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Abstract—Live migration of virtual machines (VMs) is a
technique that moves active VMs between different physical hosts
without losing any running states. Although it is desirable for
administrators that the live migration is completed as quickly
as possible, the pre-copy-based live migration, widely used in
modern hypervisors, does not satisfy this demand on the current
trend that VMs on which running applications are performance-
critical such as database management systems (DBMSes) have
quite large memory. DMigrate, presented in this paper, shortens
the time for live-migrating VMs with even large memory DBM-
Ses. To quickly produce the running state of the migrating VMs
on the destination, DMigrate performs regular memory transfers
while simultaneously constructing the DBMS’s buffer-pool by
fetching the data items from the shared storage. We prototyped
DMigrate on MySQL 5.7.30, QEMU 5.1.0, and Linux 4.18.20.
The experimental results show that the migration time of the
prototype is up to 1.71× and 1.71× shorter under workloads,
including sysbench and TPC-C, than the default pre-copy and
post-copy schemes, respectively.

Index Terms—Live migration, database management systems,
system virtualization, cloud computing.

I. INTRODUCTION

L IVE migration of virtual machines (VMs) is a technique
that moves active VMs between different physical hosts

without losing any running states. Within a local area network
(LAN), the main task of the live migration is to transfer VM
memory pages to the destination while the VM disks are as-
sumed to be stored in the shared storage. Live migration is help-
ful to intra-datacenter administrations including load balancing
[1], [2], power saving [3], [4], and effective software upgrades
[5], [6]. It is used in real-world data centers [7].

Although it is desirable for administrators that the live mi-
gration is completed as quickly as possible, the pre-copy-based
live migration [8], widely used in modern hypervisors [9], [10],
[11], does not satisfy this demand on the current trend that
VMs on which memory-intensive applications such as database
management systems (DBMSes) are running have quite large
memory. For example, Amazon RDS offers VMs whose mem-
ory sizes are up to 3904 GiB [12]. Pre-copy transfers updated
pages of a VM from the source to destination iteratively until
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the number of dirty pages is below a threshold, suspends the
VM, and then passes the control to the destination after sending
all dirty pages and CPU states such as register values. The
migration of such VMs requires a long time due to the large
number of memory page transfers. In addition, a larger VM
memory size makes each iteration longer and could result in
the VM spawning dirty pages that have to be transferred in the
next iteration.

To address this issue, numerous studies have been conducted.
However, it is still challenging to migrate a VM where a
DBMS is running. Existing solutions include post-copy-based
migration [13], [14], [15], application-level memory knowledge
[16], parallelizing live migration execution [17], OS-level mem-
ory knowledge [18], [19], memory compression/decompression
[20], [21], [22], [23], [24], memory deduplication [25], the
use of a high-speed network [26], cooperation of a software-
defined network [27], [28], and execution throttling [8], [29].
These approaches incur high resource costs and are difficult
to apply to live migration of DBMS-running VMs. Although
the application-assisted approach [16] enables to exploit DBMS
memory knowledge to skip transfers of selective VM memory,
like live migration without transfers of the OS buffer cache [18],
the benefit is limited; when we skip the DBMS’s buffer-pool
to reduce memory page transfers, the DBMS at the destination
causes buffer-pool misses, and thus its performance is poor until
the warming up of the buffer-pool completes.

DMigrate, presented in this paper, shortens the time for live-
migrating VMs with even large memory DBMSes. DMigrate
exploits the significantly improved speed of modern storage
devices and networks. To efficiently migrate such VMs, DMi-
grate constructs the VM memory image at the destination by
leveraging not only the source host but also shared storage;
the DBMS memory contains data objects reproducible from the
shared storage, namely the buffer-pool that is dominant in the
VM’s memory space. DMigrate efficiently produces the run-
ning state of the target VMs by performing the regular memory
transfers and the DB block fetches from the shared storage
in parallel.

This paper makes the following contributions:
• We propose DMigrate that performs live migration of

DBMS-running VMs in an efficient manner. DMigrate
has several unique characteristics. DMigrate shortens the
time for migrating VMs where large-memory DBMSes
are running. Also, DMigrate mitigates resource contention
with the co-located running VMs on the source during
the migration. It does not cause significant performance
degradation in the DBMS-running VMs during and after
the live migration (Sec. III).
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• We introduce software mechanisms for efficient live mi-
gration of DBMS-running VMs. The main challenge here
is how we bridge the semantic gap between the DBMS
and hypervisor. To address this issue, DMigrate uses
DBMS-Enlightenment where the hypervisor exploits the
full knowledge of the DBMS internals. DMigrate cooper-
ates with the DBMS and hypervisor to skip transfers of the
buffer-pool’s memory pages and build the buffer-pool by
fetching its DB blocks from its DB files. Also, DMigrate
dynamically controls the balance between memory trans-
fers and data block fetches to complete the live migration
as fast as possible (Sec. IV).

• We prototyped DMigrate on MySQL 5.7.30, QEMU 5.1.0,
and Linux 4.18.20. The experimental results show that
the migration time of the prototype is up to 1.71× and
1.71× shorter under workloads, including sysbench and
TPC-C, than the default pre-copy and post-copy schemes,
respectively. The results also show that the prototype is
helpful for three synthetic migration scenarios: VM evic-
tion, batch migration, and migration in congestion (Secs. V
and VI).

II. BACKGROUND

A. Live Migration

To move running VMs from their current host to another,
the live migration mechanisms transfer the running states of
the target VM to the destination host and start the VM whose
states are the same on the source host. The typical live migration
scheme, named pre-copy [8], sends memory pages repeatedly
and starts the VM after transferring CPU cores’ states. Pre-
copy consists of two phases: iteration and stop-and-copy. In
the iteration phase, pre-copy first sends all the memory pages
of the target VM and then repeatedly sends memory pages
that get dirty during the previous memory transfer. The phase
is moved to the stop-and-copy phase when the dirty pages
are under the threshold [30] or the memory transfer iterations
become upper-bound. In the stop-and-copy phase, the pre-copy
mechanism suspends the VM on the source and sends the re-
maining dirty pages and virtual CPU states. Finally, it starts
the VM at the destination and releases the VM resources on
the source.

