
Received 10 April 2024, accepted 10 May 2024, date of publication 24 May 2024, date of current version 3 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404949

Interdependency Attack-Aware Secure and
Performant Virtual Machine Allocation
Policies With Low Attack Efficiency
and Coverage
BERNARD OUSMANE SANE 1,2, (Member, IEEE), MANDICOU BA 1,3, DOUDOU FALL2,
YUZO TAENAKA2, (Member, IEEE), IBRAHIMA NIANG1,
AND YOUKI KADOBAYASHI2, (Member, IEEE)
1Laboratoire d’Informatique de Dakar (LID), Faculty of Science and Technology, University Cheikh Anta Diop of Dakar, Dakar 630-0101, Senegal
2Laboratory for Cyber Resilience, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
3Ecole Supèrieure Polytechnique, Faculty of Science and Technology, University Cheikh Anta Diop of Dakar, Dakar 630-0101, Senegal

Corresponding author: Bernard Ousmane Sane (bernardousmane.sane@ucad.edu.sn)

This work was supported in part by Industrial Cyber Security Center of Excellence (ICSCoE) Core Human Resources Development
Program, and in part by Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP24K03045.

ABSTRACT Cloud computing has completely changed IT (information technology) by providing IT
resources as services on the internet. However, certain types of attacks, such as interdependency attacks,
impede its wide adoption. With the latter, an attacker who succeeds in compromising the VM of a user can
traverse the hypervisor to launch an attack on the VM(s) of other users on the same hypervisor. Unfortunately,
we note a lack of secure and performant allocation policies against this problem. Existing policies focus
on security but ignore other factors, including workload balance and energy consumption, which are vital
for commercial cloud platforms. In this context, we propose different allocation policies for choosing
the datacenter server to which we allocate a new virtual machine. These policies aim to minimize the
interdependence of different users’ VMs while keeping the system performant regarding workload balance
and/or power consumption. By default, our allocation policies treat all legitimate users as attackers and host
their virtual machines according to their efficiency and coverage. We first design a secure and balanced
solution that increases workload balance to prevent the servers from being overused. Afterward, we propose
an algorithm that addresses security, power consumption, and workload balance objectives simultaneously.
Based on our simulation results, our solutions perform better than existing algorithms regarding security,
workload balance, and power consumption. The balanced solution reduces the chance of an attacker to zero
and increases workload balance linearly. In other words, the workload balance is between [5, 35], and it
utilizes slightly more hosts than existing proposals, with gains between [2, 8]. Although our final proposal
is less secure than previous algorithms, it performs better, so it has a good workload balance ([5, 30]) and
consumes less energy.

INDEX TERMS Virtual machine allocation, interdependency attack, security, workload balance, power
consumption, hypervisor.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

I. INTRODUCTION
Cloud computing is one of the most remarkable advances in
IT in the last two decades. It offers resource consumption
on demand, a flexible environment, and easy to use. These
facilities make it widely adopted by the customers. However,
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in cloud computing, the hypervisor allows multiple virtual
machines (VMs) of different users to run simultaneously on
the same physical server. Ideally, each of these users’ virtual
machines should operate in isolation to maintain optimal
security conditions. Unfortunately, perfect logical isolation
has not been achieved in practice, leaving attackers with
the possibility of launching attacks such as interdependency
attacks, etc. [1], [2], [3], [4], [5], [6], [7]. With the inter-
dependency attack, a malicious user who has compromised
the VM(s) of a user i can traverse the hypervisor to launch
an attack on the VMs of another user j ̸= i on the same
hypervisor.

Hence, to tackle this issue, most of the proposals tried
to satisfy security and/or performance constraints by using
optimization methods such as heuristic algorithms [8],
[9], [10], game theory approaches [3], [11], [12], [13],
the multi-objectives optimization [14], [15], [16] since the
problem is NP-hard [14]. However, we note the absence
of a secure and performant virtual machine allocation
technique against the interdependency problem. For instance,
in [16], the authors proposed a secure solution against
the interdependency attack that minimizes both attacker’s
efficiency and coverage, which respectively represent the
probability of success of the attacker and the probability that
the virtual machine of a legitimate user will be compromised.
Nevertheless, this solution overlooked essential performance
constraints related to minimizing power consumption and
maximizing workload balance in the datacenter. These two
performance constraints are very important for commercial
cloud platforms. The first one motivates a provider to
allocate a lot of VMs to fewer servers to reduce the cost
of energy consumption and the emission of carbon dioxide
(CO2). Significant energy consumption leads to high energy
costs among providers. On the other hand, maximizing the
workload balance spreads users’ virtual machines among
the servers to prevent the hosts from being over-utilized.
To accommodate these two performance constraints essential
for commercial cloud platforms, we propose extending [16].
We address the interdependency problem and the interdepen-
dency attack interchangeably throughout the paper. We also
refer to the performance by workload balance and power
consumption.

This paper extends our previous work [16]. We first give
a complete overview of existing secure virtual machine
allocation techniques. Then, we present three algorithms
that determine the data center host to which we allocate
a new VM to minimize the interdependency of different
users’ VMs while optimizing the power consumption and
workload balance. By default, our allocation policies consider
all legitimate users as attackers and then proceed to host the
users’ virtual machines to the server where their efficiency
and/or coverage are the smallest. Our simulation results show
that our allocation policies perform better than the existing
works.
Contributions: This paper presents two novel allocation

policies: SALAEC-B and SPALAEC, which advance secure

virtual machine allocation in cloud environments. With these
algorithms, the interdependency attacks, an underexplored
vulnerability in virtual machine allocation, are addressed
by modeling attacker behavior and optimizing resource
allocation based on a game-theoretic approach. Indeed, in our
previous work [16], we proposed a secure solution against
the interdependency attack that minimizes both attacker’s
efficiency and coverage. However, this solution [16] ignored
the performance constraints relative to the minimization of
the power consumption and themaximization of theworkload
balance in the data center. Regarding these two distinct points,
we need to design performant algorithms to increase the
attacker’s difficulties. Our main contributions are:
• A secure and balanced algorithm, called
SALAEC-Balanced (SALAEC-B) which is an extension
of our algorithm SALAEC [16]. It is a virtual
machine allocation policy that minimizes the possibility
of attackers who use a weak/vulnerable VM as a
jumping-off point to attack other VMs within the
same hypervisor management area. Moreover, to avoid
violating the workload balance constraints, SALAEC-B
does not allocate additional VMs to a particular host,
even if the latter can still host more hosts. This favors
the use of several servers, thus resulting in the dispersion
of the virtual machines to prevent the servers from
being overloaded. Hence, SALAEC-B is a solution
that prevents the servers from being overused while
maintaining security.

• We propose an algorithm that simultaneously tackles
the security and performance constraints. Hence, this
algorithm, named secure and performant allocation for
low attacker’s efficiency and coverage (SPALAEC), is an
improvement of SALAEC-Balanced. It decreases power
consumption by using the least hosts without having an
important negative impact on the workload balance and
security. In SPALAEC, the failure of the host does not
have an impact on all the users’ VMs, unlike in existing
works [14], [15]. It also prevents virtual machines that
belong to the same user from launching interdependency
attacks on each other.

Our simulation results show that by switching from the
secure policy (SALAEC) to the secure and balanced policy
(SALAEC-B), we kept the same level of security, unlike
the solution in [14]. Besides, SALAEC-B performs better
regarding the workload balance compared to a similar
algorithm in [14]. Moreover, SPALAEC has a high workload
balance performance while being secure. It also uses less
energy compared to SALAEC-B and the solution in [14]. This
work is compared with previous ones in Table 1.
The manuscript is organized as follows: A complete

overview of existing secure virtual machine allocation
techniques is presented in Section II. Then, we describe
some fundamental concepts before defining the studied
problem and the requirements in Section III. We present three
algorithms for virtual machine allocation policies against the
interdependency problem that optimize the constraints related
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TABLE 1. Comparative Analysis of VM allocation Policies. High and Low criteria refer to good security performance and optimum power consumption,
respectively.

to security, power consumption, and workload balance in
Section IV.We analyze our proposals in sectionV. SectionVI
discusses our proposals and their limitations. We conclude
this paper with a conclusion in section VII.

