
IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 2, APRIL 2017 563

An Efficient and Fine-Grained Big Data Access
Control Scheme With Privacy-Preserving Policy
Kan Yang, Qi Han, Hui Li, Member, IEEE, Kan Zheng, Senior Member, IEEE, Zhou Su, Member, IEEE,

and Xuemin Shen, Fellow, IEEE

Abstract—How to control the access of the huge amount of
big data becomes a very challenging issue, especially when big
data are stored in the cloud. Ciphertext-policy attribute-based
encryption (CP-ABE) is a promising encryption technique that
enables end-users to encrypt their data under the access poli-
cies defined over some attributes of data consumers and only
allows data consumers whose attributes satisfy the access poli-
cies to decrypt the data. In CP-ABE, the access policy is attached
to the ciphertext in plaintext form, which may also leak some
private information about end-users. Existing methods only par-
tially hide the attribute values in the access policies, while the
attribute names are still unprotected. In this paper, we pro-
pose an efficient and fine-grained big data access control scheme
with privacy-preserving policy. Specifically, we hide the whole
attribute (rather than only its values) in the access policies. To
assist data decryption, we also design a novel attribute bloom
filter to evaluate whether an attribute is in the access policy
and locate the exact position in the access policy if it is in
the access policy. Security analysis and performance evaluation
show that our scheme can preserve the privacy from any linear
secret-sharing schemes access policy without employing much
overhead.

Index Terms—Access control, attribute bloom filter (ABF),
big data, linear secret-sharing scheme (LSSS) access structure,
privacy-preserving policy.

I. INTRODUCTION

IN THE era of big data, a huge amount of data can be gen-
erated quickly from various sources (e.g., smart phones,

sensors, machines, social networks, etc.). Toward these big
data, conventional computer systems are not competent to store
and process these data. Due to the flexible and elastic com-
puting resources, cloud computing is a natural fit for storing

Manuscript received February 28, 2016; revised April 27, 2016; accepted
May 15, 2016. Date of publication May 23, 2016; date of current version
April 28, 2017. This work was supported in part by the NSERC Canada,
and in part by the NSFC China under Grant U1401251 and Grant 61571286.
(Corresponding author: Qi Han.)

K. Yang and X. Shen are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2J 3G1, Canada (e-mail:
kan.yang@uwaterloo.ca; sshen@uwaterloo.ca).

Q. Han and H. Li are with the School of Communication
Engineering, Xidian University, Xi’an 710071, China (e-mail:
hanqiwildginger@gmail.com; lihui@mail.xidian.edu.cn).

K. Zheng is with the School of Information and Telecommunication
Engineering, Beijing University of Posts and Telecommunications, Beijing,
China (e-mail: kzheng@ieee.org).

Z. Su is with the School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200072, China (e-mail: zhousu@ieee.org).

Digital Object Identifier 10.1109/JIOT.2016.2571718

and processing big data [1], [2]. With cloud computing, end-
users store their data into the cloud, and rely on the cloud
server to share their data to other users (data consumers). In
order to only share end-users’ data to authorized users, it is
necessary to design access control mechanisms according to
the requirements of end-users.

When outsourcing data into the cloud, end-users lose
the physical control of their data. Moreover, cloud service
providers are not fully-trusted by end-users, which makes the
access control more challenging. For example, if the tradi-
tional access control mechanisms (e.g., access control lists)
are applied, the cloud server becomes the judge to evaluate the
access policy and make access decision. Thus, end-users may
worry that the cloud server may make wrong access decision
intentionally or unintentionally, and disclose their data to some
unauthorized users. In order to enable end-users to control the
access of their own data, some attribute-based access control
schemes [3]–[5] are proposed by leveraging attribute-based
encryption [6], [7]. In attribute-based access control, end-users
first define access policies for their data and encrypt the data
under these access policies. Only the users whose attributes
can satisfy the access policy are eligible to decrypt the data.

Although the existing attribute-based access control
schemes can deal with the attribute revocation problem [3]–[5],
they all suffer from one problem: the access policy may leak
privacy. This is because the access policy is associated with the
encrypted data in plaintext form. From the plaintext of access
policy, the adversaries may obtain some privacy information
about the end-user. For example, Alice encrypts her data to
enable the “psychology doctor” to access. So, the access pol-
icy may contain the attributes “psychology” and “doctor.” If
anyone sees this data, although he/she may not be able to
decrypt the data, he/she still can guess that Alice may suffer
from some psychological problems, which leaks the privacy
of Alice.

To prevent the privacy leakage from the access policy, a
straightforward method is to hide the attributes in the access
policy. However, when the attributes are hidden, not only
the unauthorized users but also the authorized users cannot
know which attributes are involved in the access policy, which
makes the decryption a challenging problem. Due to this rea-
son, existing methods [8]–[12] do not hide or anonymize the
attributes. Instead, they only hide the values of each attribute
by using wildcards [8], [9], hidden vector encryption [10],
and inner product encryption [11], [12]. Hiding the values of
attributes can somehow protect user privacy, but the attribute

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

564 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 2, APRIL 2017

name may also leak private information. Moreover, most of
these partially hidden policy schemes only support specific
policy structures (e.g., AND-gates on multivalued attributes).

In this paper, we aim to hide the whole attribute instead of
only partially hiding the attribute values. Moreover, we do not
restrict our method to some specific access structures. The
basic idea is to express the access policy in linear secret-
sharing scheme (LSSS) access structure (M, ρ) where M is
a policy matrix and ρ matches each row Mi of the matrix M

to an attribute [6], and hide the attributes by simply remov-
ing the attribute matching function ρ. Without the attribute
matching function ρ, it is necessary to design an attribute
localization algorithm to evaluate whether an attribute is in
the access policy and if so find the correct position in the
access policy. To this end, we further build a novel attribute
bloom filter (ABF) to locate the attributes to the anonymous
access policy, which can save a lot of storage overhead and
computation cost especially for large attribute universe.