The live migration facilitates VM replacements inside data-
centers without significant service downtime. The VM replace-
ments are adequate for effective administration in datacenters.
Live-migrating several VMs from an overloaded host mitigates
hotspots in datacenters. The live migration of VMs from un-
derutilized hosts to a single host to turn them off, namely
consolidation, reduces energy consumption. Also, all the VMs
on a host are live-migrated to other hosts for physical host main-
tenance and hypervisor updates. In doing so, administrators can
move the target VMs to appropriate hosts by performing one
operation instead of complicated tasks such as replicating the
target VM images and launching new VMs from the images.
Such an easy VM replacement significantly reduces the burden
on the administrators.

In this paper, we attempt to determine how to live-migrate
VMS with modern DBMSes quickly. The total migration time
depends mainly on the memory consumption of the target VM.
Although live migration is as short as possible since the ideal
VM placement is defined by the current situation, VMs with
DBMSes make the VM replacement quite difficult. Relational
DBMSes, such as MySQL and PostgreSQL, allocate a huge
amount of memory in their address spaces to enhance high
throughput and low latency by reducing storage accesses. For
example, Amazon RDS [12], a relational database service of-
fered by Amazon, serves a VM with 3904 GiB of memory. The
live migration of such a VM takes a long time and becomes a
hurdle to achieving the appropriate VM replacement.

B. Previous Approaches

Numerous studies for live migration schemes to overcome
the weak points of pre-copy have been conducted. The rep-
resentative scheme is post-copy [13]. Post-copy first executes
the stop-and-copy phase and then transfers the memory pages
from the source to the destination. Post-copy specifically sends
the virtual CPU states, starts the VM on the destination, and
transfers the memory pages from the source to the destination
while urgently sending the pages that the VM accesses but do
not exist at the destination. The total migration of post-copy
is much less than pre-copy, especially under write-intensive
workloads, since post-copy sends the VM memory pages once.
Due to its effectiveness, a hybrid scheme of pre- and post-copy
[31], and the improvement schemes of post-copy [14], [15] have
been studied. However, the memory transfer size is at least the
same as the VM memory size, and thus migration time becomes
longer as the VM’s memory size is bigger. In addition, post-
copy obtains its efficiency at the expense of the reliability of the
live migration; the migrating VM can be broken when network
failures occur during the post-copy migration since not-yet-
arrived pages at the destination cannot be fetched.

Several approaches aim at shortening the total migration
time. Compression-based live migration [21], [22], [23], [24],
[25] performs compression and decompression of VM’s mem-
ory pages at the source and destination, respectively. The ap-
proaches accelerate the memory transfer phases by reducing
the size of memory page transmission. The delta compression
schemes [21] transfer only the dirty parts of the updated pages,
instead of the whole pages. The schemes memorize the hot
page contents, calculate the differences when hot pages are dirty
during the previous iteration phase, and send the differences.
Similar to these, the deduplication, which deduplicates the same
contents in pages, is used in the live migration [22], [23], [24],
[25], [32]. Memory Buddies [33] detects the same content pages
of the VM on the destination and reuses them to skip their trans-
fers. These approaches cause high resource utilization on the
host, leading to the performance degradation of the co-existing
VMs on the source and destination, referred to as migration
noises [18].

PMigrate [17] parallelizes the live migration execution to
leverage the modern wide bandwidth of LAN interface cards.
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TABLE I
COMPARISON OF DMIGRATE AND OTHER STUDIES IN THE LIVE MIGRATION OF DBMS-RUNNING VMS

Migration Time Migration Noise Perf. Degradation of the Migrating VM

Pre-copy [8] Long Small Small
Post-copy [13], [14], [15], [31] Long Small Small
Compression-based [21], [22],

Long Large Small
[23], [24], [25]

Deduplication-based [22], [23], [24],
Long Large Small

[25], [32]
Delta-Compression [21] Long Large Small
Parallel Migration [17] Short Large Small

Java/OS-aware Migration [16], [18], [19] Long Small Small
vCPU throttling [29], [35], [36] Long Small Large

DMigrate Short Small Small

PMigrate leverages both data and pipeline parallelism to par-
allelize live migration. For example, VM page fetch and page
transfer are executed in a pipelined manner. This approach also
causes severe migration noises where its high utilization of the
CPU cores affects the performance of the co-located VMs.

Several approaches skip a part of memory transmission to
shorten the memory transfer phases by exploiting running soft-
ware knowledge. JAVMM [16] skips the young memory regions
of Java applications in the iteration phase and transfers their
pages in the stop-and-copy phase. In JAVMM, the Java run-
time actively notifies the memory addresses of young memory
regions of the hypervisor since the hypervisor does not know
which memory pages are used as the young memory region,
widely known as the semantic gap [34]. Jo et al. [19] and
SonicMigration [18] skips the transfers of the buffer cache in
the OS kernel since the buffer cache can be restored by fetching
the same blocks from the storage. Although these approaches
inspired our approach, they cannot shorten the live migration of
DBMS-running VMs. To do so, we need to overcome unique
design challenges, as described in the following sections.

A number of approaches control the dirty page rate of the
target VMs by throttling virtual CPU core speeds. XvMotion
[29] monitors the dirty page rate in each iteration and reduces
virtual CPU allocation to make the number of dirty pages
smaller than the page transfer sizes. Autoconverge, used in
QEMU [35], gradually slows virtual CPU core execution time
down to the threshold specified in advance. Le et al. [36] uses
virtual CPU throttling to efficiently live-migrate the VMs under
the limited network bandwidth. Although the live migration
using the CPU throttling technique shortens the total migration
time under write-heavy workloads, CPU throttling degrades
the performance of the applications running on target VMs.
Furthermore, the technique is not effective to large-memory
VMs whose dirty page rates are low.

DBMS-level live migration moves running DBMS instances
to another host [37], [38], [39], [40], [41]. These approaches
enables us to live-migrate the running DBMS from the current
VM to another. However, performing administration tasks is
potentially difficult since the IP address of the DBMS-running
VM changes before/after the migration. This involves the re-
configuration of applications using the DBMS. Our focus is on
the live migration of the DBMS-running VMs, which means the
DBMS’s IP address does not change.

