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Abstract—Recent years have witnessed the increasing threat
of phishing attacks on mobile computing platforms. In fact,
mobile phishing is particularly dangerous due to the hardware
limitations of mobile devices and mobile user habits. In this
paper, we did a comprehensive study on the security vulner-
abilities caused by mobile phishing attacks, including the web
page phishing attacks, the application phishing attacks, and the
account registry phishing attacks. Existing schemes designed
for web phishing attacks on PCs cannot effectively address the
various phishing attacks on mobile devices. Hence, we propose
MobiFish, a novel automated lightweight anti-phishing scheme
for mobile platforms. MobiFish verifies the validity of web pages,
applications, and persistent accounts by comparing the actual
identity to the claimed identity. MobiFish has been implemented
on a Nexus 4 smartphone running the Android 4.2 operating
system. We experimentally evaluate the performance of MobiFish
with 100 phishing URLs and corresponding legitimate URLs, as
well as phishing apps. The results show that MobiFish is very
effective in detecting phishing attacks on mobile phones.

Index Terms—Mobile computing; security and protection;
phishing attacks

I. INTRODUCTION

PHISHING attacks aim to steal private information such
as usernames, passwords, and credit card details by

way of impersonating a legitimate entity. Although security
researchers have proposed many anti-phishing schemes, the
threat of phishing attacks is not well mitigated. On the one
hand, lots of phishing sites expire and revive rapidly. Accord-
ing to the Anti-Phishing Working Group (APWG), the average
time that a phishing site stays online is 4.5 days [1]. Cranor et
al. even found that, sometimes, it is on the order of hours [2].
On the other hand, Phishing attackers keep improving their
techniques so that their new attacks are able to circumvent
existing anti-phishing tools.

Mobile phishing is an emerging threat targeting mobile
users of financial institutions, online shoppers, and social
networking companies. In 2012, researchers from Trend Micro
found 4,000 phishing URLs designed for mobile web pages
[3]. Although this number takes up less than 1% of all col-
lected phishing URLs, it highlights that mobile platforms have
become new targets of phishing attacks. Notice that mobile
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users could also be spoofed by conventional phishing web
pages (designed for PC browsers) when browsing with their
phones. The trend of launching phishing attacks on mobile
phones may be attributed to the hardware limitations such
as the small screen size, the inconvenience of user input and
application switching, the lack of identity indicators, mobile
user habits and preferences, etc.

Almost all phishing attacks on PCs are in the form of
bogus websites. Nowadays, with browsers powerful enough to
support all kinds of Internet services, people are accustomed to
online banking, online shopping, online socializing, etc. They
are familiar with being requested to provide, and subsequently
providing private information and credentials to websites.
Current phishing detection schemes can be roughly divided
into two categories: heuristics-based schemes and blacklist-
based schemes. Blacklist-based schemes can detect only those
phishing sites that are in the blacklist, and cannot detect zero-
day phishing attacks such as those that have only appeared for
days or hours. It is possible that new phishing sites may have
already stolen user credentials or have expired before being
added into the blacklist. Heuristics-based schemes largely de-
pend on features extracted from URL and HTML source code,
and then other techniques such as machine learning are used
to determine the validity. However, we find that the features
extracted from HTML source code could be inaccurate, and
phishing sites can easily bypass those heuristics.

Moreover, browsers have many practical features and conve-
nient functions abandoned or truncated during their adaptation
to hardware-constrained mobile platforms; this results in an
unpleasant experience for users. To improve their services,
most well-known enterprises have published mobile appli-
cations (apps) for major mobile platforms. This sheds new
light on phishing scams: some phishing attackers develop fake
apps or repackage legitimate apps, and then upload these
phishing applications to unofficial app markets. Once the
attack succeeds, the victim’s credentials will be sent to the
phishing server. Phishing apps are even harder to detect than
phishing web pages, since for web pages, we are able to judge
the destination of form-data from HTML source code (action
attribute in the form tag). But for mobile apps, there is no
way to check if user credentials are sent to the legitimate
authentication server or the attacker’s server. Hence, phishing
attacks on mobile phones are more complicated than those
on PCs. It is important to design effective mobile phishing
defense schemes for both web pages and applications.

Besides, we further discover a specialized form of phishing
attacks which target at the persistent account registry function
of mobile OSs. Since the malicious apps that have created a
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persistent account interact with the user using a separate login
interface (not the app’s login interface), we also need to design
a defense scheme specific to account registry phishing attacks.

In this paper, we propose a novel lightweight anti-phishing
scheme for mobile devices – MobiFish, which is capable of
defending against phishing attacks on mobile web pages, apps,
and persistent accounts. MobiFish aims to solve the essential
problem of identity masquerade without reliance on HTML
source code, search engine, or machine learning techniques.
We employ the optical character recognition (OCR) technique
to extract text from the screenshot of a login interface, which
achieves better performance on mobile phones than on PCs.
We are able to find the claimed identity from the extracted text,
and the actual identity from the URL of a web page or remote
server (for mobile apps). If these two identities are different,
our tool issues a warning to the user. Regarding the account
registry phishing attacks, MobiFish can effectively detect all
three variants by checking the consistency of account label,
app name and the destination of credential transmission.

Our contributions are summarized as follows:
– We find the weakness of previous heuristics-based security

schemes for conventional web page phishing, and propose a
lightweight detecting strategy that utilizes optical character
recognition (OCR) for web phishing and app phishing attacks.

– We present account registry phishing attacks. To the best
of our knowledge, we are the first to give detailed formulation
and defense scheme for this type of attacks.

– We propose MobiFish, a novel automated lightweight anti-
phishing scheme for mobile phones. We implement MobiFish
on a Google Nexus 4 smartphone (Android 4.2).

– We evaluate the effectiveness and usability of MobiFish
with phishing URLs and phishing apps. We also measure the
delay overhead of MobiFish.
The rest of the paper is organized as follows. Section II
summarizes the factors making phone users susceptible to mo-
bile phishing attacks. Section III presents the mobile phishing
attack models. Section IV provides an overview of the Mob-
iFish scheme. Section V describes the detail of the MobiFish
scheme. Section VI shows our evaluation methodology and
results. Section VII discusses the related works. Section VIII
concludes the paper.

