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A B S T R A C T

Discrete logarithmic pseudorandom number generators are a prevailing class of cryptographically-secure
pseudorandom number generators (CSPRNGs). In generators of this type, the security parameter affects both
security and performance. This adds to the design complexity via creating a critical tradeoff between security
and performance. This research is an attempt at shifting the security-performance tradeoff paradigm in this
realm. To this end, we propose a modification to Gennaro’s pseudorandom number generator via replacing
word-wise arithmetic operations with bit-wise logical operations in trapdoor and hard-core functions. The
security of our generator (like that of Gennaro’s) is based on the hardness of a special variant of the discrete
logarithm problem. We establish an equivalence between the specific variant of the discrete logarithm problem
with the standard problem. Moreover, we demonstrate that in the modified generator, performance will be
almost independent of the security parameter as logical operations can be performed in register level without
the interference of the Arithmetic-Logic Unit (ALU). This relaxes the security-performance tradeoff and allows
designers to maneuver more flexibly in the tradeoff space. We implement and evaluate our proposed generator
and prove its security. Our CSPRNG is deemed random by all randomness tests in NIST SP 800-22 suite.
1. Introduction and basic concepts

Nowadays, numerous computing environments ranging from image
processing [1] and vehicular technology [2] to cloud computing [3] de-
end on cryptography for their security. On the other hand, cryptosys-
ems depend on various cryptographic primitives such as hashing [4]
nd key management [5] as well as random generation of different
umeric [6] or non-numeric [7] objects. Particularly, random number
eneration plays a critical role in most existing cryptosystems. With
ecent advancements, random numbers can be used even for generating
andom non-numeric objects [8].

Random numbers can be divided into two categories, namely true-
andom [9] and pseudorandom [10] numbers. True-random numbers
re extracted from unpredictable natural and physical phenomena such
s waves, noises and irregularities in fabrication technologies [11].
ontrastingly, pseudorandom numbers are deterministically generated
y Pseudorandom Number Generators (PRNGs) using mathematical
omputation and computer algorithms [12].

A cryptographically-secure pseudorandom sequence of bits or num-
ers is roughly defined as a sequence indistinguishable from a true-
andom one in a polynomial time using any possible statistical test.
he notion of indistinguishability can be formally defined as follows.
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Let 𝑋𝑛 and 𝑌𝑛 be arbitrary probability ensembles over {0, 1}𝑛. We
denote by 𝑥 ← 𝑋𝑛 the selection of an element 𝑥 in {0, 1}𝑛 according to
the distribution 𝑋𝑛.

We say that 𝑋𝑛 and 𝑌𝑛 are computationally indistinguishable if no
polynomial-time Turing machines can distinguish 𝑥 ← 𝑋𝑛 from 𝑦 ← 𝑌𝑛.
We define this term more formally as follows.

Definition 1.1. Let 𝑋𝑛 and 𝑌𝑛 be probability ensembles over {0, 1}𝑛.
Given a probabilistic polynomial-time Turing machine  consider the
following quantity:

𝛿(𝑋𝑛, 𝑌𝑛) =
|

|

|

Pr[𝑥 ← 𝑋𝑛;(𝑥) = 1] − Pr[𝑥 ← 𝑌𝑛;(𝑥) = 1]||
|

.

We say that the computational distance w.r.t.  between 𝑋𝑛 and 𝑌𝑛 is
𝛿(𝑋𝑛, 𝑌𝑛). We say that 𝑋𝑛 and 𝑌𝑛 are computationally indistinguishable
if for every probabilistic polynomial-time Turing machine , for every
polynomial 𝑝(⋅), and for sufficiently large 𝑛, the computational distance
w.r.t.  is bounded by 1∕𝑝(𝑛), namely,

𝛿(𝑋𝑛, 𝑌𝑛) ≤
1

𝑝(𝑛)
.

The concept of Cryptographically-Secure Pseudorandom Number
Generator (CSPRNG) was first formalized by Yao [13] and further
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developed by Blum and Micali [14]. They proved the unpredictability
of the next number to be a sufficient condition for cryptographic
security of a PRNG. Using the concept of indistinguishable probabilistic
ensembles, a Cryptographically-Secure Pseudorandom Bit Generator
(CSPRBG), which is usually used as a CSPRNG [15], can be formalized
as follows.

Consider a family of functions

𝑛 ∶ {0, 1}𝑘𝑛 → {0, 1}𝑛,

here 𝑘𝑛 < 𝑛. The function 𝑛 induces a probability ensemble (which
e denote by 𝐺𝑛) over {0, 1}𝑛 as follows

Pr[𝑦 ← 𝐺𝑛] = Pr[𝑦 = 𝑛(𝑠); 𝑠 ← 𝑅𝑘𝑛 ],

here 𝑅𝑖 is the uniform distribution over {0, 1}𝑖. The input 𝑠 to the
unction 𝑛 is usually called the seed.

efinition 1.2. We say that 𝑛 is a CSPRBG if the function 𝑛
an be computed in polynomial time and two families of probability
istributions 𝑅𝑛 and 𝐺𝑛 are computationally indistinguishable.

Although there are other equivalent definitions for CSPRNG, the
bove one best suits our purpose. A typical CSPRNG  is described
sing a recursive state transition equation like
(𝑖) = 𝑓1

(

 (𝑖−1)) . (1.1)

In (1.1), the 𝑖th recurrence changes the inner state of the CSPRNG
rom  (𝑖−1) into  (𝑖). In this equation,  (0) is the predefined initial state
sually referred to as the seed. Moreover, 𝑓1 is a trapdoor function. A
rapdoor function is an easily-computed function, whose inverse cannot
e easily computed in the absence of some special information referred
o as the trapdoor [16]. This property guarantees the cryptographic
ecurity of the PRNG [17]. In trapdoor functions, the calculation of
he inverse usually depends on hard mathematical problems. Among
ost common hard problems traditionally used in cryptographic appli-

ations, one may refer to Discrete Logarithm Problem (DLP) [18,19]
nd integer factorization [20,21].

In the PRNG  defined by Eq. (1.1), the 𝑖th output is calculated as
hown by Eq. (1.2), where 𝑓2 is a hard-core function with respect to
1,
(𝑖) = 𝑓2

(

 (𝑖)) . (1.2)

A polynomial-time function ℎ(𝑥) is called a hard-core function with
espect to the function 𝑓 (𝑥) if there exist no polynomial-time algorithm
apable of distinguishing (𝑓 (𝑥), ℎ(𝑥)) from (𝑓 (𝑥), 𝑟), where 𝑟 is a random
it string of length |ℎ(𝑥)| (|ℎ(𝑥)|, being the length of ℎ(𝑥) in bits). A
ard-core function can be more formally defined as follows.

efinition 1.3. Let ℎ ∶ {0, 1}∗ → {0, 1}∗ be a polynomial-time
omputable function such that |ℎ(𝑥1)| = |ℎ(𝑥2)| for all |𝑥1| = |𝑥2|. Let
(𝑛) = |ℎ(1𝑛)|. The function ℎ is called a hard-core function of function 𝑓
f the following probability ensembles 𝑋𝑛 and 𝑌𝑛 are computationally

indistinguishable:

Pr[(𝑎, 𝑏) ← 𝑋𝑛] = Pr[(𝑎, 𝑏) = (𝑓 (𝑟), ℎ(𝑟)); 𝑟 ← 𝑅𝑛],

Pr[(𝑎, 𝑏) ← 𝑌𝑛] = Pr[(𝑎, 𝑏) = (𝑓 (𝑟), 𝑟′); 𝑟 ← 𝑅𝑛, 𝑟
′ ← 𝑅𝑙(𝑛)].

