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Abstract This paper considers the problem of assigning tar-
get locations to be visited by mobile robots. We formulate
the problem as a multiple-depot multiple traveling salesman
problem (MD-MTSP), an NP-Hard problem instance of the
MTSP. In contrast to most previous works, we seek to opti-
mize multiple performance criteria, namely the maximum
traveled distance and the total traveled distance, simultane-
ously. To address this problem, we propose, FL-MTSP, a
new fuzzy logic approach that combines both metrics into

Communicated by V. Loia.

B Sahar Trigui
sahar.trigui@coins-lab.org

Omar Cheikhrouhou
o.cheikhrouhou@tu.edu.sa

Anis Koubaa
aska@isep.ipp.pt

Uthman Baroudi
ubaroudi@kfupm.edu.sa

Habib Youssef
Habib.youssef@fsm.rnu.tn

1 University of Manouba, Manouba, Tunisia

2 Cooperative Intelligent Networked Systems (COINS)
Research Group, Riyadh, Saudi Arabia

3 Taif University, Taif, Kingdom of Saudi Arabia

4 Computer and Embedded Systems Laboratory, University of
Sfax, Sfax, Tunisia

5 Prince Sultan University, Riyadh, Saudi Arabia

6 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto,
Porto, Portugal

7 Wireless Sensors and Robotics Laboratory, Computer
Engineering, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia

8 PRINCE Research Unit, University of Sousse, Sousse, Tunisia

a single fuzzy metric, reducing the problem to a single-
objective optimization problem. Extensive simulations show
that the proposed fuzzy logic approach outperforms an exist-
ing centralized Genetic Algorithm (MDMTSP_GA) in terms
of providing a good trade-off of the two performance metrics
of interest. In addition, the execution time of FL-MTSP was
shown to be always faster than that of the MDMTSP_GA
approach, with a ratio of 89%.

Keywords MD-MTSP · Fuzzy logic · Optimization
problem · Multi-objective

1 Introduction

In complex robotics applications, such as Trigui et al. (2012),
Koubâa et al. (2012), Khamis et al. (2011), Pippin et al.
(2013), andFazli et al. (2010), robots typically need to collab-
orate together in order to complete their mission efficiently.
In fact, cooperative robots systems represent a recommended
alternative to single-robot systems for a vast array of appli-
cations, considering the collaborative effect between robots
that leads to accomplishing their missions more efficiently.
The multi-robot task allocation problem (MRTA) deals with
assigning tasks to robots to perform collaborative missions.
The MRTA problem can be formulated as follows: given n
robots andm tasks, the objective consists of ensuring an effi-
cient assignment of the tasks under consideration in order to
minimize the overall system cost. In the literature, several
works have proposed different solutions to the MRTA prob-
lem and applied it in different contexts. A formal analysis and
taxonomy of multi-robot task allocation problems in several
fields is given in Trigui et al. (2014). The paper defines three
main categories: (1) single-task robots (ST) versusmulti-task
robots (MT), (2) single-robot tasks (SR) versus multi-robot

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2279-7&domain=pdf


S. Trigui et al.

tasks (MR), and (3) instantaneous assignment (IA) versus
time-extended assignment (TA).According to this taxonomy,
our proposed approach belongs to the category of (ST, SR,
TA).

In the literature, existing approaches can be divided into
two categories, namely: (1) the centralized approach: it
assumes the knowledge of global information by a central
agent (e.g., control station), which is able to calculate a near-
optimal solution to the allocation problem, (2) the distributed
approach: decisions (or local solutions) are based on local
information for each agent performing the task (e.g., robot).

In this paper, we consider a disaster situation where n
robots are to be assigned m > n target locations. The objec-
tive of this application is to use the robots to collect sensors
data and take live images from locations impacted by the dis-
aster, to help rescuers take appropriate actions in real time.
In its abstract form, the problem can be considered as an
instance ofMTSP problem. In particular, wemodel the prob-
lem as multiple-depot multiple traveling salesman problem
(MD-MTSP) where each robot, initially at a certain depot
location, needs to make a tour over certain location of inter-
est, then returns to its initial locations, while minimizing the
mission cost. We seek to find a near-optimal assignment of
the target locations to robots. Most of the previous related
works (Cheikhrouhou et al. 2014; Wang et al. 2013; Sariel
et al. 2007; Singh andBaghel 2009; Brown et al. 2007; Carter
and Ragsdale 2006; Liu et al. 2009; Yousefikhoshbakht et al.
2013) considered a mission cost equal to a particular single
metric, most typically the total traveled distance (TTD) or
the maximum tour length (MT ). In this paper, we consider
the mission cost as a combination of the TTD and the MT
metrics. Several approaches have been proposed to deal with
multi-objective combinatorial optimization problems. A first
approach is to classify the objectives on the basis of their
importance (Nikolić 2007), then, to optimize with respect to
themost important objective, and in case of a tie, with respect
to the second objective, and so on. A second approach is to
optimize with respect to the most important objective and to
transform the rest of the objectives into constraints (Mavro-
tas 2009; Bérubé et al. 2009). A third approach is to combine
all objectives in a single cost function such as a weighted
sum (Marler and Arora 2010; Shim et al. 2012b). A fourth
approach uses the notion of pareto optimality and seeks to
find a pareto-optimal front of solutions, and let the decision
maker makes a choice (Deb et al. 2002; Bolaños et al. 2015).
In this work, we resort to fuzzy logic to express individual
objectives in linguistic terms, and then use fuzzy algebra to
combine them into a crisp value that represents the degree of
membership of the particular solution into the fuzzy subset
of good solutions (with short TTD and short MT ). We pro-
pose a new centralized, yet fast, approach that takes as input
the set of robots and their initial depots, and a set of target
locations, and produces optimized tour assignment for each