II. RELATED WORK
The papers [8], [10], [17], [18], [19] used different virtual
machine allocation techniques to satisfy performance con-
straints such as load-balancing and/or energy consumption.

The energy consumption at the data center level is very
important. In [10], the authors focused on live migration
while keeping the high quality of service to reduce energy
consumption. They proposed an algorithm based on the
history of the data used by the virtual machines. They split the
dynamic consolidation problem into four sub-problems and
improved a deterministic heuristic algorithm using historical
VMs’ data.

The work in [20], concerning security and privacy in the
interconnection between autonomous devices, gave us an idea
about the interdependency in cloud computing. Replacing
the network nodes with the cloud’s virtual machines proves
this connection between virtual machines. In [3], the authors
defined the interdependency between cloud users sharing
the same hypervisor as an indirect attack. Hence, when an
attacker wants to compromise the user i, he first compromises
a vulnerable customer, then he proceeds to the hypervisor.
Unfortunately, when the hypervisor is compromised, all
users’ virtual machines connected to it will be vulnerable.
Additionally, if the attacker can launch the interdependency
attack, then it can also try to measure the utilization of
CPU caches in the server [5], [6]. However, to launch
an interdependency attack, the attacker must first be a
co-resident of the vulnerable customer. That means that the
co-resident attacks solutions [4], [14], [15], [21], [22] allow
to avoid the interdependency problem. Hence, Han et al. [15]
proposed a secure VM management named the previous
selected server first (PSSF). Where given a VM from a
user, a server will be selected randomly, based on the
LEAST algorithm or based on the MOST algorithm when the
user does not yet have a VM in the datacenter. Otherwise,
the server that already hosts a VM from the user will
be selected. This solution ensured the security of users in
the cloud by increasing the attacker’s difficulties. However,
in PSSF, a user could lose all her virtual machines when a
server fails, and PSSF is not performant regarding workload
balance. In [14], Han et al. extended their previous work

in [15] to define a more secure and performant virtual
machine allocation policy. In [16], the authors focused on
the interdependency attack in co-resident environments and
proposed a secure VM management that decreases as much
as possible the attacker’s efficiency and coverage.

Based on the interconnection between cloud users, other
approaches use game theory methods for secure virtual
machine allocation [3], [11], [12], [13]. In [3] and [11],
the authors proposed a game model in the public cloud for
studying the interdependency problem. Hence, they proved
that the interdependency problem is a real problem in cloud
computing. The lack of investment in the security of one
user can harm other users on the same hypervisor [3].
They also defined theoretic virtual machine management
based on the user’s investment in security [11]. In [12],
Han et al. evaluated the co-resident attack in public cloud
computing. They introduced a secure game model to mitigate
the users’ risks. They also showed that the best way for the
cloud provider to secure cloud users is to use pool policies
and, given a virtual machine, select one of them randomly.
An evaluation of the attacker’s difficulty in achieving the
interdependency problem is proposed in [13]. The authors
analyzed the attacker’s efficiency under four basic virtual
machine allocation policies. Moreover, they showed that the
Round Robin virtual machine allocation policy is unsuitable
for the interdependency problem.

However, currently, there is no secure and performant
virtual machine allocation solution against the interde-
pendency attack. In [16], the authors tried to minimize
the attacker’s efficiency and coverage, but they did not
focus on performance factors in the datacenter such as
workload and power consumption. Thus, our main research
question is: ‘‘How to improve [16] to attain secure virtual
machine management against the interdependency problem
while increasing the workload and decreasing the power
consumption?’’

A. A BRIEF OVERVIEW OF THE PROBLEM OF
INTERDEPENDENCE
According to [20], security and privacy are explored in the
interconnection of autonomous devices. Based on the results
of this work, we can conclude that the interdependency in
cloud computing is strongly influenced by its structure by
replacing the network nodes with virtual machines. Our study
focuses on the interdependency between cloud users who
share the same hypervisor. Our previous paper [16] defined
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it as follows: To compromise user i, the attacker must first
place his virtual machine on the same server as his potential
target, named user i. Then he goes through a vulnerable user
named user j, who is another client on the same server and
is easy to compromise(has a big potential loss). Afterward,
he uses the latter, i.e., user j, to proliferate his attack on the
hypervisor. As we know, if the hypervisor is compromised, all
the virtual machines connected to it will be compromised [3].
Thus, through the vulnerable user (user j), the attacker has
control over all virtual machines on the same hypervisor.
Therefore, if there is a large difference in potential loss
between users, then one user’s security can impact another
user, resulting in an interdependency problem [3]. To initiate
an interdependency attack, the attacker can use a brute force
strategy: start as many virtual machines as possible until he
secures a good target (a user with whom the difference of loss
is high). Referring to [3], interdependency strongly connects
to side-channel attacks. Hence, if the attacker can launch the
interdependency attack, then it can also attempt to measure
the CPU cache utilization in the server [5], [6].

III. PROBLEM FORMULATION AND REQUIREMENTS
In this section, we first describe some fundamental concepts
before defining the studied problem and the requirements
for having secure and performant VM allocation policies
against the interdependency problem. However, the scope
of our previous paper [16] is extended beyond security to
include performance considerations, resulting in criteria (7),
(8), and (9). In this expansion, we offer metrics for assessing
our solutions’ performance.

A. NOTATIONS AND DEFINITIONS
Prior research has shown [3], [11] that disparities in potential
loss among clients hosted on a single server facilitate
interdependence attacks. Through mathematical evaluation,
the factors outlined here aremeant to assess attackers’ success
and legitimate users’ vulnerabilities. For instance, using the
equation 2 below, we can find the attacker’s VMs that share
the same hypervisor as the legitimate user.

We adopt the notations and definitions as in [15] and as in
our previous papers [13], [16].

• Given a set of VMs and a set of servers, we define γ as
how the virtual machines are distributed in the servers.

• D: set of possible distributions.
• Ai andUi designate respectively attacker i and legitimate
user i.

• VM (Xγ
i , δ): a set of virtual machines under the distri-

bution γ launched by the entity (attacker or legitimate
user) Xi at time δ.

• PL(vm): potential loss of the virtual machine vm.
We define it as the amount of loss a user could suffer
if one of his virtual machines were compromised. For
example, companies managing sensitive data, such as
banks, ministers of defense, health centers, etc., can be
considered as having a high potential loss.

• Target(Aγ
i ): a set of virtual machines under the distribu-

tion γ started by a user Ui and targeted by the attacker.
• PtVM (Uγ

i , δ): user Ui’s virtual machines under the
distribution γ whose potential loss difference(s) with at
least one virtual machine of an attacker Ai is quite high.

• PtVM (Aγ
i , δ): attacker Ai’s virtual machines under the

distribution γ whose potential loss difference(s) with at
least one virtual machine of a user Ui is quite high.

• Hyp(vm): hypervisor where the virtual machine vm is
hosted.

• IdepVM (Aγ
i , δ): a subset of VM (Aγ

i , δ) that contains all
the virtual machines that can launch the interdependency
attack.

• IdepVM (Uγ
i , δ): a subset of VM (Uγ

i , δ) that contains
all the virtual machines that are susceptible to be
compromised by the interdependency attack.