Gennaro’s CSPRNG [22] is a well-known discrete logarithmic
SPRNG (DL-CSPRNG). Its security depends on the hardness of a
ariant of DLP called Discrete Logarithm with Short Exponents (DLSE).
n this PRNG (like many related ones), the trapdoor function as well
s the hard-core function are calculated using arithmetic operations.
n this paper, we propose a modified variant of Gennaro’s PRNG that
ses logical operations instead of arithmetic operations. We implement
he proposed CSPRNG, prove its security and evaluate its performance.
ore importantly, we demonstrate how replacing arithmetic opera-

ions by logical operations can shift the security-performance tradeoff
aradigm in the design and implementation of DL-CSPRNGs. Moreover,
e demonstrate that DLSE and the standard DLP can be reduced to each
ther.
2

(

.1. Goals and objectives

In DL-CSPRNGs, the trapdoor function and the hard-core function
re both calculated using arithmetic operations [22,23]. The use of
hese operations creates a critical security-performance tradeoff in the
esign and implementation of these PRNGs. Designers and researchers
sually maneuver in this tradeoff space via controlling the security
arameter, which is associated with the key length or any other pa-
ameter affecting the harness of the underlying problem. Lengthening
he security parameter will improve the security, while it lowers the
erformance. In this study, we attempt to enlarge the design space of
L-CSPRNGs via providing clear answers to the following questions.

• Is DLSE as hard as the standard DLP?
• Is it possible to break the tradition of using arithmetic operations

in the definition of trapdoor and hard-core functions? How can
this lead to the design of yet another CSPRNG?

• What is main the source of the critical security-performance
tradeoff in DL-CSPRNG? Is it possible and feasible to shift the
existing tradeoff paradigm in order to allow designers move more
flexibly in the design space?

.2. Contributions

Our contributions in this paper can be listed as follows.

• We demonstrate that DL-CSPRNGs can operate without
commonly-used, but inefficient modular arithmetic operations via
delicate use of the Mersenne primes. A Mersenne prime 𝑝 is a
prime number of the form 𝑝 = 2𝑞 − 1 for some prime 𝑞. The
Lenstra–Pomerance–Wagstaff conjecture states that there are in-
finitely many Mersenne primes. As of today, 51 Mersenne primes
are known. Also, the largest known prime number, 282589933 − 1,
is a Mersenne prime. The latter number is large enough for our
purposes in this paper. A Mersenne prime can be represented by
a binary string, wherein all bits are equal to ‘1’. Via designing
a high-performance variant of Gennaro’s PRNG, we show how
DL-CSPRNGs can make use of different operations supported by
state-of-the-art CPUs, including logical shifts and other logical
operations. We formally prove our PRNG to be cryptographically-
secure through bridging between the finite field F2𝑛 and the
𝑛-dimensional vector space (Z2)𝑛. We implement and evaluate our
proposed PRNG.

• Replacing word-wise arithmetic operations with bit-wise logi-
cal operations leads to two more achievements. First, logical
operations can be accomplished by CPU register without the
interference of the ALU, which considerably improves the per-
formance. Second, and more importantly, this replacement gives
raise to a shift in the security-performance trade-off paradigm
in the realm of DL-CSPRNGs. Since the accomplishment time of
logical operations does not depend on the security parameter, in-
creasing the security parameter size will improve security without
compromising performance. This allows other design objectives
such as area and power consumption to be more effectively
managed, which helps designers maneuver more flexibly in the
tradeoff space.

• Our PRNG (like Gennaro’s) is based on DLSE, which is a variant of
DLP [23]. We establish an equivalence between the standard DLP
and DLSE through proving them to be reducible to each other.

.3. Organization

The rest of this paper is organized as follows.
Section 2 discusses related works in its first five subsections; Sec-

ion 2.1 through Section 2.5. The sixth subsection of this section

Section 2.6) compares our work in this paper with the most relevant
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work. This section clarifies the research gap we intend to cover and
highlights our motivations in its last subsection (Section 2.7). Sec-
tion 3 designs, discusses and implements the proposed DL-CSPRNG.
Section 3.1 presents some preliminary discussions. Section 3.2 analyses
the computational complexity of the DLP variant that underpins the
proposed CSPRNG. Section 3.3 designs the CSPRNG, and Section 3.5
proceeds to implement it. Section 4 discusses the tradeoff space of the
ewly-introduced PRNG. Section 4.1 makes a minor modification to the
roposed generator, and Section 4.2 analyses the impact of the modifi-

cation. Section 5 evaluates the proposed PRNG in two different ways.
Section 5.1 presents the results obtained from performance evaluations,
and Section 5.2 reports the results of randomness tests. Lastly, Section 6
concludes the paper and suggests future works.

2. Related works

In this section, we present and overview on relevant research works
in order to clarify the gap we are going to cover in our study. This
paper proposes a DL-CSPRNG, which can be considered a modified
variant of Gennaro’s PRNG. In this section, we review relevant research
works. Starting from Section 2.1, we narrow down the scope of the
literature review in consecutive subsections, and make it closer to
our work in this paper. We study Gennaro’s PRNG, and compare it
with our proposed PRNGr in Section 2.5. In Section 2.6, we review
research works focusing on the security-performance tradeoff. Lastly,
in Section 2.7, we highlight a niche in related work, which motivates
our work in this paper.

2.1. True-Random Number Generators (TRNGs)

TRNGs have been of interest to the research community in re-
cent years [24]. They depend on physical and natural sources of
randomness such as noises [25] or uncertainties in fabrication tech-
nologies [26]. They are usually implemented in hardware using dif-
ferent implementation technologies including Complementary Metal–
Oxide–Semiconductor (CMOS) [27] and Field-Programmable Gate Ar-
ay (FPGA) [28]. Moreover, different enablers such as chaos the-
ry [29] and information theory [30] are used in the design of TRNGs.
specially, the use of photonics in the design of TRNGs, is a re-
ent research trend [31,32]. This technology makes it possible to
esign high-performance TRNGs [33]. Both security [34] and perfor-
ance [35] of these random number generators have been of concern

o researchers.

.2. Non-cryptographic PRNGs

The research literature comes with several PRNGs without security
roof. Different approaches have been proposed for the design of such
RNGs. To mention a few, one may refer to approaches based on
odular arithmetics [36] and congruences [37], approaches based

n artificial intelligence [38] and evolutionary algorithms [39], and
pproaches based on chaos theory [40], cellular automata [41] or
ecursive equations [42]. PRNGs of this type can be implemented in
oftware [43] or hardware [44]. Although the cryptographic security
f these PRNGs is not a research concern, their performance have been
focus for some researchers [45].