C. System Model

DMigrate, designed to be used in intra datacenters, inherits
the same assumption of previous LAN-based live migration ap-
proaches. The source and destination hosts connect to a shared
storage whose contents can be accessed by both hosts. The
DBMS running inside a VM stores its DB files in the shared
storage so that the DBMS can access the files after migration.
The live migration traffics go through the backend network
connections that are different from the connections for traffics
from/to Internet users and other VMs.

III. DMIGRATE

This paper presents DMigrate, a live migration scheme for
VMs with large-memory DBMSes. Table I briefly compares
DMigrate with existing approaches from the viewpoint of the
live migration of DBMS-running VMs. DMigrate is driven by
the following design goals.

• Shortens the total time for migrating DBMS-running
VMs: DMigrate migrates VMs even with large-memory
DBMSes as quick as possible.

• Mitigates migration noises: Different from conventional
techniques to accelerate live migration such as paralleliza-
tion and memory compression, DMigrate avoids the high
consumption of computational resources on the source
and destination.

• Avoids degrading the performance of the target VMs:
Our approach migrates the target VMs without significant
performance degradation. DMigrate does not use resource
throttling techniques, unlike vCPU speed controls for ad-
justing dirty page rates.

• Applicable to the pre- and post-copy schemes: Both
schemes need to transfer all the memory pages of the
DBMS-running VM, whose total size is hundreds to thou-
sands of gigabytes, at once, requiring a long time. DMi-
grate is designed to be applicable to both the pre- and
post-copy schemes.

To satisfy the design goals, DMigrate exploits the knowledge
of DBMS memory management. An overview of DMigrate
is shown in Fig. 1. The key observation behind DMigrate is
that the memory space of the VM with a modern DBMS is
dominated by its buffer-pool that caches DB blocks in memory
to improve the throughput and latency. Unlike conventional
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Fig. 1. DMigrate overview.

live migration that utilizes the only resources of the source,
DMigrate performs the regular memory page transfers and
fetches data blocks from the shared storage to restore the buffer-
pool region on the destination in parallel. This is based on the
fact that modern storage servers are fast and reliable enough
for numerous accesses. In fact, Amazon EC2 UserGuide [42]
mentions that the network and random read performance of
Amazon EBS, whose storage is SSD-based, is up to 100 Gbps
and 8.18 gigabytes per second.

Our design of DMigrate is based on two observation. First,
the buffer-pool is typically dominant of the memory usage
in DBMS-running VMs. Amazon EC2 conservatively sets the
buffer-pool size of MySQL-running instances to 75% of VM
memory by default [12]. The DBMS can cache more data
items to enhance its performance as the buffer-pool is bigger.
Since each DBMS-running VM typically executes one DBMS
only in cloud environments, the bigger buffer-pool leads to
effective memory utilization. Second, the dirty memory rate
of DBMS workloads does not increase due to the storage ac-
cess involvement. Specifically, the dirty rates in our experi-
ments are 5.9 MB/s of read-only sysbench and 111.3 MB/s of
TPC-C, which are much lower than network bandwidth, i.e.,
10 Gbps (1,280 MB/s). Based on these facts, even in the pre-
copy migration, the memory page transfer before the iteration
phases is the main factor in the migration.

DMigrate’s buffer-pool construction is effective for the pre-
and post-copy schemes. DMigrate shortens all the iteration
phases in pre-copy since the storage fetch reduces the number of
memory pages to transfer from the source (Fig. 1(a)). The pre-
copy-based DMigrate delays the stop-and-copy phase until the
buffer-pool construction completes. The source does not need
to send all the buffer-pool memory pages as that is basically up
to the storage fetch mechanism. For post-copy, DMigrate also

reduces the memory transfer phase where the buffer-pool region
is constructed additionally by the storage fetch (Fig. 1(b)). We
note that the storage fetch does not construct all the buffer-pool
memory region. DMigrate forces the source to transfer its dirty
pages in pre-copy and accessed pages not yet fetched from the
storage in post-copy, as described in detail in Sec. IV.

DMigrate helps administrators perform the VM replace-
ment using live migration even for VMs with large-memory
DBMSes. The examples of usage scenarios for DMigrate are
as follows.

• Quickly mitigating hotspots: VM eviction that live-
migrates the target VM to another host is useful for load
balancing when overutilized VMs appear on the same host.
When the loads of the VMs become significantly high on
the same host as a DBMS-running VM, DMigrate quickly
releases physical resources for the overutilized VMs by
migrating the VM.

• Migrating all running VMs at once for maintenance:
Migrating all running VMs quickly is preferable for urgent
maintenance such as emergent hypervisor updates and par-
tial hardware failures [7]. DMigrate facilitates the urgent
live migration of DBMS-running VMs.

• Smooth live migration under congested migration
connections: Congested network connections for the live
migration affect memory page transfers to the destination.
Compared with the conventional live migration, DMigrate
smoothly migrates DBMS-running VMs since the network
traffic for building the buffer-pool mainly goes through the
storage connection.

Designing DMigrate poses technical challenges for the hy-
pervisor, where migration mechanisms run: 1) detect memory
pages for the buffer-pool to skip their transfers, 2) identify DB
blocks used for the buffer-pool and fetch them from storage
to restore the buffer-pool, and 3) balance memory transfers
between the source host and storage server. We describe our
solutions for these challenges in the next section.

IV. DESIGN DETAILS

DMigrate offers software mechanisms for the technical chal-
lenges. To skip the transfers of the buffer-pool’s memory pages
and fetch its DB blocks from storage, DMigrate uses the DBMS
enlightenment where the hypervisor is aware of the DBMS’s
memory and storage management. To maximize the use of
the source and storage hosts’ resources during live migration,
DMigrate uses the adaptive DB block transfer that builds
the buffer-pool region on the destination by not only fetching
the corresponding DB blocks from storage but also memory
transfers from the source host.

A. DBMS-Memory Enlightenment

To skip the transfers of the buffer-pool’s memory pages, the
hypervisor needs to identify them at the machine physical page
frame (mPFN) level. Migration mechanisms, running inside
the hypervisor, transfer memory pages of the target VMs to
the destination. The migration mechanisms can use only low-
level information such as machine page frame numbers and
their dirtiness. They lack the knowledge of applications and



384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 2, FEBRUARY 2024

Fig. 2. Buffer-pool enlightenment.

even OS’s memory management, widely known as a semantic
gap [34]; the hypervisor does not know which application- and
OS-level memory objects are in the memory pages. Due to this,
the migration mechanisms cannot identify which memory pages
are used as the buffer-pool, failing to skip the transfers of the
buffer-pool’s memory pages.