Our contributions are summarized as follows.
1) We propose an efficient and fine-gained big data access

control scheme with privacy-preserving policy, where
the whole attributes are hidden in the access policy rather
than only the values of the attributes.

2) We also design a novel ABF to evaluate whether an
attribute is in the access policy and locate the exact
position in the access policy if it is in the access policy.

3) We further give the security proof and performance eval-
uation of our proposed scheme, which demonstrate that
our scheme can preserve the privacy from any LSSS
access policy without employing much overhead.

The remainder of this paper is organized as follows. We
first describe the related work in Section II. In Section III,
we introduce some preliminary knowledge. Section IV first
defines the system model, and then defines our scheme and
its security model. The detailed construction of our scheme
is described in Section V. Section VI provides the security
analysis and performance evaluation of our scheme. Finally,
the conclusion is drawn in Section VII.

II. RELATED WORK

In order to enable end-users to control the access of
their own data stored on untrusted remote servers (e.g.,
cloud servers), encryption-based access control is an effec-
tive method, where data are encrypted by end-users and only
authorized users are given decryption keys. This can also
prevent the data security during the transmission over wire-
less networks which are vulnerable to many threats [13]–[15].
However, traditional public key (PK) encryption methods are
not suitable for data encryption because it may produce multi-
ple copies of ciphertext for the same data when there are many
data consumers in the system. In order to cope with this issue,
some attribute-based access control schemes [3], [5] are pro-
posed by leveraging attribute-based encryption [6], which only
produces one copy of ciphertext for each data and does not
need to know how many intended data consumers during the
data encryption. Moreover, once the cloud data are encrypted,

some searchable encryption algorithms [16], [17] are proposed
to support search on encrypted cloud data.

Toward this problem, some works [8]–[12], [18]–[21] have
been proposed to hide the access policy. In [8], two con-
structions are proposed to partially hide the access policy.
However, the access policy only supports AND-gates on mul-
tivalued attributes with wildcards. Li et al. [9] followed this
paper and hided the attribute value by using a hash value to
denote the value of an attribute. Considering that [8] and [9]
are selectively secure, Lai et al. [12] proposed a fully secure
ciphertext-policy attribute-based encryption (CP-ABE) scheme
with partial hidden access policy. However, this scheme is only
restricted to a specific access policy (i.e., AND-gates with mul-
tivalued attributes with wildcards) as in [8] and [9]. To support
more expressive access policy, Lai et al. [20] also proposed
a method to hide attribute values in access policy expressed
in LSSS structure. Besides, there are also some policy hiding
schemes using hidden vector encryption [10] and inner prod-
uct encryption [11]. However, all of these existing schemes
can only partially hide the access policy (i.e., hiding the val-
ues of the attributes). The attribute names are not hidden in
the access policy.

III. PRELIMINARIES

A. Linear Secret-Sharing Schemes

Definition 1 (LSSS [6]): A secret sharing scheme � over a
set of parties P is called linear over Zp (p is a prime) if:

1) the shares for each party form a vector over Zp;
2) there exists a matrix A called the share-generating matrix

for �. The matrix A has l rows and n columns. For
i = 1, . . . , l, the ith row of A is labeled by a party ρ(i)[ρ
is a function from {1, . . . , l} to P]. When we consider
the column vector �v = (s, r2, . . . , rn), where s ∈ Zp is
the secret to be shared and r2, . . . , rn ∈ Zp are randomly
chosen, then A�v is the vector of l shares of the secret s
according to �. The share (A�v)i belongs to party ρ(i).

It is shown in [22] that every linear secret-sharing scheme
according to the above definition also enjoys the linear recon-
struction property, defined as follows: Suppose that � is an
LSSS for access structure A. Let S ∈ A be an authorized set,
and let I ⊂ {1, 2, . . . , l} be defined as I = {i:ρ(i) ∈ S}. There
exist constants {ωi ∈ Zp}i∈I such that if {λi} are valid shares of
any secret s according to �, then

∑
i∈I ωiλi = s. Furthermore,

these constants {ωi} can be found in time polynomial in the
size of the share-generating matrix A. For any unauthorized
set, no such constants exist.

B. Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with
the same prime order p. A bilinear mapping is a mapping
ê : G1 × G2 → GT with the following properties.

1) Bilinearity: ê(ua, vb) = ê(u, v)ab for all u ∈ G1, v ∈ G2
and a, b ∈ Zp.

2) Non-Degeneracy: There exist u ∈ G1, v ∈ G2 such that
ê(u, v) �= I, where I is the identity element of GT .

3) Computability: ê can be efficiently computed.
Such a bilinear mapping is called a bilinear pairing.

YANG et al.: EFFICIENT AND FINE-GRAINED BIG DATA ACCESS CONTROL SCHEME WITH PRIVACY-PRESERVING POLICY 565

Fig. 1. Example BF for set {x, y}.

C. Bloom Filter

The concept of bloom filter (BF), proposed by Bloom [23]
in 1970, is a space-efficient probabilistic data structure, which
is used to test whether an element is a member of a set.
Specifically, a BF consists of a bit array of m bits and k
independent hash functions defined as follows: hi : {0, 1}∗ 	→
[1, m] for 1 ≤ i ≤ k.