.3. Cryptographically-Secure Pseudorandom Number Generators (CSPR-
Gs)

Many CSPRNGs have been designed using chaotic systems [46] and
ircuits [47]. However, several other approaches have been used for
esigning PRNGs of this class. As examples of these approaches, we
an mention approaches based on neural networks [48] and cellular
utomata [49] as well as those based on elliptic curves [50], internal

state permutation [51], and transmission error sampling [52]. These
3

PRNGs can be implemented in software [53] or hardware [47]. In
addition to security, other objectives such as power consumption [54]
have been considered by researchers while designing PRNGs of this
class.

Each CSPRNG is based on an assumption associated with the com-
putational hardness of a mathematical problem (It is unknown whether
or not such a PRNG can be constructed without any assumption). For
example, deciding quadratic residuosity of prime numbers was posed
as a hard problem in [55]. Later on, this problem was proved to be as
hard as integer factorization [15]. A CSPRNG based on this problem
was proposed in [56]. The authors of [57] proposed a modification
to the PRNG introduced in [56]. The modified PRNG depends on the
problem of deciding quadratic residuosity modulo composite numbers
with unknown factorizations.

2.4. Discrete Logarithmic Cryptographically-Secure Pseudorandom Number
Generators (DL-CSPRNGs)

Blum and Micali [14] proposed the first CSPRNG based on ex-
ponentiation modulo a prime as a trapdoor function. The inverse of
this function requires the calculation of discrete logarithms which is
assumed to be a computationally-hard problem. These researchers also
coined the notion of hard-core functions, which build a framework for
constructing CSPRNGs along with trapdoor functions.

Different variants of DLP have been used in the design of CSPRNGs.
Among these variants, one may refer to [22,23,58] as well as Elliptic
Curve Discrete Logarithm Problem (ECDLP) [59–61].

2.5. The most relevant: Gennaro’s DL-CSPRNG

Our CSPRNG can be considered as a modification to Gennaro’s
PRNG [22,58], which is an improvement to the one proposed earlier
by Patel and Sundaram [23]. The mentioned PRNGs are both based on
the hardness of a variant of DLP. This variant of the problem searches
for discrete logarithms with short exponents over Z∗

𝑝 , where 𝑝 is a safe
rime. A prime number of the form 𝑝 = 2𝑞 + 1 is called a safe prime if
is also prime. In such a case, 𝑞 is referred to as a Sophie Germain

rime (named after the French mathematician Sophie Germain). An
xisting conjecture states that there are an infinite number of Sophie
ermain primes, but this is still unproven. The advantage of a safe
rime 𝑝 (from a computational point of view) is that the modulus is
s small as possible relative to 𝑝.

The technical essence in Gennaro’s PSRNG lies upon the following
roposition.

roposition 2.1 ([22]). Let 𝐴𝑖 = {(𝑔, 𝑔𝑥) ∣ 𝑥 ∈ 𝐵𝑖}, where 𝐵𝑖 = {2𝑖𝑢 ∣ 0 ≤
2𝑖𝑢 < 𝑝}∪{1+2𝑖𝑢 ∣ 0 ≤ 1+2𝑖𝑢 < 𝑝}. Then, 𝐴0 and 𝐴𝑛−𝑐 are computationally
indistinguishable on the assumption that DLP over Z∗

𝑝 with short exponents
is computationally-intractable in the worst case.

Let 𝑔 be a generator of Z∗
𝑝 . Let 𝑓1 ∶ Z𝑝−1 → Z∗

𝑝 and 𝑓2 be the
following functions:

𝑓1(𝑠) = (𝑔2
𝑛−𝑐

)𝑠−(𝑠 mod 2𝑛−𝑐 )𝑔𝑙𝑠𝑏1(𝑠) mod 𝑝,

𝑓2(𝑠) = 𝑙𝑠𝑏𝑛−𝑐−1(𝑚𝑠𝑏𝑛−1(𝑠)),

where elements in Z𝑝−1 or Z∗
𝑝 can be identified with their binary

representations of the corresponding natural numbers in the standard
encoding, 𝑙𝑠𝑏𝑘(𝑠) is the least significant 𝑘 bits of 𝑠 and 𝑚𝑠𝑏𝑘(𝑠) the
most significant 𝑘 bits of 𝑠. Let 𝑠0 be a random seed and 𝑠𝑖 = 𝑓1(𝑠𝑖−1)
and 𝑜𝑖 = 𝑓2(𝑠𝑖) for each 𝑖. Then the output sequence 𝑜1, 𝑜2,… is a
pseudorandom sequence on the assumption that the DLSE problem is
computationally-intractable in the worst case.

The mathematical description of our PRNG is similar to that of
Gennaro’s, but we eliminate the need for ALU-intensive arithmetic
computations, and replace them with register-level logical operations.

To this end, we first incorporate some techniques proposed in [62,63]
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into the construction of Gennaro’s DL-CSPRNG and devise a new PRNG
based on DLP over finite groups of prime order. Next, via adopting
finite groups of Mersenne prime order, we improve the performance
of the new PRNGs.

Specifically speaking, we utilize the multiplicative group F∗
2𝑛 of

Mersenne prime order. We take the security parameter 𝑛 as a Mersenne
exponent so that 2𝑛 − 1 becomes a Mersenne prime. The Mersenne
primality plays an important role in our PRNG. The use of Mersenne
primality allows us to bridge between the finite field F2𝑛 and the 𝑛-
dimensional vector space (Z2)𝑛. Some properties of Mersenne primality
have already been utilized in the construction of (non-cryptographic)
PRNGs, e.g., Mersenne Twister [64]. We assume that 𝑝 is a safe prime
in the sense of van Oorschot and Wiener [65] and 𝑐 = 𝜔(log 𝑛). Actually,

e show that some operation over the group is computable in almost
onstant time under the current CPU architecture, though its theoretical
ost depends on the security parameter from the viewpoint of compu-
ational complexity theory. We dexterously utilize the above property
o efficiently generate pseudorandom bits for the current cryptographic
ystems.

The security of our newly proposed PRNG relies on the hardness
f DLSE over F∗

2𝑛 of Mersenne prime order. In general, DLP over
Z2[𝑡]∕𝜑(𝑡))∗ (where 𝜑(𝑡) is an irreducible polynomial of degree 𝑛) is
ather easier than over Z∗

𝑝 (where 𝑝 is a prime number such that 𝑝 =
𝑞 − 1 and 𝑞 is also a prime number.) DLP over fields of characteristic
has been still an intractable problem (The best algorithm in the

symptotical sense is due to Coppersmith [66] and the best record is
iven by Thomé [67]).

