seconds) provided by compression, encryption, compression and encryption in a sequence technique and proposed for performing compression and
encryption.

File Compression techniques Encryption technique Sequential compression and encryption Proposed technique
AC HC AES AC + AES HC + AES

bib 135.39 126.76 332.54 281.71 319.84 16.77
Book 1 220.51 143.80 1127.45 1007.68 823.21 78.27
Book 2 165.81 92.53 894.76 747.89 703.13 65.96
news 93.83 65.73 537.14 467.30 458.55 42.9

paper1 11.62 9.84 70.72 92.02 53.46 11.56
paper2 19.93 15.94 128.47 121.14 85.22 13.4
Paper3 13.64 8.46 58.85 64.05 46.89 6.45
Paper4 5.08 4.28 17.68 23.04 16.55 3.6
Paper5 3.21 3.15 15.50 26.99 20.39 3.11
Paper6 12.62 8.64 67.23 91.38 84.36 6.31
progc 9.14 7.38 48.79 50.89 40.33 8.87
progl 16.75 13.07 100.10 110.94 77.74 12.7
progp 11.90 8.94 87.32 75.79 47.95 8.89
trans 92.16 14.19 132.46 179.57 102.63 14.9

Average 58.63 37.39 254.91 255.73 212.08 20.96

Table 6
Processing time (seconds) provided by decompression, decryption, decompression and decryption in a sequence technique and proposed for performing decompression
and decryption.

File Compression techniques Encryption technique Sequential compression and encryption Proposed technique
AC HC AES AC + AES HC + AES

bib 115.38 74.98 405.93 290.44 286.42 12.27
Book 1 298.13 90.40 1806.12 1424.10 1169.79 73.02
Book 2 197.64 47.19 1480.98 1101.37 947.99 61.64
news 127.66 63.98 852.26 729.25 669.72 37.68

paper1 17.65 4.32 121.88 100.96 81.18 5.5
paper2 26.03 6.79 224.20 140.99 135.36 8.56
Paper3 15.24 3.80 99.81 90.41 71.07 5.27
Paper4 7.53 3.25 30.73 27.33 25.58 1.34
Paper5 4.14 1.39 27.42 32.04 25.82 1.24
Paper6 21.11 4.54 131.73 90.22 110.73 4.27
progc 17.99 4.24 90.51 87.13 73.97 4.048
progl 26.52 7.11 171.33 157.86 130.67 8.47
progp 18.02 4.40 129.87 109.88 80.33 5.37
trans 50.98 7.55 216.06 208.55 179.55 10.13

Average 54.86 23.07 341.35 320.75 292.03 17.06

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

12

into a numpy array for further processing. This conversion was neces
sary to transform the encoded data into a format suitable for statistical
testing. The scipy.stats library was specifically designed to perform
statistical tests on the generated random data and calculate p-values.
These p-values are essential in assessing the statistical significance of the
results and determining if the null hypothesis should be rejected or not
for each statistical test. These libraries provided the necessary functions
and tools to automate the calculation of the 15 statistical tests.

The p-value calculation equations are displayed in Table 8. Table 9
shows the computed p-values for all tests using the default input
parameter settings defined in the NIST statistic test suite. The results that
are obtained show that the proposed technique’s pass rate is 100 %, all

NIST tests were passed and thus considered secure with a 99 % confi
dence level.

5. Conclusion and futurework

This research utilized a multi-layered security approach with
compression to secure and compress text data streams while preserving
the original data sequence without any changes. This research focused
on developing a secure and efficient way of storing and transferring data
streams in the cloud computing environment by incorporating existing
encryption and data compression techniques, including symmetric key

Table 7
Processing time (seconds) offered by CAHC and the proposed techniques.

File CAHC Proposed technique

bib 137.32 16.77
Book 1 192.33 78.27
Book 2 125.12 65.96
news 115.19 42.9

paper1 14.38 11.56
paper2 18.59 13.4
Paper3 12.81 6.45
Paper4 7.71 3.6
Paper5 7.48 3.11
Paper6 12.73 6.31
progc 12.83 8.87
progl 17.57 12.7
progp 14.57 8.89
trans 26.83 14.9

Average 44.10 20.38

Table 8
P-value of NIST statistical tests equations.

