
Measurement: Sensors 33 (2024) 101076

Available online 29 February 2024
2665-9174/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

GEP optimization for load balancing of virtual machines (LBVM) in
cloud computing

G. Muneeswari a,*, Jhansi Bharathi Madavarapu b, R. Ramani c, C. Rajeshkumar d,
C. John Clement Singh e

a Department School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
b Department of Information Technology, University of Cumberlands, 6178 College Station Drive, Williamsburg, KY, 40769, USA
c Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, Tamil Nadu, 626140, India
d Department of Information Technology, Sri Krishna College of Technology, Coimbatore, 641042, Tamilnadu, India
e Electronics and Communication Engineering, Kings Engineering College, Sriperumbudur, Chennai, 602117, Tamilnadu, India

A R T I C L E I N F O

Keywords:
Load balancing
Cloud computing
Virtual machines
Bi-LSTM
Genetic expression programming

A B S T R A C T

Cloud computing relies heavily on load balancing to distribute workloads evenly among servers, network con-
nections, and drives. The cloud system has been assigned some load which can be underloaded, overloaded, or
balanced depending on the cloud architecture and user requests. An important component of task scheduling in
clouds is the load balancing of workloads that may be dependent or independent of virtual machines (VMs). To
overcome these drawbacks, a novel Load Balancing of Virtual Machine (LBVM) in Cloud Computing has been
proposed in this paper. The input tasks from multiple users were collected in a single task collector and sent
towards the load balancer, which contains the deep learning network called the Bi-LSTM technique. When the
load is unbalanced, the VM migration will begin by sending the task details to the load balancer. The Bi-LSTM is
optimized by a Genetic Expression Programming (GEP) optimizer and finally, it balances the input loads in VMs.
The efficiency of the proposed LBVM has been determined using the existing techniques such as MVM, PLBVM,
and VMIS in terms of evaluation metrics such as configuration latency, detection rate, accuracy etc. Experimental
results shows that the proposed method reduces the Migration Time of 49%, 41.7%, and 17.8% than MVM,
PLBVM, VMIS existing techniques respectively.

1. Introduction

Cloud services that may be accessible online are how computational
hardware and software resources are packaged in cloud computing.
There are three different types of cloud computing applications that
have been developed: infrastructure as a service (IaaS), platform as a
service (PaaS), and software as a service (SaaS) [1–3]. In order to
optimize [4–6] streamline operations and deliver acceptable levels of
speed for the consumers, handling massive data sets necessitates a
number of strategies. By maintaining effective management of cloud
resources, it is possible to accomplish the efficient and scalable prop-
erties of cloud computing [7]. Users might cite better utilisation of
distributed resources and their application to increase throughput [8],
performance [9], and problem-solving at a big scale [10] as the primary
objectives of cloud computing (see Figs. 2–7).

The chances of failures that could simultaneously harm the services

in cloud systems are reduced by the use of load balancing [11] and
redundant mirrored databases in cluster techniques [12], which span
several availability zones. The load balancer can move to another
resource if one system has an outage [13]. By maximising resource
availability and minimising the amount of downtime experienced by
organisations during outages, load balancing techniques among the
circumstances towards cloud computing help to lower expenses related
to document management systems [14,15].

Although load balancing is essentially necessary in a cloud setting,
there are several difficulties with it. Scalability is one of the most
attractive benefits of both cloud computing and LB, but it is another one
of the obvious drawbacks of the latter. In the majority of load balancers,
the scalability is limited by a small number of nodes for distributing
processes. Performance degradation because load balancers provide
different resources with equal or predetermined weights, which can lead
to slow speed and high costs [26,27]. Due to the rapid fluctuations in

* Corresponding author.
E-mail address: muneeswari.g.vitap@gmail.com (G. Muneeswari).