Let us consider an 𝑛 × 𝑛 matrix over Z2 such that ord(𝑀) = 2𝑛 − 1.
hen we can take ⟨𝑀⟩ as a representation of F∗

2𝑛 . Matsumoto and
ishimura [64] specifies a matrix 𝑀 such that applying 𝑀 to a vector is

mplementable in several steps of logical and shift CPU operations and
rd(𝑀) = 2𝑛−1 in order to construct Mersenne Twister. Note that since
ersenne Twister is a linear PRNG, it is not suitable for cryptographic

se. DLP over ⟨𝑀⟩ is a search problem to find 𝑧 such that 𝑀1 = 𝑀𝑧
2

or given 𝑀1,𝑀2 ∈ ⟨𝑀⟩. In this paper, we study the following variant:
ind 𝑧 such that 𝑦 = 𝑥𝑀𝑧

1 for given a pair 𝑥, 𝑦 of 𝑛-dimensional vectors
nd 𝑀1 ∈ ⟨𝑀⟩. To produce pseudorandom bits, we use the matrix 𝑀
n the following way:

= 𝑥𝑀𝑧.

f we fix a value of 𝑧, then 𝑀𝑧 is still a linear mapping. We suppose
hat 𝑧 can take super-polynomially many values and this enables us
o avoid a weakness caused by the linearity. To make full use of the
ast implementability of computing 𝑥𝑀 within several steps of CPU
perations, we consider the following computation of 𝑥𝑀𝑧: let 𝑥 ←
𝑀 and repeat this process 𝑧 times naively. In the normal sense, this
rocedure is an exponential-time algorithm and thus considered to
e useless. However, since we can take a small value as 𝑧 and the
bove procedure is still faster under the concrete parameter setting,
e can generate pseudorandom bits with high speed. (Note that our
RNG satisfies the definition of CSPRNG because there exists another
olynomial-time (but practically slow) algorithm to generate pseudo-
andom bits.) Moreover, our variant of the DLP over F∗

2𝑛 is based not
n the standard representation (i.e., (Z2[𝑡]∕𝜑(𝑡))∗) but on a different
epresentation defined by some linear mapping 𝑀 . Thus, we discuss
elations between the standard DLP and our variant.

As we mentioned, the operation (i.e., applying 𝑀 to a vector)
s computable in almost constant time. This implies that we can set

larger value on the security parameter. We usually take 1024 or
048 as a value of the security parameter for the discrete logarithmic
ryptosystems. In our PRNG, we can take some value larger than 10 000
s a value of the security parameter without much increase of its
unning time. Thus, this makes room for relaxing other parameters
uch as the length of short exponent. In order to demonstrate the
erformance of our new PRNG, we concretely set the parameters for the
4

ractical use and experiment on the efficiency and statistical properties. r
.6. The security-performance tradeoff

CSPRNGs are typically computation-intensive as they depend on
rithmetic operations for calculating the trapdoor function as well as
he hard-core function. An attempt at resolving the tradeoff between
rovable security and performance has been made in [68,69] via in-
roducing high-performance, yet cryptographically-secure PRNGs based
n the security of block ciphers. Yarrow is another CSPRNG based
n block ciphers [70]. This PRNG was superseded by Fortuna [71,72]
ater on. Other researchers have worked on parallel implementations to
chieve higher performance [73]. In another attempt, Gollmann [74,
5] proposed an architecture based on cascaded Linear Feedback Shift
egisters (LFSRs) to improve performance without compromising secu-
ity. An LFSR is a shift register with a feedback loop containing some
ogical XOR gates implementing modulo-2 addition. LFSRs have found
heir applications in many cryptographic schemes [8,76].

.7. Motivations

The critical tradeoff between security and performance is the source
f many complexities in the design of DL-CSPRNGs. This complexity
akes it difficult to enlarge the design space of such PRNGs. Some

esearchers have attempted to maneuver in the existing tradeoff space
ia improving performance without compromising security. Solutions
rovided by these researchers adversely affect other design objectives
uch as area and power consumption. The above discussions clarify the
eed for a tradeoff paradigm shift in this realm. However, to the best
f our knowledge, there is no research focusing on a such a paradigm
hift in this area. This niche motivates our work in this paper.

. The proposed CSPRNG: Design and implementation

In this section, we introduce, design and implement our proposed
SPRNG. Section 3.1 presents some preliminary discussions. Section 3.2
iscusses the computational complexity of the DLP underlies our PRNG.
ection 3.3 designs the PRNG. Lastly, Section 3.5 proposes an imple-
entation for the PRNG.

.1. Preliminaries

As the basis of the security of our PRNG, we assume that some
ariant of the DLSE problem over F∗

2𝑛 of Mersenne prime order is
omputationally intractable in the worst case. Namely, if there exists a
robabilistic polynomial-time algorithm that distinguishes our pseudo-
andomness from the true randomness, then there exists a probabilistic
olynomial-time algorithm that solves any instances of the variant of
he DLSE problem. A Mersenne prime 𝑝 is of the form 𝑝 = 2𝑝′ −1 where
′ is also a prime, which is called a Mersenne exponent. For the standard
ealization of F∗

2𝑛 , the following is well known: (Z2[𝑡]∕𝜑(𝑡))∗, where
(𝑡) ∈ Z2[𝑡] is a primitive polynomial of degree 𝑛. We write, for each
ersenne exponent 𝑛, 𝖦𝑛 = (Z2[𝑡]∕𝜑(𝑡))∗. (Note that whenever we say
𝑛, some primitive polynomial that forms F2𝑛 is implicitly assumed.)
e note that since each 𝖦𝑛 is a multiplicative group of odd prime order,

.e., a cyclic group, where every non-identity element is a generator of
he group, DLP and the DLSE problem over 𝖦𝑛 are naturally defined.

In this paper, we consider the DLP in a slightly different way. Let
∈ 𝖦𝑛 be a non-identity element. We can naturally identify 𝑥 with

n 𝑛-dimensional row vector over Z2. Let 𝑀 be an 𝑛 × 𝑛 matrix over
2. Matsumoto and Nishimura [64] gave a way to construct matrices

such that {𝑥𝑀 𝑖 ∶ 0 ≤ 𝑖 ≤ 2𝑛 − 2} is isomorphic to 𝖦𝑛. We call
uch a special matrix generator matrix. This means that for every pair 𝑥
nd 𝑦 of 𝑛-dimensional non-zero row vectors over Z2 there exists some
nique exponent 𝑖 satisfying 𝑦 = 𝑥𝑀 𝑖. Let 𝖬𝑛 = {𝑀 𝑖 ∶ 0 ≤ 𝑖 ≤ 2𝑛 − 2}.
omputing 𝑧 such that 𝑦 = 𝑥𝑀𝑧 from given 𝑀 , 𝑥 and 𝑦 is considered as
variant of DLP. Let mDLP denote our variant of the DLP and DLP the
LP over 𝖦𝑛, i.e., the standard DLP. We discuss computational relations
etween mDLP and DLP in the next subsection. We also denote, by
DLSEP and DLSEP, the short exponent variants of mDLP and DLP,

espectively.
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3.2. Computational complexity of the underlying DLP variant

Here, we consider the computational complexity of mDLP and
DLSEP. Recall that mDLP is a search problem to find 𝑧 for given
,𝑀, 𝑥𝑀𝑧. Let 𝐼 be the identity matrix of dimension 𝑛 over Z2. Let
𝑝(𝑡) = det(𝑀 − 𝑡𝐼) be the characteristic polynomial of the matrix 𝑀 .
e note that degree(𝑐𝑝(𝑡)) = 𝑛 and 𝑐𝑝(𝑀) = 𝑂. Hence

∀𝑖 ≥ 0,𝑀 𝑖 = 𝑎(𝑀), where 𝑎(𝑡) = 𝑡𝑖 mod 𝑐𝑝(𝑡)

nd thus 𝑀 𝑖 is a linear combination of {𝐼,𝑀,𝑀2,… ,𝑀𝑛−1}. Since by
he assumption that 𝖬𝑛 has cardinality 2𝑛−1 it follows that the matrices
n {𝐼,𝑀,𝑀2,… ,𝑀𝑛−1} are linearly independent. It also follows that
iven 𝑥,𝑀, 𝑦 = 𝑥𝑀𝑧 we can compute 𝑀𝑧 without computing 𝑧 by

solving the equation (w.r.t. 𝑐0,… , 𝑐𝑛−1) below.

