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A B S T R A C T   

Cloud computing relies heavily on load balancing to distribute workloads evenly among servers, network con-
nections, and drives. The cloud system has been assigned some load which can be underloaded, overloaded, or 
balanced depending on the cloud architecture and user requests. An important component of task scheduling in 
clouds is the load balancing of workloads that may be dependent or independent of virtual machines (VMs). To 
overcome these drawbacks, a novel Load Balancing of Virtual Machine (LBVM) in Cloud Computing has been 
proposed in this paper. The input tasks from multiple users were collected in a single task collector and sent 
towards the load balancer, which contains the deep learning network called the Bi-LSTM technique. When the 
load is unbalanced, the VM migration will begin by sending the task details to the load balancer. The Bi-LSTM is 
optimized by a Genetic Expression Programming (GEP) optimizer and finally, it balances the input loads in VMs. 
The efficiency of the proposed LBVM has been determined using the existing techniques such as MVM, PLBVM, 
and VMIS in terms of evaluation metrics such as configuration latency, detection rate, accuracy etc. Experimental 
results shows that the proposed method reduces the Migration Time of 49%, 41.7%, and 17.8% than MVM, 
PLBVM, VMIS existing techniques respectively.   

1. Introduction 

Cloud services that may be accessible online are how computational 
hardware and software resources are packaged in cloud computing. 
There are three different types of cloud computing applications that 
have been developed: infrastructure as a service (IaaS), platform as a 
service (PaaS), and software as a service (SaaS) [1–3]. In order to 
optimize [4–6] streamline operations and deliver acceptable levels of 
speed for the consumers, handling massive data sets necessitates a 
number of strategies. By maintaining effective management of cloud 
resources, it is possible to accomplish the efficient and scalable prop-
erties of cloud computing [7]. Users might cite better utilisation of 
distributed resources and their application to increase throughput [8], 
performance [9], and problem-solving at a big scale [10] as the primary 
objectives of cloud computing (see Figs. 2–7). 

The chances of failures that could simultaneously harm the services 

in cloud systems are reduced by the use of load balancing [11] and 
redundant mirrored databases in cluster techniques [12], which span 
several availability zones. The load balancer can move to another 
resource if one system has an outage [13]. By maximising resource 
availability and minimising the amount of downtime experienced by 
organisations during outages, load balancing techniques among the 
circumstances towards cloud computing help to lower expenses related 
to document management systems [14,15]. 

Although load balancing is essentially necessary in a cloud setting, 
there are several difficulties with it. Scalability is one of the most 
attractive benefits of both cloud computing and LB, but it is another one 
of the obvious drawbacks of the latter. In the majority of load balancers, 
the scalability is limited by a small number of nodes for distributing 
processes. Performance degradation because load balancers provide 
different resources with equal or predetermined weights, which can lead 
to slow speed and high costs [26,27]. Due to the rapid fluctuations in 
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demand for process resources, it is not possible to predict or estimate the 
load or total number of processes on a site. Security-related issues are 
also covered, Attackers may take advantage. 

Numerous studies have employed machine learning methods to 
address load balancing and security concerns. Machine learning is the 
process of gathering and analyzing data using sophisticated algorithms 
in order to create intelligence [27,28]. In classical machine learning 
(ML), features are extracted from input using intricate mathematical 
procedures, and then the features are categorized. ML is inefficient and 
less successful in producing ideal outcomes since it consists of two 
phases: the feature extraction phase and the classification phase. To 
overcome these drawbacks, Load Balancing of Virtual Machine (LBVM) 
in Cloud Computing has been proposed in this paper. The major con-
tributions of the paper are given as follows.  

• The process of Load balancing starts from the collecting set of tasks in 
which data are given by multiple users.  
• In load balancing, the proposed Bi-LSTM and GEP optimization have 

been performed, and the Bi-LSTM is optimized by the GEP optimizer.  
• The optimized cloud resources are given to VMs that perform in the 

cloud and there the VMs balance the tasks, When the load is unbal-
anced, VM migration is done.  
• The efficiency of the proposed LBVM has been determined using 

evaluation metrics such as configuration latency, detection rate, 
accuracy etc. 

This paper is structured as follows. The literature review can be 
found in Section II. The proposed approach is presented in Section III. 
Results and a discussion are presented in Part IV. Section V presents the 
conclusions. 

2. Literature survey 

By deploying the software to the hardware load-balancing device on 
the virtual machine, the Virtual Load Balancer (VLB) differs from a 
software load balancer. Many factors resulted in the creation of load 
balancing. Many studies have been conducted to solve this problem. 
Among those, some of the techniques have been reviewed in this section. 