Contents lists available at ScienceDirect

Measurement: Sensors

journal homepage: www.sciencedirect.com/journal/measurement-sensors

https://doi.org/10.1016/j.measen.2024.101076
Received 21 August 2023; Received in revised form 30 January 2024; Accepted 23 February 2024

mailto:muneeswari.g.vitap@gmail.com
www.sciencedirect.com/science/journal/26659174
https://www.sciencedirect.com/journal/measurement-sensors
https://doi.org/10.1016/j.measen.2024.101076
https://doi.org/10.1016/j.measen.2024.101076
https://doi.org/10.1016/j.measen.2024.101076
http://creativecommons.org/licenses/by-nc-nd/4.0/

Measurement: Sensors 33 (2024) 101076

2

demand for process resources, it is not possible to predict or estimate the
load or total number of processes on a site. Security-related issues are
also covered, Attackers may take advantage.

Numerous studies have employed machine learning methods to
address load balancing and security concerns. Machine learning is the
process of gathering and analyzing data using sophisticated algorithms
in order to create intelligence [27,28]. In classical machine learning
(ML), features are extracted from input using intricate mathematical
procedures, and then the features are categorized. ML is inefficient and
less successful in producing ideal outcomes since it consists of two
phases: the feature extraction phase and the classification phase. To
overcome these drawbacks, Load Balancing of Virtual Machine (LBVM)
in Cloud Computing has been proposed in this paper. The major con-
tributions of the paper are given as follows.

• The process of Load balancing starts from the collecting set of tasks in
which data are given by multiple users.
• In load balancing, the proposed Bi-LSTM and GEP optimization have

been performed, and the Bi-LSTM is optimized by the GEP optimizer.
• The optimized cloud resources are given to VMs that perform in the

cloud and there the VMs balance the tasks, When the load is unbal-
anced, VM migration is done.
• The efficiency of the proposed LBVM has been determined using

evaluation metrics such as configuration latency, detection rate,
accuracy etc.

This paper is structured as follows. The literature review can be
found in Section II. The proposed approach is presented in Section III.
Results and a discussion are presented in Part IV. Section V presents the
conclusions.

2. Literature survey

By deploying the software to the hardware load-balancing device on
the virtual machine, the Virtual Load Balancer (VLB) differs from a
software load balancer. Many factors resulted in the creation of load
balancing. Many studies have been conducted to solve this problem.
Among those, some of the techniques have been reviewed in this section.

In 2018, M. Kandhimathi, D.V et al. [16], had proposed in order to
allocate the finest virtual machines to fulfil the request in a very efficient
and quick manner, the additional virtual machines were added using a
genetic technique. The overall energy consumption either when they
were idle. The proposed approach outperforms the compared current
algorithms, according to simulation findings. This method does not have
computational offloading capability.

In 2018, Mehiar Dabbagh, B et al. [17], proposed a system for inte-
grated resource allocation that is energy-efficient for overcommitted
clouds. utilizing authentic Google data made up of 29-day sign gathered
upon a cluster with in excess of 12K PMs. By reducing the occurrence of
unexpected overloads, the suggested framework performs better than
prior VM migration techniques and current overload avoidance tactics
schemes and significantly diminishing on cloud energy use. The pro-
posed work is unable to decrease costs when the deadline is loose.

In 2019, Wei Guo, W et al. [18], has a modified version of LSTM
called N-LSTM is suggested in order to handle the challenges of pre-
dicting the workload of virtual machines. This method of
problem-solving combines the historical workload of several types of
VM across the specified duration period. In comparison to the long-term
memory method, the suggested method can produce predictions that are
more accurate. The proposed work doesn’t satisfy highly dynamic user
requirements.

In 2019, Praneeth Gunupati, K et al. [19], proposed Hugo is a model
that serves as a distributed, scalable and flexible cloud controller that
can control basic operations including the creation, removal, and
transfer of virtual machines (VMs). It does it by over-committing the
Physical Machine (PM) to get greater usage. As a result, the proposed

Load Balancing with VM Migration is successfully executed. The pro-
posed work considers makespan, execution time, and energy consump-
tion as secondary performance indicators.

In 2020, Vincent Kherbache, E et al. [20], proposed migration of
Virtual Machines, the migrations were parallelized and sequentialized
by mVM according to the memory burden and the network topology to
offer schedules with the shortest completion times. The suggested
method’s findings show that the mVM solving time only makes up
roughly 1% of the scheduled execution time. The proposed work is not
suitable for real-time applications.