robot over a certain number of allocated target locations. The
contributions of the paper can be summarized as follows:

– The first contribution lies in the design of a centralized,
yet fast, algorithm (FL-MTSP) that uses the fuzzy logic to
combine both the TTD and the MT metrics. and assigns
target locations to robots.

– The second contribution is a thorough performance eval-
uation of the proposed FL-MTSP algorithm and its
comparison with single-objective function optimization
algorithms.

– The third contribution is the comparison of the FL-MTSP
proposed algorithm with a centralized genetic algorithm
solution Kivelevitch (2011) and with NSGA-II Deb et al.
(2002).

The rest of this paper is organized as follows. Sect. 2
presents a comprehensive literature review on relevant works
on multi-objective MTSP problem and existing approaches
to solve it. Sect. 3 describes the problem formulation, sys-
tem model and assumptions of the MD-MTSP problem
considering multiple objectives. Sect. 4 presents the FL-
MTSP algorithm,while Sect. 5 provides performance results.
Finally, Sect. 6 concludes the paper.

2 Related works

Multi-Robot Task Allocation problem is a challenging
research axis in the field of robotics. In the literature, sev-
eral researchers have considered the MRTA problem as an
instance of the multiple traveling salesmen problem due to
the strong analogy between them.

In the literature, researchers proposed different solutions
to solve the MTSP. In Sariel et al. (2007), the authors pre-
sented a distributed algorithm to solve the MTSP. Initially,
each robot selects the nearest target. Next, each robot makes
an auction for its task and task assignment is performed using
the contract net protocol. Simulation results proved the effi-
ciency of the algorithm in terms of scalability, total path
length and communicationmessage overhead. InKivelevitch
et al. (2013), the authors proposed a market-based algorithm
that consists of four steps: market auction, agent-to-agent
trade, agent switch and agent relinquish step. In the first step,
each robot takes the best task. In the agent-to-agent trade step,
each robot checks its ability to perform any task of the other
robots. In the agent switch step, the solutions that are not in
the local minima are explored. After a number of iterations
with no improvement, the algorithm stops. In Cheikhrouhou
et al. (2014), the authors proposed a market-based solu-
tion called move and improve to solve the MD-MTSP. The
solution consists of four steps: initial target allocation, tour
construction, negotiation of conflicting targets and solution
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improvement. From the simulation study, it was shown that
themove and improve algorithmgives good results compared
with the results generated by a centralized approach.

Several research works proposed a Grouping Genetic
algorithm (GGA) (Carter and Ragsdale 2006; Brown et al.
2007) to solve theMTSPproblem.AGGAalgorithm is based
on dividing the cities intom groups wherem is the number of
salesmen. In Singh and Baghel (2009), the authors solved the
single depot MTSP problem using the Genetic Algorithm.
They proposed a steady-state grouping genetic algorithm
(GGA-SS) that uses different chromosome representation
and genetic operators. Also, they have used steady-state
population replacement model. The objectives are: (1) min-
imizing the total distance traveled by all the salespersons,
and (2) minimizing the maximum distance traveled by any
salesperson. Simulation results have shown that the GGA-
SS finds the solution of least average cost compared with
the solutions proposed in Carter and Ragsdale (2006) and
Brown et al. (2007). The authors assume every salesper-
son must visit at least one city in addition to the home city.
This restriction can cause an increase of the total traveled
distance.

In Liu et al. (2009), the authors solved the MTSP prob-
lem using the ant colony optimization (ACO) algorithm.
The objectives are to minimize the maximum tour length
of all the salesmen and minimize the maximum tour length
of each salesman. A comparison between the ACO-based
algorithm with the ones proposed in Carter and Rags-
dale (2006), Brown et al. (2007) and Singh and Baghel
(2009) was performed. Computational results demonstrated
that the ACO-based solution outperforms the GA-based
solutions.