The DBMS-memory enlightenment, used in DMigrate, en-
ables the hypervisor to identify the memory pages of the
DBMS’s buffer-pool. The main idea of the DBMS-memory
enlightenment is that the DBMS actively informs the memory
page addresses of its buffer-pool to the underlying hypervisor.
Its overview is illustrated in Fig. 2. It orchestrates three software
layers; DBMS, OS kernel, and hypervisor. On triggering the
live migration execution, our mechanism inside the DBMS
tracks the buffer-pool and notifies the OS kernel’s virtual page
frame numbers (VFNs) via a system call. The OS kernel then
translates the VFNs to the guest physical page frame numbers
(gPFN), and sends them to the hypervisor via a hypercall. The
hypervisor converts the given gPFNs to mPFNs and avoids
sending the mPFNs’pages, which means transferring the buffer-
pool pages is skipped.

B. DBMS-Storage Enlightenment

In designing mechanisms for building the buffer-pool in the
migrating VM memory image, we also pay attention to the
DB block location in the shared storage. To restore the current
buffer-pool, the mechanism needs to identify the DB blocks
used in the buffer-pool and fetch them from the storage. Due to
the semantic gap described in the previous section, the hyper-
visor lacks the semantics of the DBMS’s storage management;
the hypervisor cannot know where the DB blocks are in storage-
level data blocks. Even if the migration mechanism knows the
IDs of the DB blocks in the buffer-pool by receiving their
metadata or glimpsing the VM’s memory with the DBMS-
memory enlightenment, it cannot fetch the target DB blocks
correctly since the mechanism does not know which data blocks
correspond to the IDs.

To fetch the buffer-pool’s DB blocks from the storage,
DMigrate enlightens the DBMS-storage management at the
hypervisor level. Like the DBMS-memory enlightenment, the
DBMS-storage enlightenment enables DMigrate to be aware of
the DB file’s semantics, including its formats, the data types
of DB blocks and their metadata, and fetch the target DB
blocks from storage. An overview of DMigrate’s buffer-pool

Fig. 3. Pages on buffer-pool and storage.

construction is illustrated in Fig. 3. DMigrate fetches the DB
blocks at the destination in accordance with the information
from the source and fits the DB block contents into the migrat-
ing VM memory image. When the migration is triggered, the
DMigrate’s mechanism at the source traces the buffer-pool’s
contents to memorize the DB blocks’ IDs and their virtual
addresses. The mechanism then sends the IDs and each block’s
gPFNs to one running at the destination and starts performing
the regular live migration without transferring the buffer-pool.
The destination mechanism fetches the DB blocks from storage
in accordance with their IDs, and fits their contents into the
corresponding gPFNs of the target VM memory region.

Regarding dirty memory pages in the buffer-pool, DMigrate
relies on the pre-copy scheme. During DMigrate’s live
migration, the buffer-pool contents can be modified by DB
update queries, and their pages become dirty. Since DBMSes
do not always write the newer contents back to the DB file,
our mechanism at the destination can use the older contents of
the DB blocks for the buffer-pool construction. To address this
issue, DMigrate uses the pre-copy scheme to send the dirty
buffer-pool memory pages from the source to the destination.
Although an alternative approach is to notify the DB block
updates of the mechanism and force it to fetch the updated
blocks, additional communication between the running DBMS
and the hypervisor’s migration mechanism is required, and the
total migration time can be longer since the mechanism needs
to wait for the write-back of the updated DB blocks. Similar to
this, DMigrate also relies on the default post-copy in creating
the buffer-pool’s pages that have not yet been fetched from
the storage. The pages are sent from the source and DMigrate
does not fetch the corresponding DB blocks.

To maximize the storage throughput, DMigrate fetches DB
blocks in a multi-threaded manner. The hardware resources
of modern storage-conscious instances, such as networks and
media, are typically designed to be high-powered to avoid per-
formance bottlenecks under high workloads. DMigrate’s mech-
anism at the destination spawns several threads to fetch the
target DB blocks in parallel after receiving DB block numbers in
the buffer-pool from the source. On the basis of our experience,
our prototype spawns three threads for the DB block fetches.

C. Adaptive DB Block Transfer

We also handle the balance in the buffer-pool construction
between the source’s memory transfers and the destination’s
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storage fetches. Our goal is to complete the live migration of
the DBMS-running VM as quick as possible. Thus, it is better
for the source’s memory transfer to support the buffer-pool
construction. We assume the buffer-pool construction is done
only by the destination’s storage fetch. In this case, the source’s
migration mechanism becomes idle after its transfer of the
other pages completes faster than the buffer-pool construction,
even if the source has the buffer-pool’s memory pages. This
happens frequently since the buffer-pool dominates the memory
consumption of DBMS-running VMs.

The adaptive DB block transfer of DMigrate constructs
the buffer-pool at the destination by using both the source’s
memory transfer and the destination’s storage fetch. DMigrate
enforces the source’s migration mechanism to send non-dirty
memory pages of the buffer-pool when the transfer of other
pages is complete and the storage fetches are still constructing
the buffer-pool. In the adaptive DB block transfer, the source
mechanism sends the pages of the DB blocks not yet fetched
from the storage. When the transfer of the memory pages except
for the buffer-pool’s ones completes, the source mechanism
checks whether the buffer-pool has been constructed. If not,
the destination sends a part of the unconstructed buffer-pool’s
memory addresses to the source so that it can transfer the pages.
This source’s buffer-pool transfer is repeated until the buffer-
pool construction completes. In accordance with our experi-
ence, the current prototype requests the source to transfer 20%
of the memory pages of the unconstructed buffer-pool region.