In 2020, Bodrul Alam, T et al. [21], suggested a Markov-based failure
prediction model to foresee cloud server failure. Based on its past data,
the model predicts that the server base state would deteriorate. The
optimization issue is resolved using the Artificial Bee Colony (ABC)
technique both optimally and heuristically. As a result, the approach
improves dependability and reduces communication lag during VM
service migration. The proposed work lacks a large amount of practical
data.

In 2021, P. Tamilarasi, D.A et al. [22], designed for the large data
cloud environment, a prediction-based load balancing and virtual ma-
chine (VM) migration technique (PLBVM) was developed. This paper
proposed for the Investigators has provided more consideration towards
the harmonizing of the load of complete impact on the system act. The
result shows that the proposed PLBVM achieves lesser response delay
and execution time. The proposed work does not consider the distribu-
tion of resources in dynamic conditions.

In 2021, Deepika Saxena, A et al. [23], proposed an efficient resource
management framework to handle the problems and enhance data
center performance. The framework’s performance is assessed by doing
tests on three types of real-world workload data, including the Google
Cluster dataset, Planet Lab, and Bit Brains VM traces. The OP-MLB
framework outperforms the best fit technique in terms of power sav-
ings by up to 85.3%. The proposed work has only fewer characteristics
between user requests and cloud service systems.

In 2021, P. Joseph Charles, U. L et al. [24], had proposed the Heu-
ristic algorithms which solve the VM consolidation, this approach to
solve the issue in bin packing method. To solve the problem, a variety of
alternative heuristics algorithms are available. Instead of bandwidth and
memory, the CPU utilisation of virtual machines is primarily taken into
account when calculating energy consumption. Data in the proposed
cloud environments does not reflect real-world conditions.

In 2022, A. Pandyaraj, N. V et al. [25], proposed Using the allocated
resources, the virtual machine for infrastructure service in the cloud
network is employed. By using virtual climate, the jib may execute the
task according to the resources’ accessibility and react more quickly. By
using an online prediction model, it was possible to estimate the job sizes
and so cut down on running time. The proposed work does not consider
migration time, and overhead time parameters.

From these literature studies, the author’s usage of cloud computing
has made it possible for businesses to allocate resources among
numerous servers in order to manage workload or application re-
quirements. The authors used some different type of techniques to
manage the work load or load balancing such as, Migration of Virtual
Machines, PLBVM, Heuristic algorithms etc. The load balancing strate-
gies now in use rely on a number of task parameters. Most methods
balance load by using optimization techniques. A review of the literature
reveals that deep learning-based load balancing, on the other hand, may
greatly enhance the workload distribution that is balanced. To overcome
these drawbacks a novel LBVM technique has been proposed in the next
section.

3. Proposed method

The proposed Load Balancing of Virtual Machine (LBVM) in Cloud
Computing is given detailed in this section. Load Balancing in Cloud is a
distributed process for the software-defined, managed service for all of

G. Muneeswari et al.

Measurement: Sensors 33 (2024) 101076

3

users given tasks traffic. The process of Load balancing is starts from the
collecting set of tasks which data are given by multiple users. In load
balancing, the proposed Bi-LSTM and GEP optimization are performed,
the Bi-LSTM is the optimized by GEP optimizer. The optimized cloud
resources are goes to VMs which performs in cloud based and there the
VMs balances the tasks, When the load was unbalanced, VM migration
was done. Finally, the input tasks and the cloud resources are balanced
and executed which is shown in Fig. 1

3.1. Users and tasks

The input data are collected from different kinds of users, the
collected data are called tasks. The tasks are stored in a single task
collector which collects a number of data from different users.

3.2. Load balancer

The Load Balancing in the Cloud is a process distributed for software-
defined, managed service for all the users given tasks traffic. The Load

Fig. 1. Proposed load balancing diagram.