In Yousefikhoshbakht et al. (2013), a new modified ACO
algorithm (NMACO) was proposed to solve theMTSP prob-
lem. Modifications include the transition rule, the candidate
list, the global pheromone updating rules and several local
search techniques. These modifications improve the quality
of solution of the ACO. The objective is to minimize the dis-
tance traveled by the salesmen. Computational experiments
have shown that in general, the NMACO produces better
results compared to the existing solution methods for MTSP.

In contrast to several previous works, our objective is
to optimize multiple performance criteria namely the total
traveled distance, and the maximum tour, which turns our
problem as a multi-objective optimization problem (MOO).
Generally, the MOO problem is expressed in mathematical
terms as follow:

minF(x) = [ f1(x), f2(x), . . . , fk(x)]
s.t.x ∈ S

x = (x1, x2, . . . , xn)
T (1)

where f1(x), f2(x), . . . , fk(x) are the k objective func-
tions, (x1, x2, . . . , xn) are the n optimization parameters, and
S ∈ Rk is the decision variables. Note that the objectives are
usually in conflict with each other. Thus, it is impossible to
simultaneously improve all objective functions.

Few research works were conducted to solve the MTSP
problem as a MOO problem. In Shim et al. (2012a), the
authors proposed a solution based on the combination of the
estimation of distribution algorithm (EDA) with a gradient
search to solve the multi-objective MTSP. They considered
an objective function equal to the weighted sum of the total
traveling costs of all salesmen and the highest traveling
cost of any single salesman. The algorithm includes four
steps: chromosome representation, decomposition,modeling
and local search. The comparison of the proposed algo-
rithm with several state-of-the-art algorithms demonstrates
its effectiveness. Also, from simulation study, it was shown
that the hybridization of EDA with a local search algo-
rithm improves the quality of the solution. Nevertheless, the
authors did not present results related to the execution time
of their algorithm. In Ke et al. (2013), the authors proposed
a multi-objective ant colony algorithm using the MOEA/D
frameworkZhang andLi (2007) (MOEA/D-ACO). The basic
idea of this algorithm is to decompose the multi-objective
problem into single-objective problems. The ants are decom-
posed into groups. The number of groups is the same as the
number of objectives. Each ant is responsible for finding a
solution to the sub problem of its group. The ants of the same
group share the same pheromone matrix but each ant has
its own heuristic information matrix. Experimental results
proved the efficiency of the MOEA/D-ACO solution.

Unlike the solutions proposed inKe et al. (2013) and Shim
et al. (2012a) that consider a decomposition framework of the
multi-objective problem, we propose a new solution based
on the combination of the objectives. Also, the authors did
not specify how they decompose themulti-objective problem
into single-objective problems. For the performance eval-
uation, the authors did not present results related to the
objectives (total traveled cost and the highest traveled cost
by any salesman).

In Xu et al. (2008), the authors proposed an ACO-based
algorithm for solving the task assignment problem for mul-
tiple Unmanned Underwater Vehicles. Two objectives were
considered: minimizing the total distance of visiting all tar-
gets and minimizing the total turning angle. The problem
was defined as a multi-objective MTSP taking into account
the constraints of balancing the number of targets visited by
each vehicle. The solution has two phases. The task num-
ber assignment phase consists in defining the number of
targets for each vehicle while the second phase solves the
MTSP problem using an ant colony for each objective. Per-
formance evaluation shows that the algorithmgenerates good
solution.
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In Bolaños et al. (2015), the authors proposed a non-
dominated sorting genetic algorithm (NSGA-II) to treat the
multi-objective MTSP. They addressed two objectives: min-
imizing of the total traveled distance and the balance of the
working times of the traveling salesmen. The evaluation was
performed on two instances ((3 salesmen, 29 nodes) and (3
salesmen, 75 customers)) and the results shows the effective-
ness of theNSGA-II inminimizingboth objectives.However,
the solutions proposed in Bolaños et al. (2015) and Xu et al.
(2008) are efficient but only in small scale scenarios. The
authors did not prove the efficiency of their solution for large
scale scenarios.

In contrast to several research works that decompose
the multi-objective problem into single-objective problems,
the main contribution of this work is to combine multiple
objectives using a fuzzy logic system in order to solve the
MTSP problem. In this way, our multi optimization problem
becomes a single optimization problem. Also, we are inter-
ested to study the MTSP where robots are initially located
into different positions in contrast to several works that con-
siders that all salesmen start from the same initial position.