II. WHY USERS ARE SUSCEPTIBLE TO MOBILE PHISHING

In this section, we conduct a comprehensive analysis on
the factors that make mobile users vulnerable to phishing
attacks, from the objective perspective of hardware limitations
and the subjective perspective of mobile users themselves,
respectively.

A. Hardware Limitations

Due to the small size of phone screens and limited compu-
tational power, browsers in mobile systems have to remove or
degrade some features to make more space for web contents
and maintain a smooth user experience (e.g. loading speed).
However, the security-related functionalities are among those
missing features. As a result, phishing web pages that could

(a) Display of Partial URL

(b) Display of Link Destination

Fig. 1. Display of URL in Mobile Browser (Android)

(a) Wells Fargo Domain Name

(b) Wells Fargo Domain Name with ‘l’ Replaced by Capital ‘i’

(c) Wells Fargo Domain Name with ‘l’ and Capital ‘i’

Fig. 2. URL Letter Replacement

have been detected and blocked on PC browsers may still be
accessible from mobile browsers.

In addition, the user interface of mobile browsers is also
simplified, which could instead help phishing sites to bypass
user inspection. To accommodate the small phone screen
size, most mobile browsers have to remove the status bar
and hide the URL bar once the web pages finish loading.
Even during the loading process, long URLs are truncated
to fit the browser frame. Since the ability to read and ver-
ify URLs is crucial in detecting phishing attacks, partial
URL (especially a URL with only partial domain name
displayed) would certainly increase the user’s risk of being
spoofed by the phishing attacks. For example, Figure 1(a)
shows the URL bar with only a partial domain name when
loading the “Bank of America” website. This could lead
to a successful phishing attack if users are convinced by
the partial URL and submit their credentials, while the full
URL turns out to be “https://secure.bankofameric.com” or
“https://secure.bankofamerica.com.phishing.com”. Such tricks
would fail if the entire URL (or at least the full domain name)
is displayed. One possible way by which a user can view the
complete URL is to click the address bar and manually scroll
all the way to the end. Another way is to view the actual
destination of a link, which can be invoked by holding the
link for about two seconds. Though the destination URL is
also partially presented as in Figure 1(b), it can display the
domain name with as many as 31 characters, instead of 19
characters in the URL bar. Since the full domain names of
the login pages are no longer than 30 characters for most
legitimate sites, checking the destination allows users to detect
phishing sites more quickly.
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Moreover, for some legitimate sites, their domain names
could be easily mimicked by replacing the letters. For example,
it is hard to distinguish ‘l’ from the capital ‘i’ because mobile
browsers display them both in vertical slash shape (e.g.,
Figure 2(a) and 2(b)). In Figure 2(c), we list both ‘l’ and
capital ‘i’ together and find that their small difference in height
is difficult to discern by human eyes. For this kind of letter
replacement phishing attacks, even attentive and observant
users who always check the entire URL (domain name) are
likely to be fooled.

Besides, the lack of identity indicator is another issue in
mobile phishing. Unlike the URL bar in browsers, there is no
straightforward indication of identity available for mobile apps
and persistent accounts. Users may manually look up the task
list to check the identity of the running apps. However, it is
not possible to verify which app a persistent account has been
bound to.

B. User Habits and Preferences

The habits and preferences of mobile users further increase
the vulnerability to mobile phishing attacks. During the past
few years, touch screen smartphones have become dominant
in the mobile phone market. However, typing on a virtual
keyboard is not as easy as on a physical keyboard due to
the lower input accuracy, particularly when walking or sitting
in a moving vehicle. Because of that, it is tempting to follow
links in web pages or e-mails rather than typing the links
manually. Another factor is that on smartphones, switching
among applications or even shifting to other pages within a
browser is more complicated and tedious than being performed
on a PC. Users who value convenience usually prefer to
follow links from other applications [4]. In addition, phishing
attacks can succeed because users have become accustomed to
entering their credentials in familiar, repeated login interfaces.
If users frequently encounter legitimate links whose targets
prompt them for private data, then they get used to reflexively
supplying the requested data [5].

III. MOBILE PHISHING ATTACK MODELS

In this section, we present the three types of phishing attack
models studied in this article.

A. Mobile Web Page Phishing Attacks

Web page phishing detection has been widely studied
and applied in PC browsers. Blacklist-based matching and
Heuristics-based detection are the two major existing methods
used for web page phishing detection. The blacklist method
is to search a suspicious site in a list of reported phishing
sites. Although it can achieve high accuracy at the cost of
human verification, the delay in updating the blacklist would
greatly degrade its effectiveness. Specifically, blacklist-based
methods cannot defend new phishing sites that have not been
listed, such as zero-day phishing attacks. Heuristic detection
methods are based on features extracted from URL and HTML
source code, and often work with the assistance of search
engine or machine learning techniques. These features are
summarized from previously reported phishing sites. However,
a new phishing site may not have these features at all because

(a) Ebay Official Login Page (b) Ebay Phishing Login Page

(c) Inserted HTML Source Code

Fig. 3. Comparison of Real and Fake Ebay Login Pages

each feature only appears in some of the phishing samples.
This means carefully constructed phishing sites that remove
all suspicious features are able to bypass the heuristics-based
detections (this is why heuristics-based approaches cannot
achieve a 100% detection rate).

Besides, we find that information extracted from HTML
source code may not be able to reflect the web page displayed
to the user. This is because attackers can add text, images, and
links into HTML source code; meanwhile, they can also make
“undesirable” content disappear from a web page by simply
changing its size or covering it with other images. Therefore,
features like word frequency, brand name, and company logo
could be easily manipulated. For example, Figure 3(a) shows
the real Ebay mobile login page. We copy the code of the
original site and migrate it to our website. We also upload the
image components to our website and change the links to the
corresponding places within our website, especially its form-
data submission URL. Then the code segment in Figure 3(c) is
added into the source code. However, the tampered web page
(Figure 3(b)) looks exactly the same as the official Ebay site.
No user will suspect its validity without looking at its URL.
Meanwhile, phishers can insert as many “bugs3” as needed
into the HTML source code to obfuscate conventional identity
extractors. The large number of “bugs3”s extracted are able to
convince the identity extractor that this web page claims to be
“bugs3” instead of “Ebay”. As a result, anti-phishing heuristics
would fail since the phishing web page indeed belongs to the
“bugs3.com” domain. The title of a web page is not visible
unless the user clicks the page menu icon and switches to
an overview of the opened page list, which means the title
could also be replaced by “bugs3” to enhance the consistency
of HTML source code. Hence, HTML source code is not a
reliable source for phishing web page detection. We seek for
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a new approach to extracting the identity of a web page.