G. Muneeswari et al.

Measurement: Sensors 33 (2024) 101076

4

balancer balances the input loads with Bi-LSTM which is optimized by
GEP optimizer. At first the cloud resource monitor monitors the tasks
which calls as resources R. Then the monitored cloud resource goes to
GEP optimizer which optimize the Bi-LSTM.

3.2.1. GEP optimization algorithm
A variant of GP is genetic expression programming (GEP). A collec-

tion of terminals, intake variables or constants, and operator functions,
GEP encodes programmes or their formulas as binary trees expressed as
linear gene expressions. The head and tail of a binary tree make up the
level-order traversal of the gene expression. While symbols in the tail
can only be terminals, those in the head can represent functions as well.

A gene expression has a length of h+ t, where h is the user-provided
length of the head and t = h× (n − 1) + 1 is the length the length of tail.
The most important number of arguments a user can send to a function is
represented by the parameter n. In this case, the operators +, − ,×,÷,√
and the terminals are the symbol x, y and numbers. There could be some
unneeded terminals in the tail portion. Procreation and genetic variation
processes are the same as in GA. Expression trees are used in GEP to
increase efficiency since a straightforward linear structure makes it
easier to apply genetic processes.

3.2.2. Bi-LSTM
A sequence processing model called Bi-LSTM consists of two LSTMs.

One processing the information forward and the other processing it
backward. The network can access more data with the aid of Bi-LSTMs,

Fig. 2. Bi-LSTM diagram.

Fig. 3. Times in ms with number of tasks.

Fig. 4. ARU with number of tasks.

Fig. 5. LBL with number of tasks.

Fig. 6. Total cost with number of tasks.

Fig. 7. Migration time with number of tasks.

G. Muneeswari et al.

Measurement: Sensors 33 (2024) 101076

5

which is advantageous for the context of the algorithm. The two hidden
LSTM layers are linked to the output layer by bidirectional LSTM (Bi-
LSTM). In the application, using two LSTM as one layer encourages
improving the learning long-term dependency, which subsequently will
increase model performance.

The output sequence h
←

of the backward LSTM layer is computed
using the inverse input from time t − 1 to t − n. Since the output

sequence h
→

of the forward LSTM layer is acquired in the same manner as
in the unidirectional case. The σ function receives these output se-
quences, which are then merged to create the output vector yt . Like the
LSTM layer, the vector Yt = yt− n,…, yt− 1 may be used to describe the Bi-
LSTM layer’s final output. The expected blood pressure for the subse-
quent iteration is found in the last element, yt− 1.

Given input tasks X = (x1…, xT), the hidden vector tasks h =
(h1,…, hT) and the output vector tasks Y = (y1,…, yT) by iterating the
following equations from t = 1 to T.

ht =H(Wxhxt +Whhht− 1+ bh) (1)

yt =Whyht + b0 (2)

The weight matrix is denoted by the W term, the bias vector is shown
by the B term, and the hidden layer function is represented by the H
term. H is usually a sigmoid function applied element by element.

it = σ(Wxixt +Whiht− 1+Wcict− 1+ bi) (3)

ft = σ
(
Wxf xt +Whf ht− 1+Wcf ct− 1bf

)
(4)

ct = ftct− 1 + it tanh (Wxcxt +Whcht− 1+ bc) (5)

Ot = σ(Wxoxt +Whoht− 1+Wcoct + bo) (6)

ht =Ot tanh (ct) (7)

The logistic sigmoid function in this case is denoted by σ, and the
input, forget, output, and cell activation vectors, f , o , and c, are all of the
same size as the hidden vector h. The input/output gate matrix is Wx0,
while the hidden input gate matrix is Whi.

The optimized Bi-LSTM then go to the scheduling section, the Bi-
LSTM send the optimized task and there the schedule will decide to
send to the VMs whether it taken or not. While running as a process on
the host operating system, a virtual machine functions as a distinct,
independent machine. When the load was unbalanced, VM migration
was done. It is an easy approach to provide a share of cloud resources to
a specific task. In order to allocate tasks to virtual machines (VMs), a
forecast timetable for the input task is finally produced using the sug-
gested model.