3 Problem formulation

The multiple traveling salesmen problem has received sig-
nificant attention in a large number of robotic applications.
In this work, we address the multi-objective MTSP. We con-
sider a set of robots responsible for following a set of target
locations in the case of disastermanagement. The objective is
to find the effective assignment of robots to a set of locations
so as to optimize the overall cost and maximize the perfor-
mance. For a given robot, the task is to visit a set of particular
points of interests. TheMTSP is anNP-hard problem and can
be solved using heuristic approaches. In other words, an opti-
mal task sequence for the robots must be planned firstly to
ensure that it takes least cost for the robot to move. In order
to solve the problem, the task allocation algorithm has to
answer the following two questions:

1. To which target locations a robot should be assigned?
2. If a robot was assigned to more than one target locations,

how does it determine which one to visit before the oth-
ers?

We assume the offline version of the problemwhere the num-
ber of locations to bemonitored is known from the beginning.

In this work, our objective is to optimize two main perfor-
mance criteria namely the total tour length and the maximum
tour length.

1. The total traveled distance of the robots on the target: We
define TTD as the sum of all tours length performed by

all the robots. The tour length of each robot is calculated
using existing TSP solver once the target locations are
allocated. The total tour length is calculated by summing
up the traveled distance of all edges included in a tour.
We define tourri (Eq. 3) as the tour of the robot i starting
from and ending at the same position. The TTD is given
according to Eq. 2.

TTD =
n∑

i=1

tourri (2)

where

tourri = distance(ri , ti1)

+
ki−1∑

j=1

distance(ti j , ti j+1)

+ distance(tiki , ri ) (3)

where ki is the number of target locations assigned
to robot i . distance(ti j , ti j+1) represents the distance
between target location j and target location j + 1 for
robot i . ti1 and tiki represent the first and the last target
locations respectively for robot i . distance(ri , ti1) repre-
sents the distance to travel from the depot of ri to the first
target ti1 and distance(tiki , ri ) represents the distance to
return back from the last target tiki to the initial depot
of ri .

2. The maximum tour MT measured in terms of distance:
it is the maximum distance traveled by any robot after
the scheduled mission is completed. The maximum tour
length among all the tours of the robots is expressed as
follows:

MT = max(tourri )

1 ≤ i ≤ n

s.t. tourri �= tourr j
1 ≤ j ≤ n, i �= j (4)

In the context of multi-objective optimization, the objec-
tive function of the problem is obtained by combining the
objectives to be minimized (TTD and MT ). For this purpose,
we used a fuzzy logic system as described in Sect. 4.1.

4 Proposed solution

4.1 Fuzzy logic rules design

In our work, we propose the use of fuzzy logic
(Zadeh 1965, 1975) to combine conflicting objectives. We
consider each of the Objectives mentioned in Sect. 3 namely

123



FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman. . .

Fig. 1 Membership function of
the TTD and MT objectives

µ µ

MT and TTD, which are the inputs of the system. The pro-
posed solution attempts to simultaneously minimize the total
traveled distance and the maximum traveled distance. We
assume that themission time is proportional to theMT as the
velocities of all robots are the same. In addition, we assume
that the required time to collect sensor data is the same at all
target locations.

We rely on the expressive power of fuzzy logic to state
the desired objectives to optimize. Recall that we seek to
distribute a number of targets on a number of robots while
minimizing the sum of all robots tour lengths as well as the
maximum among all robot tour lengths. Hence, we seek
solutions with Short-TTD and Short-MT. In fuzzy logic,
Short-TTD and Short-MT represent fuzzy linguistic values
for the fuzzy variables TTD andMT . To each linguistic value
corresponds a fuzzy subset with an associated membership
function denoted typically by the Greek letter μ. For exam-
ple, in our case μT T D gives for each solution with a given
TTD (the base value) the degree of membership of that solu-
tion in the fuzzy subset of solutions with short TTD. The
desire to seek solutions with simultaneous short TTD and
short MT can be described by the following fuzzy rule:

IF Solution is Short-TTD AND solution is Short-MT
THEN Good-Solution.

In fuzzy logic, Good-Solution is a linguistic value for
the fuzzy variable solution. According to the above fuzzy
rule, the membership function (μGS) of Good-Solution is
expressed as follows:

μGS(s) = min(μShort−T T D(s), μShort−MT (s))

The above expression assumed the min-max logic of Zadeh,
where the fuzzyAND is interpreted as min and the fuzzyOR
as a max.

The membership function of each objective is determined
by two thresholds. We define the shortest tour of a robot as
the tour length obtained by visiting all target location using
a greedy algorithm that selects the closest next target to the
current position of the robot. We define the longest tour of a
robot as the tour length obtained by visiting all target loca-
tions using a greedy algorithm that selects the farthest next

target to the current position of the robot. We define four
variables:

– maxMin is defined as the longest tour among all the
shortest tours of all robots going through all target loca-
tions considering our definition above.

