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Abstract. The auxiliary input model defines a class of computation-
ally uninvertible function families F to simulate a large class of leakage.
Such a function f ∈ F can information-theoretically reveal the entire
secret key SK, but it is still computationally infeasible to recover SK
from f(SK). That means SK can be used for multiple tasks, since SK
doesn’t need to be continually refreshed. We propose the first CP-ABE
scheme based on linear secret sharing schemes, that can tolerate leakage
on master key and attribute-based secret keys with auxiliary input(AI).
For the security proof of our scheme, we present three modified assump-
tions in composite order bilinear groups, and prove their hardness. Under
these modified assumptions, our scheme can be proved AI-CPA secure
in the standard model. Finally, we devise a key-policy ABE scheme also
resilient to auxiliary input.

Keywords: Leakage resilience · Attribute-based encryption · Auxiliary
input · Linear secret sharing scheme

1 Introduction

With the development of cloud computing, there is a trend for users to store their
data on the cloud server. It is inefficient to distribute these encrypted data to a spe-
cific set of users in traditional cryptosystems, e.g., PKI, ID-based cryptosystem,
since the cipher-text size and computational cost of encryption/decryption algo-
rithms are linear with the number of receivers. For this reason, Sahai and Waters
[1] firstly proposed the concept of attribute-based encryption. In attribute-based
encryption, cipher-texts and keys are associated with sets of attributes and access
structure over attributes. Only when the attributes of the cipher-text match those
of the users’ key, the corresponding cipher-text can be decrypted. There are two
kinds of ABE systems: The first one is ciphertext-policy ABE (CP-ABE), where
cipher-texts are associated with access structures and keys are associated with sets
of attributes; the second one is key-policy ABE (KP-ABE), where keys are associ-
ated with access structure and cipher-texts are associated with sets of attributes.

How to achieve a more expressive access policy over many attributes is an
important problem in ABE. Sahai and Waters’s [1] scheme was limited to specify
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as threshold access policies with one threshold gate. After then, Lewko et al. [5]
used monotone span programs (MSPs) as access structure to devise a CP-ABE
and a KP-ABE, which are proved secure in composite bilinear groups. However,
their schemes are very inefficient, since the length of cipher-texts and keys, and
the number of pairings in decryption are all polynomial in the size of MSPs.
In order to improve the efficiency, some ABE systems make use of linear secret
sharing scheme (LSSS) or boolean formulas as access structure. Waters [10]
employed LSSS matrix as access structure to realize CP-ABE under concrete
and noninteractive cryptographic assumptions. In [6], Goyal et al. provided a
mapping from a universal access tree to formulas consisting of threshold gates.
They used this technique to construct a bounded CP-ABE scheme. There is a
close relation between LSSS and MSP access structure. Beimel et al. [7] proved
that the existence of a LSSS for a specific MSP access structure is equivalent
to a smallest MSP. Pandit et al. [8] used minimal sets to realize the smallest
MSP for describing general access structure in ABE systems. Recently, Zhang
et al. [12] proposed a CP-ABE and a KP-ABE resilient to continual leakage by
minimal sets.

In practice, many cryptosystems are difficult to avoid the side-channel attacks,
which allow attackers to learn partial information about secret by observing phys-
ical properties of a cryptographic execution such as timing, power assumption,
temperature, radiation, etc. [14–18]. The concept of leakage resilient cryptography
has been proposed, which has led to construction of many cryptographic primi-
tives which can be proved secure even against adversaries who can obtain par-
tial information of secret keys and other initial state. Leakage resilience has been
studied in many previous work under a variety of leakage models. We review these
leakage models as follows:

Exposure-resilient: This model addressed adversaries who could learn a subset
of the bits of the secret key or internal state [19,20].

Only computation leaks information: In this model, it is assumed that
leakage occurs every time the device performs a computation, but any part
of the memory not involved in computation does not leak [21,22].

Bounded retrieval model: In this model, the total number of bits leaked
over the lifetime of system is significantly less than the bit-length of the
key, and hope the attack is detected and stopped before the whole secret is
leaked. This model has been employed successfully in many constructions of
cryptographic primitives [23–25].

Continual leakage model: In this model, it is assumed the leakage between
consecutive updates is bounded in term of a fraction of the secret key size, and
the secret key should be refreshed continually. There is no leakage during the
update process. Dodis et al. [26] constructed one-way relations, signatures,
identification schemes, and authenticated key agreement protocols resilient
to continual leakage. Lewko et al. [27], proposed fully secure IBE, HIBE,
ABE systems which are be realized as resilience against continual leakage.
Zhang et al. [12] also proposed a CP-ABE system and a KP-ABE system
resilient to continual leakage.
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Auxiliary input model: Auxiliary input model is developed from the rela-
tive leakage model [14], which allows any uninvertible function f that no
PPT adversary can compute the actual pre-image with non-negligible prob-
ability1. That is to say, although such a function information-theoretically
reveals the entire secret key SK, it still computationally infeasible to recover
SK from f(SK). If an encryption scheme is secure w.r.t. any auxiliary
input, then user’s secret and public key pair can be used for multiple tasks.
Dodis et al. [13] firstly introduced the notion of auxiliary input, and proposed
the public key encryption schemes in this model. Yuen et al. [3] proposed the
first IBE scheme that is proved secure even when the adversary is equipped
with auxiliary input. In [3], they also propose the model of continual auxil-
iary leakage that combines the concepts of auxiliary inputs with continual
memory leakage.

Recently, Waters [9] introduced a new technique for security proof called dual
system encryption, in which there are two kinds of keys and cipher-texts: normal
and semi-functional2. Normal keys can decrypt both forms of cipher-texts, while
semi-functional keys can only decrypt normal cipher-texts. In the real game,
keys and cipher-texts are all normal, but they will be transformed into semi-
functional one by one in the security proof. We must prove that the adversary
cannot distinguish these transformations. In the final game, all keys and cipher-
texts are semi-functional, which cannot be decrypted correctly. Lewko et al. [27]
showed that the technique of dual system encryption and leakage resilience are
highly compatible, their combination not only improves the leakage tolerance of
cryptographic primitives, but also no sacrifices of efficiency.