Initially, all the positions of the array are set to 0. To add
an element e to the set, the BF building algorithm computes
all the position indices as {hi(e)}i∈[1,k] and sets the values at
the corresponding positions in the bit array to 1. Fig. 1 gives
an example of BF for set {x, y}, where the values at positions
indexed by h1(x), h2(x), h3(x), h1(y), h2(y), h3(y) are set to 1.

To check whether a given element x belongs to the set S, the
BF query algorithm computes all the hash values {hi(x)}i∈[1,k]
to get k array positions. If any of the bits at these positions are
0, the element x is definitely not in the set. However, if all of
the bits are 1, we can say the element x is probably belong to
the set S. There is a possibility for some x /∈ S, all of the bits at
the corresponding positions of hi(x) are 1, which is called the
false positive. For example, the element w in Fig. 1 is not in
the set x, y but all the corresponding positions of hi(w) are 1.

D. Decisional q-BDHE Assumption

The decisional q-bilinear Diffie-Hellman exponent
(Decisional q-BDHE) problem is defined as follows.

Choose a group G of prime order p according to the
security parameter λ. Let a, s ∈ Z

∗
p be chosen at random

and g be a generator of G. Let gi denote gai
. When given

�y = (g, g1, . . . , gq, , gq+2, . . . , g2q, gs), the adversary must
distinguish ê(g, g)aq+1s ∈ GT from a random element R in GT .

An algorithm B has advantage ε in solving decisional
q-BDHE problem in G if

∣
∣
∣Pr

[
B

(
�y, T = ê(g, g)aq+1s

)
= 0

]
− Pr

[B(�y, T = R) = 0
]∣∣
∣ ≥ ε.

Definition 2: We say that the Decisional q-BDHE assump-
tion holds if no polynomial time algorithm has a non-
negligible advantage in solving the q-BDHE problem.

IV. DEFINITIONS

In this section, we first describe the system model of big
data storage and sharing. Then, we define our proposed big
data access control scheme and its security model.

Fig. 2. System model.

A. Definition of System Model

We consider the big data access control system, as shown
in Fig. 2. The system consists of five entities, namely cloud
servers, attribute authority, end-users, and data consumers.

1) Cloud Servers: Cloud Servers are employed to store,
share and process big data in the system. The cloud servers
are managed by cloud service providers, who are not in the
same trust domain as end-users. Thus, cloud servers cannot
be trusted by end-users to enforce the access policy and make
access decisions. We also assume that the cloud server cannot
collude with any end-users or data consumers.

2) Attribute Authority: The attribute authority manages all
the attributes in the system and assigns attributes chosen from
the attribute space to end-users. It is also a key generation cen-
ter, where the public parameters are generated. It also grants
different access privileges to end-users by issuing secret keys
according to their attributes. The attribute authority is assumed
to be fully trusted in the system.

3) End-User: End-users are the data owners/producers who
outsource their data into the cloud. They also would like to
control the access of their data by encrypting the data with
CP-ABE. End-users are assumed to be honest in the system.

4) Data Consumers: Data consumers request the data from
cloud servers. Only when their attributes can satisfy the access
policies of the data, data consumers can decrypt the data.
However, data consumers may try to collude together to access
some data that are not accessible individually.

B. Definition of Our Scheme

Definition 3: Our big data access control scheme consists
of the following algorithms: Setup, KeyGen, Encrypt, and
Decrypt.

• Setup(1λ) → (PK, MSK): The setup algorithm takes as
input a security parameter λ. It outputs the PK and master
secret key.

• KeyGen(PK, MSK, S) → SK: The key generation algo-
rithm takes as inputs the PK, the master key MSK and
a set of attribute S. It outputs the corresponding secret
key SK.

• Encrypt(PK, m, (M, ρ)) → (CT, ABF): The data encryp-
tion algorithms contains: data encryption subroutine Enc
and ABF building subroutine ABFBuild.

566 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 2, APRIL 2017

– Enc(PK, m, (M, ρ)) → CT: The data encryption
subroutine takes as inputs the PK, the message m
and access structure (M, ρ). It outputs a cipher-
text CT .

– ABFBuild(M, ρ) → ABF: The ABF building sub-
routine takes as input the access policy (M, ρ). It
outputs the ABF.

• Decrypt(M, ABF, PK, SK, CT) → m: The decryption
algorithm consists of two subroutines: ABFQuery and
Dec.

– ABFQuery(S, ABF, PK) → ρ′: The ABF query
algorithm takes as inputs the attribute set S, the
ABF and the PK. It outputs a reconstructed attribute
mapping ρ′ = {(rownum, att)}S, which shows the
corresponding row number in the access matrix M

for all the attributes att ∈ S.
– Dec(SK, CT, (M, ρ′)) → m or ⊥: The data decryp-

tion algorithm takes as inputs the secret key SK, the
ciphertext CT as well as the access matrix M and the
reconstructed attribute mapping ρ′. If the attributes
can satisfy the access policy, it outputs the message
m. Otherwise, it outputs ⊥.

C. Definition of Security Model

We consider the indistinguishability against selectively cho-
sen plaintext attacks. It is based on the following game
between an adversary A and a simulator B.

• Init: The adversary A chooses a challenge access struc-
ture (M∗, ρ∗), where M

∗ is an l∗ × n∗ matrix, and ρ∗
maps each row of M∗ to an attribute.

• Setup: The challenger runs the Setup algorithm and gives
the public parameters PK to the adversary A.

• Phase 1: In this phase, the adversary A issues queries for
secret keys related to some attributes Satt.