B. Mobile Application Phishing Attacks

Phishing attacks based on applications are quite uncommon
in PCs, but are disturbing problems on mobile platforms.
According to Felt et al. [6], the four high-risk phishing attack
models with a ”common” prevalence level and a ”perfect”
accuracy level are all associated with mobile applications that
impersonate legitimate apps. Application-oriented phishing
attacks can be further categorized into two types based on the
way in which they are launched: Some phishing applications
attempt to hijack existing legitimate apps. These phishing apps
continuously perform task polling, and launch themselves as
long as they detect the launch of the target apps. As a result,
the fake login interface layers over the top of the real one,
and the phishing app “appears” to be the target app. Mobile
users do not know what has happened since everything is
accomplished during a single window switching process. One
possible way to solve this is to check the identity of the current
foreground app from the task list, though normally no user
does that. Another type of phishing app directly shows up as
the target app. This may occur when a user downloads fake
apps from unofficial app markets.

Despite the various methods of stealing user credentials,
the essential attack pattern must end with the transmission
of credentials to the attacker. Hence, runtime monitoring
and blocking the communication of the suspicious apps can
effectively defeat the app phishing attacks.

C. Mobile Account Registry Phishing Attacks

The Android system provides a centralized account registry
and management function which allows the phone users to
log in to their online accounts (e.g. Google, Facebook, Twitter,
etc.) in a once-for-all manner, we call this function “Persistent
Account Registry”. It is very convenient in that phone users
will not be bothered to enter credentials each time they launch
a social networking app or a financial institution app. Since
most phones are in personal use and serve only the phone
owner, the user’s privacy can be guaranteed by simply setting
an ‘’overall‘’ screen locking password. In the Android system,
the persistent account registry can be accessed through “Add
account” in the “Settings” directory, as depicted in Figure 4(a).

Figure 4(b) shows a list of applications that support per-
sistent account registry. Basically, any app can register itself
to show up in the account list as a new account type. The
app should have an authentication service which is bound
to the AccountManagerService of the Android system. This
service must specify the following intent filter (i.e. with action
ACTION AUTHENTICATOR INTENT) and corresponding
metadata tags in the manifest file.
<intent-filter>
<action
android:name="android.accounts.AccountAuthenticator" />

</intent-filter>
<meta-data
android:name="android.accounts.AccountAuthenticator"
android:resource="@xml/authenticator" />

To make an app appear properly in the account list, the
android:resource attribute in the metadata will point to an xml

(a) Settings Directory (b) Account List

Fig. 4. Persistent Account Registry Function

resource file that contains at least the following 3 attributes:
android:accountType is the name of the new account type
which uniquely identifies this account/app; android:icon and
android:label are the icon and label displayed in the account
list. Besides, android:smallIcon is used in the contact applica-
tion’s tab panel, and android:accountPreferences points to an
xml hierarchy which contains the PreferenceScreens that can
be invoked.
<account-authenticator
xmlns:android="http://schemas.android.com/apk/res/android"
android:accountType="typeOfAuthenticator"
android:icon="@drawable/icon"
android:smallIcon="@drawable/miniIcon"
android:label="@string/label"
android:accountPreferences="@xml/account_preferences" />

When a certain account type is selected to be added by the
phone user, the authentication service of the corresponding app
will be invoked and it will create an authenticator instance.
The authenticator class extends the AbstractAccountAuthenti-
cator class, it overrides the addAccount method, and it will
launch the login interface in which the user is prompted to
enter the credential.

We found that persistent account registry is vulnerable to
phishing attacks as well. The icon and label displayed in the
account list are defined by corresponding applications, and are
not necessarily the same as those used in the main menu. That
is to say that any third party app could register itself as another
entity in the account list. For example, a malicious game app
may pretend to be an app of a social networking company or
financial institution.

Our demo app shows up as a “Fake Twitter” app in
the account list (as in Figure 4(b)), and its login interface
(Figure 5(b)) looks exactly the same as the legitimate “Twitter”
app (Figure 5(a)). The difference is that when a user clicks
the “Sign In” button, the credentials will be sent to the
attacker instead of the Twitter authentication server. In the app
phishing attacks, we have dealt with an indistinguishable fake
login interface using AppFish scheme. However, the account
phishing attack is more stealthy. When the login interface is
present to the user, the user does not know which app it truly
belongs to. As in Figure 5(c), even if a phone user checks
the task list, Settings is the only app in there. The untraceable
nature of the account registry interface leaves it out of the
protection of AppFish.
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(a) Real Twitter UI (b) Fake Twitter UI (c) Task List

Fig. 5. Real and Fake Twitter Login User Interface

In the design of an account phishing app, a practical issue
has to be solved: if there appears to be two “Twitter” apps
in the account list, the user could immediately know the
abnormality. To avoid duplicates, the malicious app should
perform a scan of all installed apps before registering a
phishing account. In fact, the phishing app could incorporate
multiple sets of authenticators (including the authentication
service, login interface, etc.), each for one specific account
type. This means the app has the potential to masquerade as
multiple legitimate apps. Each time, it only chooses to be one
of the apps that has not been installed on the victim device.
The polling of the installed apps can be easily accomplished
using PackageManager, and it is stealthy in that no permission
is required. However, if all the target apps have been installed,
no account phishing attack will be launched.

It may sound impossible to load the xml resource file (where
the account icon and label are defined) dynamically, since
it is specified explicitly in the manifest file and will only
be read once (during the installation process). However, we
have discovered a tricky bypass to this limitation. As the
xml resource file is referenced in the metadata tag of the
corresponding authentication service, the account information
contained in the xml file will not be registered if that service
is “disabled”. Initially, we set the android:enabled attribute
of all authentication services to false. As soon as the account
phishing app is installed, it scans the installed apps and decides
which account to impersonate. Then, it calls the setCompo-
nentEnabledSetting method of PackageManager which can
override the “disabled” state that has been set by the service
in manifest file. For example, if the legitimate Twitter app is
missing in the phone, the phishing “Twitter” authentication
service will be enabled and the fake “Twitter” account will be
registered in the account list during runtime. Futhermore, the
account phishing app needs to periodically check the installed
app list. If duplicates are detected (user later installed the
legitimate app), it could switch to another account type/app
that has not been registered/installed.