Statistical test P-Value equation Description

Frequency
erfc
(

sobs
̅̅̅
2

√

)
where erfc is the complementary error function,

sobs is its test statistics.
Block frequency igamc (N/2x2(obs)/2 igamc is the incomplete gamma function,

N is number of blocks, x2(0bs) is its test statistics.

Cumulative
sums

1 −
∑

k=

− n
z

+ 1

4

n
z
− 1

4
[

∅
(
(4k + 1)z

̅̅̅
n

√

)

− ∅
(
(4k − 1)z

̅̅̅
n

√

)]

+

∑(
n
z
− 1)/4

k=(
− n
z

− 3)/4

[

∅
(
(4k + 3)z

̅̅̅
n

√

)

− ∅
(
(4k + 1)z

̅̅̅
n

√

)]

Where n is the length of the bit string,
z is its test statistics, and ∅ represents the cumulative distribution function

(CDF)of the standard normal distribution and calculated by scipy.stats.norm.
cdf() in python.

Runs
erfc

(
|V(obs) − 2nπ(1 − π) |

2
̅̅̅̅̅̅
2n

√
π(1 − π)

)
V(obs) is test statistics, n is the length of the bit string, π is the number of ones

in the input sequence.

Long runs of one’s
igamc

(
K
2
,
x2(0bs)

2

) Where K represents a parameter used in the computation of its test statistics,
which is the maximum value of the max run for each subblock.

Binary Matrix
Rank

e− x2 (obs)/2 Where x2(0bS) is its test statistics.

Spectral DFT
erfc

(
|d|
̅̅̅
2

√

)
d is its test statistics.

No overlapping
templates igamc

(
N
2
,
x2(0bs)

2

)
x2(0bs) is its test statistics, N refers to the number of independent blocks into

which the sequence is partitioned.
Overlapping

templates igamc
(

5
2
,
x2(0bs)

2

)
x2(0bs) is test statistics.

Universal
erfc
(⃒
⃒
⃒
⃒
fn − expectedValue(L)

̅̅̅
2

√
σ

⃒
⃒
⃒
⃒

)
fn is its test statistics,expectedValue(L) refers to the expected value of average of
the corresponding block numbers for each L-bit, σ represents the deviation of

the computed statistic for the given expected value (L)
Approximate

entropy igamc
(

2m− 1,
x2

2

) Where m is the length of each block,x2

is its test statistics.
Random
excursions

Igamc 5/2,x2(Obs)/2 X2(Obs)is its test statistics.

Random
excursions

variant

erfc
(

|ξ (x) − J |
2J(4|x| − 2)

)
ξ (x) is its test statistics, J represents the number of cycles or repetitions of the

test, x represents a state or value of ξ (x)

Serial igamc
(
2m− 2,∇ψ2

m
)

m is the length in bits of each block,∇ψ2
m is its test statistics.

Linear complexity
igamc

(
K
2
,
x2(0bs)

2

)
x2(0bs) is its test statistics, K is a number of degrees of freedom (typically a

fixed value of 6).

Table 9
NIST randomness test results.

Statistical test Proposed technique
p-value Result

Frequence 0.59875 Success
Block frequency 0.04293 Success
Cumulative sums 0.57648 Success
Runs 0.40941 Success
Long runs of one’s 0.84309 Success
Binary Matrix Rank 0.65343 Success
Spectral DFT 0.56009 Success
No overlapping templates 0.29228 Success
Overlapping templates 0.65388 Success
Universal 0.69592 Success
Approximate entropy 0.85641 Success
Random excursions 0.298142 Success
Random excursions variant 0.26856 Success
Serial 0.19449 Success
Linear complexity 0.21214 Success

A.Abdo et al.