Our Contribution. In this work, we propose the first CP-ABE scheme that
is secure in presence of auxiliary input. After extension, our scheme can be
transformed to a CP-ABE scheme resilient to continual auxiliary leakage. Our
construction is based on Waters’ most efficient construction of CP-ABE [10].
Our scheme in Sect. 4 preserves the nice features of Waters’ scheme: security
in the standard model, and based on static assumptions. In order to resist the
leakage in form of auxiliary input and continual auxiliary leakage, we use the GL
Theorem for Large Fields. The key point for using the GL Theorem for Large
Fields is how to split the secret key into m pieces, since the GL Theorem for
Large Fields states that if the pieces of secret key αi belongs to a subgroup H of
Zp1(p1 is a λ-bit prime.), then the running time of inverter is poly(|H|). Thus, if
H is a large field, and close to Zp1(λ is a security parameter.), then the running
time is close to poly(2λ), which is undesirable for the inverter. Our scheme also
can be extended to an ABE scheme resilient to continual auxiliary leakage, if it
doesn’t allow leakage during the setup phase.

Lewko et al. [4] proposed three static assumptions in composite order groups,
which has been used in many constructions [3,12,27]. However, they cannot

1 “non-negligible probability” means that the probability cannot be ignored.
2 The definitions of normal and semi-functional are only for proof, and they are not

concerned with construction.
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be directly used in the security proof of our constructions. We propose three
modified assumptions and prove their hardness by using the two theorems in [9].
Another technical difficulty in our security proof is the form of attribute. If we
use 2-SDP assumption to prove the Lemma 1, each attribute should be a integer
number in ZN . Thus, we must pre-define an injective map from the attributes
space to ZN . Since attributes space can be public, this map also can be public,
and has no impact to the security level of ABE scheme.

Organization. In Sect. 2, we propose three modified complexity assumptions,
and their proofs are provided in AppendixA. In Sect. 3, we provide the security
model of CP-ABE resilient to auxiliary input. In Sect. 4, we devise a concrete
CP-ABE scheme resilient to auxiliary input based on LSSS scheme. In Sect. 5, we
prove our scheme by using the technique of dual system encryption. In Sect. 6,
we design a KP-ABE scheme resilient to auxiliary input. In Sect. 7, we conclude
our paper.

2 Background

In this section, we firstly give the definitions and proofs to our modified hard
assumptions. Secondly, we provide the formal definitions for access structures
and Linear Secret Sharing Scheme (LSSS).

2.1 Hardness Assumptions

Bilinear groups of composite order are groups introduced by [2], where the group
order is product of two or more distinct primes. In our construction, we use the
group order of N = p1p2p3, where p1, p2, p3 are three distinct prime numbers.
We denote this group as G, and admit an efficient bilinear map ê : G×G → GT ,
where GT ’s order is the same as G’s. Any element of G can be denoted as
ga1
1 ga2

2 ga3
3 , where gi is the generator of subgroup Gpi

. Each Gpi
has the order

pi, and ai ∈ Zpi
. We denote Gpipj

as the subgroup of order pipj in G. For all
T ∈ Gpipj

, T can be defined as the product of an element in Gpi
and an element

in Gpj
. For all v ∈ Gpi

and w ∈ Gpj
, ê(v, w) = 1 if i �= j. The following three

hardness assumptions, which have been analyzed in [4,5], have been used in
many constructions [3,12,27].

Definition 1 (1-SDP assumption). Given Θ = (N = p1p2p3,G,GT , ê), if
for all PPT algorithm A, there exists a negligible probability ε such that

|Pr[A(Θ, g1,X3, T0) = 1] − Pr[A(Θ, g1,X3, T1) = 1]| ≤ ε,

where the probabilities are taken over the choice of g1 ∈ Gp1 ,X3 ∈ Gp3 , T0 ∈
Gp1p2 , T1 ∈ Gp1 .

Definition 2 (2-SDP assumption). Given Θ = (N = p1p2p3,G,GT , ê), if
for all PPT algorithm A, there exists a negligible probability ε such that

|Pr[A(Θ, g1, X1X2, X3, Y2Y3, T0) = 1] − Pr[A(Θ, g1, X1X2, X3, Y2Y3, T1) = 1]| ≤ ε,
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where the probabilities are taken over the choice of g1 ∈ Gp1 ,X2, Y2 ∈
Gp2 ,X3, Y3 ∈ Gp3 , T0 ∈ Gp1p3 , T1 ∈ G.

Definition 3 (BSDP assumption). Given Θ = (N = p1p2p3,G,GT , ê), if for
all PPT algorithm A, there exists a negligible probability ε such that

|Pr[A(Θ, g1, gα
1 X2, X3, gs

1Y2, Z2, T0) = 1] − Pr[A(Θ, g1, gα
1 X2, X3, gs

1Y2, Z2, T1) = 1]| ≤ ε,

where the probabilities are taken over the choice of s, α ∈ ZN , g1 ∈
Gp1 ,X2, Y2, Z2 ∈ Gp2 ,X3 ∈ Gp3 , T0 = ê(gα

1 , gs
1), T1 ∈ GT .

However, our construction in Sect. 4 should be proved secure under the following
three modified assumptions. Let [m] denote {1, · · · ,m}.

Definition 4 (modified 1-SDP assumption). Given Θ = (N = p1p2p3,G,
GT , ê), if for all PPT algorithm A, there exists negligible probabilities ε1, · · · , εm

such that

|Pr[A(Θ, g1,X3, T01) = 1] − Pr[A(Θ, g1,X3, T11) = 1]| ≤ ε1,

...
|Pr[A(Θ, g1,X3, T0m) = 1] − Pr[A(Θ, g1,X3, T1m) = 1]| ≤ εm,

where the probabilities are taken over the choice of g1 ∈ Gp1 ,X3 ∈ Gp3 , T0i ∈
Gp1p2 , T1i ∈ Gp1 .

Definition 5 (modified 2-SDP assumption). Given Θ = (N = p1p2p3,G,
GT , ê), if for all PPT algorithm A, there exists a negligible probability ε such
that

|Pr[A(Θ, g1, (X1iX2i)i∈[m],X3, Y2Y3, T0) = 1]
−Pr[A(Θ, g1, (X1iX2i)i∈[m],X3, Y2Y3, T1) = 1]| ≤ ε,

where the probabilities are taken over the choice of g1 ∈ Gp1 ,X2i, Y2 ∈
Gp2 ,X3, Y3 ∈ Gp3 , T0 ∈ Gp1p3 , T1 ∈ G.

Definition 6 (modified BSDP assumption). Given Θ = (N = p1p2p3,G,
GT , ê), if for all PPT algorithm A, there exists a negligible probability ε such
that

|Pr[A (Θ, g1, (g
1/bi

1 )i∈[m], (B
αi
i X2)i∈[m],X3, (Bsi

i Y2)i∈[m], Z2, T0) = 1]

−Pr[A(Θ, g1, (g
1/bi

1 )i∈[m], (B
αi
i X2)i∈[m],X3, (Bsi

i Y2)i∈[m], Z2, T1)=1]|≤ ε,

where the probabilities are taken over the choice of si, αi, bi ∈ ZN , g1, Bi = gbi
1 ∈

Gp1 ,X2, Y2, Z2 ∈ Gp2 ,X3 ∈ Gp3 , T0 =
∏m

i=1 ê(g1, Bi)αisi , T1 ∈ GT .