– minMax is defined as the shortest tour among all the
longest tours of all robots going through all target loca-
tions considering our definition above.

– avgMin: as the average of the shortest tour length of all
robots going through all target locations.

– avgMax : as the average of the longest tour length of all
robots going through all target locations.

ThemaxMin andminMax are used as thresholds of theTTD
fuzzy variable, because they represent reasonable upper and
lower bounds on the total tour. On the other hand, avgMin
and avgMax are used as thresholds of theMT fuzzy variable
because they represent reasonable bounds of the maximum
tour length (Fig. 1). For example, for μT T D , for a value
of TTD below maxMin, the total tour cost is considered
short compared to the value of TTD above minMax . The
same reasoning holds forμMT . The thresholds values can be
obtained using a simple greedy algorithm or using an exist-
ing TSP solver based on genetic algorithm Kirk (2011). In
our solution, we have used a greedy algorithm to compute
maxMin,minMax, avgMin and avgMax .

In the inference phase, we define the fuzzy rules that allow
the combination of our objectives which represent the inputs
of our system. In this paper, we use the Mamdani Fuzzy
model (Mamdani and Assilian 1975) to represent the “if-
then” rules (Table1). After the establishment of the rules, we
move to the defuzzification step which computes the output
value. In ourwork,we use the simple and themost commonly
used method in the literature, which is the centroid defuzzi-
fication method (Takagi and Sugeno 1985). The output value
is calculated by the following equation:

CrispOutput =
∑N

i=1 Wi ∗ μA(Wi )∑N
i=1 μA(Wi )

(5)
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Table 1 Fuzzy rules base TTD MT Assignment

Short Short Good

Long Long Bad

Short Long Bad

Long Short Bad

Algorithm 1. The FL-MTSP Algorithm

1: Inputs:
nbTargets: number of targets
nbRobots: number of robots
matrixDistances: matrix of distance between robots and

targets
2: Assignment phase
3: tour construction phase
4: Outputs:

tour: tour of each robot
tourCost: tour cost of each robot
MT : max tour cost among all tours cost

where N is the number of rules (in our case N = 4),Wi is the
input value and μA(Wi ) is the membership function of rule
i .

4.2 Algorithm design

In general, the goal of solving the MTSP is to find an opti-
mal order to pass through all locations in order to minimize
the total traveled distance. For the case where several objec-
tives must be optimized, the goal is to find trade-off solutions
while optimizing multiple performance criteria. The inputs
of our solution are the number of robots, the number of target
locations, the cost matrix between targets and the cost matrix
between each robot and all target locations. The cost we used
is the Euclidean distance. Our FL-MTSP algorithm consists
of two main phases: the assignment phase (Algorithm 2) and
the tour construction phase (Algorithm 3).

4.2.1 Assignment phase (Algorithm 2)

First, we select each target location from t1 to tm(m is the
number of targets) and we calculate the cost of the tour for
each robot if this target is assigned to it, using a greedy
algorithm. The reason of not using a TSP solver instead of
a greedy algorithm to estimate the tour length, is that the
TSP solver typically takes very long time when the system
becomes large, so it is limited in terms of scalability, but
still can be used for small size instances. Then, we deter-
mine the TTD cost (Eq. 2) and the MT cost (Eq. 4), which
will be used as input to the fuzzy logic system to determine
the membership function that represent the combination of
both objectives. Then, the target location is assigned to the
robot that produces the minimum value of the membership

Algorithm 2. The assignment phase
1: Inputs: nbTargets, nbRobots, matrixDistances
2: For each target ti do
3: For each robot ri do
4: Calculate the tourCost for the robot ri when ti is

assigned to ri using a greedy algorithm
5: Compute the TTD when ti is assigned to ri
6: Apply the fuzzy logic system for TTD and MT
7: End
8: Select the best output obtained by the fuzzy logic system
9: If multiple robots has the same best output do
10: Select the nearest robot that leads to obtaining the min-

imum total tour cost.
11: End
12: Add target ti to the tour list of the best robot
13: End
14: For each robot ri do
15: While the length of the allocated targets list of ri > (m/n)

16: Select the farthest target ti of robot ri from its allocated
targets list

17: Find the nearest robot r j from ti
18: If r j �= ri
19: Add ti to the allocated targets list of r j
20: Remove ti to the allocated targets list of ri
21: End
22: End
23: Outputs: tour of each robot

Algorithm 3. Tour construction phase
1: Inputs: nbRobots,

tour: tour of each robot after the assignment step
2: For each robot ri do
3: Apply the TSP_GA solver
4: End
5: output: tour, tourCost

function. If multiple robots have the same fuzzy output, then
we assign the target to the closest robot to the target location
that leads to obtain the minimum total tour cost. This process
is repeated until all targets are assigned to the robots. If the
length of the allocated targets list of a robot is higher than
the ratio of m by n(m/n), we select the farthest target from
its assigned targets and add it to the nearest robot. A sample
illustration of the FL-MTSP solution is given in Fig. 2. It is
shown that the robot R5 leaves targets T 5, T 7 and T 8 and
the robot R2 takes them.