In 2018, M. Kandhimathi, D.V et al. [16], had proposed in order to 
allocate the finest virtual machines to fulfil the request in a very efficient 
and quick manner, the additional virtual machines were added using a 
genetic technique. The overall energy consumption either when they 
were idle. The proposed approach outperforms the compared current 
algorithms, according to simulation findings. This method does not have 
computational offloading capability. 

In 2018, Mehiar Dabbagh, B et al. [17], proposed a system for inte-
grated resource allocation that is energy-efficient for overcommitted 
clouds. utilizing authentic Google data made up of 29-day sign gathered 
upon a cluster with in excess of 12K PMs. By reducing the occurrence of 
unexpected overloads, the suggested framework performs better than 
prior VM migration techniques and current overload avoidance tactics 
schemes and significantly diminishing on cloud energy use. The pro-
posed work is unable to decrease costs when the deadline is loose. 

In 2019, Wei Guo, W et al. [18], has a modified version of LSTM 
called N-LSTM is suggested in order to handle the challenges of pre-
dicting the workload of virtual machines. This method of 
problem-solving combines the historical workload of several types of 
VM across the specified duration period. In comparison to the long-term 
memory method, the suggested method can produce predictions that are 
more accurate. The proposed work doesn’t satisfy highly dynamic user 
requirements. 

In 2019, Praneeth Gunupati, K et al. [19], proposed Hugo is a model 
that serves as a distributed, scalable and flexible cloud controller that 
can control basic operations including the creation, removal, and 
transfer of virtual machines (VMs). It does it by over-committing the 
Physical Machine (PM) to get greater usage. As a result, the proposed 

Load Balancing with VM Migration is successfully executed. The pro-
posed work considers makespan, execution time, and energy consump-
tion as secondary performance indicators. 

In 2020, Vincent Kherbache, E et al. [20], proposed migration of 
Virtual Machines, the migrations were parallelized and sequentialized 
by mVM according to the memory burden and the network topology to 
offer schedules with the shortest completion times. The suggested 
method’s findings show that the mVM solving time only makes up 
roughly 1% of the scheduled execution time. The proposed work is not 
suitable for real-time applications. 

In 2020, Bodrul Alam, T et al. [21], suggested a Markov-based failure 
prediction model to foresee cloud server failure. Based on its past data, 
the model predicts that the server base state would deteriorate. The 
optimization issue is resolved using the Artificial Bee Colony (ABC) 
technique both optimally and heuristically. As a result, the approach 
improves dependability and reduces communication lag during VM 
service migration. The proposed work lacks a large amount of practical 
data. 

In 2021, P. Tamilarasi, D.A et al. [22], designed for the large data 
cloud environment, a prediction-based load balancing and virtual ma-
chine (VM) migration technique (PLBVM) was developed. This paper 
proposed for the Investigators has provided more consideration towards 
the harmonizing of the load of complete impact on the system act. The 
result shows that the proposed PLBVM achieves lesser response delay 
and execution time. The proposed work does not consider the distribu-
tion of resources in dynamic conditions. 

In 2021, Deepika Saxena, A et al. [23], proposed an efficient resource 
management framework to handle the problems and enhance data 
center performance. The framework’s performance is assessed by doing 
tests on three types of real-world workload data, including the Google 
Cluster dataset, Planet Lab, and Bit Brains VM traces. The OP-MLB 
framework outperforms the best fit technique in terms of power sav-
ings by up to 85.3%. The proposed work has only fewer characteristics 
between user requests and cloud service systems. 

In 2021, P. Joseph Charles, U. L et al. [24], had proposed the Heu-
ristic algorithms which solve the VM consolidation, this approach to 
solve the issue in bin packing method. To solve the problem, a variety of 
alternative heuristics algorithms are available. Instead of bandwidth and 
memory, the CPU utilisation of virtual machines is primarily taken into 
account when calculating energy consumption. Data in the proposed 
cloud environments does not reflect real-world conditions. 

In 2022, A. Pandyaraj, N. V et al. [25], proposed Using the allocated 
resources, the virtual machine for infrastructure service in the cloud 
network is employed. By using virtual climate, the jib may execute the 
task according to the resources’ accessibility and react more quickly. By 
using an online prediction model, it was possible to estimate the job sizes 
and so cut down on running time. The proposed work does not consider 
migration time, and overhead time parameters. 

From these literature studies, the author’s usage of cloud computing 
has made it possible for businesses to allocate resources among 
numerous servers in order to manage workload or application re-
quirements. The authors used some different type of techniques to 
manage the work load or load balancing such as, Migration of Virtual 
Machines, PLBVM, Heuristic algorithms etc. The load balancing strate-
gies now in use rely on a number of task parameters. Most methods 
balance load by using optimization techniques. A review of the literature 
reveals that deep learning-based load balancing, on the other hand, may 
greatly enhance the workload distribution that is balanced. To overcome 
these drawbacks a novel LBVM technique has been proposed in the next 
section. 