We prove the hardness of three modified assumptions in AppendixA.
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2.2 Access Structure and Linear Secret Sharing Scheme

We adapt our definitions which are given by [11]. However, the role of parties is
taken by the attributes in our definitions.

Definition 7 (Access Structure). Let {S1, · · · , Sn} be a set of attributes.
An authorized collection A ⊂ 2{S1,··· ,Sn} is monotone, if ∀B,C, B ∈ A and
B ⊆ C then C ∈ A. A monotone access structure is a monotone collection
A of non-empty of subsets of {S1, · · · , Sn}. The sets not in A are called the
unauthorized sets.

Definition 8 (Linear Secret Sharing Scheme (LSSS)). A secret sharing
scheme Π over a set of attributes S is called linear on the two conditions that:
1) The shares for each attributes form a vector from ZN . 2) There exists an
l × n matrix A called sharing-generating matrix for Π. For all i = 1, · · · , l, the
function ρ maps the i-th row of A to an attribute labeling ρ(i). Then, we selects
a random column vector v = (μ, r2, · · · , rn) where μ ∈ ZN is the secret to be
shared, and Av is the vector of l shares of the secret μ according to Π. The
share (Av)i belongs to the attribute ρ(i).

From the discussion in [11], each LSSS scheme Π for the access structure A has
a property of linear reconstruction. Let C ∈ A be any authorized set, and let
I ⊂ {1, · · · , l} be defined as I = {i : ρ(i) ∈ C}. Then, there exists constant {ωi ∈
ZN}i∈I such that, if {λi} are valid shares of any μ in Π, then

∑
i∈I ωiλi = μ.

These {ωi} can be found in polynomial time in the size of matrix A.

3 Attribute Based Encryption with Auxiliary Inputs

In this section, we give the security model of cipher-text-policy ABE resilient
to auxiliary input (AI-CP-ABE), where the access structure is monotonic. In
Sect. 6, we will provide the concrete scheme of key-policy ABE resilient to aux-
iliary input (AI-KP-ABE).

A CP-ABE for a general monotone access structure A over the monotone
attribute universe space Σ is composed of four probabilistic polynomial time
algorithms:
1. Setup(1λ, Σ): The setup algorithm takes as input a security parameter λ

and an attribute set Σ, and outputs system public key MPK and master key
MSK.

2. KeyGen(MSK,S): This algorithm takes as input an attribute set S, and
the master secret key MSK, and outputs a private key SKS.

3. Encrypt(M,A): The encryption algorithm takes as input a monotone access
structure A and a message M , and outputs a cipher-text CT .

4. Decrypt(CT, SK): This algorithm takes as input a cipher-text CT for an
access structure A and a private key SK for a set S, and outputs M if and
only if the attribute set S satisfies the monotone access structure A.

Let Σ and M be the monotone attribute space and the message space
respectively. ∀M ∈ M, ∀A3 ∈ 2Σ and ∀S ∈ A, M ← Decrypt(SK,
3 The access structure A is a monotone collection of non-empty of subsets of Σ.
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Encrypt(MPK,M,A)), where (MPK,MSK) ← Setup(1λ, Σ), SK ←
KeyGen(MSK,S).

3.1 Security Model of AI-CP-ABE

In this section, we provide the security model of ciphertext-policy attribute based
encryption for semantic security with leakage in form of auxiliary input (AI-CP-
ABE). Let F denote a polynomial time computable function family. We define
the security model by an indistinguishable game between a challenger C and an
adversary A. In order to record the queried and leaked keys, we set two empty
lists: R = 〈j̄,S〉 and Q = 〈j̄,S, SKS〉, where j̄ is a handle index4.

Setup. The challenger C runs the Setup algorithm to generate MPK and MSK,
and sends MPK to A.

Query 1. The adversary A can perform the following queries:
– Key extraction query(QE): When A makes a key extraction query on

an attribute set S ⊂ Σ, C checks the list Q for the tuple with the form
〈j̄,S, SKS〉. If there is no such tuple, then j̄ is set to 1, and C answers
SKS ← KeyGen(MSK,S). Then, C puts 〈j̄,S, SKS〉 into the list Q.
Otherwise, C returns SKS from the tuple 〈j̄,S, SKS〉, and set j̄ = j̄ + 1.

– Key leakage query(QL): When A makes a key leakage query
on an attribute set S ⊂ Σ with a function f ∈ F , C returns
f(MSK,Q,MPK,S).

– Key update query(QU): This query is useful for schemes with proba-
bilistic attribute based private key generation, where a user of attribute
set S may request for another attribute based private key after obtained
the first copy. When A makes a key update query for another attribute-
based secret key after obtained the first copy. C checks the list Q for
the tuple with the form 〈j̄,S, SKS〉. If there is no such tuple, then ĵ
is set to 1, and returns null. Otherwise, ĵ is set to j̄ + 1, and returns
ˆSKS ← KeyGen(MSK,S). C puts 〈ĵ,S, ˆSKS〉 into the list Q, and

returns the update times ĵ.
Challenge. A outputs two messages M0,M1 ∈ M and a monotone access

structure A
∗ such that ∀S ∈ R doesn’t satisfy A

∗. C randomly choose a
bit b ∈ {0, 1}, and returns the cipher-text CT ∗ ← Encrypt(Mb,A

∗).
Query 2. A can make the key extraction queries like Query 1 except the queries

on the attribute sets which satisfies A
∗.

Response. Finally, A outputs a guess b′ of b. A’s advantage of this game can
be defined as ADVA(1λ, Σ) = |2Pr[b = b′] − 1|.
We say that a CP-ABE is AI-CPA secure w.r.t. auxiliary inputs from F on

the condition that ADVA is negligible for any PPT adversary A in the above
game.
4 j̄ is used to index the attributes set and the secret key.
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We consider the definition of function families F . To parameterize F ,
the min-entropy kA

5 of attribute-based secret key is an important parame-
ter. F can be denoted as F(g(kA)). Let ql denote the times of A’s key leak-
age queries, and let qe denote the times of A’s key extraction queries. Let
Δ denote a set of qe attribute-based secret keys. Then, for ∀i ∈ [ql], given
{MPK,A∗,Δ, {fi(MSK,Q,MPK,S)}i∈[ql]}, where all fi ∈ F(g(kA)), no PPT
algorithm can find a valid secret key SKS∗ such that attribute set S∗ ∈ A

∗ with
a non-negligible probability greater than g(kA)6, where g(kA) ≥ 2−kA is the
hardness parameter. Our goal is to make g(kA) as close to negl(kA) as possible7.
Thus, we have the following definition:

Definition 9 (AI-CPA-CP-ABE). If a ciphertext-policy attribute-based
encryption is CPA secure w.r.t. auxiliary input families F(g(kA)), then it is
said to be g(kA) auxiliary input CPA secure (g(kA)-AI-CPA).