In summary, the processing workflow of DMigrate, whose
mechanisms run at the three layers: DBMS, OS kernel, and hy-
pervisor, is as follows. On the source, when DMigrate-based mi-
gration starts, the DBMS module exclusively tracks DB blocks
cached in the buffer-pool, memorizes their IDs and VFNs, and
passes the VFNs to the underlying kernel module to convert
them to gPFNs. We note that the DBMS module skips dirty
DB blocks for the consistency of DB files in storage and new
dirty DB blocks are sent to the destination during the pre-
copy. The DBMS module also sends the IDs and gPFNs to the
destination for the buffer-pool reconstruction. The hypervisor
module sets the dirty bitmap entries of the gPFNs passed from
the DBMS module to 0 to skip the page transfers, then starts
pre-copy or post-copy. On the destination, the hypervisor builds
the VM memory with the transferred pages. The hypervisor
module, running inside the QEMU process in the prototype,
fetches DB blocks and fits them into the VM memory according
to given IDs and gPFNs. For the adaptive DB block transfer,
the hypervisor module pulls from the source some buffer-pool
pages that have not been fetched yet.

V. IMPLEMENTATION

We prototyped DMigrate in MySQL 5.7.30, Linux 4.18.20,
and QEMU 5.1.0. The prototype orchestrates its software mech-
anisms on each software layer at the source and destination. Our
prototype does not use particular functionalities of MySQL and
QEMU-KVM; DMigrate can be implemented by integrating
its mechanisms into functionalities supported by typical DBM-
Ses and hypervisors. Although the implementation itself is not

portable since DMigrate leverages knowledge of the buffer-
pool management and migration processing, we believe that the
concept of DMigrate is applicable to other DBMSes and hyper-
visors. Note that DMigrate does not work well when the target
DBMS relies on the OS-level buffer cache rather than the buffer-
pool built in its user-space. DMigrate manages buffer-pool by
exploiting the semantics of the application-level memory layout
and thus cannot deal with DB blocks in the OS-level buffer
cache. DMigrate does not work effectively with such DBM-
Ses like PostgreSQL [43], whose buffer-pool parameter, effec-
tive_cache_size parameter is set to use the buffer cache. One
of DMigrate’s future directions is to handle DB blocks in the
buffer cache by controlling DB blocks at the OS-level.

The prototype’s mechanism running inside MySQL tracks
the buffer-pool region to extract the DB block identifier and
its memory addresses to fetch the DB Blocks from the DB file
and skip the buffer-pool transfer. InnoDB, a storage engine in
MySQL, packs accessed DB blocks into the buffer-pool in an
least recently used (LRU) manner. The buffer-pool is divided
into chunks, each of which is page-aligned 16 KiB. InnoDB
identifies DB blocks with their table numbers and offsets. The
DMigrate’s mechanism extracts the table number and offset of
buffer-pooled DB blocks by tracking its LRU list, and sends
them to the destination’s storage fetch mechanism. In doing
so, it also memorizes the VFNs at the chunk unit. Since the
chunk size is four regular pages, each of which is 4 KiB, one
memorized address covers four memory pages. In the current
implementation, our mechanism converts the VFNs to gPFNs
via a special system call and sends them to QEMU using its
character device.

When receiving the gPFNs of the buffer-pool, the migration
mechanism inside QEMU skips the transfer of the correspond-
ing memory pages. QEMU manages a dirty bitmap, where each
bit represents the status of a page, to check which memory pages
must be sent. QEMU tracks the dirty pages of the migrating VM
with the KVM and sets the bits corresponding to the dirty ones
to 1. QEMU initializes all bits in the initialized dirty bitmap
to 1 and sets them to 0 one by one after sending the pages. To
avoid sending the buffer-pool’s memory pages, our mechanism
sets the buffer-pool memory pages’ bits to 0 in accordance
with the gPFNs from MySQL. Our prototype relies on the
original migration mechanism to manage the dirtiness of the
buffer-pool’s memory pages. When a page in the buffer-pool is
updated, the QEMU’s original migration mechanism naturally
sends the page since its entry in the dirty bitmap is 1.

The destination mechanism fetches the DB blocks cached in
the buffer-pool and fits their contents into the corresponding
gPFN’s pages of the migrating VM. The migration mechanism
first receives the buffer-pool information from the source and
opens the MySQL’s DB file in the shared storage. In accordance
with the table numbers and offsets, the three threads spawned
by our mechanism first check whether DB blocks to read are
sent from the source. If not, the threads read the DB blocks
in parallel, and then copy the contents to their location in the
VM memory image. When the source mechanism requests to
transfer the buffer-pool pages, the destination one sends 20%
of the gPFNs of the buffer-pool that have yet to be constructed.
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Fig. 4. Migration time.

VI. EXPERIMENTS

A. Experimental Setup

To confirm the effectiveness of DMigrate, we conduct several
experiments with our prototype. We prepare three machines
that are connected to each other. Two machines are used as the
source and destination hosts and the other is a shared storage.
The source and destination machines, each of which has a 2.2
GHz 10-core Intel Xeon Silver 4210 CPU and DDR4 320GB
memory, are connected with 10G Ethernet. The storage ma-
chine has two 2.5 GHz 10-core Intel Xeon Gold 5215 CPUs,
DDR4 128GB memory, and is connected to the source and
destination machines with 10G Ethernet. We also prepare a
VM where MySQL and Linux is running. It has two vCPUs
and 8 to 128 GB of memory configured in the experiments.
We run Linux 4.18.20 on these machines. The objective of the
experiments is to determine the following: 1) how DMigrate
migrates the target VM, 2) how the optimization mechanisms,
multi-threaded fetching, and adaptive DB block transfer work,
and 3) how effective DMigrate is on migration scenarios.

We used the following workloads as benchmarks in the ex-
periments and measured their scores. The benchmarks were
executed three times and the average scores are reported. We
also use values measured in the first trial for the graphs. The
database size is set to 70% or more of the VM memory size.
The Sysbench and TPC-C benchmarks spawn two threads.

• Idle: No workload runs after the MySQL is warmed-up
by the Sysbench database.

• Sysro: The Sysbench read-only workload runs.
• Sysrw: The Sysbench workload whose read/write ratio is

7:3 runs.
• TPC-C: TPC-C workloads run.