– If Satt satisfies (M∗, ρ∗), then abort.
– Otherwise, the simulator generates a secret key

related to Satt for the adversary A.
• Challenge: The adversary A submits two equal length

messages m0 and m1 to B. The simulator B randomly
chooses b ∈ {0, 1} and encrypts mb under the challenge
access structure (M∗, ρ∗). Finally it sends the generated
challenge ciphertext CT∗ to the adversary.

• Phase 2: Phase 2 is the same as Phase 1.
• Guess: The adversary outputs a guess b′ of b.

The advantage of A in this game is defined as Adv(A) =
|Pr[b′ = b] − 1/2|.

V. CONSTRUCTION OF THE PROPOSED SCHEME

The construction of our big data access control is based on
the CP-ABE in [6]. However, our access policy privacy pre-
serving method can also be applied for any CP-ABE methods
with LSSS structured access policies. According to the def-
inition in Section IV-B, our big data access control scheme
consists of four phases: 1) system setup; 2) key generation;
3) data encryption, and 4) data decryption.

A. System Setup

During the system setup phase, the attribute authority runs
the Setup algorithm. Let U denote the attribute space in the
system. Let G and GT be cyclic multiplicative groups of prime
order p, and ê : G×G → GT be a bilinear map. Let Latt be the
maximum bit length of attributes in the system. Let Lrownum be
the maximum bit length of the row numbers of access matrix.
Let LABF be the size of bit array of the ABF. Let k be the
number of hash functions associated with the ABF.

The attribute authority randomly chooses a generator g ∈
G, α, a ∈ Z

∗
p, and U = |U | random group elements

h1, h2, . . . , hU ∈ G. It also generates k hash functions
H1(), H2(), . . . , Hk() that maps an element to a position in
the range of [1, LABF].

The PK is published as

PK = 〈g, ê(g, g)α, ga, Latt, Lrownum, LABF

h1, h2, . . . , hU, H1(), H2(), . . . , Hk() 〉.
The master secret key is set as MSK = gα.

B. Key Generation

Each data consumer should register and authenticate to the
attribute authority. If the data consumer is not legal, it aborts.
Otherwise, the attribute authority will evaluate the role of the
data consumer in the system and assign a set of attributes
S chosen from the attribute space U1 to this data consumer.
Together with these attributes, the authority also generates a
corresponding secret key for this data consumer by running
the following algorithm.

1) KeyGen(PK, MSK, S) → SK: The algorithm takes as
input the PK, the master key MSK and a set of attributes
S. It computes

K = gαgat, L = gt,
{
Kx = ht

x

}
x∈S

where t ∈ Z
∗
p is chosen at random. Finally, the secret

key is set as

SK = 〈K, L, {Kx}x∈S, S〉.

C. Data Encryption

Before outsourcing data into the cloud, end-users encrypt
the data by running the Encrypt algorithm. It first calls the
data encryption subroutine to encrypt the data into cipher-
texts under access policies expressed in LSSS structure. Other
access structure, such as Boolean Formulas and Threshold
Gates, can also be transformed into LSSS structure [24].

1) Enc(PK, m, (M, ρ)) → CT: The data encryption sub-
routine takes as inputs the PK, the message m and access
structure (M, ρ). As shown in Fig. 3, M is an l × n
access matrix and the injective function ρ maps rows of
M to attributes. The algorithm first chooses an encryp-
tion secret s ∈ Z

∗
p randomly and then selects a random

vector �ν = (s, y2, . . . , yn), where y2, . . . , yn are used to

1The attribute space should be large such that it would be time-consuming
for cloud servers to exhaustively search the attribute space.

YANG et al.: EFFICIENT AND FINE-GRAINED BIG DATA ACCESS CONTROL SCHEME WITH PRIVACY-PRESERVING POLICY 567

Fig. 3. LSSS access policy and ABF.

share the encryption secret s. For i = 1, . . . , l, it calcu-
lates λi = Mi · �ν, where Mi is the vector corresponding
to the ith row of M. Then, it outputs the ciphertext as

CT =
〈

C = mê(g, g)αs

C′ = gs,
{

Ci = gaλi h−s
ρ(i)

}

i=1,...,l

〉

.

In traditional attribute-based encryption scheme, the access
policy (M, ρ) will be attached to the ciphertext CT. However,
the access policy is in plaintext, which may leak some private
information about the end-users. Based on our observation,
the attributes are leaked from the attribute mapping function
ρ. So, in order to prevent the privacy leakage, we remove this
attribute mapping function ρ. However, when ρ is removed,
it becomes difficult for data consumers to decrypt the data, as
they do not know which attributes are involved in the access
policy. To cope with this problem, we propose an efficient
attribute localization algorithm by utilizing the BF.

However, traditional BF only provides the membership
query for a large set, while our purpose goes further: we not
only need to evaluate whether an attribute is in the access
policy, but also need to locate the attribute to the precise row
number in the access matrix. Moreover, due to the false posi-
tive property, traditional BF cannot be applied for the attribute
localization. To this end, we employ a garbled BF [25] as the
building block of our attribute localization algorithm (ABF).
Instead of using an array of bits in traditional BF, the garbled
BF uses an array of λ-bit, where λ is the security parameter.
Different from the traditional BF, the false positive probability
is much lower, because it not only depends on the colli-
sion probability of hash functions, but also depends on the
probability of string matching.

Although the garbled BF achieves much lower false posi-
tive, it is still designed for membership query only. In order

Fig. 4. λ-bit Element of ABF with Lrownum-bit row number string and
Latt(= λ − Lrownum)-bit attribute string.

to precisely locate attributes to the corresponding row num-
ber in the access matrix, we employ a specific string as the
element of the garbled BF. As shown in Fig. 4, the element
is a concatenation of two fixed length strings: one string rep-
resents the row number with Lrownum-bit, and the other string
represents the attribute with the bit length of Latt-bit, where
Lrownum + Latt = λ.