• Most secure host: a host where the attacker’s efficiency
and coverage are equal to zero.

• Semi-secure host: a host where the attacker’s efficiency
and coverage are equal to 0.2 and 0.15, respectively.

We confirm that IdepVM (Aγ
i , δ) and IdepVM (Uγ

i , δ) are
different. Indeed, we consider any user a potential attacker,
but when he is launching a VM, This precision is important.
In other words, at the instant δ, when a useri starts a virtual
machine, he is considered an attacker. At the time δ + 1,
we assume its VMs are already allocated. This means these
VMs will be protected at time δ+1. In other words, the userj
who will launch his VM at time δ + 1 should not be able
to attack the VMs of useri (Ui). These useri ‘s VMs which
must be protected are estimated with IdepVM (Uγ

i , δ) instead
IdepVM (Aγ

i , δ) (where Ai = Uj) which estimates among the
userj’s VMs launched at time δ+1, the one which can launch
an interdependence attack.

1) SECURITY FACTORS
While the VMs distribution is γ , we have the attacker’s
efficiency and coverage defined as follows [12], [15],
and [16]:
• Efficiency (E): the probability of success of the attack
when the time and the number of virtual machines
started by the attacker decrease or increase.

E(VM (Aγ
i , δ)) =

#IdepVM (Aγ
i , δ)

#VM (Aγ
i , δ)

(1)

where:

IdepVM (Aγ
i , δ) = {vm/vm ∈ PtVM (Aγ

i , δ),

Hyp(vm) ⊂ {Hyp(vm′), vm′ ∈ Target(Aγ
i )}} (2)

is the set of the attacker’s virtual machines under the
distribution γ that can launch an attack on at least one
of the virtual machines of the legitimate users [3], [13].

PtVM (Aγ
i , δ) = {vm | vm ∈ VM (Aγ

i , δ) and

|PL(vm)− PL(vm′)| and/or

|PL(vm)− PL(vm′′)| quite high
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with (vm′, vm′′) ∈ (Target(Aγ
i ),VM (Aγ

i , δ))} (3)

• Coverage (C): it gives an idea about how many of the
legitimate users’ virtual machines are vulnerable to the
interdependency attack.

C(VM (Uγ
i , δ)) =

#(IdepVM (Uγ
i , δ))

#(VM (Uγ
i , δ))

(4)

where:

IdepVM (Uγ
i , δ) = {vm/ vm ∈ PtVM (Uγ

i , δ),

Hyp(vm) ⊂ {Hyp(vm′), vm′ ∈ VM (Aγ
i , δ)}} (5)

is a set of the legitimate user’s virtual machines under the
distribution γ that are susceptible to be compromised by
at least one of the virtual machines of the attacker [13].

PtVM (Uγ
i , δ) = {vm | vm ∈ VM (Uγ

i , δ) and

|PL(vm)− PL(vm′)| and/or

|PL(vm)− PL(vm′′)| quite high

with (vm′, vm′′) ∈ (VM (Aγ
i , δ),VM (Uγ

i , δ))} (6)

PtVM (Xγ
i , t) allows us to find the virtual machines

under the distribution γ that have a high difference
of potential of loss. Unlike [13], we consider that the
virtual machines coming from the same user must not
be able to attack each other. That is why we redefine the
PtVM (Xγ

i , t). The #A, cardinality of set A, is the total
number of elements in A. For instance, #{a, b, d, h, l} =
5. Note also that the attacker’s efficiency and coverage
are two dynamic factors since they depend both on the
delay and on the number of virtual machines allocated.
Also, In the coverage formula, we use VM (Uγ

i , δ), as an
input instead of VM (Aγ

i , δ). In fact, with the coverage,
we would like to estimate how many users’ VMs are
vulnerable to the interdependency attack. That is whywe
use VM (Uγ

i , δ) as the input variable where Ui designs a
legitimate user.

2) PERFORMANCE FACTORS
The cloud service provider aims to find a VM allocation
policy that reduces the attack’s effectiveness and efficiency
while keeping the system performing. Hence, we define the
workload balance (Wk ) and the power consumption at the
host’s level (Pk ). However, we compute the sums (

∑
Wk ) and

(
∑
Pk ) for having thesemetrics for the entire datacenter since

a datacenter comprises several hosts.
• Workload balance (Wb): improves the Quality of Service
(QoS) and reduces the cost. It can be defined as how the
amount of processing is distributed at the host’s level.
In other words, it estimates how many times a server is
selected. The formula is given in (7) where Hk is the
k th Host, λkγ is the number of times that Hk is selected
under the allocation policy γ and N is the total number
of hosts [12].

Wb(γ ) =
N∑
k=0

Wk =

N∑
k=0

exp−(
λkγ

10
) (7)

• Usable Hosts (Uh): hosts used during the allocation.
We define it as shown in (8), where αγ is the number
of selected hosts under the allocation policy γ and N is
the total number of hosts available in the datacenter.

Uh(γ ) =
αγ

N
× 100 (8)

• Power consumption (P): controlling energy consump-
tion at the cloud computing level is crucial for cloud
providers. However, among the main components (CPU
(central processing unit), cooling unit, network inter-
face, primary and secondary storage) in a data center
that consumes electrical energy, the CPU consumes
more electrical energy than the other components [10].
Hence, we provide a model for the power consumption
of hosts that depends on the utilization of the critical
system component (CPU). Therefore, we estimate the
energy consumption by using a linear interpolation of
the utilization change for a given time interval [10].
We adopt the definition from [23]. The formula is given
in (9), where Rkγ indicates the actual CPU proportion
of the k th host under the allocation policy γ , N is the
total number of hosts, and Pmax represents the maximum
power that a host uses, and 70% of power defines the
minimum percentage of power a Host uses, even when
it is if in idle mode. We want to be in phase with our
simulation platform CloudSim Plus [10].

P(γ ) =
N∑
k=0

Pk =
N∑
k=0

(70%× Pmax

+ (1− 70%)× Pmax × Rkγ ) (9)

• Gain Function: we define the gain function to quantify
the exact value of gain between two allocation policies.
The definition is given in (10) where X is the factor to
evaluate, A1 and A2, two different algorithms.

GX =
XA1 − XA2

XA1

× 100 (10)

By the way, the security level (mentioned in the assump-
tions) will allow us to assess the potential loss of the VM. The
efficiency and coverage use the latter, and the waiting time
allows our algorithms to reach the secure server. Unlike the
performance factors, we can remark that the security factors
are expressed as a function of the waiting time. Therefore, the
expected effect of the waiting time is more related to security
than performance.

B. PROBLEM
We consider a cloud environment that runs on a virtualization
technology named a hypervisor (Hyp) with n entities.
We consider that the entity that manages the cloud computing
resources (the provider) will act in good faith to guarantee the
customers’ security. On the other hand, the entity that engages
the cloud provider in order to benefit from its services (the
customer) will be our reference user in what follows. In other
words, we will use ‘‘user’’ to refer to customers. Thus, each
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user (Ui) can rent one or more virtual machines with different
operating systems. However, the number of applications a
user launches will not impact the model. When a user rents
a virtual machine (vm), he can decide to pay (or not) an
amount of e of investment in security. Using this investment
in security for each virtual machine, we can determine the
security level and the potential of loss (PL(vm)). Since
the virtual machines are running under a hypervisor (such
as Xen, VMware, or KVM), different users can share the
same hypervisor. Hence, the platform is susceptible to being
compromised by the interdependency attack [3]. This means
that a malicious user who has compromised the VMs of a
user i can traverse the hypervisor to launch an attack on the
VMs of another user j ̸= i on the same hypervisor. In fact,
in this situation, a lack of investment in the security of one
user can impact the other users (bad neighborhood effect).
Therefore, a malicious user can compromise all legitimate
users on the same hypervisor. To quantify the attack’s impact,
we use two security factors: efficiency (E) (1) and coverage
(C) (4). Also, to evaluate the performance of the cloud
datacenter, we use the workload balance and the power
consumption. So, the attacker’s goal is to maximize these
two security factors, while the cloud provider’s aim is to
define VM allocation policies that increase the attacker’s
difficulties while keeping the system performant. In other
words, a secure and performant VM allocation policy should
satisfy the following conditions at the same time:
• Minimize the attacker’s possibilities as much as possi-
ble. In other words, the success of an attack, as minimal
as it could be, must require the launch of many virtual
machines. Therefore, a successful attack will require
significant financial resources. On the other hand,
increasing the number of virtual machines launched
should not significantly impact the attack’s efficiency.
In this context, we seek to minimize efficiency and
coverage (11).