Note that although Android uses several permissions to
regulate persistent accounts (e.g. ACCOUNT MANAGER,
AUTHENTICATE ACCOUNTS, MANAGE ACCOUNTS,
USE CREDENTIALS, and GET ACCOUNTS), they are
either specified for the authentication process, the retrieving
of the existing accounts information, or are reserved only
for system apps. Our demo app “Fake Twitter” (as shown in

Figure 4(b) and Figure 5(b)) can appear in the account list,
present the fake login interface, and request user credentials
without any account-related permission.

IV. OVERVIEW OF MOBIFISH SCHEME

A. Motivation

Phishing attackers take fancy tactics to direct victims to
their phishing sites or applications, which masquerade as
trustworthy entities. The key of solving the phishing problem
is to find the discrepancy between the identity it claims to
be and the identity it actually is. We have shown that HTML
source code is not a reliable clue to find the claimed identity
of a phishing site. As an alternative, we should focus on the
screen presented to the user since users are directly spoofed by
what they see. Besides, existing anti-phishing schemes cannot
detect app phishing attacks and account registry phishing
attacks. Thus, there is a strong need for an effective defense
scheme against the phishing attacks on mobile platforms.

B. Identity Extraction

As discussed above, the screen presented to mobile users
should be the exact place where the claimed identity is
extracted from. It turns out that a good way to capture the
screen content is to take a screenshot. There are two common
observations that lead us to believe that screenshots can work
well in identity extraction and verification. The first is that
most login interfaces of legitimate mobile sites and apps are
very simple. The entire login page, or the majority of the page,
can be captured in one screenshot. Another observation is that
the brand names and the company logo (identity) locate at
apparent places in the login page, which can be easily captured
and extracted from the screenshot. Screenshots can be used
for the phishing detection in both web pages and applications.
Since the source code of apps are not available, there is no
way to acquire the content of an app login interface other than
taking a screenshot. Then, to obtain the claimed identity, the
OCR technique is utilized to convert the screenshot into text.

The actual identity of a mobile web page can be obtained
from the SLD. Most well-known enterprises use their brand
names as the second-level domain name (SLD) of their official
websites. This can be best illustrated by Bank of America
(BoA). BoA uses the entire brand name as the SLD despite
its length. In special cases that brand names are not exactly
the same as the SLD, e.g., “AT&T” which contains a symbol
in the brand name, all content-based schemes will fail due
to the mismatch of brand name “AT&T” and SLD “att” (for
legitimate URLs, special symbols are usually not included in
domain name). However, such inconsistencies can be easily
solved with a mapping whitelist, in which the brand name
“AT&T” is mapped to the SLD “att” before the identity
verification, or vice versa. Again, due to the unknown source
code, the actual identity of mobile apps cannot be decided until
the transmission of user credentials happens. The checking of
the suspicious apps must be cleared before they are allowed
to transmit.

Besides, to detect malicious apps launching account phish-
ing attacks, we first need to ensure that the identity shown
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(a) Ebay Official Login Page in PC Browser

(b) Text Extracted From
Fig. 5(a) with Tesseract

(c) Text Extracted From
Fig. 6(a) with MODI

(d) Text Extracted From
Fig. 6(a) with Tesseract

Fig. 6. Comparison of OCR Performance on Mobile Phone and PC

in the main menu (app name) and the identity displayed in
the account list (account label) are consistent. But even if this
condition is satisfied, it could still be a repackaged legitimate
app. We need to find out its actual identity by tracking where
the credentials are sent to, as the same in AppFish scheme.

C. OCR Techniques

Optical character recognition (OCR) is the mechanical or
electronic conversion of an image to machine-encoded text.
According to previous works, it is valuable for phishing detec-
tion as long as high-quality OCR solution is used [7]. OCR has
been utilized to extract text from simple text-only logo in [8].
GoldPhish [9] uses optical character recognition to read text
from a web page (specifically the company logo). We believe
that the OCR technique could achieve better performance on
mobile phones because phones have a smaller screen size, and
a relatively higher pixel density.

We deploy the OCR technique into the mobile platform
and show that it achieves better performance and effectiveness
on mobile phones by real experiments. The tool we use is
Tesseract [10], which is one of the most accurate open source
OCR engines, and supports over 60 languages. Our testing
uses a Thinkpad T420 laptop (2.40GHz, 4GB RAM) with a
pixel density of 131 dpi and a Google Nexus 4 smartphone
(1.5GHz, 2GB RAM) with 320 dpi.

We open the Ebay mobile login page in both mobile and PC
browsers, each captures a screenshot (as shown in Figure 3(a)
and 6(a)). Tesseract is used to extract text from the screenshot
taken on the mobile phone while Microsoft Office Document
Imaging (MODI) is used for the screenshot of PC browser
(this tool is used in GoldPhish [9]). The results are given
in Figure 6(b) and 6(c), respectively. We find that Tesseract
extracts all words correctly from the mobile screenshot, except
the “sign in” in the dark blue button. The performance of
MODI on PC is not as good as Tesseract, because MODI
not only missed the dark blue button, but also missed the

word “ebay” in the top-left logo. This example also shows
the ability of Tesseract to deal with various styles and fonts
of text in company logos. Moreover, the OCR extraction on
mobile phones only takes 1.6 seconds, while on PC, the time
is 4.5 seconds. To mitigate the influence of different OCR
engines, we also extract the screenshot of a PC web page
using Tesseract (Windows version). Although it takes only
1.5 seconds, the accuracy is much worse because as many
as 10 words are extracted wrong, including the Ebay logo
(Figure 6(d)).

The above tests show that OCR achieves higher accuracy
and efficiency on mobile platform. It plays an important role
in the identity extraction module of our mobile anti-phishing
scheme.