When the data encryption is finished, the end-users then
build the ABF by running the following subroutine.

1) ABFBuild(M, ρ) → ABF: The ABF building subroutine
takes as input the access policy (M, ρ). It first binds the
attributes involved in the access policy and its corre-
sponding row number in the access matrix M together
and obtains a set of elements Se = {i||atte}i∈[1,l], where
the i-th row of the access matrix maps to the attribute
atte = ρ(i). Both of the row number i and the attribute
atte are expanded to the maximum bit length by filling
with zeros on the left of the bit strings. By taking the set
of elements Se as an input, the ABF can be constructed
by calling the garbled BF Building algorithm in [25].
To add an element e in the set Se to the ABF, the algo-
rithm first shares the element e with (k, k) secret sharing
scheme by randomly generating k − 1 λ-bit strings r1,e,
r2,e, . . . , rk−1,e, and setting

rk,e = r1,e ⊕ r2,e · · · ⊕ rk−1,e ⊕ e.

Then, it hashes the attribute atte associated with the ele-
ment e with k independent and unified hash functions
H1(), . . . , Hk() and gets

H1(atte), H2(atte), . . . , Hk(atte)

where each Hi(atte) (i ∈ [1, k]) represents the position
index of ABF. As shown in Fig. 5, it then stores the ith
element share ri to the position indexed by Hi(atte) in
the ABF as

r1,e → H1(atte) position in ABF
...

rk,e → Hk(atte) position in ABF.

When we continue to add elements to the ABF, some
location j = Hi(e) may have been occupied by a previ-
ously added element. If such situation happens, we reuse
this existing share as one share of the new element. For
example, as shown in Fig. 5, the position Hj(atte2) of ele-
ment e2 is the same as the position Hi(atte1) of element
e1. Considering that this position of the ABF has already
been occupied by ri,e1 , instead of randomly selecting a

568 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 2, APRIL 2017

Fig. 5. Example of ABF.

Algorithm 1 ABFBuild
Input: An LSSS access policy (M, ρ), λ, LABF

Input: k hash functions {H1(), · · · , Hk()}
Output: ABF

1: Generate an element set Se from the access policy (M, ρ)

2: ABF = new LABF element array of bit strings
3: for i = 0 to LABF − 1 do
4: ABF[i] = NULL � Initialize the ABF with “NULL”
5: for each element e = i||atte ∈ Se do
6: emptyPos = −1, finalShare = x
7: for i = 0 to k − 1 do
8: j = Hi+1(atte) � get the index of the position
9: if ABF[j] == NULL then

10: if emptyPos == −1 then
11: � reserve this position for the finalShare
12: emptyPos = j
13: else � generate a new share
14: generate a random string rj,e with λ bits
15: ABF[j] = rj,e

16: finalShare = finalShare ⊕ ABF[j]

17: else � reuse an existing share
18: finalShare = finalShare ⊕ ABF[j]

19: ABF[emptyPos] = finalShare

20: for i = 0 to LABF − 1 do
21: if ABF[i] == NULL then
22: � fill the empty position with random strings
23: generate a random string ri with λ bits
24: ABF[i] = ri

λ-bit string, we set rj,e2 = ri,e1 . If we change this posi-
tion with another string, the previously inserted element
cannot be recovered.

The entire ABF building algorithm is shown in Algorithm 1.
Finally, the end-users will outsource the data in the form of
(CT,M, ABF) to cloud servers.

D. Data Decryption

When accessing the data stored in the cloud, data consumers
can download the encrypted data according to their interests.
However, the access control happens during the decryption,
which means that data consumers can decrypt the data only
when their attributes can satisfy the access policies used to
encrypt the data. In traditional ABE systems, the access pol-
icy (M, ρ) is attached to the ciphertext. So, the data consumers
can easily check whether their attributes can satisfy the access
policy. However, in our scheme, we hide the attributes map-
ping function ρ, so data consumers should first check which

Fig. 6. String abstraction from the element.

attributes they owned are in the access matrix by running the
ABF query subroutine as follows.

1) ABFQuery(S, ABF, PK) → ρ′: It takes as inputs the
attribute set S, the ABF and the PK. For each attribute
att ∈ S owned by the data consumer, the algorithm first
computes the position indices by feeding the attribute
att with the k hash functions H1(), . . . , Hk() and gets

H1(att), H2(att), . . . , Hk(att).

Then, it fetches the corresponding strings from the posi-
tions indexed by Hi(att) (i ∈ [1, k]) in the ABF as
follows:

H1(att) position in ABF → r1,e

...

Hk(att) position in ABF → rk,e.

After that, it reconstructs the element e as

e = r1,e ⊕ r2,e ⊕ · · · ⊕ rk−1,e ⊕ rk,e

= r1,e ⊕ r2,e ⊕ · · · ⊕ rk−1,e ⊕ r1,e

⊕r2,e ⊕ · · · ⊕ rk−1,e ⊕ e.

Note that the element e is in the format of e = i||atte
as shown in Fig. 4. Then, it takes the last Latt bits from
the string e, and removes all the zero bits on the left of
the string to obtain the string atte. As shown in Fig. 6,
if atte is the same as the attribute att, we say that this
attribute att is in the access matrix. Then, it obtains the
first Lrownum bits from the string e to obtain the corre-
sponding row number by removing all the zero bits at
the left as well. Otherwise, atte is not the same as the
attribute att, it means that the attribute att does not exist
in the access policy. Finally, it outputs the reconstructed
attribute mapping as

ρ′ = {(rownum, att)}att∈S

which shows the corresponding row number in the
access matrix M. The ABF query algorithm is shown
in Algorithm 2.