• Keep the system performant by reducing the power
consumption (12) and increasing the workload balance
and distributing virtual machines to avoid the servers
being over-utilized (13).

Hence, the problem can be formalized as follows: let
vmList = {vm1, . . . , vmn} be a set of available virtual
machines in a datacenter, D the set of all allocation
possibilities. An allocation policy γ ∈ D is said to be secure
and performant if:

E(VM (Aγ
i , δ)) = min

γ∈D
E(VM (Aγ

i , δ))

C(VM (Uγ
i , δ)) = min

γ∈D
C(VM (Uγ

i , δ)) (11)

P(γ ) = min
γ∈D

P(γ ) (12)

Wb(γ ) = max
γ∈D

Wb(γ ) (13)

The first conditions (11) mean that the distribution γ must
be the distribution that most minimizes, at the same time,
the attacker’s efficiency and coverage compared to the other

distribution γ ′ ∈ D. The two last conditions signify that we
cannot find another distribution γ ′ ̸= γ which bestminimizes
the power consumption or maximizes the workload balance
in the datacenter.

C. ASSUMPTION
We make the following assumptions:
• If a user does not have a VM on the same hypervisor as
the attacker, he will not suffer the consequences of the
attack.

• Any user is considered as an attackerAi when he starts a
virtual machine at time t . However, ‘‘launching/starting
a VM’’ does not mean ‘‘turning on a VM’’. We mean by
‘‘Launching a VM’’ a request from a client who wants
to subscribe for a VM in the cloud provider.

• We assume that the attacker can try to launch an
interdependency attack at any time.

• Given a user’s virtual machine and his amount of
investment in security, we can determine the security
level and the potential loss (PL(vm)).

• Given a user’s virtual machine, his amount of investment
in security does not vary over time.

• We consider only suitable hosts (servers that have
enough resources to host at least one VM) given a new
virtual machine. In fact, given a virtual machine and its
characteristics, we can recognize the list of hosts that
have the capacity to host it. In each suitable host, we are
looking for the top-ranked server so that the three above
conditions (11), (12), and (13) can be satisfied.

• To minimize the power consumption, we use the
straightforward method, which consists of reducing the
number of running servers.

D. REQUIREMENTS
To propose a secure and performant solution against the
interdependency problem, we should define a VM allocation
policy that satisfies at the same time the previous condi-
tions (11), (12) and (13). That means that our solution should:
• increase the attacker’s difficulties by minimizing his
efficiency and coverage.

• keep the system performant, by increasing the workload
and decreasing the power-consumption.

However, satisfying these constraints is equivalent to solving
an NP-hard combinatorial problem [8]. It includes both the
knapsack problem (the security and the workload balancing
constraints) and the bin packing problem (the energy
consumption constraint) [15]. As a solution, we use the
multi-objectives approach byminimizing the security metrics
while treating the power consumption and the workload
balance as constraints. In other words, when the choice arises,
we will choose a secure server instead of a server with good
power consumption and/or workload balance. This approach
considers all legitimate users as attackers who attempt to
hack the host’s hypervisor, gain unauthorized privileges on
the VMs it contains, and then proceed to host the users’
virtual machines. Hence, we define allocation policies based
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on the attacker’s efficiency and coverage focusing on different
objectives separately and simultaneously:
• The first allocation policy is the secure allocation
for low attacker’s efficiency and coverage (SALAEC).
It focuses on the security and the power consumption
(Algorithm 2).

• The second allocation is named SALAEC-Balanced
(SALAEC-B), and it focuses on the security and the
workload balance (Algorithm 3).

• The third allocation policy is the secure and performant
allocation for low attacker’s efficiency and coverage
(SPALAEC). It focuses on security, power consumption,
and workload balance simultaneously (Algorithm 4).

In the next section, we will provide more details about these
algorithms.

IV. PROPOSED ALGORITHMS FOR MEETING SECURITY
AND PERFORMANCE FACTORS
A summary of the proposed algorithms can be found in
figure 1.

A. SECURE ALLOCATION FOR LOW ATTACKING
EFFICIENCY AND COVERAGE
We start by only considering the security constraints defined
in (11). To minimize the attacker’s possibilities, we try to
allocate any user’s VM to a suitable host (a server that has
enough resources to host at least one VM) where the security
is optimal. Hence, we consider any user malicious when
he starts his virtual machine. Then, we leverage the list of
hosts with enough resources to host a new virtual machine
and process to compute each host’s efficiency and coverage.
Finally, the new virtual machine will be hosted in a suitable
host where the efficiency/coverage is the smallest. Hence,
each VMwill be allocated to the optimal security host. Given
a virtual machine and a list of hosts, Algorithm 2 works as
follows:
• We first consider the first suitable host on the list of
hosts as the temporary secure server. Then, we evaluate
the efficiency and the coverage by considering the VM’s
owner as an attacker and the users that already have VMs
in the datacenter as the targets. When we reach the time
when the latter is no longer suitable, we will look for
another suitable host. This continuous process creates a
loop (Algorithm 1).

• We consider the secure host as the host where
the efficiency/coverage is the smallest, and this
efficiency/coverage will be called ‘‘(min_e/min_c)’’.
To find this secure host (‘‘secHost’’), we evaluate the
efficiency and coverage (tmp_e, tmp_c) in all suitable
remaining hosts again. To avoid checking all available
hosts, we define sub-lists of hosts from the start index
to the number of hosts to check. In other words, the
checked hosts’ size will equal the number of virtual
machines currently and already allocated (Algorithm 1).

• Finally, the secure and suitable host is the one
where the attacker’s efficiency and coverage is the

Algorithm 1 Find Potential Secure Host for Virtual Machine
Input: A virtual machine vm launched by user Ui at time

δ and a list of hosts available in the datacenter (HostList)
that will be used by the allocation policy to place the virtual
machine vm.

Output: Return the most secure host for the virtual
machine

Initialization
1: Ai← user i
2: min_e← 1
3: min_c← 1
4: secHost← null
5: for each host in HostList do

{Searching for first secure host}
6: if (host is Suitable for vm) then
7: min_e← E(VM (Aγ

i , δ))
8: min_c← C(VM (Uγ

i , δ))
9: secHost← host
10: break;
11: end if
12: end for
13: {Due to performance concerns, we do not want to check

all hosts, so we define a sublist that will vary based on
the number of VMs}

14: if (the number of vms in the datacenter is higher than the
number of available hosts) then

15: NbrHostTocheck← HostList.size ()
16: else
17: NbrHostTocheck← number of vms already hosted

+ 1
18: end if
19: for each host in HostList.subList

(startIndex,NbrHostTocheck) do
20: if (host is Suitable for vm and host! =secHost) then
21: tmp_e← E(VM (Aγ

i , δ))
22: tmp_c← C(VM (Uγ

i , δ))
23: min_e←min(min_e, tmp_e)
24: min_c← min(min_c, tmp_c)
25: secHost← HostList.getHost (min_e,min_c)
26: else
27: startIndex← startIndex +1
28: end if
29: end for
30: return secHost

smallest. Additionally, if the secure host is not suitable,
we remove it from the list of hosts and look for another
one on the updated list of hosts. When it is ‘‘null’’ (not
instantiated), the first free suitable host will be supposed
as the secure host. Because the virtual machine will be
alone inside the host, i.e., it cannot compromise other
virtual machines (Algorithm 2).