V. THE MOBIFISH SCHEME

In this section, we present an automated lightweight scheme
for mobile phishing defense named MobiFish. MobiFish con-
sists of three major components named WebFish, AppFish,
and AccountFish, which are designed to protect mobile web
pages, applications, and persistent accounts, respectively.

A. The WebFish Scheme

The work flow of WebFish is given in Figure 7. As we
can see, the defense scheme is initiated with URL loading.
When a browser attempts to load a web page, WebFish first
scans its URL to see whether the domain name is an IP
address. Legitimate websites always use domain names as a
verification of their identities, while phishers are likely to use
an IP address to disguise their fake identities. Next, WebFish
obtains the HTML source code of the loading page, and checks
if there is any form in that page. Like legitimate login pages,
phishing web pages also need a form with an input tag which
allows user to enter (confidential) information and then submit.
WebFish checks the existence of forms so that not every page
has to go through the checking. However, the core module of
identity extraction does not rely on any part of HTML source
code. If a form is found, WebFish starts the identity extraction
and verification. On one hand, it extracts the SLD from the
URL, which represents the actual identity of the site. Then
the SLD is indexed in the Mapping White-List (MWL). If it
matches any of the SLD-Brand name records in the MWL, the
original SLD is replaced by the corresponding brand name.
On the other hand, it calls the screencap native function to
take a screenshot of the login page and extract the text with
the OCR tool. Note that the URL shown in the URL bar may
also be captured into the screenshot, and it should be removed
from text before identity verification, as it contains the actual
identity (SLD) of the site. The existence of a URL bar in the
screenshot can be determined by whether the first line contains
one of the top-level domain names (e.g. gov, edu, com, and
org). To further speed up the detection process, we search for
sensitive terms such as “username”, “password”, and “credit
card number” in the text. If not found, the form may be just
used for search or general data input purposes, and the page is
marked as safe directly. Otherwise, the last step is to search the
SLD in the text. If not found, it is marked as a phishing site.
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Fig. 7. The Work Flow of WebFish

WebFish shows a notification window to the user, indicating
the high possibility of a phishing attack, along with the URL
of the suspected web page.

Our design is based on the assumption that if the domain
name of the phishing site appears in the fake login page
of a legitimate entity, the user can immediately discern the
difference and check the URL to verify the validity of this
web page. This is reasonable since as far as we know, no
phishing site uses common terms in login pages like “sign”,
“username”, “password”, or “welcome” as the SLD. Legiti-
mate mobile login pages are made very simple and clear. It is
highly unlikely for these well-constructed and well-maintained
web pages to have strange words (SLD of phishing sites)
appear in them. Thus, users would become alerted if a web
page contains text different from the brand name or common
login terms. If the attacker adds the phishing domain name in
tiny font size to prevent the user from noticing, then the OCR
is not able to recognize it either, and WebFish will still mark
it as a phishing site. The key feature for WebFish to detect a
phishing URL is that the SLD is not among the text extracted
from the screenshot of the login page.

B. The AppFish Scheme

The work flow of AppFish is shown in Figure 8. AppFish
maintains a database called Suspicious App Set (SAS), which
contains the profiles of untrusted apps including the user ID
(Uid), the launching time, and the screenshot text. Users can
add the apps they suspect into SAS, and only apps listed in
SAS are under the monitoring of AppFish. These apps can be
characterized as:

1. Specified for one company. This is to ensure that the
app only contacts the company’s official or affiliated (partners)
servers. The domain names of the collaborators are collected
and added into the SAS profile in advance. Owning multiple
domains often happens to websites that need extra storage. For
example, we find in our testing that Facebook may request data
from domains like fbcdn.net and akamaihd.net. This is because

Facebook uses them as a content delivery network (CDN). The
substantial amount of photos generated by Facebook users are
uploaded to akamaihd.net instead of facebook.com. Whenever
a user wants to view a photo, the request is actually sent to
the nearest akamaihd server.

2. Require user sign in. There are lots of apps that do not
need users to login, like browsers and apps for news, music,
maps, etc. In these cases, phishing attacks would not happen
at all. For browsers, web page login is protected by WebFish.

The AppFish defense scheme works in two phases: launch-
ing phase and authentication phase. In launching phase, App-
Fish obtains the name of each launching application and
searches for it in SAS. If found, the logging process begins, in
which AppFish takes a screenshot of the login interface and
extracts the text with the OCR tool. Then, the text along with
the application Uid and the launching time are logged into the
profile of that app. After the user has entered the credentials
and clicks the “sign in” button, the authentication phase
begins. Legitimate applications (like Facebook and Twitter)
usually send the user’s credentials to a remote server for
authentication via HttpGet/HttpPost. Once the credentials are
verified, the application loads data belonging to that account.
On the contrary, phishing apps are not able to load user
data, and the only trick they can play is to tell the user
that he or she has entered the wrong password. However,
after two or three times, most users will suspect the validity
of the application, and will uninstall it. Hence, a phishing
app is able to send out the user credentials only during the
period from submission to uninstallation. Appfish monitors
the possible paths for a phishing app to transmit data to the
outside world, which include HttpGet/HttpPost, socket, SMS
and email (email is also based on socket). If an application
uses any of these means to send out information, AppFish
checks whether it is one of the suspects in SAS. If confirmed,
http connections (HttpGet/HttpPost) are filtered while other
communications (socket/SMS) are blocked. For all URLs the
suspicious app requests to connect with, AppFish ensures
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Fig. 8. The Work Flow of AppFish

that the SLD name appears in the screenshot text or the
affiliated domain names stored in the SAS profile. Meanwhile,
socket and SMS functions are blocked for a certain amount
of time T , which should be long enough for the user to
notice the abnormality and uninstall the malicious app. Thus,
for phishing applications, they will not be able to send out
credentials before being removed by the user.

Note that we have to search the SLD within the text
extracted from the login page. The reason why extracted text
(instead of the application name) is used is that: for phishing
attacks based on task interception (hijacking), the phishing
app can have the same app name as the SLD of the phishing
server, while it can pop up a fake login page in another
entity. For instance, a mobile user downloads a phishing app
named “abc”, due to its tempting fancy functions. However,
this phishing app could pop up a fake Facebook login interface
as soon as the legitimate Facebook launches. Once the user is
spoofed, the app “abc” immediately sends the credentials to
the phishing server “abc.com”. In this example, the foreground
(fake) application name “abc” is the same as the SLD of
phishing server, but it cannot be found in the “Facebook”
phishing login interface.