4 Construction of CP-ABE Resilient to Auxiliary Input
Model

4.1 Preparation

Let Λ be a monotone universal attribute space. In the security proof of this
construction, we should convert each attribute to a random number belonging
to ZN , where N is a product of three distinct prime numbers p1, p2, p3. Thus,
an injection map χ should be pre-defined, and χ(Si) ∈ ZN for all Si ∈ Λ. Let
Σ = χ(Λ), which is a subset of ZN . For simplicity, we denote the number set Σ
as an universal attribute space in the following, and U denotes the cardinality
of U = |Σ|.

Our construction should be resorted to the Goldreich-Levin Theorem for
large fields. Let’s review it according to [3,13].

Theorem 1 (GL Theorem for Large Fields). Let q be a big prime, and let
H be a subset of GF (q). Let f mapping from Hm to {0, 1}∗ be any function.
Randomly chooses a vector s from Hm, and compute y = f(s). Then, randomly
selects a vector r from GF (q)m. If a PPT distinguisher D runs in time t, and
there exists a probability ε such that

|Pr[D(y, r,< r, s >) = 1] − Pr[u ← GF (q) : D(y, r, u) = 1]| = ε,

then given y ← f(s), there exists an inverter A who can compute s from y in
time t′ = t · poly(m, |H|, 1/ε) with the probability

Pr[s ← Hm, y ← f(s) : A(y) = s] ≥ ε3

512 · m · q2
.

5 If the key is generated randomly, then kA equals the length of secret key.
6 g(kA) is a non-negligible probability function.
7 In the auxiliary model, any hard-to-invert function f ∈ F can hardly recover a secret

key SK even the min-entropy of SK is 0.
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4.2 Construction

Our construction is based on Waters’ most efficient cipher-text-policy ABE
scheme [10]. In our construction, we try to construct the public key as in the
Yuen et al.’s scheme [3], then the master public key becomes yi = e(g1, Bi)αi

(Bi, αi are defined in the Setup algorithm.), and the master secret key becomes
m pieces (gα1

1 , · · · , gαm
1 ) in order to use the GL Theorem for large fields.

Setup(1λ, Σ): The setup algorithm takes as input a security parameter λ, a
monotone universal attribute space Σ. This algorithm runs the bilinear group
generator to produce Θ = (N = p1p2p3,G,GT , ê), where p1, p2, p3 are three
distinct λ-bit primes. Then, it selects random generators g1, h1, · · · , hU ∈ Gp1

and g3 ∈ Gp3 . Let m = (3λ)1/ε, where the security is w.r.t. auxiliary inputs that
are hard to invert with probability 2−mε

. It picks a, α1, · · · , αm, b1, · · · , bm ∈ ZN ,
and sets B1 = gb1

1 , · · · , Bm = gbm
1 . It selects g3 ∈ Gp3 and u1, · · · , um ∈ Zp3 .

The master public key is

MPK : {Θ, g1, g3, (g
a/bi

1 )i∈[m], B1, · · · , Bm, h1, · · · , hU , (yi = e(g1, Bi)αi)i∈[m]},

and the master secret key is MSK = (gαi
1 · gui

3 )i∈[m].

KeyGen(MSK,MPK,S): This algorithm takes as input an attribute set S
8,

the master public key MPK and the master secret key MSK. It first chooses
y11, · · · , y1m, y2, y31, · · · , y3U , t ∈ ZN , and creates the private key as

SKS = {(K1i)i∈[m],K2, (K3x)x∈S}
= {(gαi

1 g
at/bi

1 · gy1i

3 gui
3 )i∈[m], g

t
1g

y2
3 , (ht

xgy3x

3 )x∈S}.

Encrypt(M,Π,MPK): The encryption algorithm takes as input an LSSS
scheme Π = (A, ρ) for a monotone access structure A, a message M and the
master public key MPK. Here, A is an l × n matrix. The function ρ asso-
ciates the rows of A to the attributes9. The algorithm first chooses random
s1, · · · , sm ∈ ZN and a random vector v = (

∑m
i=1 si, v2, · · · , vn) ∈ Z

n
N . For i = 1

to l, it computes λi = v ·Ai, where Ai is the vector corresponding to the ith row
of A. In addition, the algorithm chooses random r1, · · · , rl ∈ ZN . The generated
cipher-text CT is

{C = M ·
m∏

i=1

ysi
i , (C ′

i = Bsi
i )i∈[m], (Ci = gaλi

1 h−ri

ρ(i),Di = gri
1 )i∈[l]}.

Decrypt(CT, SK,MPK): This algorithm takes as input a cipher-text CT for
an LSSS scheme Π = (A, ρ) on the monotone access structure A, a private key
SK for a set S and the master public key MPK. If S ∈ A is an authorized
8
S is a subset of number set Σ.

9 Since each attribute is mapped to a random number in ZN , ρ can be defined as
ρ : Zl

N → Σ.
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set, then let I ⊂ [l] be defined as I = {i : ρ(i) ∈ S}. Then, it computes a set
{ωi ∈ ZN}i∈I such that

∑
i∈I ωiλi =

∑m
i=1 si, if {λi} are valid shares according

to A. Then, the decryption algorithm computes
∏m

i=1 ê(C ′
i,K1i)∏

i∈I(ê(Ci,K2)ê(Di,K3ρ(i)))ωi
=

m∏

i=1

ysi
i .

Finally, it can obtain the message M from C.

Correctness: The correctness of decryption is described as follows:
∏m

i=1 ê(C ′
i,K1i)∏

i∈I(ê(Ci,K2)ê(Di,K3ρ(i)))ωi

=
∏m

i=1 ê(Bsi
i , gαi

1 · g
at/bi

1 · gy1i+ui

3 )
∏

i∈I(ê(g
aλi
1 h−ri

ρ(i), g
t
1g

y2
3 )ê(gri

1 , ht
ρ(i)g

y3ρ(i)
3 ))ωi

=
(
∏m

i=1 ê(g1, Bi)αisi) · ê(g1, g1)at·(∑m
i=1 si)

∏
i∈I(ê(g

aλi
1 , gt

1) · ê(h−ri

ρ(i), g
t
1) · ê(gri

1 , ht
ρ(i)))

ωi

=
(
∏m

i=1 ê(g1, Bi)αisi) · ê(g1, g1)at·(∑m
i=1 si)

ê(g1, g1)at·∑i∈I λiωi

=
m∏

i=1

ê(g1, Bi)αisi =
m∏

i=1

ysi
i .