B. Live Migration

To demonstrate how DMigrate migrates the target VM, we
migrate a VM with MySQL using DMigrate and QEMU-
supported migration schemes, including pre-copy, post-copy,
compression, delta-compression, and vCPU throttling, under
the workloads. QEMU’s compression-based migration, named
compress, compresses/decompresses the memory pages at the
source and destination in a multi-threaded manner while its
delta-compression, named xbzrle, extracts changes of the mem-
ory pages and transfers only the changes. The vCPU throttling,
named auto-converge, slows vCPU speeds down to the thresh-
old given in advance when the dirty page rate is higher than

the memory transfer rate. We configure the compress and auto-
converge as default and xbzrle’s compression buffer size to be
1 GiB. To compare these live migration schemes, we vary the
VM memory and MySQL’s buffer-pool size from 8 GiB and 5.8
GiB to 128 GiB and 111 GiB respectively, and measure total
migration time, resource consumption, and benchmark scores
using the live migration schemes.

1) Total Migration Time and Downtime: The total migration
times are shown in Fig. 4. These figures show that DMigrate
successfully shortens the migration times in all cases. DMi-
grate’s total migration times are short on all memory size cases
compared with the other live migration schemes. In average,
the times in the 8 GB cases are 1.50× and 1.66× shorter in
the pre-copy- and post-copy-based DMigrates while the times
in the 128 GB cases are 1.73× and 1.71× shorter than the
defaults. The three optimization techniques, compress, auto-
converge, and xbzrle, are not effective even if the memory
sizes are changed. Auto-converge and xbzrle take almost the
same migration times as pre-copy because the network connec-
tion for the live migration is faster than the dirty page rates
of all workloads. The total migration times in compress are
longest since the memory contents under our workloads are
different from each other, and thus we cannot benefit from the
compression. Its migration time is up to 10.7× longer than
DMigrate’s one.

Also, DMigrate achieves the shortest live migration times
for all workloads. In the pre-copy cases, DMigrate shortens
migration times by 1.51× and 1.67× in the 8GB Idle and TPC-
C cases, while the times are 1.73× and 1.71× shorter in the
128 GB cases, respectively. The improvement of DMigrate is
almost stable regardless of read-only and read-write workloads
due to their low dirty rate. Specifically, the times in the 128
GB cases are 1.80× and 1.65× shorter in Sysro and Sysrw, but
the effect of the reduction was diminished by the fact that the
data was written to memory. Compared with the pre-copy-based
version, the post-copy-based DMigrate takes a stable 1.66×
live migration time under all workloads because of no iterative
retransfers of the memory pages.

The downtimes in the stop-and-copy phases are shown in
Fig. 6. The figures reveal that the downtimes of DMigrate are
shortest in all live migration schemes; less than 500 ms since
the dirty page rate of the database workloads is low due to
the involvement of the storage accesses. From the viewpoint of
the downtime, DMigrate is more effective for pre-copy. Since
DMigrate reduces the source’s memory transfers by the storage
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Fig. 5. Migration traffics.

Fig. 6. Live migration downtime.

fetch, the number of transferred pages in its stop-and-copy
phase becomes small as well. DMigrate’s downtimes in the 8
GB cases are 6.93× and 0.93× shorter than the default pre-
copy and post-copy while the downtimes in the 128 GB cases
are 4.48× and 0.92× shorter. The downtimes of DMigrate in all
post-copy cases are less than 100 ms. Since the behavior of post-
copy’s stop-and-copy phase is the same between the default and
DMigrate, the downtime is similar to each other.

2) Resource Consumption: Network Traffics: We mea-
sured the two basic aspects of the migration noise, network traf-
fics, and CPU usage during the live migration. Fig. 5 shows total
network traffics during live-migrating the MySQL-running VM.
In pre-copy, the total number of DMigrate’s network messages,
which consists of source’s memory transfer and destination’s
storage fetch, is similar to the vanilla one in all cases. In the
8 GB and 128 GB cases, the number of DMigrate’s network
messages is at least 1.05× and 1.00× larger than the vanilla
pre-copy. Compress has the fewest network messages since its
compression successfully makes memory pages small. Com-
press in the TPC-C case has slightly more network messages
than those in the other workloads because the memory contents
under the TPC-C are more different and are hard to compress.
The post-copy-based DMigrate has a similar number of network
messages compare with the default since both of them transfer
the total memory size of the target VM.

CPU consumption: Figs. 7 to 13 illustrate QEMU’s CPU
utilization of the live migration schemes at the source and
destination. The results only show Sysrw in the 128 GB cases
due to limited space. The figures show that DMigrate restricts
the excessive CPU core consumption. The CPU usage during
migration on the source in DMigrate is 1.8% higher than that of
the default pre-copy (Figs. 7 and 8). This comes from MySQL’s
mechanism, including buffer-pool tracking, its address trans-
lation, and interaction with QEMU. On the other hand, the

Fig. 7. CPU usage (pre-copy, 128GB, Sysrw).

Fig. 8. CPU usage (DMigrate(pre-copy), 128GB, Sysrw).

DMigrate’s CPU usage on the destination is 21.1% higher than
the default one. This is caused by the storage fetch. The same
situation happens in the post-copy case (Figs. 12 and 13).
Compress significantly consumes CPU cores at the source and
destination due to page compression and decompression. Its
CPU utilization is 51.7% and 12.4% higher than the default,
and the total CPU consumption is the largest in all schemes.
The CPU utilization of auto-converge and xbzrle is similar to
that of the default pre-copy.

3) Application Throughput: The benchmark scores of
Sysro, Sysrw, and TPC-C during the live migration are shown
in Figs. 14, 15, and 16, respectively. We can see that DMigrate
does not cause signification performance degradation of the run-
ning MySQL in all benchmarks. The benchmark scores of the
pre-copy-based DMigrate are almost similar in all benchmarks
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Fig. 9. CPU usage (auto-converge, 128GB, Sysrw).

Fig. 10. CPU usage (compress, 128GB, Sysrw).

Fig. 11. CPU usage (Xbzrle, 128GB, Sysrw).

Fig. 12. CPU usage (post-copy, 128GB, Sysrw).

Fig. 13. CPU usage (DMigrate(post-copy), 128GB, Sysrw).

to those of the default. The slight performance degradation of
DMigrate at the migration start point comes from the transfer
of the buffer-pool information for the storage fetch. Compress’s
scores are the lowest during the live migration due to CPU con-
tention between MySQL and multi-threaded compression. In
post-copy, DMigrate is worse in the two Sysbench-based work-
loads than the default. This is because the workload accesses
the buffer-pool contents sequentially and QEMU’s optimization
that sends neighbor memory pages around the transferred page
works effectively. In the TPC-C case, DMigrate outperforms the

Fig. 14. Benchmark score transition during live migration. (Sysro)

Fig. 15. Benchmark score transition during live migration. (Sysrw)

Fig. 16. Benchmark score transition during live migration. (TPC-C)

Fig. 17. Migration time under read/write workloads.

default since the DMigrated VM can achieve full performance
more quickly than the default.