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

13

encryption techniques Rc4, AES, and the substitution cipher Vigenère,
while AES is a more advanced encryption standard. Combining these
techniques provided a more robust and comprehensive solution for data
security while maintaining low storage of text data through LZMA
compression. The proposed approach consists of seven stages in the
encoding phase (sender Side) Initial Encryption, Decomposition, Sub
stitution, Data size treatment, Compression, Encryption2, and Uploading
Encrypted-compressed data in the cloud and the inverse on the (receiver
side). Experimental results proved that the proposed approach achieved
faster processing time compared to performing the encryption and
compression techniques as separate steps. Security analysis demon
strated that the proposed approach for generating ciphertexts passed all
NIST tests with a high level of confidence (99 %) in terms of ciphertext
randomness. Additionally, compression efficiency analysis demonstrates
that the proposed approach produced a significantly higher range of
space-saving percentages (58.63 % to 81.8 %) compared to standard
techniques while also providing adequate security.

Future work will further focus on improving the proposed method
and apply hybrid data encryption and compression techniques for data
streams. Future research and advancements of the proposed work will
not be restricted to text data but also can be applied to other data for
mats; including images, audio, and videos. In the future, we would like
to design more sophisticated adaptive algorithms that are robust enough
to secure and compress data streams. We would like to explore privacy
and security schemes in the same context of data streams and experi
ment with several stream applications operating under different envi
ronmental constraints and having different security requirements.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Abdulameer, S.a.A., 2023. A Cryptosystem for Database Security Based on RC4
Algorithm. Journal of Al-Qadisiyah for Computer Science and Mathematics 15 (1),
189–196. https://doi.org/10.29304/jqcm.2023.15.1.1195.

Abdullah, A.M., 2017. Advanced encryption standard (AES) algorithm to encrypt and
decrypt data. Cryptography and Network Security 16, 11.

Adedeji, K.B., 2020. Performance Evaluation of Data Compression Algorithms for IoT-
Based Smart Water Network Management Applications. Journal of Applied Science
& Process Engineering 7 (2), 554–563. https://doi.org/10.33736/jaspe.2272.2020.

Akashdeep Bhardwaj, G.V.B. Subrahmanyam, Vinay Avasthi and Hanumat Sastry
“Security Algorithms for Cloud Computing, ”International Conference on
Computational Modeling and Security (CMS), vol.85, pp. 535-542, 2016.doi: 10.1016/
j.procs.2016.05.215.

Al-Amri, R. M., Hamood, D. N., & Farhan, A. K. “Theoretical Background of
Cryptography, ”Mesopotamian Journal of Cyber Security, Vol.2023, pp. 7–15, 2023.
doi:10.58496/MJCS/2023/002.

Alemami, Y., Al-Ghonmein, A.M., Al-Moghrabi, K.G., Mohamed, M.A., 2023. Cloud data
security and various cryptographic algorithms. International Journal of Electrical
and Computer Engineering (IJECE) 13 (2), 1867–1879. https://doi.org/10.11591/
ijece. v13i2.pp1867-1879.

A. M. Al-Smadi, A. Al-Smadi, R. M. Ali Aloglah, N. Abu-Darwish and A. Abugabah, “Files
cryptography based on one-time pad algorithm,”International Journal of Electrical
and Computer Engineering, vol. 11, no. 3, pp. 2335-2342, Jun. 2021. doi:10.11591/
ijece. v11i3.pp2335-2342.

AndrewRukhin, JuanSoto,JamesNechvatal,Miles Smid,ElaineBarker,Stefan Leigh,
MarkLevenson,Mark Vangel,DavidBanks,AlanHeckert,JamesDray and SanVo , “A
statistical test suite for random and pseudorandom number generators for
cryptographic applications, ” National Institute of Standards & Technology,Apr.2010.

Rachna Arora and Anshu Parashar, “ Secure User Data in Cloud Computing Using
Encryption Algorithms,” International Journal of Engineering Research and Applications
(IJERA), Vol. 3, no.4, pp.1922-1926, Aug.2013. doi:
9799a9f9bec6cf85715ca236035b5d89204b326a.

M. R. Ashila, N. Atikah, D. R. I. Moses Setiadi, E. H. Rachmawanto and C. A. Sari, “Hybrid
AES-Huffman Coding for Secure Lossless Transmission,” in 2019 Fourth
International Conference on Informatics and Computing (ICIC), Semarang,
Indonesia, pp. 1-5, 2019. doi:10.1109/ICIC47613.2019.8985899.