3. Proposed method 

The proposed Load Balancing of Virtual Machine (LBVM) in Cloud 
Computing is given detailed in this section. Load Balancing in Cloud is a 
distributed process for the software-defined, managed service for all of 
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users given tasks traffic. The process of Load balancing is starts from the 
collecting set of tasks which data are given by multiple users. In load 
balancing, the proposed Bi-LSTM and GEP optimization are performed, 
the Bi-LSTM is the optimized by GEP optimizer. The optimized cloud 
resources are goes to VMs which performs in cloud based and there the 
VMs balances the tasks, When the load was unbalanced, VM migration 
was done. Finally, the input tasks and the cloud resources are balanced 
and executed which is shown in Fig. 1 

3.1. Users and tasks 

The input data are collected from different kinds of users, the 
collected data are called tasks. The tasks are stored in a single task 
collector which collects a number of data from different users. 

3.2. Load balancer 

The Load Balancing in the Cloud is a process distributed for software- 
defined, managed service for all the users given tasks traffic. The Load 

Fig. 1. Proposed load balancing diagram.  
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balancer balances the input loads with Bi-LSTM which is optimized by 
GEP optimizer. At first the cloud resource monitor monitors the tasks 
which calls as resources R. Then the monitored cloud resource goes to 
GEP optimizer which optimize the Bi-LSTM. 

3.2.1. GEP optimization algorithm 
A variant of GP is genetic expression programming (GEP). A collec-

tion of terminals, intake variables or constants, and operator functions, 
GEP encodes programmes or their formulas as binary trees expressed as 
linear gene expressions. The head and tail of a binary tree make up the 
level-order traversal of the gene expression. While symbols in the tail 
can only be terminals, those in the head can represent functions as well. 

A gene expression has a length of h+ t, where h is the user-provided 
length of the head and t = h× (n − 1) + 1 is the length the length of tail. 
The most important number of arguments a user can send to a function is 
represented by the parameter n. In this case, the operators +, − ,×,÷,√ 
and the terminals are the symbol x, y and numbers. There could be some 
unneeded terminals in the tail portion. Procreation and genetic variation 
processes are the same as in GA. Expression trees are used in GEP to 
increase efficiency since a straightforward linear structure makes it 
easier to apply genetic processes. 

3.2.2. Bi-LSTM 
A sequence processing model called Bi-LSTM consists of two LSTMs. 

One processing the information forward and the other processing it 
backward. The network can access more data with the aid of Bi-LSTMs, 

Fig. 2. Bi-LSTM diagram.  

Fig. 3. Times in ms with number of tasks.  

Fig. 4. ARU with number of tasks.  

Fig. 5. LBL with number of tasks.  

Fig. 6. Total cost with number of tasks.  

Fig. 7. Migration time with number of tasks.  
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which is advantageous for the context of the algorithm. The two hidden 
LSTM layers are linked to the output layer by bidirectional LSTM (Bi- 
LSTM). In the application, using two LSTM as one layer encourages 
improving the learning long-term dependency, which subsequently will 
increase model performance. 

The output sequence h
←

of the backward LSTM layer is computed 
using the inverse input from time t − 1 to t − n. Since the output 

sequence h
→

of the forward LSTM layer is acquired in the same manner as 
in the unidirectional case. The σ function receives these output se-
quences, which are then merged to create the output vector yt . Like the 
LSTM layer, the vector Yt = yt− n,…, yt− 1 may be used to describe the Bi- 
LSTM layer’s final output. The expected blood pressure for the subse-
quent iteration is found in the last element, yt− 1. 

Given input tasks X = (x1…, xT), the hidden vector tasks h =
(h1,…, hT) and the output vector tasks Y = (y1,…, yT) by iterating the 
following equations from t = 1 to T. 

ht =H(Wxhxt +Whhht− 1+ bh) (1)  

yt =Whyht + b0 (2) 

The weight matrix is denoted by the W term, the bias vector is shown 
by the B term, and the hidden layer function is represented by the H 
term. H is usually a sigmoid function applied element by element. 

it = σ(Wxixt +Whiht− 1+Wcict− 1+ bi) (3)  

ft = σ
(
Wxf xt +Whf ht− 1+Wcf ct− 1bf

)
(4)  

ct = ftct− 1 + it tanh (Wxcxt +Whcht− 1+ bc) (5)  

Ot = σ(Wxoxt +Whoht− 1+Wcoct + bo) (6)  

ht =Ot tanh (ct) (7) 

The logistic sigmoid function in this case is denoted by σ, and the 
input, forget, output, and cell activation vectors, f , o , and c, are all of the 
same size as the hidden vector h. The input/output gate matrix is Wx0, 
while the hidden input gate matrix is Whi. 