𝑥
𝑛−1
∑

𝑖=0
𝑐𝑖𝑀

𝑖 = 𝑦.

Moreover, we can find a polynomial 𝑏(𝑡) of degree less than 𝑛 such that
𝑏(𝑀) = 𝑀𝑧. Hence mDLP is reducible to finding an integer 𝑧 such that
𝑡𝑧 = 𝑏(𝑡) mod 𝑐𝑝(𝑡). This is exactly the DLP over (Z2[𝑡]∕𝑐𝑝(𝑡))∗. Hence,
we have the following.

Theorem 3.1. Suppose that there exists an efficient algorithm to solve
DLP on average. Then, there exists an efficient algorithm to solve mDLP on
average.

Next, we consider the reducibility from DLP to mDLP. What we
have is only the reducibility in the worst case. By considering the
construction of a matrix 𝑀 such that, for all 𝑥, 𝑥𝑀 = 𝑥𝑔, where 𝑔
is a generator, we have the following.

Theorem 3.2. Suppose that there exists an efficient algorithm to solve
mDLP in the worst case. Then, there exists an efficient algorithm to solve
DLP in the worst case.

Thus, we can say that DLP and mDLP are equivalent problems
with respect to the worst-case reduction. It is still open whether the
equivalence with respect to the average-case reduction holds or not.

We mention the computational complexity of the DLP with short
exponents. By a similar argument, we have the following.

Theorem 3.3. Suppose that there exists an efficient algorithm to solve
DLSEP on average. Then, there exists an efficient algorithm to solve
mDLSEP on average.

Theorem 3.4. Suppose that there exists an efficient algorithm to solve
mDLSEP in the worst case. Then, there exists an efficient algorithm to solve
DLSEP in the worst case.

3.3. Design

Our PRNG can be regarded as a variant of Gennaro’s. We will modify
his PRNG stepwise. Recall 𝑐 = 𝜔(log 𝑛). (That is, 𝑐 grows faster than
log 𝑛 for any constant 𝑎 and 2𝑐 grows faster than any polynomial in
.) First, we consider the replacement of the underlying group Z∗

𝑝 for
ennaro’s PRNG with the group 𝖦𝑛 of Mersenne prime order. Let

𝑡𝑎𝑡1(𝑧, 𝑔) = (𝑔𝑚𝑠𝑏𝑐 (𝑧)∥0
𝑛−𝑐

, 𝑔),

𝑜𝑢𝑡1(𝑧, 𝑔) = 𝑙𝑠𝑏𝑛−𝑐 (𝑧),

here 𝑔 ∈ 𝖦𝑛 is a generator and 𝑢 ∥ 𝑣 denotes the concatenation of
inary strings 𝑢 and 𝑣. (Remember that any elements in F2𝑛 can be
dentified with natural numbers or binary strings from the context.)
tart with a random seed 𝑧(0) ∈ F2𝑛 . Let 𝑠0 = (𝑧(0), 𝑔) and set 𝑠𝑖 =
𝑧(𝑖), 𝑔) = 𝑠𝑡𝑎𝑡1(𝑠𝑖−1) and 𝑜𝑖 = 𝑜𝑢𝑡1(𝑠𝑖) for each 𝑖. Then 𝑜1, 𝑜2,… is

a pseudorandom sequence on the assumption that DLSEP over 𝖦𝑛
s computationally intractable in the worst case. Though the above
5

modification is straightforward, we have to prepare some technical
claim to guarantee its security. To complete a proof of the security for
the above PRNG, the following lemma shown independently by Koshiba
and Kurosawa [62] and Gennaro, Krawczyk and Rabin [63] is sufficient
instead of Proposition 2.1.

Lemma 3.5 ([62,63]). Let 𝐺 be a group of (any) prime order 𝑞 and let
𝑖 = {(𝑔, 𝑔𝑥) ∣ 𝑥 ∈ 𝐵𝑖}, where 𝐵𝑖 = {2𝑖𝑢 ∣ 0 ≤ 2𝑖𝑢 < 𝑞}. Then, 𝐴0 and 𝐴𝑛−𝑐

are computationally indistinguishable on the assumption that DLP over 𝐺
with short exponents is computationally-intractable in the worst case.

While the PRNG induced from the pair of functions 𝑠𝑡𝑎𝑡1 and 𝑜𝑢𝑡1
s cryptographically secure, its speed is as slow as any other number-
heoretic PRNGs. Thus, we consider another modification in the follow-
ng. (Note that the modification is possible since our underlying group
s of a Mersenne prime order.) Let

𝑡𝑎𝑡2(𝑣 ∥ 𝑢, 𝑔) = (𝑔0
𝑛−𝑐∥𝑢, 𝑔),

𝑜𝑢𝑡2(𝑣 ∥ 𝑢, 𝑔) = 𝑚𝑠𝑏𝑛−𝑐(𝑣 ∥ 𝑢) = 𝑣.

sing the above pair of functions stat2 and out2, we can similarly gener-
te a pseudorandom sequence on the same computational assumption.
rom the technical point of view, this implies that taking the most
ignificant bits is a ‘‘hard-core’’ function of the discrete logarithmic
unction as well as the consecutive least significant bits when we take
roups of Mersenne prime order as underlying group for a PRNG. This
roperty is peculiar to groups of Mersenne prime order and comes from
he fact if 𝑤 ∥ 𝑏 satisfies that 𝑦 = 𝑔𝑤∥𝑏 for some 𝑦 then 𝑏 ∥ 𝑤 satisfies
hat 𝑦 = (𝑔2)𝑏∥𝑤 and vice versa, where 𝑏 denotes a bit.

Now, we are ready to describe our new PRNG. Let

𝑡𝑎𝑡3(𝑣 ∥ 𝑢, 𝑥,𝑀) = (𝑥𝑀0𝑛−𝑐∥𝑢, 𝑥,𝑀),

𝑜𝑢𝑡3(𝑣 ∥ 𝑢, 𝑥,𝑀) = 𝑚𝑠𝑏𝑛−𝑐 (𝑣 ∥ 𝑢) = 𝑣.

tart with a random seed 𝑧(0) and 𝑥, which is a pair of 𝑛-dimensional
on-zero vectors over Z2. We also have to select a matrix 𝑀 ∈ 𝖬𝑛,
hich we will show in the next subsection. Let 𝑠0 = (𝑧(0), 𝑥,𝑀) and set
𝑖 = (𝑧(𝑖), 𝑥,𝑀) = 𝑠𝑡𝑎𝑡3(𝑠𝑖−1) and 𝑜𝑖 = 𝑜𝑢𝑡3(𝑠𝑖) for each 𝑖. Then we output
1, 𝑜2,… as a pseudorandom sequence. We denote this PRNG by 𝑅.
onsequently, we obtain the following.

heorem 3.6. The PRNG 𝑅 is cryptographically-secure on the assump-
ion that mDLSEP is computationally intractable in the worst case.