4.3 Performance Comparison

In this section, we provide the performance comparison with Lewko et al.’s
scheme [27], Zhang et al.’s scheme [12] and our scheme. These three schemes are
all ciphertext-policy attribute-based encryption schemes in the presence of key
leakage model. Lewko et al.’s scheme and our scheme use LSSS to denote the
access structure, while Zhang et al.’s scheme uses the minimal set to denote the
access structure.

Let Pr denote the computation cost of pairing, Ex denote the exponent cost,
and Mu denote the point multiplication. For [27] and our scheme, we assume
that the LSSS matrix is l×n. For [12,27], we assume that the leakage parameter
is denoted as , the allowable leakage probability parameter is denoted as ς and
the leakage bound of a key is denoted as ζ. For [12], let κ denote the number of
minimal sets. In decryption, we only evaluate the computational costs of pairing,
since the pairing operation is very time-consuming compared to other the other
operations.

From the Table 1, we can see that the computational cost of Lewko et al.’s
scheme [4] and Zhang et al.’s scheme [12] are mainly dependent on the leakage
parameter , while the computational cost of our scheme is mainly dependent
on the number of pieces m. However, Our scheme resilient to auxiliary input
haven’t the limitation of leakage bound.



Attribute-Based Encryption Resilient to Auxiliary Input 381

Table 1. Performance comparison

Schemes Lewko [27] Zhang [12] Our scheme

Encrypt 2(� + 2l)Mu (� + 2κ)Mu (2l + m + 1)Ex

Decrypt (� + 2l + 1)Pr (� + 3)Pr (m + 2|I|)Pr

Leakage bound ζ = 2 + (� − 1 − 2ς) log p2 ζ = 2 + (� − 1 − 2ς) log p2 No

Leakage model Bounded leakage Continuous leakage Auxiliary input

5 Security Proof

Our security proof employs the dual system encryption mechanism, which
requires three semi-functional(SF) structures. Let g2 be the generator of Gp2 .

SF master secret key : (gαi
1 · gθi

2 · gui
3 )i∈[m], where θ1, · · · , θm ∈ ZN .

SF attribute-based secret key : {(gαi+at/bi

1 · gzi
2 gy1i

3 )i∈[m], g
t
1g

d
2g

y2
3 , (ht

xgy3x

3 )x∈S},
where z1, · · · , zm, d ∈ ZN .

SF cipher-text : {C = M · ∏m
i=1 ysi

i , (C̃ ′
i = Bsi

i gδi
2 )i∈[m], (C̃i = gaλi

1 h−ri

ρ(i)g
τi
2 , D̃i =

gri
1 )i∈[l]}, where δ1, · · · , δm, τ1, · · · , τl ∈ ZN .

When a SF attribute-based secret key is used to decrypt a SF cipher-text, we will
obtain an extra term ê(g2, g2)

∑m
i=1 δizi−d

∑
i∈I τiωi . If

∑m
i=1 δizi − d

∑
i∈I τiωi =

0, we call a SF attribute-based secret key is a nominally semi-functional(NSF)
attribute-based secret key. An NSF attribute-based secret key is a special kind
of SF attribute-based secret key, which can be used to decrypt SF cipher-text,
that means

∑m
i=1 δizi = d

∑
i∈I τiωi. If an attribute-based secret key is generated

from a SF master secret key, then it is also semi-functional. If we use it to decrypt
a SF cipher-text, we will obtain another extra term ê(g2, g2)

∑m
i=1 δiθi−d

∑
i∈I τiωi .

Similarly, if
∑m

i=1 δiθi = d
∑

i∈I τiωi, then decryption still works and the SF
attribute-based secret key is an NSF attribute-based secret key.

Theorem 2. Our CP-ABE scheme is (2−mε

)-AI-CPA leakage secure under the
modified assumptions 1,2 and 3.

Proof: We prove this theorem by a series of games. In the first real Gamerl,
the key and cipher-text are normal forms. Let A

∗ denote the challenge access
structure, which is a monotone collection. The second game Gamert is the same
as Gamerl except that the adversary cannot ask for any attribute set belong-
ing to the collection A

∗. Then, we convert the challenge cipher-text into semi-
functional, and convert the keys into semi-functional forms one by one. Finally,
we also prove that the message is distinguishable from a random message in the
challenge cipher-text.

Lemma 1. If AdvGamerl

A − AdvGamert

A ≥ ε, then Assumption 2 is broken.

Lemma 2. If AdvGamert

A −AdvGame0
A ≥ ε, then modified Assumption 1 is broken.
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Lemma 3. If Adv
Gamek+1
A − AdvGamek

A ≥ ε, then modified Assumption 2 is
broken.

Lemma 4. If Adv
GameQ

A −Adv
Gamef

A ≥ ε, then modified Assumption 3(modified
BSDP assumption) is broken.

We prove Lemma 1–4 in AppendixB. From Lemma 1–4, if modified assump-
tions 1,2,3 hold, then Gamerl is indistinguishable from Gamef . Obviously, the
adversary can win the Gamerl with negligible probability. Thus, our CP-ABE
scheme is (2−mε

)-AI-CPA leakage secure. �
Note: Our scheme can be easily extended to an ABE scheme secure in the con-
tinual auxiliary leakage model [3], if the extended scheme does not allow leak-
age during the setup phase. It only adds two update algorithms for MSK and
attribute-based secret key, and the proof is similar to the above, since the updates
all used random elements in Gp3 , which has no impact to the previous proof.

6 KP-ABE Resilient to Auxiliary Input

In this section, we construct key-policy attribute-based encryption leakage
resilient to auxiliary input model. In KP-ABE, a key is associated with an
access structure and a cipher-text is associated with a set of attributes. The
construction has the similar security proof with AI-CP-ABE. In this construc-
tion, we encode a monotone universal attribute space as an index numbers set,
which is still monotone. Let Σ be the universal attribute space, and U = |Σ|.
We use a function I to map each attribute to its index number. Let IS denote
the index numbers set of attributes set S. It means that IS ⊂ {1, · · · , U}. Let
A = {S1, · · · ,Sn} be a monotone access structure, and all Sis are authorized
attribute sets. Then, IA = {IS1 , · · · , ISn

} is a monotone collection of index num-
bers sets corresponding to A.