Carpentieri, B., 2018. “Efficient compression and encryption for digital data
transmission,” Security and Communication. Networks 2018. https://doi.org/
10.1155/2018/9591768.

El-Booz, S.A., Attiya, G.M., 2017. Nawal El-Fishawy,“New Hybrid Approach for Secure
Data Storage in Cloud Computing Environment,”. Menoufia Journal of Electronic
Engineering Research 26 (1), 193–212. https://doi.org/10.21608/
mjeer.2017.63449.

Fauzan, M.N., Alif, M., Prianto3C., 2023. Comparison of Huffman Algorithm and Lempel
Ziv Welch Algorithm in Text File Compression. IT Journal Research and
Development 7 (2), 184–197. https://doi.org/10.25299/itjrd.2023.10437.

Gupta, A., Nigam, S., 2021. A Review on Different Types of Lossless Data Compression
Techniques. International Journal of Scientific Research in Computer Science,
Engineering and Information Technology 7 (1), 50–56. https://doi.org/10.32628/cs
eit217113.

Hermassi, H., 2010. Rhouma Rhouma and Safya Belghith,“Joint compression and
encryption using chaotically mutated Huffman trees, ”Communications in Nonlinear
Science and Numerical. Simulation 15 (10), 2987–12299. https://doi.org/10.1016/
j.cnsns.2009.11.022.

https://www.ascii-code.com/.
Ignatoski, M., Lerga, J., 2020. Ljubǐsa Stanković And Miloš Daković, “Comparison of

Entropy and Dictionary Based Text Compression in English, German, French, Italian,
Czech, Hungarian, Finnish, and Croatian,”. Mathematics 8 (7), 1059–1075. https://
doi.org/10.3390/MATH8071059.

R. Imanda, H. Nasution, U. Gumanti, R. G. Sinambela, B. A. Sima, C. Arista, B. Bangun, B.
K. Sitepu, and A. Fauzi, “Development of Hybrid Encryption Method Using Affine
Cipher, Vigenere Cipher, And Elgamal Algorithm to Secure Text Messages in Data
Communication System, ”in Journal of Artificial Intelligence and Engineering
Applications, vol. 2, no. 2, pp. 51-58. Feb 2023.

Jindal, P., Singh, B., 2015. RC4 encryption-A literature survey. Procedia Computer
Science 46, 697–705. https://doi.org/10.1016/j.procs.2015.02.129.

Klein, S.T., Shapira, D., 2014. “Practical fixed length Lempel-Ziv coding, ”in. Discrete
Applied Mathematics 163 (3), 326–333. https://doi.org/10.1016/j.
dam.2013.08.022.

Kondi Uma Mahesh, Yaddanapudi Pavan, Burugapalli Kusuma Priya, Palapati Vamsi, Dr.
Mohammad Shameem, Dr.M Kavitha, “ A Review of the Challenges and
Opportunities in Cloud Computing Services ,” Proceedings of the International
Conference on Innovative Computing & Communication (ICICC), 2023. https://doi.or
g/10.2139/ssrn.4381946.

Kumar, S., Sundaresan, P., Logith, R. and Mathivanan, N., “ A Data Security-based
Efficient Compression and Encryption for Cloud Computing,”. In 2023 7th
International Conference on Trends in Electronics and Informatics (ICOEI) IEEE, pp. 647-
653. Apr.2023.

Kuswanto, D., 2020. Cryptograph Rsa and Compression Shannon Fano Text File Services
at Mobile Devices. Journal of Physics: Conference Series 1569 (2), pp. https://doi.
org/10.1088/1742-6596/1569/2/022079.

Mahmoud, T.M., Abdel-latef, B.A., Ahmed, A.A., Mahfouz, A.M., 2009. Hybrid
Compression Encryption Technique for Securing SMS. International Journal of
Computer Science and Security (IJCSS) 3 (6), 473–478.