C. The AccountFish Scheme

The unlimited registry of persistent accounts among 3rd-
party apps poses a huge threat to mobile user privacy and
account security. According to Yahoo Aviate’s collected data
in 2014 [11], the average number of apps installed for an
Android user is 95. Users may not remember clearly what
app has been installed, and hence are vulnerable to account
registry phishing attacks. We propose AccountFish to defend
against the phishing attack targeted at persistent accounts. The
work flow of AccountFish is described in Figure 9.

The account registry phishing attacks can be classified into
three types, based on the identities the malicious app appears
to be in the main menu and the account list. In the type A
attack, the malicious app appears to be a different app to the
target account (e.g. a game app registers a Twitter account).
In the type B attack, the malicious app does not appear in
the main menu at all. In the type C attack, the malicious

app directly shows up as the target app (e.g. repackaged app),
which means they will have the same application name shown
in the main menu as the account name that appears in the
account list.
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Fig. 9. The Work Flow of AccountFish

The idea of the detection mechanism for the type A and
type B account phishing attacks is to compare the app name
in main menu and the account label in the account list. As
mentioned before, the malicious app can dynamically register
and change the account information. AccountFish should be
able to inspect the registration of accounts in runtime, which
can only be accomplished by modifying Android source code.
Specifically, we modified the parseServiceAttributes method
of AccountAuthenticatorCache class so that the account label
is extracted and compared with the host app name each
time an account is being added (before the corresponding
authentication service is called). If the app name and the
account label are inconsistent, that app is highly likely to be
a malicious app. But there are a few legitimate apps whose
account labels are not exactly the same as corresponding app
names (e.g. “Firefox Sync” in Figure 4(b)); we solve this issue
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(a) BOA Phishing Login Page (b) BOA Official Login Page

(c) AT&T Phishing Login Page (d) AT&T Official Login Page

Fig. 10. Experiments with WebFish on Mobile Phishing Login Page

using an account mapping white list (AMWL) that contains all
the “inconsistent” legitimate apps. For suspicious apps that are
not in the white list, a warning containing the app and account
names will be issued instantly. The apps in AMWL and those
having consistent names will go through further checks (type
C attack detection).

The mechanism we use to detect the type C attack is
similar to AppFish, because the decision cannot be made
until the transmission of credentials happens. The difference
is that a screenshot is unnecessary in AccountFish: the “add
account” event is not available to other 3rd-party apps, so the
account login interface cannot be hijacked. We add a hook in
the bindToAuthenticator method of AccountManagerService,
which can catch the user click event for adding a specific ac-
count and launch the communication monitoring mechanism.
Specifically, the app name (account label) will be directly used
to filter the outgoing Http connections (HttpGet/HttpPost):
only URLs with the same SLD as the app name are permitted.
Meanwhile, other communication channels of the suspected
app (socket/SMS) are blocked for a certain amount of time T ,
which is long enough for a user to notice the abnormality and
uninstall the malicious app.

VI. IMPLEMENTATION AND PERFORMANCE
EVALUATION

We implement MobiFish on a Google Nexus 4 smartphone
running the Android 4.2 operating system. We modify the
source code of the Android system so that it is able to
support MobiFish. The MobiFish scheme could be applied to

(a) Yahoo Phishing Login Page (b) Yahoo Official Login Page

(c) PayPal Phishing Login Page (d) PayPal Official Login Page

Fig. 11. Experiments with WebFish on Conventional Phishing Login Page

other mobile platforms as well. To evaluate the effectiveness
and performance of MobiFish, we conduct experiments for
WebFish, AppFish and AccountFish, respectively.

A. Experiments with WebFish

In the process of evaluating WebFish, we were not able
to collect enough phishing web pages specified for mobile
platform. Instead, we randomly picked up 100 phishing URLs
from PhishTank.com in 2013. Although all the phishing URLs
have been blocked by PC browsers like Chrome, they are
accessible through mobile browsers (including both Android’s
built-in browser and Chrome for Android). This fact highlights
the significance of WebFish, which can provide web phishing
defense for mobile OSs. In our experiments, WebFish can
effectively mark all the phishing URLs as dangerous, and can
warn the user. Figures 10(a) and 10(c) show that WebFish
displays alertness because it is not able to find the SLD inside
the mobile phishing login pages of “Bank of America” and
“AT&T”.

Meanwhile, we have two observations for the conventional
(PC) phishing web pages. First, a large number of them are in
high similarity to their legitimate counterparts, and the brand
names or company logos are close to the input forms. Second,
when loading large conventional web pages, mobile browsers
often display the area that contains the input form instead of
displaying an overview of the entire web page. Figure 11(a)
and 11(c) show the phishing login pages of Yahoo and Paypal.
As we can see, the brand name Yahoo and Paypal logo appear
more than once in the input form area that is presented to the
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user. Both of them are reported as phishing sites since WebFish
cannot find their SLD in the screenshot.

TABLE I
SUMMARY OF TESTED URLS

Website

Phishing
Samples

Phishing
Feature
Found

Legitimate
Mobile Login

SLD

Verification
of

Legitimate
URLs

Amazon 6 100% amazon !

AOL 3 100% aol !

Apple 5 100% apple !

AT&T 2 100% att (MWL) !
Bank of
America 10 100% bankofamerica !

Barclays 4 100% barclays !

Chase 5 100% chase !

Citi 4 100% citibank
(MWL) !

Ebay 8 100% ebay !

Facebook 5 100% facebook !

Hotmail 2 100% live (MWL) !

HSBC 8 100% hsbc !

Microsoft 1 100% live (MWL) !

NAB 1 100% nab !

NatWest 3 100% nwolb (MWL) !

PayPal 12 100% paypal !

Vodafone 4 100% vodafone !

Wells Fargo 7 100% wellsfargo !