When obtaining the access policy (M, ρ), the data con-
sumer can run the data decryption subroutine as in traditional
attribute-based encryption systems.

1) Dec(SK, CT, (M, ρ′)) → m or ⊥: The data decryp-
tion algorithm takes as inputs the secret key SK, the
ciphertext CT as well as the access matrix M and the
reconstructed attribute mapping ρ′. If the attributes can

YANG et al.: EFFICIENT AND FINE-GRAINED BIG DATA ACCESS CONTROL SCHEME WITH PRIVACY-PRESERVING POLICY 569

Algorithm 2 ABFQuery
Input: An Attribute Bloom Filter ABF, a set of attributes S
Input: k hash functions {H1(), · · · , Hk()}
Input: Maximum attribute string length Latt

Input: Maximum row number string length Lrownum

Output: ρ′ = {(rownum, att)}att∈S

1: for each att ∈ S do
2: ReStr = {0}λ � initialize the reconstructed string
3: for i = 0 to k − 1 do
4: j = Hi+1(att) � get the index of the position
5: ReStr = ReStr ⊕ ABF[j]

6: atteStr = LSBLatt(ReStr)
7: � get Latt least significant bits
8: atte = RmLeadingZeroBits(atteStr)
9: � remove all the leading zero bits

10: if atte == att then
11: rownumStr = MSBLrownum(ReStr)
12: � get Lrownum most significant bits
13: rownum = RmLeadingZeroBits(rownumStr)
14: � remove all the leading zero bits
15: Add (rownum, att) into ρ′

satisfy the access policy, it can leverage the Lagrange
Interpolation Formula to find coefficients {ci|i ∈ I} such
that

∑
i∈I ciλi = s, where I = {i : ρ′(i) ∈ S} ⊂

{1, 2, . . . , l}. Then, the data consumer can compute

ê
(
C′, K

)

∏
i∈I

(
ê(Ci, L)ê

(
C′, Kρ′(i)

))ci
= ê(g, g)αs

and recover the data as m = C/ê(g, g)αs. Otherwise, it
outputs ⊥ to denote that the decryption fails.

VI. ANALYSIS OF OUR SCHEME

A. Security Analysis

Theorem 1: No polynomial time adversary can selectively
break our big data access control scheme with an l∗ × n∗
(n∗ ≤ q) challenge access matrix, under the decisional
q-BDHE assumption.

Proof: Our big data access control scheme is constructed
on top of the attribute-based encryption scheme in [6], which
is proved to be selective secure against the chosen plaintext
attacks under the decisional q-BDHE assumption. It is shown
in [6] that if there is an adversary A with non-negligible advan-
tage ε = AdvA in the selective security game (which is the
same as the security game defined in Section IV-C), they can
build a simulator B that solves the decisional q-BDHE problem
with non-negligible advantages.

Similarly, to prove the security of our big data access con-
trol scheme, we show that if there is an adversary A with
non-negligible advantage ε = AdvA in the selective security
game, we can build a simulator B′ that also solves the deci-
sional q-BDHE problem with non-negligible advantages. The
construction of B′ is similar to the simulator B in [6]. The Init
phase in the B′ is the same as the one in the B. In the Setup
phase, besides the steps from B, B′ also chooses some random
oracles as the BF hash functions. The secret key query phases

are also the same, which means that B′.Phase1 = B.Phase1
and B′.Phase2 = B.Phase2. The differences are in the
Challenge phase: the encryption algorithm in B′ consists of
two subroutines. To simulate the ABF building subroutine, the
simulator B′ queries from the ABFBuild oracle. As for the
data encryption subroutine, B′.Enc = B.Encrypt. Because
the challenge matrix is selected by the adversary before the
Init phase, so the constructed ABF is the same no matter
which plaintext is selected for encryption, which means that
the ABF will not increase the advantages of the adversary
A in the security game. Similar to the proof in [6], we can
show that B′ plays the q-BDHE problem with non-negligible
advantages.

Theorem 2: Our big data access control scheme is privacy-
preserving against the adversaries with polynomial time in the
security parameter λ.

Proof: In our scheme, only the data consumers who
hold the attributes can obtain the string of attribute from the
attribute space U . Adversaries who have no knowledge about
the attribute string cannot launch the brute force attack to
guess the attribute string within polynomial time. So, they
cannot obtain the private information from the access policy
consisting of the matrix M and the ABF.

Data consumers are only allowed to check whether their
owned attributes are in the access policy. Unless the data con-
sumer has all the attributes of the attribute space or several
data consumers collude together, they cannot check all the
attributes from the attribute space in the system. Since the
ABF is constructed with a garbled BF where λ-bit strings are
embedded into the BF, the false positive probability of the
ABF can be reduced to (1/2λ).

B. Performance Analysis

To resist the privacy leakage from the access policy, we
employ an ABF to enable data consumers to locate the posi-
tion of attributes in the access policy. Specifically, the ABF
building algorithm is added during the data encryption and the
ABF query algorithm is added during the data decryption. In
order to show how much computation overhead incurred by
the ABF, we do the experiment on a Unix system with an
Intel Core i5 CPU at 2.4 GHz and 8.00 GB RAM. The code
uses the pairing-based cryptography library version 0.5.12,
and a symmetric elliptic curve α-curve, where the base field
size is 512-bit and the embedding degree is 2, such that
the security parameter is equal to 1024-bit. To implement
the ABF, we employ the MurmurHash created by Austin
Appleby in 2008.2 All the experimental results are the mean of
20 trials.