4.2.2 Tour construction phase (Algorithm 3)

Once the process of allocating targets to robots is completed,
we use a TSP solver to determine the optimal tour for each
robot based on the target locations assigned to it in the pre-
vious phase. For this, we used an existing genetic algorithm
TSP solver (Kirk 2011) with a population size equal to 100
and a number of iteration equal to 10,000.
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Fig. 2 Simulation example
with 5 robots and 15 target
locations. a The initial position
of the robots and the targets to
be allocated. The blue squares
represent the robots and the red
circles represent the target
locations. b The tour of each
robot after applying the fuzzy
logic approach. c The final
assignment after redistributing
the targets and d presents the
final tour of each robot after
applying the TSP_GA solver
(color figure online)
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5 Performance evaluation

We have built our own custom simulation using MATLAB
under windows OS to implement the proposed approach. All
simulations are run on a PC with an Intel Core i7 CPU @
2.40GHz and 6GB of RAM. We evaluate the performance
of the FL-MTSP algorithm with two objective functions in
scenarios without obstacles where the tour cost is calcu-
lated as the Euclidean distance. We adopted the same test
problems used in Cheikhrouhou et al. (2014). The num-
ber of robots n varies in [3, 10, 20, 30, 100] whereas the
number of target locations m varies in the interval [30, 70,
100, 200, 300]. An (m ∗ m) cost matrix is randomly gen-
erated and contains the distances between targets. Targets
positions are placed in the range of [0, 1000]. In addition,
an (n ∗ m) cost matrix is randomly generated and contains
the distances between each robot and all targets. Moreover,
robots are randomly placed in the range of [0, 1000]. The
GA is used to find the least distance for the robot to travel
from a fixed starting point and end positions while visiting

the other places exactly once. For each scenario, we per-
formed 30 different runs for the algorithm to ensure 95%
confidence interval. For each run, we recorded the tour cost
for each robot, the TTD, the MT cost and the execution time.
The execution time of the algorithm is the average of the
30 execution times. We have explored the performance the
proposed approach under varying number of robots and tar-
gets.

Impact of the number of target locations: Figure 3 shows the
TTD and the MT cost as a function of the number of targets,
for a fixed number of robots. The TTD is presented in Fig. 3a
and the MT cost is presented in Fig. 3b.We can observe that,
in most cases, the TTD and the MT cost increase with the
increase of the number of targets for a fixed number of robots.
The assignment becomes more difficult when more target
locations are involved since the algorithm needs to determine
the route for each robot whilemaintaining theminimum TTD
and MT cost. We conclude that the increase of the number
of targets affect the system performance. It is interesting to

123



S. Trigui et al.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 104

number of robots

to
ta

l t
ou

r c
os

t (
m

et
er

s) t = 30
t = 70
t = 100
t = 200
t = 300

0 10 20 30 40 50 60 70 80 90 100
0

1000
2000
3000
4000
5000
6000
7000

number of robots

m
ax

 to
ur

 c
os

t (
m

et
er

s) t = 30
t = 70
t = 100
t = 200
t = 300

(a) (b)

Fig. 4 Impact of the number of robots on the total traveled distance and max tour cost (number of targets is fixed). a Total traveled distance,
b max tour cost
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Fig. 5 Comparison between FL-MTSP and the MDMTSP_GA in terms of total traveled distance

notice that increasing the number of robots does not change
much the total traveled distance, while there is a huge drop
in the maximum tour cost.

Impact of the number of robots: To study the impact of the
number of robots, we performed simulations where we fixed
the number of targets while varying the number of robots.
The results are shown in Fig. 4. We observe that, in most
cases, the total traveled distance (Fig. 4a) slightly decreases
when the number of robots increases.Moreover, themax tour
cost exponentially decreases while increasing the number of
robots especially when the number of robots is<30 (Fig. 4b).
This means that the target locations are shared between mul-
tiple robots in a manner to decrease both the total traveled
distance and the maximum tour cost. This result shows the
benefit of the use ofmultiple robots to solve theTSPproblem.
However, as indicated earlier, the overall traveled distance
cost is not affected much by increasing the number of robots
for a given number of tasks.