By Theorem 3.4, the security of 𝑅 can be guaranteed even on the
tandard intractability assumption.

orollary 3.7. The PRNG 𝑅 is cryptographically-secure on the assump-
ion that DLSEP is computationally intractable in the worst case.

We will show that, in the next subsection, the cost of computing
𝑡𝑎𝑡3 and 𝑜𝑢𝑡3 are quite low under the current CPU architecture and thus
t is possible to generate pseudorandom sequences with high-speed in
practical sense.

.4. Seed management

The proposed RNG uses the seed generation algorithm introduced
n [77]. This algorithm has been used in some other research works as
ell [78]. This algorithm is as follows.

1. A 60-digit Hexadecimal ([0 − 9, 𝐴 − 𝐹 ]) string 𝐻 = ℎ1ℎ2 ⋯ℎ60
is chosen manually or randomly. Then 𝐻 is decomposed into
10 parts 𝐻1 through 𝐻10, such that ∀𝑖 ∈ [1 − 10] ∶ 𝐻𝑖 =
ℎ ⋯ℎ .
6∗(𝑖−1)+1 6∗(𝑖−1)+6
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2. The following calculations are performed considering 32-bit
floating-point arithmetic with 10−7 precision,

𝑥𝑛+1 ← 𝑟𝑒𝑚
((

1 − 𝛼𝑥2𝑛 + 𝛽𝑥𝑛−1
)

∗ 101, 1
)

, (3.1)

𝑦𝑛+1 ← 𝑟𝑒𝑚
(

𝛾 sin
(

𝜋𝑥𝑛−1𝑦𝑛−1
)

∗ 101, 1
)

. (3.2)

Here 𝑛 is the number of iteration, and 𝑥𝑛 and 𝑦𝑛 represent the
state of the recursive algorithm, with 𝑥0 = 𝑟𝑒𝑚

(

𝐻7 +𝐻8, 1
)

and 𝑦0 = 𝑟𝑒𝑚
(

𝐻9 +𝐻10, 1
)

being initial conditions. Also, 𝑟𝑒𝑚
is the remainder operation, and 𝛼 = 𝑟𝑒𝑚

(

𝐻1 +𝐻2, 1
)

, 𝛽 =
𝑟𝑒𝑚

(

𝐻3 +𝐻4, 1
)

and 𝛾 = 𝑟𝑒𝑚
(

𝐻5 +𝐻6, 1
)

are control parame-
ters.

3. The following computations are performed,

𝑋𝑅 = 𝑟𝑜𝑢𝑛𝑑
(

𝑥𝑛 ∗
(

27+1 − 1
))

, (3.3)

𝑋𝑅 = 𝑟𝑜𝑢𝑛𝑑
(

𝑥𝑛 ∗
(

27+1 − 1
))

, (3.4)

where 𝑟𝑜𝑢𝑛𝑑 is the round-to-the-nearest operation.

In each step of the above algorithm, concatenating 𝑥 and 𝑦 creates
16 pseudorandom bit. Thus, seven parallel instances of the algorithm
can create a 128-bit seed.

3.5. Implementation

First, we discuss how to select a generator matrix 𝑀 . We mentioned
that Matsumoto and Nishimura [64] gave a way to construct a matrix
𝑀 such that {𝑥𝑀 𝑖 ∶ 0 ≤ 𝑖 ≤ 2𝑛 − 2} is isomorphic to 𝖦𝑛. Their
construction of such a matrix 𝑀 is so as to compute 𝑥𝑀 as simply as
possible, especially for 32-bit CPU machines. In order to give a way to
implement our PRNG, we review a (non-cryptographic) PRNG, called
Mersenne Twister (MT), proposed by Matsumoto and Nishimura [64].
MT is based on the following linear recurrence

𝐱𝑘+𝑑 ∶= 𝐱𝑘+𝑚 ⊕ (𝐱𝑢𝑘 ∥ 𝐱𝑙𝑘+1)𝐴, (𝑘 = 0, 1,…), (3.5)

where each 𝐱𝑖 is a 32-bit string. There are several constants to specify
the MT algorithm; an integer 𝑑, which is the degree of the recurrence,
an integer 𝑟 (0 ≤ 𝑟 ≤ 31), an integer 𝑚 (1 ≤ 𝑚 ≤ 𝑑), and a 32 × 32
matrix 𝐴 over Z2. We have to give 𝐱0,… , 𝐱𝑑−1 as initial seeds. In the
right-hand side of the recurrence, 𝐱𝑢𝑘 means the upper 32 − 𝑟 bits of 𝐱𝑘,
and 𝐱𝑙𝑘+1 the lower 𝑟 bits of 𝐱𝑘+1.

Matsumoto and Nishimura [64] choose a matrix 𝐴 of the following
form so that multiplication by 𝐴 becomes very fast. Actually, their
choice is written as

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
1

⋱
1

𝑎31 𝑎30 ⋯ ⋯ 𝑎0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where the unspecified entries are 0’s and each of 𝑎31,… , 𝑎0 is either 0
or 1, then the calculation of 𝐱𝐴 can be done by using bit operations
only:

𝐱𝐴 =

{

shif tright(𝐱) if 𝑥0 = 0,
shif tright(𝐱)⊕ 𝐚 if 𝑥0 = 1,

(3.6)

where 𝐚 = 𝑎31 ∥ 𝑎30 ∥ ⋯ ∥ 𝑎0.
The state transition is written by the following linear mapping 𝑀 .

𝑀 ∶ (𝐱𝑢0, 𝐱1,… , 𝐱𝑑−1) ↦ (𝐱𝑢1, 𝐱2,… , 𝐱𝑑 )

By a general theory of linear recurrence, each entry of the (32𝑑 −
𝑟)-dimensional vector is a linear recurring sequence satisfying the re-
currence corresponding to the characteristic polynomial 𝜑𝑀 (𝑡) of the
mapping 𝑀 . The sequence attains the maximal period 2𝑛−1 = 232𝑑−𝑟−1
6

if and only if 𝜑𝑀 (𝑡) is primitive, i.e., 𝑡 generates the multiplicative
group (Z2[𝑡]∕𝜑𝑀 (𝑡))∗. Since the characteristic polynomial is of the form

𝜑𝑀 (𝑡) = det(𝑀 − 𝑡𝐼)
= (𝑡𝑑 + 𝑡𝑚)32−𝑟(𝑡𝑑−1 + 𝑡𝑚−1)𝑟 + 𝑎0(𝑡𝑑 + 𝑡𝑚)32−𝑟(𝑡𝑑−1 + 𝑡𝑚−1)𝑟−1

+ ⋯ + 𝑎𝑟−2(𝑡𝑑 + 𝑡𝑚)32−𝑟(𝑡𝑑−1 + 𝑡𝑚−1) + 𝑎𝑟−1(𝑡𝑑 + 𝑡𝑚)32−𝑟

+ 𝑎𝑟(𝑡𝑑 + 𝑡𝑚)32−𝑟−1 +⋯ + 𝑎32−2(𝑡𝑑 + 𝑡𝑚)32−𝑟−1 + 𝑎32−1
we have to choose parameters 𝑎0,… , 𝑎31 and 𝑚 such that 𝜑𝑀 (𝑡) be-
comes a primitive polynomial. (Though the choice of parameters can
be done with time 𝑂(𝑛3), this procedure is actually the most time-
consuming part in a practical sense. Fortunately, we can run this part
as pre-processing for generating pseudorandom bits.)