Yahoo 10 100% yahoo !
Total: 100 100% Tot: 19 100%

To evaluate the performance of WebFish on legitimate web
pages, we use the URLs of the corresponding official login
web pages for comparison. Figures 10(b), 10(d), 11(b) and
11(d) are the official mobile login pages; WebFish successfully
verifies the validity of these pages and no warning is generated.
WebFish’s ability to verify the legitimate AT&T web page
shows that the Mapping White-List (MWL) scheme works for
company websites with different brand names and SLDs. The
19 corresponding legitimate mobile login web pages can prove
WebFish’s ability in verifying legitimate web pages. Table I
summarizes the testing results of phishing URLs (Column 1,
2, 3) and legitimate URLs (Column 4, 5). The “MWL” behind
legitimate SLD name means that MWL is used to convert the
SLD to the brand name.

Table I shows that: (1) WebFish is able to find key features
of phishing web pages for all tested phishing URLs; and
(2) WebFish achieves a 100% verification rate of legitimate
URLs. The results demonstrate the effectiveness of WebFish
in detecting mobile phishing sites.

B. Experiments with AppFish

By the time we conduct experiments with AppFish, there are
only a few reported phishing applications, and none of them
is available online. To test the effectiveness of AppFish, we
develop two sample phishing applications. Figure 12(a) shows
the login interface of the fake Facebook apps we developed.
Most users are not able to discern its difference from the legit-
imate Facebook app. Our first phishing application appears as
a “repackaged” Facebook app. The second one hijacks the real

Facebook app. It can cover the real Facebook login interface in
a single window switching slot, hence the user cannot notice
that in fact two apps have been launched. When the user clicks
the “Log In” button, the fake apps send the credentials to us
by HttpGet, HttpPost, socket, SMS, and email, respectively.
Meanwhile, a notice window is displayed, informing the user
of an incorrect password, and prompts another try. But when
AppFish is running, it is able to block all the transmissions
and warn the user about the phishing attempts. Figure 12(b)
(lower part) shows the warning generated by AppFish for the
phishing attack.

(a) Fake Facebook App (b) Warning of Phishing App

Fig. 12. Experiments with AppFish

C. Experiments with AccountFish

The persistent account registry attack is a new class of
phishing attacks that we have discovered. As far as we know,
there is no such phishing app reported. Hence, we evaluate the
effectiveness of AccountFish against the three types of account
phishing attacks using the demo apps we developed.

(a) Type A attack (b) Type B attack (c) Type C attack

Fig. 13. Experiments with AccountFish

Figure 13(a) presents a type A account phishing attack, in
which a “Greedy Snake” app intends to register a Twitter
account. Figure 13(b) shows a sample type B attack, the
suspicious “Game Center” app wants to register a Twitter
account while hiding itself from the main menu. Both at-
tacks are successfully detected when trying to register the
accounts whose labels are inconsistent with their app names.
To illustrate the defense to the type C attack, we develop a
“repackaged” Twitter app. It is also detected by AccountFish
when trying to send out the credentials (Figure 13(c)).
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TABLE II
AVERAGE EXECUTION TIME OF THE MOBIFISH SCHEME

Techniques Phases Execution time (s)

OCR-based technique
Taking screenshot 0.015

3.315OCR extraction 3.206
SLD searching 0.094

Non-OCR technique Timestamp comparison 0.018

D. Overhead Evaluation

We have validated the efficacy of our proposed three sub-
schemes through the above experiments. Next, we evaluate
the usability (performance) by measuring the execution time
of MobiFish scheme. There are two major techniques used
in MobiFish: searching the SLD in the text extracted from
the screenshot, and blocking the SMS and socket connections
for a certain period of time. The SLD searching is based
on OCR technique, which is considered much more time-
consuming. Hence, we evaluate the delay overhead of OCR-
based techniques and other non-OCR techniques, separately.
The results are presented in Table II.

The OCR-based techniques can be roughly divided into
three phases: taking a screenshot, extracting text from the
screenshot, and searching if the SLD exists in the text.
Since the SLD searching technique is applied in all the three
sub-schemes, our testing samples include (1) the 13 official
websites listed in Table I and 13 corresponding phishing
web pages (2) 10 popular benign apps that support persistent
account and the phishing apps developed by us. The average
execution time of the three phases are 0.015, 3.206, and 0.094
seconds, respectively. As we can see, the OCR extraction
phase holds 96.7% of the delay overhead (3.206 out of 3.315
seconds). Regarding the non-OCR techniques, we tested the
SMS and socket connection blocking for a period of time. The
app samples used are the same 10 popular benign apps and
the phishing apps as above. The delay overhead is very low
(0.018 seconds) because we only needs to decide whether the
blocking period has expired, through a single comparison of
two timestamps.

Note that the above phishing detection techniques are per-
formed in parallel to the normal functions (e.g. web page
and app authentication), hence the user experience will not be
influenced. When the checking starts, a toast (a quick message)
is displayed to notify the user. Users are suggested to submit
the credentials after the checking is done. We believe that
in most cases, the checking can be finished before a mobile
user inputs the credentials. Meanwhile, we seek to improve the
OCR technique so that the extraction process can be expedited.

VII. RELATED WORK
A. Conventional Phishing Web Page Detection

Web users have been suffering from phishing attacks since
their first appearance in 2003. Researchers have proposed
many solutions (such as alert protection and phishing detec-
tion) to defend against phishing attacks.

Alert protection is a simple notification when a user is
entering sensitive information. Kirda et al. proposed AntiPhish
[12], which tracks the sensitive information of a user and
generates warnings whenever the user attempts to give away

this information to a website that is considered untrusted.
However, this scheme cannot automatically check and detect
phishing attacks. Instead, users have to judge by themselves
after being warned.

In addition, many phishing detection tools have been de-
signed for phishing on PC web pages. Based on the methods
used, they can be generally categorized into two groups:
heuristics schemes and blacklist schemes. Heuristics schemes
outperform blacklist schemes since they can deal with new
phishing sites without having to wait for an update. Usually,
heuristics schemes for phishing detection utilize other tech-
niques such as machine learning techniques [13], [14], [15]
and search engine [15], [16]. CANTINA [16] is a content-
based approach to detecting phishing websites, and it adopts
TF-IDF information retrieval algorithms. Garera et al. [13]
proposed a heuristics-based scheme which identified several
generic features of phishing URLs, and used these features in
a logistic regression classifier. CANTINA+ [15] is a compre-
hensive feature-based solution for web page phishing which
combines machine learning and search engine techniques.
However, existing heuristics used in phishing detection are all
based on features extracted from the HTML source code. As
we have shown in section III, HTML source code should not
be trusted since it may not reflect the actual content presented
to users.