4. Result and discussion

Simulations have been performing to evaluate the proposed LBVM in
cloud computing using GEP optimization techniques. Here, the Bi-LSTM
technique is used because it offers additional training of tasks and thus
Bi-LSTM based modelling offers better prediction. The input tasks from
multiple users were collected in a single task collector and sent towards
to the load balancer, there it performs the Bi-LSTM technique by using
Genetic Expression Programming (GEP) optimization algorithm and the
collected schedules sent to Virtual Machines (VMs) and finally it
balanced the input loads in VMs, When the load was unbalanced, VM
migration was done.

The optimized Bi-LSTM then go to the scheduling section, the Bi-
LSTM send the optimized task. While running as a process on the host
operating system, a virtual machine functions as a distinct, independent
machine. It’s an easy approach to provide a share of cloud resources to a
specific task. According to the results, better prediction is provided by
Bi-LSTM based modelling than by traditional LSTM based models

because it is based on extra data training, provides better prediction than
conventional LSTM based models. Tensor Flow is used as the backend to
store task training data in the Python (PyCharm) implementation of the
suggested load balancing approach. The suggested framework in-
corporates TensorFlow into its load balancing and scheduling models to
handle massive datasets.

4.1. Performance metrics

This section presents the simulation results of proposed Load
Balancing of Virtual Machine (LBVM) performance metrics namely,
Times in ms, ARU (%), LBL (%), Total cost and Migration time.

4.1.1. Times in ms
The number of tasks is Compared with other three existing tech-

niques which are MVM [20], PLBVM [22], VMIS [24] and the proposed
Load Balancing of Virtual Machine (LBVM). Compared with other
existing techniques the times in ms performance is lower.

4.1.2. ARU with number of tasks
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing
of Virtual Machine (LBVM). Compared with other existing techniques
the ARU performance is higher.

4.1.3. LBL
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing
of Virtual Machine (LBVM). Compared with other existing techniques
the LBL performance is higher.

4.1.4. Total cost
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing
of Virtual Machine (LBVM). Compared with other existing techniques
the total cost is lower.

4.1.5. Migration cost
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing
of Virtual Machine (LBVM). Compared with other existing techniques
the migration time is lower.

The results section shows that the suggested LBVM technique out-
performs previous load balancing methods by utilizing the cloud envi-
ronment, which offers limitless computing resources, virtualization,
scalability, and the ability to store large amounts of structured data. It is
unquestionably superior to unstructured data. Nevertheless, the sug-
gested work does not utilize dependent works. We intend to enhance this
type of load balancing for buildings that have dependent activities in the
future.

5. Conclusion

Load Balancing of Virtual Machine (LBVM) in Cloud Computing has
been proposed in this paper. The input tasks from multiple users were
collected in a single task collector and sent towards to the load balancer,
there it perform the Bi-LSTM technique by using Genetic Expression
Programming (GEP) optimization algorithm and the collected schedules
sent to Virtual Machines (VMs) and finally it balances the input loads in
VMs, When the load was unbalanced, VM migration was done. Ac-
cording to the results, better prediction is provided by Bi-LSTM based
modelling than by traditional LSTM based models because it is based on
extra data training, provides better prediction than conventional LSTM
based models. In load balancing, the proposed Bi-LSTM and GEP opti-
mization are performed, the Bi-LSTM is the optimized by GEP optimizer.
The optimized cloud resources are goes to VMs which performs in cloud

G. Muneeswari et al.

Measurement: Sensors 33 (2024) 101076

6

based and there the VMs balances the tasks. The proposed method has
been evaluated in terms of MVM, PLBVM, VMIS and the proposed Load
Balancing of Virtual Machine (LBVM). The proposed method reduces the
Migration Time of 49%, 41.7%, 17.8% than MVM, PLBVM, VMIS
existing techniques. Because cloud computing offers virtualization,
scalability, infinite computational resources, and the capacity to store
massive volumes of both organized and unstructured data, it is perfect
for deep learning. We intend to enhance this type of load balancing for
buildings that have dependent activities in the future.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

The author would like to express his heartfelt gratitude to the su-
pervisor for his guidance and unwavering support during this research
for his guidance and support.