A great advantage is that the state vector assumes every bit-pattern
in the (32𝑑 − 𝑟)-dimensional vector and appears once in a period,
except for the zero state. Consequently, the sequence is uniformly
distributed in the 𝑛-dimensional space. This also means that MT is not
only a pseudorandom ‘number’ generator but also a pseudorandom ‘bit’
generator. Since any initial seed except for zero lies on the same orbit,
the choice of an initial seed does not affect the randomness for the
whole period.

From Eqs. (3.5) and (3.6), it is easy to see that an implementa-
tion of ‘‘𝑥 ← 𝑥𝑀 ’’ is possible in several steps of logical and shift
operations on 32-bit words by using the standard pointer technique
in the programming. We note that the computation of ‘‘𝑥 ← 𝑥𝑀 ’’
does not depend heavily on the value of 𝑛. This means that we can
take the value of 𝑛 as large as we like. We note that the value of 𝑛
must be a Mersenne exponent and there are many restrictions on the
real computer architecture. For example, our generator with the setting
𝑛 = 19937 is efficient enough, while the standard arithmetic computa-
tion over 19937-bit integers is not suitable for practical cryptographic
purpose. In case of 𝑛 = 19937, parameters 𝑚 = 397 and 𝐚 = 𝟶𝚡𝟿𝟿𝟶𝟾𝙱𝟶𝙳𝙵

for example make 𝜑𝑀 (𝑡) primitive.
For more details for the MT algorithm, see [64]. Some variants of

MT and parameters for 64-bit CPUs can be found in [79].
To implement our PRNG 𝑅, we have to mention a way to compute

𝑥𝑀𝑧, where |𝑧| = 𝑐. For the parameter 𝑛 = 19937, we may set 𝑐 as small
as 14. We consider the following process: let 𝑥 ← 𝑥𝑀 and repeat this
process 𝑧 times naively. The former part ‘‘𝑥 ← 𝑥𝑀 ’’ can be implemented
within several steps of CPU instructions and the number of repetitions
is at most 214. We will see that this implementation is practically good
in the next section.

4. Tradeoff space

Our main purpose in this paper was to reshape the tradeoff space
in DL-CSPRNGs. In this section, we evaluate the impact of design
parameters on the design objectives of our proposed generator. This
way, we clarify the tradeoff space in the proposed generator.

4.1. A minor modification

For our PRNG 𝑅, the value of 𝑐 must be small to generate pseudo-
random bits fast. However, if 𝑐 is too small then the mDLSEP becomes
easier. This means that it is difficult to choose a good value of 𝑐.
To overcome this difficulty, we consider a further minor heuristic
modification. Let

𝑠𝑡𝑎𝑡4(𝑣 ∥ 𝑢, 𝑥,𝑀) = (𝜋(𝑥)𝑀0𝑛−𝑐∥𝑢, 𝜋(𝑥),𝑀),

𝑜𝑢𝑡4(𝑣 ∥ 𝑢, 𝑥,𝑀) = 𝑣,

where 𝜋 is an efficiently computable length-preserving permutation.
We may use another generator matrix 𝑀 ′, which can be selected by
the same way to select 𝑀 , as a possible candidate of 𝜋 and compute
𝜋(𝑥) = 𝑥𝑀 ′. Using the pair of functions stat4 and out4, we can sim-
ilarly generate a pseudorandom sequence on the same computational
assumption. We denote, by ′, the PRNG induced from the functions
stat and out .
4 4
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4.2. Tradeoffs

As we have seen, our PRNGs 𝑅 and ′ are variants of Gennaro’s
RNG. A typical value for the security parameter 𝑛 in case of Gennaro’s
RNG and other number-theoretic ones is either 𝑛 = 1024 or 𝑛 = 2048.
s we know, the value 𝑛 = 1024 results from the balance of the
ecurity and the speed performance under the current computers. The
ottleneck with respect to the speed of usual number-theoretic PRNG
s the heaviness of arithmetic computation over integers of 𝑛-bit string.
n the other hand, our PRNGs 𝑅 and ′ do not require arithmetic
omputation. Thus, we can take a larger value for 𝑛. Even if we take
large value for 𝑛, the speed for generating pseudorandom bits is

lmost constant as long as we keep the parameter 𝑐 small. Actually,
e implemented ′ with 𝑛 = 19937 and 𝑐 = 14. The choice 𝑛 = 19937

s so as to select other MT parameters in reasonable time, say, a day;
he choice 𝑐 = 14 is so as to generate pseudorandom bits fast to be used
n fast cryptographic primitives. Furthermore, we should mention the
ength 𝑐 = 14 of the exponents. By taking a quite large value of security
arameter 𝑛, we pay the price for the short exponents. Fortunately, due
o the construction of our PRNG ′, we can avoid the increase of
he running cost for generation of pseudorandom bits, even when the
ecurity parameter is pretty large. In short, we can say that our PRNG
exterously introduces advantageous points in a new tradeoff which
as never appeared in the literature before.

Exactly speaking, the security is guaranteed only when generator
atrices are uniformly distributed. For the sake of fast implementation,
e have to compromise the provable security. As a generator matrix,
e use a fixed matrix 𝑀 . (Note that what we mean by ‘‘fixing a matrix
’’ is the use of the special matrix that comes from the MT algorithm

hough the provable security requires that generator matrices should be
istributed over 𝖬𝑛. However, 𝖬𝑛 implicitly assumes its characteristic
olynomial and we can choose MT parameters so as to change the
nderlying characteristic polynomial. Hence, ‘‘fixing a matrix 𝑀 ’’ does
ot mean ‘‘considering only one matrix 𝑀 ’’.)

By taking other concrete parameters into account, we choose the
ollowing setting.

𝑡𝑎𝑡(𝑧, 𝑥) = (𝜋(𝑥)𝑀 𝑙𝑠𝑏14(𝑧), 𝜋(𝑥)),

𝑜𝑢𝑡(𝑧, 𝑥) = 𝑚𝑠𝑏4096(𝑧).

e adopt another fixed linear mapping 𝑀 ′ as 𝜋(𝑥) = 𝑥𝑀 ′. Due to the
acrifice of too short exponents, we abandon some hard-core bits. In
his case, we use a fraction of the hard-core bits less than a quarter.

For an implementation of the exponentiation 𝑦 = 𝑥𝑀 𝑙𝑠𝑏(𝑧), we
ultiply the base point 𝑥 by the matrix 𝑀 naively 𝑙𝑠𝑏(𝑧) times. Since

𝑙𝑠𝑏(𝑧)| = 𝜔(log 𝑛), this algorithm is a super-polynomial-time one.
We note that there is a polynomial-time algorithm to compute 𝑦 =
𝑀 𝑙𝑠𝑏(𝑧).) However, a super-polynomial-time algorithm with concrete
arameters may be faster than any other polynomial-time algorithm
ith the same parameters and this is the case.

. Evaluations

In this section, we evaluate our proposed generator in two different
ays. In Section 5.1, we evaluate the performance of the generator. In
ection 5.2, we apply statistical randomness tests.