C. Behavior Analysis

To take a closer look at the effectiveness of DMigrate, we
prepare a MySQL-running VM with the 64 GB configuration
and run sysbench whose read/write transaction ratio is changed
to 3:7, 5:5, and 7:3. The VM is migrated using the default and
pre-copy-based DMigrate. We also compare the behaviors with
those under sysrw and TPC-C.

The result shown in Fig. 17 reveals that the migration time of
DMigrate is shorter than that of pre-copy on all of the bench-
marks. The pre-copy-based DMigrate builds the VM image on
the destination using both the source (page transfer) and shared
storage (buffer-pool reconstruction). The result also shows that
the migration times of both migration schemes are similar
among different ratio sysbenches. This is because the dirty
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Fig. 18. Network utilization under read/write (5:5) workload.

Fig. 19. Migration time (with and without optimization, pre-copy).

Fig. 20. Migration time (with and without optimization, post-copy).

rates of sysbenches are not dramatically different; the transac-
tions involve slow storage accesses, and thus, the benchmarks’
dirty rates are not high (up to 111.3 MB/s) enough to affect
live migration behavior. Fig. 18 shows the network utilization
of both migrations under 5:5 sysbench. The default pre-copy
iterates three memory page transfers that fully utilize network
bandwidth. On the other hand, the pre-copy-based DMigrate
first transfers memory pages without non-dirty DB block pages
to the destination while fetching the buffer-pool pages from
the shared storage. And then, the source mechanism sends
the dirty pages. At the same time, the destination mechanism
keeps fetching the buffer-pool pages and pulls them from the
source using the adaptive DB block transfer. These behaviors
are similar among the benchmarks.

D. Effectiveness of Optimizations

To show the effectiveness of our two optimizations, the
multi-threaded storage fetch and adaptive DB block transfer,
we compare the total migration time and benchmark scores of
DMigrate with and without these optimizations. We set one
and three threads for the storage fetch, and we measure the
total migration times of DMigrate with and without the adaptive
DB block transfer (ADT) by varying the network bandwidth.
We throttle the network bandwidth of the destination to the
source and storage using Linux’s token bucket filter. We set
the connections’ throughput to be 10 to 5 Gbps. In doing so,
we also measure the benchmark scores in each configuration.

Fig. 21. Migration time (pre-copy schemes under network throttling).

Fig. 22. Migration time (post-copy schemes under network throttling).

The total migration times are shown in Figs. 19 and 20 without
network throttling. The figures reveal that our optimizations for
DMigrate contribute to shortening the total migration times.
In pre-copy, the parallel storage fetch outperforms the sequen-
tial one while the migration time with the adaptive DB block
transfer is shorter than that without in all cases (Fig. 19). The
migration times with the parallel storage fetch and adaptive DB
block transfer are up to 1.21× and 1.60× slower than without
them, respectively. The all-off DMigrate is the worst because
almost all buffer-pool memory regions are constructed by the
sequential storage fetch while the memory transfer of the source
completes and is idle. Both optimizations are orthogonal, and
thus the migration times of the full-fledged DMigrate are the
shortest in all configurations in all cases. Specifically, the full-
fledged DMigrate’s migration times are 1.71× shorter on aver-
age than those of the default. Also, the full-fledged DMigrate
in post-copy achieves the shortest migration times in all cases
(Fig. 20). This is because the source in the post-copy-based
DMigrate does not become idle compared with the pre-copy-
based one. The post-copy-based DMigrate inherently fetches
the buffer-pool’s pages from the source when they have yet to
be fetched from the storage.

Figs. 21 and 22 show the total migration times under net-
work throttling. From the figures, we can see that DMigrate
outperforms the default pre-copy and post-copy even under
network congestion in the source and storage connections. In
pre-copy, the total migration times of DMigrate are up to 2.65×
and 1.30× shorter than the default in the source and storage
network congestion, respectively. On the other hand, the post-
copy-based DMigrate takes up to 2.52× and 1.39× shorter mi-
gration times than the default. The adaptive DB block transfer
constructs the buffer-pool memory region by controlling data
transfers of the source and storage in accordance with network
congestion. Both default schemes are severely degraded under
congestion in the source to destination connection since it is
the only migration connection for the VM’s memory image
construction, unlike DMigrate, which uses connections of the
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Fig. 23. Benchmark score transition (VM eviction).

source and storage hosts. DMigrate’s improvements are there-
fore relatively better as the memory size is bigger.

E. Migration Scenarios

To demonstrate the effectiveness of DMigrate under migra-
tion scenarios, we use it on the following three typical migration
scenarios: evicting a DBMS-running VM collocated with an
over-utilized VM (VM Eviction), parallelly migrating DBMS-
running VMs for physical machine faults (Batch Migration),
and migrating a DBMS-running VM with congestion in the
migration connection (Migration in congestion). We artificially
generate the three situations. We compare the default pre-copy
and pre-copy-based DMigrate in the experiment since the pre-
copy scheme is widely accepted in practice.

VM Eviction: One of the typical scenarios for live migration
is to balance the loads of the physical host. Live migration
specifically allocates more resources to an over-utilized VM by
evicting other VMs. DMigrate can contribute to quickly create
free resources by migrating DBMS-running VMs and thus lead-
ing to the swift mitigation of the hotspots. To show DMigrate’s
effectiveness on such a scenario, we prepare a DBMS-running
VM and a CPU load benchmark-running VM. After a specific
amount of time, we increase the intensity of CPU load on one
VM to saturate the underlying CPU cores, and then migrate the
other VM using the default pre-copy and DMigrate. In so doing,
we measure the benchmark scores and migration time.

Fig. 23 shows the result. The x- and y-axes represent the
elapsed time and benchmark score, respectively. The result
shows that DMigrate mitigates over-utilization more quickly
than the default pre-copy. The benchmark scores of the two
VMs get low when the benchmark intensity is increased due to
CPU contention. The performance degradation during the live
migration is almost the same between DMigrate and the default
pre-copy. The score of DMigrate becomes high more quickly
than that of the default because of DMigrate’s faster completion.
Specifically, DMigrate’s migration time is 66.9 sec. while the
default’s one is 115.2 sec.