Based on the assumption that the most spoofing phishing
sites are those whose visual appearances look identical or
very similar to authentic sites [17], [18], several similarity-
based phishing detection approaches are proposed. Spoof-
Guard [19] uses URLs, images, links, and domain names
to check the similarity between a given page and the pages
previously stored. Afroz et al. proposed PhishZoo [20] that
uses the profiles of trusted websites’ appearances built with
fuzzy hashing techniques to detect phishing. PhishZoo makes
profiles of sites that consist of fuzzy hashes of several common
content elements (e.g. URL, images, most used texts, HTML
codes, script files, etc.), which are related to the structure
and appearance of the sites. They further enhanced their
phishing detection scheme by adding displayed images into
profiles and utilizing SIFT image-matching algorithm [8].
However, similarity-based approaches also depend on HTML
source code and cannot detect phishing sites with different
appearances.

GoldPhish [9] utilizes the optical character recognition
(OCR) technique for phishing detection in PC browsers. OCR
is used to extract text from images found in web pages
(e.g., the company logo), then it is compared to the top-
ranked domains from Google’ s search service. However, OCR
performance on PC is demonstrated to be limited in both speed
and accuracy. Our lightweight scheme works with mobile
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browsers, and does not depend on external search engines.

B. Mobile Phishing Detection

Mobile phishing attacks are emerging as a significant threat
for mobile users. Niu et al. [4] discussed the weakness of
mobile browsers caused by the hardware limitation of mobile
devices. Felt et al. [6] examined the mobile phishing threats
by detailing several phishing attack models during control
transfers. Both works give some suggestions on phishing miti-
gation. Niu et al. [4] advised redesigning the browsers to make
the origin and authenticity of the site more apparent to users.
However, it is very difficult to add more features to the mobile
user interface due to the limited screen size. And even if they
are added, some web users will still ignore the identifier [21].
Felt et al. [6] proposed to add an always-present identity bar
that displays the name of the current foreground application
or the domain name of the current web page. Bianchi et al.
[22] implemented an identity indicator for apps in the system
navigation bar, in which Extended-Validation (EV) HTTPS
infrastructure is used to validate the app developers. Marforio
et al. [23] applied personalized security indicators (an image
chosen by the user that is displayed in the login UI) to mobile
apps. However, all these indicator-based approaches require
the user to make the final decision.

Another group of phishing defense techniques employ a
unified and trusted login UI for apps. ScreenPass [24] provides
a trusted software keyboard which allows users to specify
their passwords domains (i.e., to tag passwords) together with
the credentials. The OCR is used to ensure that passwords
are entered only through the trusted software keyboard. This
approach needs the user to switch to the secure keyboard
when entering password, tag the password, and make the
final decision, which may greatly degrade the user experience.
VeriUI [25] utilizes an attested login which augments user
credentials with a certificate about the software and hardware
that handled the credentials. However, this work requires not
only the user effort, but also modifications to the client apps.

Moreover, a proxy service is designed in [4] which performs
anti-phishing filtering against the URLs, page content, or user
context. But it has to be downloaded and configured manually
in the browser. Users also need to be able to authenticate the
identity of the proxy (attackers can also set up fake proxies).
Hou et al. [26] developed a defense scheme which loads hook
into iOS so that the system interrupts the user when sensitive
information is being entered into applications not in the
whitelist, and prompts the user to decide whether to continue
or not. However, this idea is quite similar to AntiPhish [12],
which only gives a warning of credential rendering instead of
phishing vulnerability. Cooley et al. proposed Trusted Activity
Chains [27] to protect activities from spoofing preventions.
However, it is the developer’s responsibility to annotate the
chain of activities that should not be interrupted. This means
that existing apps are not protected, and the developers may
not assume the extra burden of annotation. Our previous work
[28] proposed the WebFish and AppFish schemes. In this
article, we present the new persistent account phishing attacks
which has been neglected by existing works. We resolve this
vulnerability with the AccountFish scheme.

Our work differs from previous works in three folds: (1)
MobiFish is a completely automated defense scheme, users
do not need to make the final decision. Although it is users
who finally remove the phishing app, the user effort is trivial.
Actually, they do not need to explicitly make the decision at
all, since the only explanation for the login failure (with correct
credentials) is a phishing attack. (2) No change is required to
the browser/app/website’s UIs, MobiFish is compatible with
all existing websites and apps (no developer effort is needed).
(3) The phishing attacks targeted at the persistent account is
discovered and handled by the AccountFish scheme.

Besides, mobile phishing attacks could also be in the
form of Emails or Short Messaging Services (SMS). Phishing
emails usually request users to click a link to a fake website
where the user is prompted to enter login credentials [29][30].
The SMS phishing attacks (SMiShing) [31][32] usually trick
users into visiting a fraudulent website or calling a phishing
number, where the victims are enticed into providing the
credentials. The fraudulent websites could be defended by
WebFish. But the detection of the phishing voice calls is
beyond the scope of this article. Most voice phishing (Vish-
ing) uses the VoIP technique in which the phone number is
dynamically generated, we left this part for future work.

VIII. CONCLUSION

In this paper, we studied the important issue of mobile
phishing detection. We proposed MobiFish, a novel auto-
mated phishing defense scheme for mobile platforms. We
identified the weaknesses of the heuristics-based anti-phishing
schemes that highly rely on the HTML source code of web
pages. MobiFish resolves this issue by using OCR, which
can accurately extract text from the screenshot of the login
interface so that the claimed identity can be verified. Com-
pared to existing OCR-based anti-phishing schemes (designed
for PC only), MobiFish is lightweight as it works without
using external search engines or machine learning techniques.
Besides, MobiFish can also detect the app phishing attacks
and account phishing attacks. We implemented MobiFish on a
Google Nexus 4 smartphone running the Android 4.2 OS. Our
evaluation demonstrated that MobiFish can effectively detect
and defend against mobile phishing attacks.
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