R. Makala, V. Bezawada, and R. Ponnaboyina, “A fast encryption and compression
technique on SMS data,” International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET), pp. 1213-1217, 2017. doi:10.1109/
WiSPNET.2017.8300308.

Marto Hasugian, P., Barita Nauli Simangunsong, P., Iqbal Panjaitan, M., Wahyuni, D.,
Fadillah Rezky, S., 2020. Combination of Cryptography Algorithm Knapsack and
Run Length Enconding (RLE) Compression in Treatment of Text File. Journal of
Physics: Conference Series 1573 (1). https://doi.org/10.1088/1742-6596/1573/1/
012017.

Matta, P., Arora, M., Sharma, D., 2021. A comparative survey on data encryption
Techniques: Big data perspective. Materials Today: Proceedings 46, 11035–11039.
https://doi.org/10.1016/j.matpr.2021.02.153.

Padmapriya, M.K., Eric, P.V., 2023. Effect of Data Compression on Cipher Text Aiming
Secure and Improved Data Storage. Lecture Notes in Networks and Systems Book
Series 400, 195–201. https://doi.org/10.1007/978-981-19-0095-2_20.

Pavlov, I.: ‘7z format’, [Online] Available at http://www.7-zip.org/7z.html.
Sajay, K.R., 2019. Suvanam Sasidhar Babu and Yellepeddi Vijayalakshmi, “Enhancing

the security of cloud data using hybrid encryption algorithm,”. Journal of Ambient
Intelligence and Humanized Computing 10 (6), 2213–2221. https://doi.org/
10.1007/s12652-019-01403-1.

Sangwan, N., 2012. Text Encryption with Huffman Compression. International Journal of
Computer Applications 54 (6).

Sharma, R., Bollavarapu, S., 2015. Data Security using Compression and Cryptography
Techniques. International Journal of Computer Applications 117, 22–25. https://doi.
org/10.1007/978-981-19-0095-2_20.

Sherief, H., 2022. Murad and Kamel Hussein Rahouma,“Hybrid Cryptography for Cloud
Security: Methodologies and Designs,”. Digital Transformation Technology, Lecture
Notes in Networks and Systems 224, 129–140. https://doi.org/10.1007/978-981-
16-2275-5_7.

Shoukat, N., Azam, M., Khan, I., 2022. An Improved Method of Vigenere Cipher to
Securely Compress the Text by using Relative Frequency. International Journal of
Innovative Science and Research Technology 7 (10), 2456–12165.

B. Stecuła, K. Stecuła, and A. Kapczyński, “Compression of Text in Selected
Languages—Efficiency, Volume, and Time Comparison, ”Sensors, vol. 22, no. 17, pp.
6393, Aug. 2022, doi: 10.3390/s22176393.

Brandon A Sullivan , “ Securing the cloud: Cloud computer security techniques and
tactics,” , pp.338–340, Jan.2014..

Thabit, F., Alhomdy, A.P.S., Al-Ahdal, A.H.A., Jagtap, P.D.S., 2021. A new lightweight
cryptographic algorithm for enhancing data security in cloud computing. Global
Transitions Proceedings 2 (1), 91–99. https://doi.org/10.1016/j.gltp.2021.01.013.

A.Abdo et al.