Besides, we consider efficiency as the most important
factor compared to the coverage since it works directly
with the attacker’s VMs, unlike the coverage where the
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FIGURE 1. Proposed virtual allocation policy workflow.

input parameters are the VMs of the legitimate user hence,
as mentioned in the original paper [16], we first used the
attacker’s efficiency for searching the secure host. However,
by using the attacker’s efficiency we can meet the situation
where the efficiency is the same when a virtual machine is
supposed to be in hosti and also when it is supposed to be in
hostj. In this case, we will use the coverage to decide which
host to choose. More explanations, details, and an example
can be found in the original paper [16].

B. POWER CONSUMPTION-AWARE SECURE ALLOCATION
FOR LOW ATTACKER’S EFFICIENCY AND COVERAGE
We know that theMOST-POLICY (an algorithm that allocates
a new virtual machine to a suitable host that contains
more VMs) performs better in terms of power consumption
compared to the LEAST-POLICY (where a new virtual
machine will be allocated to a suitable host that has the
least VMs) [12]. For the reason that the MOST-POLICY
uses fewer servers because it tries to allocate a new virtual
machine to a server that has more virtual machines until
that server reaches its full capacity. However, we remark

that SALAEC (Algorithm 2) adopts the same philosophy by
avoiding launching new servers in the following ways:
• When the attacker’s efficiency and coverage are the
same in two servers, we chose the server that has the
largest number of virtual machines. This allows us to use
between 30 − 48% less hosts as shown in our previous
paper [16].

• There is no limit to the number of virtual machines
per server. That means a server can host a new virtual
machine if it has enough resources.

• A server without a virtual machine will be turned off.
Hence, we propose SALAEC as a candidate when the
constraints relative to the security (11) and the power
consumption (12) are considered.

C. BALANCED SECURE ALLOCATION FOR LOW
ATTACKER’S EFFICIENCY AND COVERAGE
In this subsection, we define an algorithm that will focus on
the security and workload constraints by slightly modifying
SALAEC:
• We prevent a server from being overused by defining
a limited number of virtual machines (N ) per server.
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Algorithm 2 Secure Allocation for LowAttacking Efficiency
and Coverage (SALAEC)

Input:
A virtual machine vm launched by user Ui at time δ and a
list of hosts available in the datacenter (HostList), that will
be used by the allocation policy to place the virtual machine
vm.

Output:
Return the potential secure and suitable host for the virtual
machine

Initialization

1: HostList← getHostList ()
2: secHost←FindPotentialSecHostForVm(HostList, vm)
3: while IndexMostSecHost ()< HostList.size () do
4: if (secHost! =null and secHost is Suitable for vm)

then
5: secHost.add (vm)
6: return secHost
7: else
8: if secHost!=null && secHost is not Suitable for vm

then
9: HostList.remove (secHost)

10: secHost←FindPotentialSecHostForVm
(HostList, vm)

11: else
12: IndexMostSecHost← IndexMostSecHost () + 1
13: if (IndexMostSecHost() <HostList.size()) then
14: secHost←HostList.get (IndexMostSecHost())

15: return secHost
16: end if
17: end if
18: IndexMostSecHost(HostList.indexOf(secHost))
19: end if
20: end while

Hence, we assume that no server can host more than N
virtual machines from any users even if it has enough
remaining resources.

• We prevent the VMs from the same user from being at
the same host by using efficiency/coverage as criteria for
allocation. Otherwise, if the host crashes, the user will
lose his virtual machines.

The Algorithm 3 works as follows:
• We use the SALAEC algorithm to verify the host’s
security. Then, we check some constraints relative to the
workload balance. Hence,
– If a secure host contains less than N virtual

machines, it will be considered as a secure and
balanced host.

– Otherwise, we check if all servers already have N
virtual machines. If yes, the virtual machine can be
hosted at the current secure host even if it has N
virtual machines.

– Additionally, if the secure host and some other hosts
(not all hosts) contain N virtual machines. Then,
the host will be considered secure but not balanced.
In this case, wewill use the LEAST algorithm to find
the host with the least virtual machines. We chose
the LEAST algorithm based on its performance
about the workload. Additionally, it performs
better concerning security compared to the MOST
algorithm and the RANDOM algorithm [12]. When
we use the MOST algorithm, we will probably
overuse some servers, which favors the co-location
between the attacker and the legitimate user.
On the other hand, choosing a server randomly
among several servers with a different level of
security is not helpful. For the reason that among
the chosen servers some of them may already
have the attacker’s VM(s). Moreover, most of the
time, the ‘‘least server’’ will be free (contains no
VM), which is crucial for the security and the
workload at the same time.

D. SECURE AND PERFORMANT ALLOCATION FOR LOW
ATTACKING EFFICIENCY AND COVERAGE (SPALAEC)
In this section, we consider the security, the power consump-
tion, and the workload balance constraints at the same time.
Hence, we introduce the SPALAEC algorithm that optimizes
these three factors as follows:
• Security: SPALAEC considers any user as a potential
attacker when he launches his virtual machine. Then,
it allocates the latter’s virtual machine to the host
where his efficiency and coverage are the smallest.
Additionally, as the allocated host will be selected from
a list of hosts using the LEAST algorithm, we contend
that the hosts inside the lists are homogeneous (they
have the same level of security). Hence, we defineMost-
secure host as the host where the attacker’s efficiency and
coverage are both equal to zero. A host is Semi-secure
when the attacker’s efficiency and coverage are in the
intervals ]0, 0.2] and ]0, 0.15], respectively.
These values are from the simulation results of ‘‘PSSF-
Balanced’’ [14], which is considered secure enough
when the attacker’s efficiency and coverage is equal to
0.2 and 0.15, respectively. The allocated host can be
insecure without this homogeneity due to utilizing the
LEAST algorithm.

• Workload balance: The workload balance aims to
prevent a server from being overused. Hence, we define
a number N of virtual machines per server to solve that
issue. That threshold will help us to distribute the users’
virtual machines across the servers. It also does not harm
security since if the number of virtual machines per host
is limited, then the number of virtual machines able to
launch attacks will be small.

• Power consumption: we should use as few hosts as
possible to decrease the power consumption. But, using
the least hosts can harm the workload balance and
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Algorithm 3 Balanced Secure Allocation for Low Attacking
Efficiency and Coverage (SALAEC-B)

Input:
A virtual machine VM launched by user Ui at time δ and a
list of hosts available in the datacenter (HostList), that will
be used by the allocation policy to place the virtual machine
vm.

Output:
Return the most secure and balanced suitable host for the
virtual machine

Initialization
1: allocatedHost← null
2: for host in HostList do
3: if host is secure based on SALAEC and it contains less

than N virtual machines) then
4: allocatedHost← secHost
5: else if all servers already hostN virtualmachines then
6: allocatedHost← secHost
7: else
8: allocatedHost ← FindLeastSuitableHost (vm, δ,

HostList)
9: end if

10: end for
return allocatedHost

the security. To avoid this negativity, we ensure our
VM allocation policy does not launch new free hosts
and select ‘‘insecure’’ hosts. Hence, the allocated host
will be chosen among a group of balanced Most-
secure/Semi-secure not-empty hosts (hosts that contain
at least one virtual machine). Or it will be from a
group of not balanced Most-secure/Semi-secure not-
empty hosts. Otherwise, it will be chosen from a list
containing some empty hosts. As you can remark, we are
always looking for secure hosts that have fewer virtual
machines among non-empty hosts while respecting the
limit of N virtual machines per server.