Fig. 7(a) shows the encryption time versus the number of
attributes involved in the access policy. The traditional ABE
line in Fig. 7(a) is the implementation of the ABE without
privacy-preserving policy from the [6]. The encryption time in
our scheme consists of both ABF building and data encryp-
tion. The lines of our scheme in this figure apply eight hash
functions and 16 hash functions to build ABF, respectively.
Fig. 7(b) shows the decryption time versus the number of

2[Online]. Available: https://sites.google.com/site/murmurhash/

570 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 2, APRIL 2017

(b)(a)

Fig. 7. Computation time comparison between the ABE in [6] and our scheme (data size: 1 KB, security parameter: 1024). (a) Data encryption. (b) Data
decryption.

attributes involved in the decryption. The decryption time in
our scheme consists of both the ABF query time and data
decryption time. The attribute number here also means how
many attributes are tested by running the ABF query algo-
rithm. Therefore, our scheme can preserve the privacy of the
access policy without increasing much computation overhead
for both data encryption on end-users and data decryption on
data consumers.

VII. CONCLUSION

In this paper, we have proposed an efficient and fine-grained
data access control scheme for big data, where the access pol-
icy will not leak any privacy information. Different from the
existing methods which only partially hide the attribute val-
ues in the access policies, our method can hide the whole
attribute (rather than only its values) in the access policies.
However, this may lead to great challenges and difficulties
for legal data consumers to decrypt data. To cope with this
problem, we have also designed an attribute localization algo-
rithm to evaluate whether an attribute is in the access policy. In
order to improve the efficiency, a novel ABF has been designed
to locate the precise row numbers of attributes in the access
matrix. We have also demonstrated that our scheme is selec-
tively secure against chosen plaintext attacks. Moreover, we
have implemented the ABF by using MurmurHash and the
access control scheme to show that our scheme can preserve
the privacy from any LSSS access policy without employing
much overhead. In our future work, we will focus on how to
deal with the offline attribute guessing attack that check the
guessing “attribute strings” by continually querying the ABF.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
Recommendations Nat. Inst. Standards Technol., NIST, Washington, DC,
USA, Tech. Rep. 800-145, 2011.

[2] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient and
privacy-preserving computing in big data era,” IEEE Netw., vol. 28,
no. 4, pp. 46–50, Jul./Aug. 2014.

[3] K. Yang and X. Jia, “Expressive, efficient, and revocable data access
control for multi-authority cloud storage,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 7, pp. 1735–1744, Jul. 2014.

[4] H. Li, D. Liu, K. Alharbi, S. Zhang, and X. Lin, “Enabling fine-grained
access control with efficient attribute revocation and policy updating in
smart grid,” KSII Trans. Internet Inf. Syst., vol. 9, no. 4, pp. 1404–1423,
2015.

[5] K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-domain attribute-based
access control for cloud-based video content sharing: A cryptographic
approach,” IEEE Trans. Multimedia, vol. 18, no. 5, pp. 940–950,
May 2016.

[6] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proc. PKC, Taormina, Italy,
2011, pp. 53–70.

[7] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure threshold multi author-
ity attribute based encryption without a central authority,” in Proc.
INDOCRYPT, Kharagpur, India, 2008, pp. 426–436.

[8] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryption
with partially hidden encryptor-specified access structures,” in Applied
Cryptography and Network Security. Heidelberg, Germany: Springer,
2008, pp. 111–129.

[9] J. Li, K. Ren, B. Zhu, and Z. Wan, “Privacy-aware attribute-based
encryption with user accountability,” in Proc. Inf. Security, Pisa, Italy,
2009, pp. 347–362.

[10] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of Cryptography. Heidelberg, Germany:
Springer, 2007, pp. 535–554.

[11] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting dis-
junctions, polynomial equations, and inner products,” in Advances in
Cryptology–EUROCRYPT 2008. Heidelberg, Germany: Springer, 2008,
pp. 146–162.

[12] J. Lai, R. H. Deng, and Y. Li, “Fully secure cipertext-policy hiding CP-
ABE,” in Information Security Practice and Experience. Heidelberg,
Germany: Springer, 2011, pp. 24–39.

[13] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng, “Challenges on
wireless heterogeneous networks for mobile cloud computing,” IEEE
Wireless Commun., vol. 20, no. 3, pp. 34–44, Jun. 2013.

[14] K. Zheng et al., “Big data-driven optimization for mobile networks
toward 5G,” IEEE Netw., vol. 30, no. 1, pp. 44–51, Jan./Feb. 2016.

[15] Z. Su, Q. Xu, and Q. Qi, “Big data in mobile social networks:
A QoE-oriented framework,” IEEE Netw., vol. 30, no. 1, pp. 52–57,
Jan./Feb. 2016.

[16] H. Li, D. Liu, Y. Dai, and T. H. Luan, “Engineering searchable encryp-
tion of mobile cloud networks: When QoE meets QoP,” IEEE Wireless
Commun., vol. 22, no. 4, pp. 74–80, Aug. 2015.

[17] H. Li et al., “Enabling fine-grained multi-keyword search support-
ing classified sub-dictionaries over encrypted cloud data,” IEEE Trans.
Depend. Secure Comput., vol. 13, no. 3, pp. 312–325, May/Jun. 2016,
doi: 10.1109/TDSC.2015.2406704.