References

[1] S. Malla, K. Christensen, HPC in the cloud: performance comparison of function as
a service (FaaS) vs infrastructure as a service (IaaS), Int. Technol. Lett. 3 (1) (2020)
137.

[2] R. Yasrab, Platform-as-a-service (Paas): the Next Hype of Cloud Computing, 2018
arXiv preprint arXiv:1804.10811.

[3] R.S.R.J. Raghavan, R.V. Nargundkar, Impact of software as a service (SaaS) on
software acquisition process, J. Bus. Ind. Market. 35 (4) (2020) 757–770.

[4] D. Ardagna, M. Ciavotta, R. Lancellotti, M. Guerriero, A hierarchical receding
horizon algorithm for QoS-driven control of multi-IaaS applications, IEEE Trans.
Cloud Comput. 9 (2) (2018) 418–434.

[5] H. Yang, C. Lou, L. Sun, J. Li, Y. Cai, Z. Wang, W. Li, G. Liu, Y. Tang, admetSAR 2.0:
web-service for prediction and optimization of chemical ADMET properties,
Bioinformatics 35 (6) (2019) 1067–1069.

[6] D. Hendrycks, N. Mu, E.D. Cubuk, B. Zoph, J. Gilmer and B. Lakshminarayanan,
Augmix: A Simple Data Processing Method to Improve Robustness and Uncertainty.
arXiv preprint arXiv:1912.02781.

[7] A. Rashid, A. Chaturvedi, Cloud computing characteristics and services: a brief
review, Int. J. Comput. Sci. Eng. 7 (2) (2019) 421–426.

[8] H. Rajab, T. Cinkler, T. Bouguera, IoT scheduling for higher throughput and lower
transmission power, Wireless Network 27 (2021) 1701–1714.

[9] O.M. Ahmed, L.M. Haji, H.M. Shukur, R.R. Zebari, S.M. Abas, M.A. Sadeeq,
Comparison among cloud technologies and cloud performance, J. Appl. Sci.
Technol. Trends 1 (2020) 40–47.

[10] B. Langmead, A. Nellore, Cloud computing for genomic data analysis and
collaboration, Nat. Rev. Genet. 19 (4) (2018) 208–219.

[11] J. Zhang, F.R. Yu, S. Wang, T. Huang, Z. Liu, Y. Liu, Load balancing in data center
networks: a survey, IEEE Commun. Surveys & Tutor. 20 (3) (2018) 2324–2352.

[12] P. Govender, V. Sivakumar, Application of k-means and hierarchical clustering
techniques for analysis of air pollution: a review (1980–2019), Atmos. Pollut. Res.
11 (1) (2020) 40–56.

[13] A. Balalaie, A. Heydarnoori, P. Jamshidi, D.A. Tamburri, T. Lynn, Microservices
migration patterns, Software Pract. Ex. 48 (11) (2018) 2019–2042.

[14] B. Yi, X. Wang, K. Li, M. Huang, A comprehensive survey of network function
virtualization, Comput. Network. 133 (2018) 212–262.

[15] D. Ageyev, O. Bondarenko, T. Radivilova, W. Alfroukh, Classification of existing
virtualization methods used in telecommunication networks, in: 2018 IEEE 9th
International Conference on Dependable Systems, Services and Technologies
(DESSERT), IEEE, 2018, pp. 83–86.

[16] M. Kanthimathi, D. Vijayakumar, An enhanced approach of genetic and Ant Colony
based load balancing in cloud environment, in: 2018, International Conference on
Soft-Computing and Network Security (ICSNS), IEEE, 2018, pp. 1–5.

[17] M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, An energy-efficient VM
prediction and migration framework for overcommitted clouds, IEEE Trans. Cloud
Comput. 6 (4) (2016) 955–966.

[18] W. Guo, W. Ge, X. Lu, H. Li, Short-term load forecasting of virtual machines based
on improved neural network, IEEE Access 7 (2019) 121037–121045.