The optimized Bi-LSTM then go to the scheduling section, the Bi- 
LSTM send the optimized task and there the schedule will decide to 
send to the VMs whether it taken or not. While running as a process on 
the host operating system, a virtual machine functions as a distinct, 
independent machine. When the load was unbalanced, VM migration 
was done. It is an easy approach to provide a share of cloud resources to 
a specific task. In order to allocate tasks to virtual machines (VMs), a 
forecast timetable for the input task is finally produced using the sug-
gested model. 

4. Result and discussion 

Simulations have been performing to evaluate the proposed LBVM in 
cloud computing using GEP optimization techniques. Here, the Bi-LSTM 
technique is used because it offers additional training of tasks and thus 
Bi-LSTM based modelling offers better prediction. The input tasks from 
multiple users were collected in a single task collector and sent towards 
to the load balancer, there it performs the Bi-LSTM technique by using 
Genetic Expression Programming (GEP) optimization algorithm and the 
collected schedules sent to Virtual Machines (VMs) and finally it 
balanced the input loads in VMs, When the load was unbalanced, VM 
migration was done. 

The optimized Bi-LSTM then go to the scheduling section, the Bi- 
LSTM send the optimized task. While running as a process on the host 
operating system, a virtual machine functions as a distinct, independent 
machine. It’s an easy approach to provide a share of cloud resources to a 
specific task. According to the results, better prediction is provided by 
Bi-LSTM based modelling than by traditional LSTM based models 

because it is based on extra data training, provides better prediction than 
conventional LSTM based models. Tensor Flow is used as the backend to 
store task training data in the Python (PyCharm) implementation of the 
suggested load balancing approach. The suggested framework in-
corporates TensorFlow into its load balancing and scheduling models to 
handle massive datasets. 

4.1. Performance metrics 

This section presents the simulation results of proposed Load 
Balancing of Virtual Machine (LBVM) performance metrics namely, 
Times in ms, ARU (%), LBL (%), Total cost and Migration time. 

4.1.1. Times in ms 
The number of tasks is Compared with other three existing tech-

niques which are MVM [20], PLBVM [22], VMIS [24] and the proposed 
Load Balancing of Virtual Machine (LBVM). Compared with other 
existing techniques the times in ms performance is lower. 

4.1.2. ARU with number of tasks 
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing 
of Virtual Machine (LBVM). Compared with other existing techniques 
the ARU performance is higher. 

4.1.3. LBL 
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing 
of Virtual Machine (LBVM). Compared with other existing techniques 
the LBL performance is higher. 

4.1.4. Total cost 
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing 
of Virtual Machine (LBVM). Compared with other existing techniques 
the total cost is lower. 

4.1.5. Migration cost 
The number of tasks is Compared with other three existing tech-

niques which are MVM, PLBVM, VMIS and the proposed Load Balancing 
of Virtual Machine (LBVM). Compared with other existing techniques 
the migration time is lower. 

The results section shows that the suggested LBVM technique out-
performs previous load balancing methods by utilizing the cloud envi-
ronment, which offers limitless computing resources, virtualization, 
scalability, and the ability to store large amounts of structured data. It is 
unquestionably superior to unstructured data. Nevertheless, the sug-
gested work does not utilize dependent works. We intend to enhance this 
type of load balancing for buildings that have dependent activities in the 
future. 

5. Conclusion 

Load Balancing of Virtual Machine (LBVM) in Cloud Computing has 
been proposed in this paper. The input tasks from multiple users were 
collected in a single task collector and sent towards to the load balancer, 
there it perform the Bi-LSTM technique by using Genetic Expression 
Programming (GEP) optimization algorithm and the collected schedules 
sent to Virtual Machines (VMs) and finally it balances the input loads in 
VMs, When the load was unbalanced, VM migration was done. Ac-
cording to the results, better prediction is provided by Bi-LSTM based 
modelling than by traditional LSTM based models because it is based on 
extra data training, provides better prediction than conventional LSTM 
based models. In load balancing, the proposed Bi-LSTM and GEP opti-
mization are performed, the Bi-LSTM is the optimized by GEP optimizer. 
The optimized cloud resources are goes to VMs which performs in cloud 
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based and there the VMs balances the tasks. The proposed method has 
been evaluated in terms of MVM, PLBVM, VMIS and the proposed Load 
Balancing of Virtual Machine (LBVM). The proposed method reduces the 
Migration Time of 49%, 41.7%, 17.8% than MVM, PLBVM, VMIS 
existing techniques. Because cloud computing offers virtualization, 
scalability, infinite computational resources, and the capacity to store 
massive volumes of both organized and unstructured data, it is perfect 
for deep learning. We intend to enhance this type of load balancing for 
buildings that have dependent activities in the future. 
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