.1. Performance evaluation

Under those parameters discussed in the previous section, we have
rototypically implemented ′ in C language (without any special
ibrary) on an 800 MHz Pentium III. We ran ′ using randomly
hosen seeds and obtained on average 55.0 × 106 pseudorandom bits
er second. A comparison with state-of-the-art RNGs implemented on
entium shows that our RNG is comparable with them in terms of
erformance. We use a rough measure for this comparison to which we
efer as the Bit Per Clock Pulse (BPCP). BPCP is defined as the number
7

f pseudorandom bits per CPU clock pulse. This measure is equal to the
roportion of the number of generated pseudorandom bits per second
o the clock rate of the CPU. This measure is equal to 55.0×106

800×106 = 0.06875.
Aiello, Rajagopalan and Venkatesan proposed a fast PRNG based on
block ciphers [69] and reported that their sample construction of PRNG
based on DES and MD5 ran at about 20 Mb/s on a 233 MHz Pentium
II. BPCP is equal to 0.08584 for their proposed PRNG. As seen from
the BPCPs, our RNG reduces the performance by 20% compared to
the one proposed in [69]. Part of this reduction can be compensated
using compiler optimization techniques. Moreover, a more accurate
comparison measure may reveal that the real performance reduction
is less than 20%. There is also a more recent RNG implemented on
Pentium (using C) that can be compared with our ′. This RNG has
been reported in [80]. Although the authors of [80] have not directly
reported the performance of their RNG, a simple calculation shows that
they have managed to generate 124×106 pseudorandom bits per second
on a 1.6 GHz Pentium. This leads to a BPCP of 0.0775. Compared to
the latter RNG, our ′ leads to a performance reduction of 11%. Thus,
we can state that though we utilize a number-theoretic assumption, our
generator ′ produces pseudorandom bits pretty fast.

5.2. Randomness test

5.2.1. Evaluation environment and methodology
In the presence of a sufficiently-large security parameter, the exis-

tence of provable security eliminates the need for statistical randomness
tests in the design of CSPRNG. However, in our case, we have fixed
a parameter called the generator matrix. Thus, we have considered
randomness test to show that we have not sacrificed randomness in
our security-performance tradeoff paradigm shift.

Our PRNG generator with the concrete parameters was subject
to a typical statistical test, the National Institute of Standards and
Technology statistical test suite for random and pseudorandom number
generators for cryptographic applications (NIST SP 800-22) [81]. This
suite contains 15 delicately-chosen statistical tests that focus on a
variety of different types of non-randomness that could exist in a
sequence. Each test returns a level of significance referred to as the P-
Value, which is compared with 0.01 taken as the threshold significance.
A 𝑃 -value above 0.01 returned by a given test, indicates that the stream
has been deemed random by the test. The 15 tests in the NIST SP 800-22
test suite are briefly introduced in Table 1.

Some research works, especially those focusing on chaotic encryp-
tion, have used some other randomness tests [82,83]. However, NIST
SP 800-22 looks quite enough for non-chaotic RNGs (because of its
comprehensiveness).

For each test in the NIST SP 800-22 suite, we randomly chose 300
seeds and generated 300 binary sequences of 1 024 000 bits using our
CSPRNG ′. The reference distribution for each test statistic is either
a normal distribution or a 𝜒2 distribution.

This setting is the same as the randomness tests for the AES selec-
tion. We note that we do not have to pay much attention to select seeds
since pseudorandom sequences generated by our RNG are not sensitive
to the seeds. However, the procedure for seed management has been
discussed in Section 3.4.

The proposed DL-CSPRNG has been implemented using C and the
NIST randomness tests have been conducted on the generated stream
of random numbers using Python 3.6.

5.2.2. Evaluation results
The P-Value obtained from each of the 15 tests in the NIST SP

800-22 suite can be found in Table 2.
The fourth entry of each row in Table 2 shows whether the test

mentioned in the second entry has deemed the RNG random or not. As

seen in the table, our CSPRNG has been deemed random by all tests!
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Table 1
The tests in the NIST test suite.

Test Explanation

Frequency test
(Monobit) and
Frequency test within a
block

Check the significance of the deviation of global
and block-level bias of 0s to 1s.

Runs test and Test for
longest runs of ones in
a block

Check the number of global and block-level runs
of constant bit values in the input stream. The
goal is to check the stream oscillate significantly
faster or slower than expected.

Binary matrix rank test Considers the input stream as a series of matrices
and checks the significance of linear dependence
between the matrices.

Discrete Fourier
transform (Spectral)
test

Checks the periodic features of the stream using a
frequency-domain analysis.

Non-overlapping
template matching test

Searches for some particular, aperiodic, patterns in
the stream.

Overlapping template
matching test

Searches for predefined target substrings in the
stream.

Maurer’s universal
statistical test

Checks whether the stream can be significantly
compressed in a lossless way.

Linear complexity Calculates the linear complexity of the stream and
compares its deviation from some predefined
random streams.

Serial test Searches in the input string for some specific
patterns of fixed lengths. Checks if the patterns
occur in the stream significantly more/less
frequently than expected.

Approximate entropy
test

Searches the input stream, calculates the
occurrence frequencies of patterns of lengths 𝑚
and 𝑚 + 1 (for different values of 𝑚) and calculates
their difference.

Cumulative sums test Searches for overall bias towards ones or zeros in
the input stream via converting all 0s to −1s and
calculative cumulative sums of the result.

Random excursions test
and Random excursions
variant test

Check whether the number of visits to a specific
state within a random walk exceeds predefined
thresholds.

Table 2
NIST test results.

No. Test P-Value Random

1 Frequency test (Monobit) 0.10139947630582019 Yes
2 Frequency test within a block 0.11022750018311041 Yes
3 Run test 0.34891430107143900 Yes
4 Longest run of ones in a block 0.26514113400715193 Yes
5 Binary matrix rank test 0.41129939192050958 Yes
6 Discrete Fourier transform (Spectral) test 0.52964558440337472 Yes
7 Non-overlapping template matching test 0.24301525001550438 Yes
8 Overlapping template matching test 0.67120034216812000 Yes
9 Maurer’s universal statistical test 0.31481563123129101 Yes
10 Linear complexity test 0.32290109224410570 Yes
11 Serial test 0.20209006607334941 Yes
12 Approximate entropy test 0.41175253945781126 Yes
13 Cumulative sums test 0.68170314140237612 Yes
14 Random excursion test 0.19611408410552007 Yes
15 Random excursion variant test 0.38423933203735900 Yes

6. Conclusions and further works

In this paper, we first showed that (our variant of) Discrete Log-
arithm with Short Exponents (DLES) and the standard DLP program
are reducible to each other. This confirms the hardness of DLES.
Then we presented a new sight on the DLP that allows incompara-
bly fast exponentiations using Mersenne primes. Next, we replaced
arithmetic operations by logical operations in a commonly-used DLES-
based PRNGs to introduce an improved variant. We evaluated the
performance and the randomness of our proposed generator in addition
8

to proving its security. Our most important achievement in this research
is a paradigm shift in the security-performance tradeoff in the design
of DL-CSPRNG. This is achieved thanks to the constant accomplishment
time of logical operations in the state-of-the-art CPUs. Our work in this
paper can be continued via reshaping the tradeoff space in CSPRNGs
based on other DLP variants such as Elliptic Curve Discrete Logarithm
Problem (ECDLP).
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