Algorithm 4 works as follows:
• It considers any user as an attacker when he launches his
virtual machine.

• Then, it sorts the list of available hosts from the most
secure to the least secure by using SALAEC.

• Finally, the workload balance constraints will be
checked based on SALAEC-B. The allocated host will
be chosen based on the LEAST algorithm among a list
of hosts such as each host is balanced and the attacker’s
efficiency and coverage are null, no host is balanced and
the attacker’s efficiency and coverage are null, each host
is balanced and Semi-secure host or, not balanced Semi-
secure or, each host is simple; a host which we ignore
his security and performance level.

E. COMPLEXITY ANALYSIS
We consider computational complexity. In fact, the com-
plexity of space is a concern when using devices with low

Algorithm 4 Secure and Performant Allocation for Low
Attacking Efficiency and Coverage (SPALAEC)

Input:
A virtual machine vm launched by user Ui at time δ and a
list of hosts available in the datacenter (HostList), that will
be used by the allocation policy to place the virtual machine
vm.

Output:
Return the most secure and balanced suitable host for the
virtual machine

Initialization
1: secureBalancedHostList← null
2: securenobalancedHostList← null
3: mostSecureBalancedHostList← null
4: semiSecureBalancedHostList← null
5: mostSecHostList← null
6: semiSecHostList← null
7: noFactorsHostList← null
8: allocatedHost← null
9: potentialAllocatedHostList← null

10: for host in HostList do
11: Categorize it based on SALAEC using ‘‘Most-secure’’,

‘‘Semi-secure’’, ‘‘noFactors’’
12: sort it according to (mostSecHostList,

semiSecHostList, noFactorsHostList)
13: if host is balanced based on SALAEC-B then
14: sort it according to (mostSecureBalancedHostList,

semiSecureBalancedHostList)
15: end if
16: end for
17: potentialallocatedHostList←determine the first

non-empty list by following the priority order as
follows: mostSecureBalancedHostList,
semiSecureBalancedHostList, MostSecHostList,
semiSecHostList, noFactorsHostList

18: if ! (potentialAllocatedHostList.isEmpty ()) then
19: allocatedHost←FindLeastSuitableHost(vm, δ,

potentialallocatedHostList)
20: end if
21: return allocatedHost

memory, in contrast to cloud computing. The complexity of
SALAEC, SALAEC-B and SPALAEC are polynomials which
is synonymous with ‘‘feasible’’ and ‘‘efficient’’.

• The complexity of SALAEC is equal to 1+pc+p(θ(1)+
pc) = 1 + p + pc + pc+1 ≈ θ (pk ), k constant, p
be the total number of hosts. In fact, the complexity
of E(VM (Aγ

i , δ)) and C(VM (Uγ
i , δ)) are both equal to

2p2 as shown in [16]. In Algorithm 1, the total number of
operations regarding the instruction (Ai← user i) and the
first loop is 1+ p(θ(1) + 2p2)= 1+p+2p3. After the first
loop, we have some elementary operations (θ(1)) and
another loop with p(θ(1) + 2p2) = p + 2p3 operations.
The total number of operations for Algorithm 1 is
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1+ p+ 2p3+ p+ 2p3= 1+ 2p+ 4p3. The complexity is
θ (pc), where c is a constant. In Algorithm 2, the number
of operations is 1+ pc where pc is given by the function
FindPotentialSecHostForVm. IndexMostSecHost()<
hostlist.size() will be executed p times. Inside the loop
‘‘while’’, the number of operations is θ (1)+ pc. Hence,
the complexity is 1+ pc + p(θ (1)+ pc) = 1+ p+ pc +
pc+1 ≈ θ (pk ), k constant.

• The complexity of SALAEC-B is polynomial and equal
to ≈ θ (pk+1), k constant. In fact, in SALAEC-B, the
Algorithm 2 (SALAEC) will be executed as many times
as we have a host. Since the number of hosts is equal
to p, then the number of operations in the loop is equal
to p(θ (pk ) + θ (1)), where θ (1) is the complexity of the
elementary operations inside the loop.

• The complexity of SPALAEC is polynomial and equal
to≈ θ (pk+2)+θ (pk+1), k constant. In fact, in SPALAEC,
SALAEC and SALAEC-B will be executed p times then
the number of operations in the loop is equal to p(θ (pk )+
θ (pk+1) + θ (1)), where θ (1) is the complexity of the
elementary operations inside the loop.

V. EVALUATION
In this section, we perform the analysis of the resource
allocation policies to evaluate the security of virtual machines
and the performance in the datacenters. Hence, we consider
different allocation policies such as PSSF-LEAST [15],
and PSSF-BALANCED [14], because they are close to our
work and are recent proposals concerning secure and/or
performant virtual machine allocation policies. We also
consider SALAEC [16], SALAEC-B and SPALAEC. Hence,
we present the attacker’s efficiency and coverage, and the
datacenter performances such as the power consumption and
the workload-balance under these VM allocation policies by
using CloudSim Plus.

A. SIMULATION SETTINGS
As a simulator, we use CloudSim Plus [10], which is an
open-source project developed in the Java programming
language. It provides a flexible environment where it is
possible to test all cloud services. We compare our different
algorithms with PSSF-LEAST [15] and PSSF-Balanced [14]
by using the factors such as the efficiency E , the coverage
C, the workload balanceWb, the power consumption P , and
the Usable hosts Uh. Using inheritance, we can define the
potential loss criterion as a feature for each virtual machine.
Also, for each virtual machine, we attribute a random score
between 0 and 10 as its security level. Note that in real cloud
computing, based on the amount of investment in security,
the provider can define the security level. We consider that
the difference in loss between the two virtual machines is high
when it is greater than or equal to 4. The different devices that
we use in our simulation and the configuration parameters
are given in Table 2. The previous works [14] and [15] used
exactly the same settings as us.

TABLE 2. Devices configuration.

For the simulation, we note δ the waiting time between
the start of the virtual machines of the legitimate user and
those of the attacker [12]. This delay varies between 0 to
100. The simulation works as follows: the legitimate user
starts 25 virtual machines; after a waiting time, δ = t , the
attacker starts 10 virtual machines. This operation is repeated
100 times. Then, we pass to the scenario where the virtual
machines of the legitimate user are equal to 25, δ = t , and
the virtual machines of the attacker are 20; this is repeated
100 times. We continue until the virtual machines of the
legitimate user are 25, δ = t , and the virtual machines of
the attacker are 100. We conduct the previous procedure for
all δ ∈ {0, 10, . . . , 100} [16].

Assumptions: The attackers can decide when to launch
their virtual machines and the number of virtual machines to
launch.

B. PERFORMANCE EVALUATION AND DISCUSSION
In Fig. 2, we only consider the security constraint, and
we evaluate the attacker’s efficiency and coverage under
SALAEC and PSSF-LEAST [15]. In Figs. 3 and 4, we con-
sider the security and workload balance, then we evaluate
respectively the attacker’s efficiency (Fig. 3(a), Fig. 3(b)),
coverage (Fig. 3(c), Fig. 3(d)), the workload balance
Fig. 4(b), Fig. 4(a)). Also, we compute the gain of workload
balance (Fig. 4(c)) between SALAEC-B and PSSF-Balanced.
Finally, we evaluate the attacker’s efficiency (Fig. 6(a)),
coverage (Fig. 6(b)), the workload balance (Fig. 6(c)), the
power consumption (Fig. 6(d)) according to the variation of
VM (Aγ

i , δ) when all security and performance factors are
considered.