Batch Migration: It is better to migrate all running VMs
as soon as possible when the host faces partial hardware fail-
ures or emerging hypervisor updates are needed. To show that
DMigrate effectively migrates multiple DBMS-running VMs,
we migrate four MySQL-running VMs with the pre-copy-based
DMigrate and the pre-copy scheme. We migrate the VMs at
once, running Sysbench-RO, -RW, and TPC-C as the workloads
and total the migration times.

The total migration times are shown in Fig. 24. These figures
show that DMigrate successfully shortens total migration times

Fig. 24. Migration time (batch migration).

in all cases. DMigrate’s migration times are 1.84× shorter on
average than the default. Fig. 25 shows the result. The x- and
y-axes represent the elapsed time and benchmark score, respec-
tively. DMigrate’s total benchmark scores are 1.01× higher than
the default since its migration times are short, and thus the
intervals of migration noise are also short.

Migration in congestion: Network connections for live mi-
gration are sometimes congested due to the traffics of migrating
multiple VMs and client traffics if the connections are shared
with them. To confirm the effectiveness of DMigrate under
network congestion, we intentionally cause congestion in the
migration connection by using iPerf [44]. Specifically, we run
an iPerf instance that generates 3-Gbps traffic in the migration
connection, and perform a MySQL-running VM using the pre-
copy-based DMigrate and the default pre-copy. We run the
four benchmarks on the VM. In so doing, we measure the
network activities in the migration connections and the total
migration times.

Fig. 26 shows the network traffics. The x- and y-axes rep-
resent the elapsed time and amount of network traffics, re-
spectively. The result reveals that the total migration times of
DMigrate are shorter than those of the default by effectively
utilizing both migration and storage connections. Theoretically,
the default pre-copy is 2.4× slower than DMigrate in the net-
work congestion since the migration connection is the only
one to transfer memory pages for the VM construction at the
destination. The total migration times are shown in Fig. 27.
Specifically, the default pre-copy with iPerf is 1.51× slower
than without iPerf. On the other hand, DMigrate additionally
uses the storage connection to fetch the DB blocks in the buffer-
pool region, and thus its total migration times are up to 2.18×
shorter than the default.

VII. DISCUSSIONS AND LIMITATIONS

Live migration of VMs with a huge amount of memory
is challenging in modern cloud platforms where such VMs
are common. DMigrate achieves the quick live migration of
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Fig. 25. Benchmark score transition during live migration (batch migration).

Fig. 26. Changes in data traffic amount (128GB).

Fig. 27. Migration time (migration in congestion).

DBMS-running VMs. It has several discussions and limitations
to be addressed in future work.

Exploiting application-specific knowledge is effective:
Modern in-memory applications such as in-memory key-value
stores (KVSes) and in-memory processing frameworks allocate
a large amount of memory at their address spaces. Like
DMigrate, enlightening in-memory applications’ memory
management at the hypervisor is a helpful approach to
quickly live-migrating the VMs. For example, in migrating an
in-memory KVS-running VM, we can reduce memory page
transfers from the source by only sending hot items or restoring
KV regions using other replica. In migrating a VM where
tasks for in-memory processing framework are running, we
can construct the VM at the destination using intermediate
on-storage data for recovery like the Resilient Distributed
Datasets [45] in Spark. Exploring these mechanisms is an
interesting research topic.

An extension is needed to use DMigrate in non-shared
storage environments: An assumption of the current DMi-
grate, similar to other live migration schemes designed for
intra datacenters, is that the source and destination share the
storage and can access the DB files on it. This assumption is
not acceptable for live migration in inter datacenters where the
target VM is moved over WAN. We believe that the idea of
DMigrate using DB blocks of a buffer-pool in the storage for
the VM construction is applicable to live migration on such
non-shared storage environments. Live migration mechanisms
for such environments typically transfer the storage contents.

At this point, storing DB blocks in the buffer-pool on not only
the storage but also memory at the destination can reduce total
migration time since we can construct the buffer-pool in the
migrating VM memory image independently of memory page
transfer, similar to the current DMigrate.

DBMS read-replicas are an alternative source for build-
ing buffer-pools: DMigrate could quickly construct the buffer-
pool region on the destination by using not only the original
DB files but also the target DBMS’s read-replicas. Amazon
RDS supports quick read-replica generation for load balance.
The buffer-pools of the read-replicas are attractive for DMigrate
since they can contain data items for the buffer-pool of the
migrating DBMS and the accesses to them are faster than the
DB files due to modern high bandwidth networks. Integrating
into DMigrate a mechanism that fetching these data items from
the replicas for the buffer-pool construction can contribute to
accelerate DMigrate-based migration.

Memory page alignments of the DB block chunks are
preferable: The live migration handles memory events like
the dirtiness detection in a memory page unit and transfers
the VM’s memory at the page granularity. If the buffer-pool’s
chunks are smaller than the memory page size and are scattered
over the memory region, DMigrate fails to skip its memory
transfers. The current prototype can cancel the transfer of the
buffer-pool region since MySQL’s chunks, each of which is 16
KiB, are basically page aligned and the buffer-pool consists of
them. Modern DBMSes such as PostgreSQL and memcached
manage data items in the page aligned chunks in memory. To
apply DMigrate to a DBMS whose buffer-pool is not page
aligned, we need to modify its structure to gather the data item
caches into memory pages.

VIII. CONCLUSION

The live migration of DBMS-running VMs is non-trivial
due to their tremendously large memory footprint, disturbing
live migration-based administration in datacenters. This paper
presented DMigrate that shortens the time for migrating
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DBMS-running VMs. To produce the running state of the
migrating VMs on the destination, DMigrate performs reg-
ular memory transfers while simultaneously constructing the
DBMS’s buffer-pool by fetching the data items from the shared
storage. We prototyped DMigrate and conducted several ex-
periments. The experimental results show that our prototype
successfully shortens migration times of the pre-copy and post-
copy schemes, and the prototype is effective under our synthetic
migration scenarios, namely, VM eviction, batch migration, and
migration in congestion.
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