Comparison with MDMTSP_GA: In order to evaluate the
performance of our solution, we use the MDMTSP_GA
Kivelevitch (2011) which is a centralized approach based on
Genetic Algorithm. The MDMTSP_GA solution was simu-
lated in MATLAB. We used a population size equal to 240
and a number of iteration equal to 10,000. These parameters
are sufficient to generate good solutions. From Fig. 5, we

observe that our algorithm outperforms the MDMTSP_GA
in terms of TTD. We can noticed that for a large number
of robots and targets, the gap between our solution and the
MDMTSP_GA solution increases. For example, when the
number of target is 200 and the number of robot is 30, the
obtained traveled distance cost using our approach is dropped
by 70%. Moreover, for the max tour cost, in FL-MTSP, it
changes slowly compared to MDMTSP-GA (Fig. 6). The
above two findings demonstrates the effectiveness of our
approach in minimizing the overall cost in addition the max
tour cost.

As it is difficult to balance multiple objectives simulta-
neously, the above results prove that the fuzzy logic system
is a good process that allows to combine several conflict-
ing objectives and convert a multiple-objective system into a
single-objective system.

Also, we prove that the combination of a fuzzy logic sys-
tem with a heuristic approach leads to optimize the system
performance in terms of total traveled distance and max tour
cost.

In terms of execution time, it is clear that the gap between
our solution and the MDMTSP-GA is very large. The reason
of this gap is the fact that the fuzzy logic system from one
iteration allows to make decision with no need to repeat the
process. This result improves the impact of the use of the
fuzzy logic concept that helps to find a solution faster that
using only a Heuristic approach (Fig. 7).
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Fig. 6 Comparison between FL-MTSP and the MDMTSP_GA in terms of max tour cost
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Fig. 7 Time comparison between FL-MTSP and the MDMTSP_GA

Comparison with NSGA-II: We also compared FL-MSTP
with NSGA-II Deb et al. (2002). NSGA-II is an implementa-
tion of multi-objective GA for the MSTP problem. NSGA-II
adopted the notion of pareto optimality to tackle the problem
of multi-objective minimization. Suppose we wish to min-
imize two objectives O1 and O2, and let Si and S j be two
individual solutions. Let O1i , O2i , O1 j and O2 j be the val-
ues of each of the objectives for both solutions. Si is said to
dominate S j if and only if ((O1i < O1 j )∧(O2i ≤ O2 j ))OR
((O2i < O2 j ) ∧ (O1i ≤ O1 j )). The set of non-dominated
solutions is called the pareto-optimal set. Approaches that
adopt the notion of pareto optimality maintain a set of
pareto-optimal solutions fromwhich the decisionmakermust
choose.

NSGA-II description: As any GA, the first step of the
NSGA-II is the population initialization step that must be
adequate to the problem formulation. Then, the population
is sorted based on the non-domination concept. Each indi-
vidual is given a rank value. Moreover, for each individual,
a crowding distance is calculated. The crowding-distance
value is calculated as the sum of individual distance val-
ues corresponding to each objective (Deb et al. 2002). After
sorting the population based on the crowded distance and the
rank, the best individuals are selected. Next, the crossover
and mutation operators are applied to the selected popula-
tion to generate a child population. The parent population
and the child population are combined, sorted based on non-

Fig. 8 Solutions example obtained for FL-MTSP (blue star) and
NSGA-II (red stars) (color figure online)

domination and N individuals are selected based on their
crowding distance and their rank. Note that N is the popu-
lation size. A detailed description of the NSGA-II algorithm
is provided in (Seshadri 2006).

In our implementation, we used the Partial Mapped
Crossover (PMX) operator Bolaños et al. (2015) and the
strategy of swapping nodes (belonging to different tours) for
mutation. The population size in NSGA-II is set to be 100.
The algorithm stops after 50 generations (maximum number
of iterations). The crossover probability is equal to 0.7 while
the mutation probability is equal to 0.9. We mention that the
selection of default parameter values is guided by the sim-
ulation results. The simulation scenario for the MD-MTSP
consists of 3 robots and 30 targets. Figure 8 shows an exam-
ple of the obtained solutions for both algorithms (FL-MTSP
andNSGA-II). The x-axis represents theTTD objectivewhile
the y-axis represents the MT objective. The red stars are the
solutions generated by the NSGA-II and the blue star is the
solution generated by FL-MTSP.