We note that the attacker’s efficiency and coverage are
reduced to zero under SALAEC and PSSF-LEAST as shown in
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FIGURE 2. Average efficiency and coverage according to the number of virtual machines and the delay
under different VM allocation policies that only consider security factors.

FIGURE 3. Average efficiency and coverage according to the number of virtual machines and the delay
under different VM allocation policies that only consider security and workload balance.

Fig. 2. This means that the virtual machines are secure under
these two policies. The reason is that SALAEC considers
any user as a potential attacker, and then, it looks for a
host where the security factors are the smallest. This process
guarantees that a server will only host virtual machines with
the same security level. Hence, the probability of launching
an interdependency attack will be too low. Concerning PSSF-
LEAST, the attacker’s possibilities are null because they use
dedicated hosts. That means that the virtual machines from
the same user will share the same host. Nevertheless, the
situation can have a negative impact when such kind of host
goes down, unlike SALAEC, where the allocation is done by
using the attacker’s efficiency and coverage. Therefore, the
VMs from the same user are mostly distributed among the
hosts.

As shown in Fig. 3, when we pass from SALAEC to
SALAEC-B, we do not lose on security. In fact, SALAEC-B
is SALAEC with a limited number of virtual machines
per server. Hence, as the number of virtual machines per
server decreases, the probability of co-location decreases,
i.e., it becomes difficult to launch interdependency attacks.
However, in Han et al. [14], from PSSF-LEAST to PSSF-
Balanced, the attacker’s efficiency and coverage are not null
as shown in Fig. 3(b) and Fig. 3(d). The reason is that for
a new user (for example, the attacker), his virtual machines
will be allocated to the servers chosen randomly from a
group of servers. That means if the servers inside the group
already host some users’ virtual machines, the attackers can
share the same host with some legitimate users to launch
interdependency attacks. Unfortunately, this group of servers
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FIGURE 4. Workload balance according to the number of virtual machines and the delay under
different VM allocation policies that only consider security and workload balance.

often already contains virtual machines from other users.
Switching from one group of servers to another will be
possible only if the servers of the first group are all fully
used [14]. In this context, the random choice is favorable to
the attacker. This justifies the non-null values of the attacker’s
efficiency and coverage. However, there is a linear decrease
of the attacker’s efficiency. This decrease is due to the passage
of the other groups of hosts. Indeed, once the first virtual
machines of the attacker fill a group of hosts, those remaining
will be the first to be hosted in new groups. As they will
be alone there, the probability that they will launch attacks
decreases.

Concerning the workload balance, it is represented mathe-
matically by a decreasing function depending on the number
of times that a server is selected. This means that the more a
server is solicited, the more its workload balance decreases.
So, when we increase the workload balance, we reduce
the possibility of a server being overloaded. Hence, from
SALAEC to SALAEC-B (Fig. 4(a)) and from PSSF-LEAST to
PSSF-Balanced (Fig. 4(b)), we note a linear increase of the
workload balance (for space reasons, the workload balance
graphs under SALAEC and PSSF-LEAST are omitted). More
precisely, the workload balance is between [1.5, 6.5] under
SALAEC and [5, 35] under SALAEC-B. It is is between [4, 16]
under PSSF-LEAST and [5, 35] under PSSF-Balanced. These
variations are due to the limit of the number of virtual
machines per server. This limit favors the dispersion of
the virtual machines among several servers to avoid over-
utilization. As a result, a server will be selected just a few
times. Consequently, the number of usable hosts experience
a linear increase by switching from non-balanced policies
(SALAEC (Fig. 5(a)), PSSF-LEAST (Fig. 5(c))) to balanced
policies (SALAEC-B (Fig. 5(b)), PSSF-Balanced (Fig. 5(d))).

Hence, it is between [2, 10] and [5, 30] under SALAEC
and SALAEC-B, respectively. It is equal to [4, 18] and
[6, 28] underPSSF-LEAST andPSSF-Balanced, respectively.
As you can remark, SALAEC-B uses slightly more hosts
than PSSF-Balanced with a gain that varies between [−2, 8]
(Fig. 5(e)). We can remark that we don’t even use 30% of the
servers yet. Moreover, 30% servers mean we have allocated
all 125 VMS using 45 servers. So, indirectly, we remain
efficient even with more VMs than servers. Since SALAEC-B
uses more hosts compared to PSSF-Balanced, SALAEC-B
performs better than PSSF-Balanced regarding the workload
balance as shown in Fig. 4(c). In fact, the gain between
SALAEC-B and PSSF-Balanced is equal to [−4, 10]. The
negative values represent the few times that SALAEC-B has
a bad workload compared to PSSF-Balanced, and they are
represented by the few purple colors in Fig. 4(c).

In Fig. 6, we take into account the security (Fig. 6(a),
Fig. 6(b)), the workload balance (Fig. 6(c)) and the power
consumption (Fig. 6(d)). We observe that the attacker’s
efficiency and coverage are not null. These two metrics
oscillate between [0.16, 0.3] and [0.15, 0.5] therefore in
terms of security PSSF-Balanced and SALAEC-B are better
than SPALEC. Indeed, SPALAEC tries to minimize power
consumption, so it will try to use fewer hosts. Consequently,
it promotes co-location and, thus, the interdependence attack
(which increases the attacker’s efficiency and coverage),
unlike SALAEC-B and PSSF-balanced. In other words, this
was expected since performance has a cost on security.
Besides, we aim to ensure that the virtual machines from
the same account cannot attack each other. Unfortunately,
this increases the number of target virtual machines and,
therefore, increases the coverage. Other factors are also
added, such as the limit N of virtual machines per server.
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FIGURE 5. Usable Host according to the number of virtual machines and the delay under different VM
allocation policies that only consider security and workload balance.

Indeed, with this limit, a secure server that already containsN
virtual machines will not be chosen. This results in choosing
a less secure server instead. On the other hand, the reduction
in the level of security favors the performance. Indeed,
the workload balance has a good variation ([5, 30]). This
variation is almost equal to that of an algorithm that is
only balanced, such asPSSF-Balanced, SALAEC-B. Also, the
power consumption is controlled since the servers consume
less compared to PSSF-Balanced and SALAEC-B. An evalu-
ation of the gain of power consumption shows that SPALAEC
uses less energy with a gain equal to [15, 55], [20, 50]
compared to PSSF-Balanced and SALAEC-B, respectively.

However, the evaluation shows that if we remove the
condition that the virtual machines from the same account
cannot attack each other, then the attacker’s possibilities will
be reduced to zero while keeping the same performance
relative to the workload balance and the power consumption.
SALAEC-B and SPALAEC are two innovative alloca-

tion policies that go beyond security considerations by
addressing critical factors such as power consumption and
workload balance, reflecting a holistic approach tailored to
real-world deployments in which multiple demands compete
for resources. With the foundation of game theory and

their polynomial time complexity, these algorithms provide
scalable solutions that can be deployed in large-scale cloud
environments.