[19] P. Gunupati K. Boyidi, A. Kumar, S. Earla, S. Gugulothu, A. Singh, Distributed
controller for load balancing with VM migration, in: 2019 4th International
Conference on Information Systems and Computer Networks (ISCON), IEEE, 2019,
pp. 488–495.

[20] V. Kherbache, E. Madelaine, F. Hermenier, Scheduling live migration of virtual
machines, IEEE Trans. Cloud Comput. 8 (1) (2017) 282–296.

[21] A.B. Alam, T. Halabi, A. Haque and M. Zulkernine, Optimizing virtual machine
migration in multi-clouds. In 2020, International Symposium on Networks,
Computers and Communications (ISNCC), 1. IEEE.

[22] P. Tamilarasi, D. Akila, Prediction based load balancing and VM migration in big
data cloud environment, in: 2021 2nd International Conference on Computation,
Automation and Knowledge Management (ICCAKM), IEEE, 2021, pp. 123–127.

[23] D. Saxena, A.K. Singh, R. Buyya, OP-MLB: an online VM prediction-based multi-
objective load balancing framework for resource management at cloud data center,
IEEE Trans. Cloud Comput. 10 (4) (2021) 2804–2816, m.

[24] P.J. Charles, U.L. Stanislaus, Secure virtual machine migration using ant Colony
algorithm, in: 2021 Fifth International Conference on I-SMAC(IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), IEEE, 2021, pp. 1571–1575.

[25] A. Pandiaraj, N. Vinothkumar, R. Venkatesan, Virtual machine migration for
infrastructure service in cloud network, in: 2022 Smart Technologies,
Communication and Robotics (STCR), IEEE, 2022, pp. 1–5.

[26] T. Raj, C. Pushpalatha, A. Ahilan, An optimized profound memory-affiliated de-
noising of aerial images through deep neural network for disaster management,
Signal, Image Video Process. (2023) 1–9.

[27] A. Agasthian, Rajendra Pamula, L.A. Kumaraswamidhas, Integration of monitoring
and security based deep learning network for wind turbine system, Int. J. Syst.
Design Comput. 1 (1) (2023) 11–17.

[28] A. Jegatheesh, N. Kopperundevi, M. Anlin Sahaya Infant Tinu, Brain aneurysm
detection via firefly optimized spiking neural network, Int. J. Curr. Bio-Med. Eng. 1
(1) (2023) 23–29.

G. Muneeswari et al.

http://refhub.elsevier.com/S2665-9174(24)00052-7/sref1
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref1
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref1
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref2
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref2
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref3
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref3
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref4
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref4
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref4
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref5
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref5
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref5
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref7
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref7
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref8
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref8
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref9
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref9
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref9
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref10
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref10
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref11
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref11
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref12
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref12
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref12
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref13
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref13
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref14
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref14
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref15
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref15
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref15
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref15
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref16
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref16
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref16
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref17
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref17
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref17
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref18
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref18
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref19
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref19
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref19
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref19
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref20
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref20
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref22
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref22
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref22
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref23
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref23
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref23
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref24
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref24
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref24
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref25
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref25
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref25
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref26
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref26
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref26
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref27
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref27
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref27
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref28
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref28
http://refhub.elsevier.com/S2665-9174(24)00052-7/sref28

	GEP optimization for load balancing of virtual machines (LBVM) in cloud computing
	1 Introduction
	2 Literature survey
	3 Proposed method
	3.1 Users and tasks
	3.2 Load balancer
	3.2.1 GEP optimization algorithm
	3.2.2 Bi-LSTM

	4 Result and discussion
	4.1 Performance metrics
	4.1.1 Times in ms
	4.1.2 ARU with number of tasks
	4.1.3 LBL
	4.1.4 Total cost
	4.1.5 Migration cost

	5 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