[18] K. Frikken, M. Atallah, and J. Li, “Attribute-based access control with
hidden policies and hidden credentials,” IEEE Trans. Comput., vol. 55,
no. 10, pp. 1259–1270, Oct. 2006.

[19] S. Yu, K. Ren, and W. Lou, “Attribute-based content distribution with
hidden policy,” in Proc. Secure Netw. Protocols (NPSec), Orlando, FL,
USA, 2008, pp. 39–44.

YANG et al.: EFFICIENT AND FINE-GRAINED BIG DATA ACCESS CONTROL SCHEME WITH PRIVACY-PRESERVING POLICY 571

[20] J. Lai, R. H. Deng, and Y. Li, “Expressive CP-ABE with partially hid-
den access structures,” in Proc. ASIACCS, Seoul, South Korea, 2012,
pp. 18–19.

[21] J. Hur, “Attribute-based secure data sharing with hidden policies in
smart grid,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 11,
pp. 2171–2180, Nov. 2013.

[22] A. Beimel, “Secure schemes for secret sharing and key distribution,”
Ph.D. dissertation, Israel Inst. Technol. Technion, Haifa, Israel, 1996.

[23] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[24] K. Yang, X. Jia, and K. Ren, “Secure and verifiable policy update out-
sourcing for big data access control in the cloud,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3461–3470, Dec. 2015.

[25] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: An efficient and scalable protocol,” in Proc. CCS, Berlin, Germany,
2013, pp. 789–800.

Kan Yang received the B.Eng. degree in information security from the
University of Science and Technology of China, Hefei, China, in 2008, and
the Ph.D. degree in computer science from the City University of Hong Kong,
Hong Kong, in 2013.

He is currently a Post-Doctoral Fellow of Broadband Communications
Research Group with the Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada. His current research interests
include cloud security, big data security, mobile security, applied cryptography,
and distributed systems.

Qi Han received the B.Sc. degree from Xidian University, Xi’an, China, in
2012, where he is currently pursuing the Ph.D. degree in cryptography.

He is a visiting student with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada, in 2014. His cur-
rent research interests include cryptography, privacy protection of healthcare,
and security of cloud.

Hui Li (A’10–M’12) received the B.Sc. degree from Fudan University,
Shanghai, China, in 1990, and the M.A.Sc. and Ph.D. degrees from Xidian
University, Xi’an, China, in 1993 and 1998, respectively.

He was a Visiting Scholar with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada, in 2009. Since
2005, he has been a Professor with the School of Telecommunications
Engineering, Xidian University. He has coauthored two books. His current
research interests include cryptography, security of cloud computing, wireless
network security, information theory, and network coding.

Prof. Li served as a TPC Co-Chair of ISPEC 2009 and IAS 2009, and a
General Co-Chair of e-forensic 2010, ProvSec 2011, and ISC 2011.

Kan Zheng (S’03–M’05–SM’09) received the B.S., M.S., and Ph.D. degrees
from the Beijing University of Posts and Telecommunications (BUPT),
Beijing, China, in 1996, 2000, and 2005, respectively.

He is currently a Full Professor with the BUPT. He has rich experi-
ences in the research and standardization of new emerging technologies. He
has authored over 200 journal articles and conference papers in the field of
wireless networks and the Internet of Things.

Prof. Zheng holds Editorial Board positions for several journals. He has
also served on the Organizing/TPC Committees for over ten conferences such
as the IEEE PIMRC 2015 and the IEEE SmartGrid 2015. He is currently the
Chair of the IEEE Computer Society STC Internet-of-Everything.

Zhou Su (S’02–M’03) received the B.E. and M.E. degrees from Xi’an
Jiaotong University, Xi’an, China, in 1997 and 2000, respectively, and the
Ph.D. degree from Waseda University, Tokyo, Japan, in 2003.

He was an exchange student between Waseda University and Xi’an
Jiaotong University from 1999 to 2000. His current research interests include
multimedia communication, Web performance, and network traffic.

Prof. Su was a recipient of the Best Paper Award of International
Conference CHINACOM’08 and the Funai Information Technology Award for
Young Researchers 2009. He is the Chair of interest group of IEEE Comsoc
Society, Multimedia Communications Technical Committee, and MENIG. He
also served as the Co-Chair of several international conferences including
the IEEE CCNC’11-WIP track, WICON’11-Network track, and IWCMC’12-
Security track. He has been the TPC Member of some flagship conferences
such as the IEEE INFOCOM, the IEEE ICC, and the IEEE GLOEBECOM.
He is a Member of the IEICE.

Xuemin (Sherman) Shen (M’97–SM’02–F’09) is a Professor and the
University Research Chair with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada. His current
research interests include resource management in interconnected wire-
less/wired networks, wireless network security, social networks, smart grid,
and vehicular ad hoc and sensor networks.

Prof. Shen served as the Technical Program Committee Chair/Co-Chair
for the IEEE GLOBECOM’16, the IEEE INFOCOM’14, the IEEE VTC’10
Fall, the Symposia Chair for the IEEE ICC’10, the Tutorial Chair for the
IEEE VTC’11 Spring and the IEEE ICC’08, and the Technical Program
Committee Chair for the IEEE GLOBECOM’07. He also serves/served
as an Editor-in-Chief for IEEE Network, Peer-to-Peer Networking and
Application, and IET Communications. He is a Registered Professional
Engineer of Ontario, Canada, an Engineering Institute of Canada Fellow,
a Canadian Academy of Engineering Fellow, a Royal Society of Canada
Fellow, and a Distinguished Lecturer of the IEEE Vehicular Technology and
Communications Societies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