VI. DISCUSSIONS AND LIMITATIONS
One cloud providers’ biggest challenge is identifying a mali-
cious user from an honest user. In a sense, our virtual machine
allocation policies consider any user a potential attacker when
he launches his virtual machine. This consideration allows
us to ignore the process of distinction between an attacker
and a legitimate user. Because if all the users are considered
attackers, the ‘‘real attacker’’ is not spared. Indeed, those who
can do more can do less. Furthermore, even if the attacker
uses many accounts, it will not impact the efficiency of
his attack. On the other hand, at the level of commercial
cloud platforms (Example: Amazon Web Services (AWS)),
the best practice requires that the services (including the
creation of virtual machines) be under the responsibility of
an administrator account. Thus, on behalf of a big company
(with several different user departments), the administrator
must create several virtual machines and give roles to the
users called upon to use them. The same is true on behalf of
a service provider (different from a cloud service provider),
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FIGURE 6. Average efficiency, coverage, workload balance and power consumption according to the
number of virtual machines and the delay under different VM allocation policies that consider security,
workload balance and power consumption.

who, in turn, can create servers for different small and
medium businesses. Thus, we note that the risks are that the
users of different departments or small and medium-sized
businesses who are competing by using servers from the
same administrator account may attack each other. Indeed,
our best friend can become our worst enemy. To remove this
insecurity, our virtual machine allocation policies ensure that
virtual machines from the same account should not be able
to attack each other. In other words, for any virtual machine
launched from an account named X , the virtual machines
already hosted (including those coming from the account X )
are all considered targets.

We chose to offer different algorithms. The reason is that
we want to give a palette of choices to the cloud service
providers. Hence, depending on the requirements of the
applications to be hosted, they can choose only a secure
allocation policy, whatever the performance constraints are,
or choose an allocation that is secure with a good workload
balance and/or good power consumption. Moreover, our
allocation policies did not consider the migration of the
virtual machines. That means once a virtual machine is hosted
on a server, it will not move to another server. However,
to avoid a server being overused, which may result in the
violation of the service level agreement (SLA). We fixed a
limit of virtual machines per server. We set the limit based
on the total number of virtual machines per server rather
than the number of users’ virtual machines per server. The
last case allows X users to have N machines per server. So,
on a given server, we can find XN virtual machines, unlike
in the first case, where the total number of virtual machines
rarely exceeds N . The first case also favors the dispersion of
a user’s virtual machines. Hence, when a server goes down
the possibility that the user loses all his virtual machines is
limited.

In AWS Leadership Principles [24], they said that ‘‘they
work vigorously to earn and keep customer trust.’’ For
us, that means that it is better to increase the workload
balance to satisfy the users than to reduce the power
consumption to help cloud service providers save money.
For this reason, SPALAEC focuses on workload balance
and power consumption while giving more priority to the
workload balance.

However, any scientific work has limits. We observe that
SPALEC provides better performance in terms of workload
balance and power consumption. However, SALEC-B and
PSSF-BALANCED beat SPALEC in terms of security. Obvi-
ously, we could reduce the efficiency and coverage by lifting
certain constraints, assuming that only VMs belonging to
different customers can attack each other. But as you know,
we have a strong constraint that requires that VMs from the
same account cannot attack each other. Even if VMa and VMb
belong to client X , our algorithm must protect VMa from
damage caused by VMb.
We note that considering any user as an attacker and avoid-

ing attacks from the same user’s account require significant
resources for a good implementation of the solutions. Indeed,
the allocation of a virtual machine needs several processes.
This consequence is not negligible, given the large number
of cloud computing users. Nonetheless, data centers have
enormous computing capacities. Also, finding the best host is
equivalent to solving an NP-hard combinatorial problem [8].
Therefore, we tried to find an optimal solution. The only limit
we found regarding the efficiency and the coverage is that
they need to be calculated for each user’s VMs. However, the
complexities of our algorithms are polynomials (as shown
in the sub-section IV-E), which means that they are easier
and faster to compute. On the other hand, we made an
arbitrary choice on the difference in potential of loss (which
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is considered high if it is equal to 4) between two virtual
machines based on their investment in security. However,
we wanted to show that we can label the security risks of a
virtual machine based on the associated account. From this
labeling, the provider will be able to define its own threshold
of difference of potential of loss between virtual machines.
In addition, we use a straightforward method by reducing
the number of running servers, unlike energy-aware virtual
machine allocation techniques (a) [25], [26], [27]. Moreover,
our allocation policies do not consider the possibility of
migrating a virtual machine from one server to another.
However, it is a critical process for alleviating servers. It can
also play an important role when a server can no longer run
an application due to insufficient resources (b). Thus, (a),
(b), and other simulation scenarios with many users may be
the subjects of a study in our future work. Additionally, the
simulation settings are the same as in previous works [14]
and [15]. Nevertheless, we are yet to use 30% of the servers.
In addition, 30% serversmeanwe have allocated all 125VMS
to 45 servers. So, indirectly, we remain efficient even with
more VMs than servers. As part of future research, we will
evaluate the algorithms from various aspects by using more
virtual machines than hosts.

This work only considers attacks between users sharing
the same hypervisor. However, other types of attacks have
not been considered and are closely related to this work.
For example, with Rowhammer exploits, malicious code
is executed on a vulnerable system to compromise the
machine’s services (web browsers, cloud services). The
resulting analysis is that the attacker needs a privilege
that gives him the right to execute code in this type of
exploit. In addition, the code exploits only compromise the
victim’s virtual machine’s services (other network machines
are spared). Therefore, other works like in [28] try to change
the context of the attack via the network. Indeed, since the
virtual machines are connected by a network then launching
an attack on other machines of the network can be acquired.
So the paper [28] shows that from a remote machine,
a malicious user can trigger and exploit Rowhammer bit
flips directly by only sending network packets. Our solution
does not take into account this type of attack, the reason
is that we focus on the security of the allocation policies
and not on the security of the subnets. However, this type
of attack can be considered in our future work. Also, our
algorithms use the amount of security investment during
allocation. So, this amount of security investment does not
vary over time. However, as future works, we can address
the latter by defining a dynamic game where the attacker
and legitimate users can change strategies (such as the
investment in security) at any time. We cannot tackle all
existing attacks at the same time. Indeed, the vulnerabilities
of virtual machines can be explored in different ways via
the network (Flooding Attacks (DDoS), Metadata Spoofing
Attacks, Rowhammer attacks over RDMA-enabled networks,
etc.), hosts (cross VM side-channel attacks, VM creation
attacks, VM scheduler based attacks, VM migration,

and rollback attacks, VM Hopping, VM Escape, etc.),
applications (Malware injection, Steganography attacks,Web
services & Protocol based attacks, etc.) and information
security policy (Contracts and Electronic Discovery, Laws
and Regulations, Audit Assurance, Information leakage,
Vendor Lock-in, Identity Management, etc.) [7].

VII. CONCLUSION
In this paper, we develop the first secure and performant
solution against the interdependency attack between cloud
users sharing the same hypervisor. It focuses on minimizing
security metrics while considering power consumption and
workload balance. This approach considers all legitimate
users as attackers who attempt to hack the host’s hypervisor
and gain unauthorized privileges on the VMs it contains.
Specifically, we define a secure allocation policy that
maximizes workload balance (SALAEC-B) and a secure
and performant allocation policy that simultaneously opti-
mizes security, workload balance, and power consumption
(SPALAEC). We also show that these solutions are optimal
with polynomial complexities synonymous with ‘‘feasible’’
and ‘‘efficient’’. In addition, results from the simulation show
that SALAEC-B is secure and balanced, and it performs better
than its counterpart in the related work, PSSF-Balanced [14].
Finally, SPALAEC is also secure against the interdependency
attack while being efficient regarding workload balance
and power consumption. Furthermore, our VM allocation
policies prevent the negative impact that can be caused by
the failure of one of the servers, unlike in PSSF-LEAST
[15] and PSSF-Balanced [14]. Our allocation policies do
not consider the possibility of migrating a virtual machine
from one server to another. We propose an energy-aware
approach with virtual machine migration as future work to
deal with the high energy consumption in cloud computing
and service level agreements (SLAs) violations. In addition,
during allocation, our algorithms use the amount of security
investment, which does not change over time (i). Our future
work may investigate (i) and other simulation scenarios with
many users.
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