A set of non-dominated solutions was generated by
NSGA-II and the selection of the best solution depends on
the application needs. From the simulation example used for
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Fig. 9 Comparison between
FL-MTSP, MDMTSP_GA,
MTSP_TT and MTSP_MT, a
total traveled distance, b max
tour cost
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the comparison, we noted that the gap between the solutions
of NSGA-II and of FL-MTSP is in the range of [4–24%] for
the TTD objective. Also, for theMT objective, the gap varies
in [23–34%]. Using the NSGA-II, the solutions are ranged
based on their rank of domination. So, most of the solutions
will be discarded as they will be assigned lower ranks. This
will lead to the loss of promising solutions. Therefore, FL-
MTSP provides an acceptable solution in terms of TTD and
MT as compared to the NSGA-II. This means that the solu-
tion obtained by FL-MTSP is better than at least one of the
solutions obtained by NSGA-II at least for one of the objec-
tives.

Comparison between FL-MTSP, MDMTSP_GA, MTSP_TT
and MTSP_MT algorithms: In this part, we define two new
algorithms namely MTSP_TT, which use the total traveled
distance as a metric to assign target locations for the MTSP
and the MTSP_MT, which use the max tour cost as a metric
to assign target locations for the MTSP. For the MTSP_TT
algorithm,we use a greedy algorithm to compute the tour cost
for each robot if this target is assigned to it. Then the target
will be assigned to the robot that leads to obtain theminimum
TTD. The process is repeated until all targets are assigned to
the robots. For the MTSP_MT algorithm, we compute the
tour cost and select the max tour cost for each robot if this
target is assigned to it, using a greedy algorithm. The target
will be assigned to the robotwith theminimummax tour cost.
Also, like the MTSP_TT algorithm, the process is repeated
until all targets are assigned to the robots. If the length of
the allocated targets list of a robot is higher than m/n, we
select the farthest target from its assigned targets and add it to
the nearest robot. Then, we apply an existing TSP solver for
the tour construction step (Sect. 4.2.2). To demonstrate that
the proposed fuzzy logic approach provides a good trade-off
between MT cost and TTD cost, we performed simulations
where we compare our FL-MTSP algorithm MDMTSP_GA
Kivelevitch (2011), MTSP_TT algorithm and MTSP_MT
algorithm. Figure 9a, b shows the total traveled distance and
the max tour cost respectively for the four algorithms. From
Fig. 9a, we depict that the FL-MTSP algorithm gives better
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Fig. 10 Time comparison between FL-MTSP using TSP_GA solver
and FL-MTSP using TSP_LKH solver

results than the MDMTSP_GA and the MTSP_MT algo-
rithm in terms of total traveled distance. Indeed, when using
the max tour cost as a metric, the algorithm optimizes the
performance of each robot without considering the benefits
of the whole system. This result improves the increase of the
total traveled distance for the MTSP_MT algorithm. From
Fig. 9b, we depict that the FL-MTSP algorithm gives better
results than theMDMTSP_GA and theMTSP_TT algorithm
in terms of max tour cost. The use of TTD as an optimiza-
tion criteria leads to increase the max tour cost. We deduced
that our FL-MTSP solution proposed to solve theMD-MTSP
provides a trade-off between total traveled distance and max
tour cost.

Impact of the TSP solver on the execution time: To study the
impact of the TSP solver, we performed simulations where
we used two well known TSP solvers: TSP_GA solver and
TSP_LKH solver (Helsgaun 2012). The number of robots
varies in the interval [3, 10, 20, 30, 100] and the number of
target locations was fixed to 200. Figure 10 shows the results
obtained. It is clearly shown that the execution time of the
FL-MTSP algorithm using the TSP-GA solver is more time
consuming than the FL-MTSPalgorithmusing theTSP-LKH

123



FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman. . .

solver. The gap between the FL-MTSP algorithm using the
TSP-LKHsolver and the FL-MTSP algorithmusing theTSP-
GA solver increases while increasing the number of robots.
Hence, the choice of a good TSP solver helps to improve
the execution time of the algorithm while providing a good
solution.

6 Conclusion

Multiple-depot multiple traveling salesman problem is an
interesting research area applied in several robotic applica-
tions where salesmen share the same workspace. To solve
the MD-MTSP, the paper proposed a centralized solution
based on the use of the fuzzy logic algebra to combine two
objectives: the objective of minimizing the total traveled dis-
tance by all the salesmen and the objective of minimizing the
maximum traveled distance by any robot. The approach con-
sists of two phases: The assignment phase where the targets
allocation is based on the output of the fuzzy logic system,
and the tour construction phase, where we used an exist-
ing genetic algorithm to build a sub-optimal tour for each
robot. Our approach is compared against an existing MD-
MTSP solver based on the genetic algorithm. Our approach
outperformed the GA approach on both the objectives and
also in terms of execution time. We compared our solution
against two single-objective algorithms. We proved that our
multi-objective algorithm provides a trade-off between total
traveled distance and the maximum traveled distance.
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