https://doi.org/10.29304/jqcm.2023.15.1.1195
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0010
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0010
https://doi.org/10.33736/jaspe.2272.2020
https://doi.org/10.11591/ijece. v13i2.pp1867-1879
https://doi.org/10.11591/ijece. v13i2.pp1867-1879
https://doi.org/10.1155/2018/9591768
https://doi.org/10.1155/2018/9591768
https://doi.org/10.21608/mjeer.2017.63449
https://doi.org/10.21608/mjeer.2017.63449
https://doi.org/10.25299/itjrd.2023.10437
https://doi.org/10.32628/cseit217113
https://doi.org/10.32628/cseit217113
https://doi.org/10.1016/j.cnsns.2009.11.022
https://doi.org/10.1016/j.cnsns.2009.11.022
https://doi.org/10.3390/MATH8071059
https://doi.org/10.3390/MATH8071059
https://doi.org/10.1016/j.procs.2015.02.129
https://doi.org/10.1016/j.dam.2013.08.022
https://doi.org/10.1016/j.dam.2013.08.022
https://doi.org/10.2139/ssrn.4381946
https://doi.org/10.2139/ssrn.4381946
https://doi.org/10.1088/1742-6596/1569/2/022079
https://doi.org/10.1088/1742-6596/1569/2/022079
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0120
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0120
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0120
https://doi.org/10.1088/1742-6596/1573/1/012017
https://doi.org/10.1088/1742-6596/1573/1/012017
https://doi.org/10.1016/j.matpr.2021.02.153
https://doi.org/10.1007/978-981-19-0095-2_20
https://doi.org/10.1007/s12652-019-01403-1
https://doi.org/10.1007/s12652-019-01403-1
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0160
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0160
https://doi.org/10.1007/978-981-19-0095-2_20
https://doi.org/10.1007/978-981-19-0095-2_20
https://doi.org/10.1007/978-981-16-2275-5_7
https://doi.org/10.1007/978-981-16-2275-5_7
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0175
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0175
http://refhub.elsevier.com/S1319-1578(24)00088-0/h0175
https://doi.org/10.1016/j.gltp.2021.01.013

Journal of King Saud University - Computer and Information Sciences 36 (2024) 101999

14

Usama, M., Malluhi, Q.M., Zakaria, N., Razzak, I., Iqbal, W., 2021. An efficient secure
data compression technique based on chaos and adaptive Huffman coding. Peer-to-
Peer Networking and Applications 14 (5), 2651–2664. https://doi.org/10.1007/
s12083-020-00981-8.

Wenfa Zhan and Aiman El-Maleh,“A new scheme of test data compression based on
equal-run-length coding (ERLC), ”Integration, Vol 45, no 1, pp. 91-98, 2012). doi:
10.1016/j.vlsi.2011.05.001.

Witten, J., Bell, I., Calgary, C.T., 1990. Corpus. http://www.data-compression.info/Cor
pora/CalgaryCorpus/.

Wong, K.-W., Lin, Q., Chen, J., 2010. Simultaneous Arithmetic Coding and Encryption
Using Chaotic Maps. IEEE Transactions on Circuits and Systems II: Express Briefs 57
(2), 146–150. https://doi.org/10.1109/TCSII.2010.2040315.

Z. -L. Zhu, Y. Tang, Q. Liu, W. Zhang and H. Yu, “A Chaos-based Joint Compression and
Encryption Scheme Using Mutated Adaptive Huffman Tree,”2012 Fifth International
Workshop on Chaos-fractals Theories and Applications, Dalian, China, pp. 212-216,
2012. doi: 10.1109/IWCFTA.2012.52.

A.Abdo et al.

https://doi.org/10.1007/s12083-020-00981-8
https://doi.org/10.1007/s12083-020-00981-8
http://www.data-compression.info/Corpora/CalgaryCorpus/
http://www.data-compression.info/Corpora/CalgaryCorpus/
https://doi.org/10.1109/TCSII.2010.2040315

	A hybrid approach to secure and compress data streams in cloud computing environment
	1 introduction
	1.1 Cryptography
	1.2 Data Compression

	2 Related work
	3 The proposed approach
	3.1 Sender Side
	3.1.1 Initial Encryption
	3.1.2 Decomposition phase
	3.1.3 Substitution cipher phase
	3.1.4 Data size treatment
	3.1.5 Compression phase
	3.1.6 Encryption 2
	3.1.7 Uploading Encrypted-compressed data TO the cloud

	3.2 Receiver Side
	3.2.1 Downloading Encrypted-compressed data from the cloud
	3.2.2 Decryption 2
	3.2.3 Decompression phase
	3.2.4 Data Size un-treatment
	3.2.5 Substitution decipher phase
	3.2.6 Composition phase
	3.2.7 Decryption 1

	4 Experiment analysis
	4.1 Experiment design
	4.2 compression effieciency
	4.3 proecessing time analysis
	4.4 Security analysis

	5 Conclusion and futurework
	Declaration of competing interest
	References