Setup(1λ, Σ): The setup algorithm takes as input a security parameter λ, a
monotone universal attributes set Σ. This algorithm runs the bilinear group
generator to produce Θ = (N = p1p2p3,G,GT , ê). Then, it selects random
generators g1, h1, · · · , hu ∈ Gp1 and g3 ∈ Gp3 . Let m = (3λ)1/ε. It picks
a, α1, · · · , αm b1, · · · , bm ∈ Zp1 , and sets B1 = gb1

1 , · · · , Bm = gbm
1 . It selects

g3 ∈ Gp3 and u ∈ Zp3 . The master public key is

MPK : {Θ, g1, g
a
1 , g3, B1, · · · , Bm, h1, · · · , hU , (Hi = hb1

i , · · · ,Hi = hbm
i )i∈[U ],

(yi = e(g1, Bi)αi)i∈[m]},

and the master secret key is MSK = (gαi
1 gui

3 )i∈[m].

KeyGen(MSK,A): This algorithm takes as input a monotone access structure
A and the master secret key MSK. It first chooses

y11, · · · , y1m, y2, y31, · · · , y3U , t, r1, · · · , rU ∈ ZN ,
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and creates the private key as

SK = {(K1i)i∈[m], (K2i)i∈IA , (K3i)i∈[U ]}
= {(gαi+at

1 · gy1i+ui

3 )i∈[m], (g−at
1 (

∏

j∈ISi

h
rj

j )gy2
3 )i∈IA , (g

ri
1 gy3i

3 )i∈[U ]}.

Encrypt(M,S): The encryption algorithm takes as input an attributes set S

and a message M . The algorithm firstly transforms S to its corresponding index
set IS. Then, it chooses random s1, · · · , sm ∈ ZN , and outputs the cipher-text
CT as

< C = M ·
m∏

i=1

ysi
i , (C ′

i = Bsi
i )i∈[m], (Ci =

m∏

j=1

H
sj

ij )i∈IS > .

Decrypt(CT, SK): This algorithm takes as input a cipher-text CT for an
attribute set Sk and a private key SK associated with a monotone access struc-
ture A. If Sk ∈ A is an authorized set, then ISk

∈ IA. The decryption algorithm
computes

∏m
i=1 ê(C ′

i,K1i) · ê(K2k,
∏m

i=1 C ′
i)∏

i∈ISk
ê(Ci,K3i)

=
m∏

i=1

ysi
i .

Finally, it can obtain the message M from C.

7 Conclusions

In this paper, we propose a security model of CP-ABE leakage resilient to aux-
iliary input, and a concrete construction based on linear secret sharing schemes.
Our scheme can tolerate leakage on master key and attribute-based secret key
with auxiliary input. For the security proof of our scheme, we present three mod-
ified static assumptions in composite order bilinear groups, and prove them in
detail. Our scheme also can be easily extended to an ABE scheme resilient to
continual auxiliary leakage, if it doesn’t allow leakage in setup phase. Finally, we
also propose a KP-ABE scheme resilient to auxiliary input.

Acknowledgments. This research is partially supported by the National Natural
Science Foundation of China under Grant No.61373006, NSFC/RGC Joint Research
Scheme of Hong Kong and China (N-HKU 729/13) and seed funding projects of HKU
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A Proofs of Three Modified Assumptions

We adopt the notion of [4] to denote an element ga1
1 ga2

2 ga3
3 of G as (a1, a2, a3).

The element ê(g1, g1)a1 ê(g2, g2)a2 ê(g3, g3)a3 in GT will be denoted by [a1, a2, a3].
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We use capital letter to denote the random variables. For example, X =
(X1, Y1, Z1) is denoted as a random element of G. We say that X is depen-
dent on {Ai}, if there exists values λi ∈ ZN such that X =

∑
i λiAi. Otherwise,

X is independent on {Ai}. For the security proof, we should review the following
two theorems from [9].

Theorem 3 (Theorem A.1 in [9]). Let N =
∏m

i=1 pi be a product of distinct
primes, each greater than 2λ. Let {Ai} be a random variables set over G, and
let {Bi}, T0, T1 be random variables over GT , where all variables have the degree
greater than t. The following game between an adversary A and a challenger C
is in generic group model.

Given N, {Ai}, {Bi}, C chooses a random bit b, and sends Tb to A. A outputs
a bit b′, and succeeds the game if b′ = b.

If the following conditions are satisfied, then C can find a nontrivial factor
of N by using A in time polynomial in λ with probability at least δ − O(q2t/2λ).

1. Each of T0 and T1 is independent of {Bi} ∪ {e(Ai, Aj)}.
2. A issuing at most q queries and having advantage δ in the above game.

Theorem 4 (Theorem A.2 in [9]). Let N =
∏m

i=1 pi be a product of distinct
primes, each greater than 2λ. Let {Ai} be a random variables set over G, and
let {Bi}, T0, T1 be random variables over GT , where all variables have the degree
greater than t. The game between an adversary A and a challenger C is the same
as above.

Let S := {i|ê(T0, Ai) �= ê(T1, Ai)}. If the following conditions are satisfied,
then C can find a nontrivial factor of N by using A in time polynomial in λ with
probability at least δ − O(q2t/2λ).

1. Each of T0 and T1 is independent of {Ai}.
2. For all k ∈ S, ê(T0, Ak) and ê(T1, Ak) are independent of {Bi}∪{ê(Ai, Aj)}∪

{ê(T1, Ai)}i�=k.
3. A issuing at most q queries and having advantage δ in the above game.

We apply these two theorems to prove the hardness of our modified assumptions
in generic group model.

modified 1-SDP assumption. To prove this assumption, we will use Theorem 4.
Firstly, we can express this assumption as:

A1 = (1, 0, 0), A2 = (0, 0,X3)
{T0i = (X1i,X2i, 0)}i∈[m], {T1i = (X1i, 0, 0)}i∈[m]

Since ê(T0i, A1) = [X1i, 0, 0] = ê(T1i, A1) = [X1i, 0, 0] and ê(T0i, A2) = [0, 0, 0] =
ê(T1i, A2) = [0, 0, 0], we can note that S = ∅, and for all i ∈ [m], T0i and T1i are
independent of {A1, A2} since X1i does not exist in both A1 and A2. Then, in
the game of Theorem 4, if ∃i ∈ [m], the adversary A can distinguish T0i and T1i

with probability δ, then N can be factored with probability less than δ. Since it
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is hard to find a nontrivial factor of N , then the modified 1-SDP assumption is
secure.

modified 2-SDP assumption. To prove this assumption, we will also use Theo-
rem 4. Firstly, we can express this assumption as:

A1 = (1, 0, 0), {A2i = (X1i,X2i, 0)}i∈[m], A3 = (0, 0,X3), A4 = (0, Y2, Y3)

T0 = (Z1, Z2, Z3), T1 = (Z1, 0, Z3)

We note that S = {{2i}i∈[m], 4} in this case. It is clear that

1. Both T0 and T1 are independent of {Ai}, since Z1 cannot be found in Ai’s.
2. Since ê(T0, A2i) = [X1iZ1,X2iZ2, 0],

{ê(T0, Ai)}i∈{1,3,4} = {[Z1, 0, 0], [0, 0,X3Z3], [0, Y2Z2, Y3Z3]}
and

{ê(T0, A2j)}j∈[m],j �=i = {X1jZ1,X2jZ2, 0}j∈[m],j �=i

ê(T0, A2i) is independent of {ê(Ai, Aj)} ∪ {ê = (T0, Ai)}i∈{1,3,4} ∪ {ê =
(T0, A2j)}j∈[m],j �=i. We can find that it is impossible to obtain X1iZ1 in
the first coordinate of a combination of elements of {ê(Ai, Aj)} ∪ {ê =
(T0, Ai)}i∈{1,3,4} ∪{ê = (T0, A2j)}j∈[m],j �=i. Obviously, ê(T1, A2i) is also inde-
pendent of {ê(Ai, Aj)}∪{ê = (T0, Ai)}i∈{1,3,4} ∪{ê = (T0, A2j)}j∈[m],j �=i due
to the same reason.

3. From ê(T0, A4) = [0, Y2Z2, Y3Z3] and ê(T1, A4) = [0, 0, Y3Z3], we can con-
clude that ê(T0, A4) and ê(T1, A4) are both independent of {ê(Ai, Aj)}∪{ê =
(T0, Ai)}i�=4, since we cannot obtain Y3Z3 in the third coordinate of a com-
bination of elements of {ê(Ai, Aj)} ∪ {ê = (T0, Ai)}i�=4.

Thus, from Theorem 4, modified 2-SDP assumption is generically secure on
the condition that it is hard to factor N .

modified BSDP assumption. We use Theorem 3. to prove this assumption.
Firstly, we can express this assumption as:

A1 = (1, 0, 0), {A2i = (1/bi, 0, 0)}i∈[m], {A3i = (biαi, X2, 0)}i∈[m], A4 = (0, 0, X3),

{A5i = (bisi, Y2, 0)}i∈[m], A6 = (0, Z2, 0), T0 = [
m∑

i=1

αibisi, 0, 0], T1 = [Z1, Z2, Z3].

We note that

1. It is clear that the only way to obtain
∑m

i=1 αibisi is to compute∏m
i=1 ê(A3i, A5i). However,

∏m
i=1 ê(A3i, A5i) = [

∑m
i=1 αibisi, (X2Y2)m, 0],

then (X2Y2)m are left in the second coordinate that cannot be canceled.
So T0 is independent of {ê(Ai, Aj)}.

2. T1 is independent of {ê(Ai, Aj)}, because Z1, Z2, Z3 cannot be found in {Ai}.

From the discussion above, we can conclude that the modified BSDP assump-
tion is generically secure under Theorem 3.



386 Z. Wang and S.M. Yiu

B Proofs of Lemma 1–4

Lemma 1. If AdvGamerl

A − AdvGamert

A ≥ ε, then Assumption 2 is broken.

Proof: Let A∗ denote the challenge access structure. For every S∗ ∈ A
∗, assum-

ing that S∗ = {S1, · · · , Sn} has n attributes10, we define a superset of S∗ as
S

∗ = {S′
1|S′

1 = S1 mod p2} ∪ · · · ∪ {S′
n|S′

n = Sn mod p2}. Let Ω∗ denote the
collection of all S∗s. If adversary A makes key query on an attribute set Ξ /∈ A

∗,
for ∀S′

i ∈ Ξ, the challenger C answers as follows:
– If S′

i /∈ S
∗, for ∀S∗ ∈ Ω∗, then C responses by using MSK and the KeyGen

algorithm.
– If S′

i ∈ S
∗, for ∃S∗ ∈ Ω∗, then S′

i �= Si and S′
i = Si mod p2. C computes

a = gcd(Si −S∗
i , N). We denote b = N/a, where N = p1p2p3. We assume that

(g,X1X2,X3, Y2Y3, T ) is an instance from 2-SDP assumption.
1. If a = p1p2 and b = p3, then C can check whether a =

p1p2 from (X1X2)a = 1. If the equation holds, then C can dis-
tinguish between T ∈ Gp1p3 and T ∈ G by using ê(Y2Y3, T )b

?= 1.
2. If a = p2p3 and b = p1, then C checks whether a = p2p3 from (Y2Y3)a = 1.

C also can distinguish between T ∈ Gp1p3 and T ∈ G by using ê(X1X2, T )b

?= 1.
3. If a = p2 and b = p1p3, then C can distinguish between T ∈ Gp1p3 and

T ∈ G by using T b ?= 1. �
Then, the challenge ciphertext is converted into semi-functional in Game0.
Lemma 2. If AdvGamert

A − AdvGame0
A ≥ ε, then modified Assumption 1 is

broken.

Proof: Given an instance (N, g1,X3,G,GT , (Ti)i∈[m]) of modified 1-SDP
assumption, C constructs the master public key MPK as

< g1,X3, (g
a/bi

1 )i∈[m], B1, · · · , Bm, h1, · · · , hU , (yi = ê(g1, Bi)αi)i∈[m] >,

where a, αi, bi ∈ ZN . The master secret key MSK = (gαi
1 Xui

3 )i∈[m]. C can answer
the key extraction queries, key leakage queries and key update queries from A.
In the challenge phase, A provides the challenge message and access structure
as (M0,M1,A

∗). Then, C randomly chooses values λ̃1, · · · , λ̃l, r1, · · · , rl ∈ ZN ,
and outputs the ciphertext CT ∗ as

< Mb ·
m∏

i=1

ê(gαi
1 , Ti), (Ti)i∈[m], (Ci = T aλ̃i

i h−ri

ρ(i),Di = gri
1 )i∈[l] >

If Ti = gbisi
1 gci

2 ∈ Gp1p2 , then CT ∗ is

< Mb ·
m∏

i=1

ê(gαi
1 , Bsi

i ), (Bsi
i gδi

2 )i∈[m], (Ci = gaλi
1 h−ri

ρ(i)g
τi
2 ,Di = gri

1 )i∈[l] >,

10 Here, each attribute is mapped to a random number in ZN .
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where δi = ci, λi = bi · si · λ̃i, τi = acλ̃i. This is a semi-functional ciphertext,
and C simulates Game0. If Ti ∈ Gp1 , C can simulate a normal ciphertext game
Gamert. Thus, if A can distinguish between a semi-functional ciphertext and a
normal ciphertext with a non-negligible probability, then C can use A’s output
to break the modified Assumption 1. �
Let Q denote the times of queries that A issues when the challenge ciphertext is
semi-functional. We set two types of attribute-based private key as follows:

Type I: < (gαi+at/bi

1 · gzi
2 gy1i+ui

3 )i∈[m], g
t
1g

d
2g

y2
3 , (ht

xgy3x

3 )x∈S >

Type II: < (gαi+at/bi

1 · gy1i+ui

3 )i∈[m], g
t
1g

d
2g

y2
3 , (ht

xgy3x

3 )x∈S >

For k = 1, · · · , Q − 1, in Gamek, the first k − 1 keys are semi-functional of
type II, the k-th key is semi-functional of type I, and the rest keys are normal.
Thus, in GameQ, all keys are semi-functional of type II.

Lemma 3. If Adv
Gamek+1
A − AdvGamek

A ≥ ε, then modified Assumption 2 is
broken.

Proof: Provided an instance (g1, (X1iX2i)i∈[m],X3, Y2Y3, T ) of modified 2-SDP
assumption, C constructs the master public key

MPK :<Θ, g1, g3, (g
a/bi

1 )i∈[m], B1, · · · , Bm, h1, · · · , hU , (yi =e(g1, Bi)αi)i∈[m] >,

and the master secret key MSK = (gαi
1 gui

3 )i∈[m]. In the first k − 1 key queries,
C answers with < (gαi+at/bi

1 · gy1i+ui

3 )i∈[m], g
t
1(Y2Y3)hgy2

3 , (ht
xgy3x

3 )x∈S >, which
is a type II semi-functional key. For k + 1-th to Q-th queries, C answers with
normal keys.

For the k-th query, C answers the key as follows:

1. < (gαi
1 · T a · gy1i+ui

3 )i∈[m], T · gy2
3 , (ht

xgy3x

3 )x∈S >

2. < (gαi
1 · T a · gy1i+ui

3 )i∈[m], T · gy2
3 · (Y2Y3)h, (ht

xgy3x

3 )x∈S >

In case 1, if T = gt
1g

r
2g

s
3 ∈ G, then the k-th key is a semi-functional key of

type I. If T = gt
1g

s
3 ∈ Gp1p3 , the k-th key is a normal form key.

In case 2, if T = gt
1g

r
2g

s
3 ∈ G, then the k-th key is a semi-functional key of

type I. However, if T = gt
1g

s
3 ∈ Gp1p3 , the k-th key is a type II semi-functional

key.
When A makes a key leakage query, C returns f(MSK ′,Q,MPK,S), where

MSK ′ is semi-functional, and for the last entry < ·,S, SK ′
S

>∈ Q, SK ′
S

is a
type II semi-functional key.

When A makes a key update query, C returns a type II semi-functional key
SK ′

S
and the update times j′, then puts < j′,S, SK ′

S
> to Q.

In the challenge phase, C randomly chooses λ̃1, · · · , λ̃l ∈ ZN , and returns the
ciphertext as

C = Mb

m∏

i=1

ê(gαi
1 , X1iX2i), (C

′
i = X1iX2i)i∈[m], (Ci = (X1iX2i)

aλ̃ih−ri
ρ(i), Di = gri

1 )i∈[l].
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If we let X1iX2i = gbisi
1 gci

2 , then

C = Mb

m∏

i=1

ê(gαi
1 , Bsi

i ), (C ′
i = Bsi

i gδi
2 )i∈[m], (Ci = gaλi

1 h−ri

ρ(i)g
τi
2 ,Di = gri

1 )i∈[l],

where δi = ci, λi = bi · si · λ̃i, τi = acλ̃i. This is a semi-functional ciphertext.
We can thus conclude that, if T ∈ G, C can simulate Gamek+1. Otherwise,

C can simulate Gamek. From the above analysis, A cannot distinguish between
type I semi-functional key and normal form key in case 1, and A also cannot
distinguish between type I semi-functional key and type II semi-functional key
in case 2. Thus, if an adversary has a non-negligible probability in Adv

Gamek+1
A −

AdvGamek

A , then C can break the modified 2-SDP assumption. �
The final game Gamef is the same as GameQ except that the message is masked
with a random element in GT , instead of M0,M1. That is to say, the value of b
is information theoretically hidden from A.

Lemma 4. If Adv
GameQ

A −Adv
Gamef

A ≥ ε, then modified Assumption 3(modified
BSDP assumption) is broken.

Proof: Given an instance (g1, (g
1/bi

1 )i∈[m], (B
αi
i X2)i∈[m],X3, (Bsi

i Y2)i∈[m],
Z2, T ) of modified BSDP assumption, C sets g3 = X3, g2 = Z2, yi =
ê(g1, Bαi

i X2) = ê(g1, Bi)αi . C constructs the master public key MPK and the
master secret key MSK = (Bαi

i X2 · gui
3 )i∈[m].

In key extraction phase, C can answer all key queries as

SKS =< (K1i)i∈[m],K2, (K3x)x∈S >

=< ((Bαi
i X2) · g

at/bi

1 · gy1i+ui

3 )i∈[m], g
t
1g

y2
3 , (ht

xgy3x

3 )x∈S > .

C also can answer the key leakage queries and key update queries from A, since
it knows MSK.

In the challenge phase, C randomly chooses λ̃1, · · · , λ̃l, r1, · · · , rl ∈ ZN

returns the ciphertext CT ∗ as

< Mb · T, (Bsi
i Y2)i∈[m], (Ci = (Bsi

i Y2)aλ̃ih−ri

ρ(i),Di = gri
1 )i∈[l] >,

where T is the assumption term. Let Bsi
i Y2 = Bsi

i gci
2 , then

< Mb · T, (Bsi
i gδi

2 )i∈[m], (Ci = gaλi
1 h−ri

ρ(i)g
τi
2 ,Di = gri

1 )i∈[l] >,

where δi = ci, λi = bi · si · λ̃i, τi = acλ̃i. If T =
∏m

i=1 ê(g1, Bi)αisi , then CT ∗ is a
semi-functional ciphertext and C can simulate GameQ in this case. However, if
T ∈ GT is random element, then C can simulate Gamef . Thus, if the adversary
A has non-negligible for distinguishing between Gamef and GameQ, then C
can break the modified BSDP assumption by using A’s output with the same
probability. �
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