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Throughout distribution systems, it is usual to find non-linear time-varying loads, such as electric arc furnaces 
(EAFs), which are widely used in the steel-making industrial sector. Due to the process of melting and refining 
metals, the EAFs consume large blocks of power (active and reactive power) causing significant power quality 
disturbances, such as harmonics and voltage fluctuations on distribution networks. Different EAF parametric 
models have been proposed with the purpose to predict the voltage and current waveforms and then evaluate 
the performance of the reactive power compensation devices. This paper proposes a novel methodology for the 
optimal estimation of parameters of an electric arc furnace model, which can achieve lower execution times 
and error rates compared to some state-of-the-art methods. The methodology was evaluated using three meta-
heuristic optimization algorithms such as the particle swarm optimization (PSO) algorithm, the vortex search 
algorithm (VSA) and the crow search algorithm (CSA); using real and simulated data. From the results, the 
proposed methodology based on meta-heuristic optimization approaches worked efficiently, allowed estimating 
the parameters of the electric arc furnace model using a single optimization step, capture the non-sinusoidal, 
non-linearity and time-varying random behavior that exhibit the real electric arc furnace samples and obtained 
relative errors of the total harmonic distortion between the measured and estimated voltage and arc current 
signals around 1.23% and 0.62%, respectively.
1. Introduction

The EAFs are one of the largest loads for the electrical power 
system, they are used for producing aluminium, copper, high-quality 
steel, among other metals [1]. However, they are considered impor-
tant threats to the power quality (PQ), because their operation gener-
ates harmonics and interharmonics, voltage flickers, and unbalances in 
the voltages and currents at the point of common coupling [2]. The 
non-linear voltage-current characteristic of the electric arc, the irrand 
regularities in the shape of the metal to be melted, and the constant 
triggering of the electric arc during the melting process, cause low 
PQ indexes [3]. Electric utilities and industrial facilities that have an 
EAF, make significant efforts to implement technical and economical 
solutions to mitigate the PQ problems associated with the EAF opera-
tion [4]. Solutions include the use of mathematical models of the EAF 
which can be used in electrical circuit simulation programs, for evalu-
ating the adverse effects generated by the EAF in existing plants, or in 
new facilities considering data from similar installations. Likewise, the 
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electric arc models are also used to assess the performance of different 
compensating devices such as SVC, synchronous static var compensator 
(STATCOM), active power filters (APF), and –still under study– energy 
storage systems (ESS) [5].

The electric arc model is a valuable computation tool to obtain the 
electric response of an EAF. Different mathematical models have been 
proposed in the literature to capture the physical responses associated 
with the dynamics of the electric arc model. For example, a linear model 
based on linear electrical circuit elements and a current source has been 
proposed in [3,5]. The authors in [6,7] considered a time-variant non-
linear resistance to model the electric arc. Electric arc models based on 
parametric equations are presented in [8–11]. Models based on chaotic 
systems are used [12–15] to generate the chaotic variations in the time 
response of the EAF. Other models consider a stochastic signal to cap-
ture the arc length variations [8,16]. Data-driven learning models are 
presented in [2,17–23].

Although several approaches have been proposed to capture the 
dynamics of the EAF model, few methodologies have focused on esti-
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mating the parameters of this model. Specifically, these methodologies 
seek to calibrate the model parameters through a procedure in which 
the outputs of the model are adjusted using observed data, by varying 
the values of the parameters of the model [24]. These approaches can be 
classified into three main groups: simulation-based methods [1,6], data-
driven techniques [25,26] and methodologies based on optimization 
problems [27,7,28,11]. In [1], the range of variation of the arc resis-
tance is determined using a static curve that relates the active power 
of the arc furnace to the power factor. A calibration method based on 
trial and error is proposed in [6]. The method is stopped when a differ-
ence between the simulated and measured active power less than 1% is 
obtained. The drawback of this method is that the simulated voltages 
and currents generated from the model may differ from the correspond-
ing real measurements [6]. The second group includes approaches such 
as the least-mean square method or support vector machines (SVMs). 
For example, in [25] the authors presented a linear model based on 
the transformation of the Mayr and Cassie models, and by using the 
least-mean square method (LSM) to adjust the equivalent regression 
model with real data. Nonetheless, this method presents difficulties in 
the dynamic representation of the EAF model. In addition, the authors 
in [26] proposed a data-driven approach to identify a non-linear time-
varying chaotic model, considering multi-input multi-output SVMs. This 
method considers the use of excessive data generated through simula-
tions from the model to train the SVMs. In the last group are methods 
based on linear programming [27], genetic algorithms [7,28] and differ-
ential evolution algorithm [11] to determine the parameters of the EAF 
model. In the last two optimization methods, despite obtaining near-
optimal solutions, neither gradients nor Hessians are used to calculate 
the optimal solutions. However, the methods presented in [7,28] divide 
the parameters of the electric arc model into deterministic and stochas-
tic, in which each set of parameters (i.e. deterministic and stochastic) 
is identified by minimizing a different objective function. These ap-
proaches increase the execution time to determine the parameters of 
the electric arc model. The disadvantage of the method proposed in 
[11] is the fact that the behavior of arc-length is assumed to be deter-
ministic, which is far from real experiments.

This paper addresses these shortcomings by formulating the elec-
tric arc model parameter estimation problem as a novel methodology 
based on the minimization of a single-objective function, different to the 
methodologies proposed by [7] and [28]. Additionally, this methodol-
ogy allows capturing the non-sinusoidal, non-linearity and time-varying 
random behavior that exhibits the real electric arc furnace samples. The 
estimation has been carried out in each half cycle of the real measure-
ments, to take into account the arc reignition in each half cycle, and 
the variations that exhibit the reactive power consumed by the furnace, 
which is required when the model is used to evaluate the performance 
of flicker mitigation devices [25].

From this methodology, six optimization approaches have been ap-
plied to estimate the parameters of this system. Three of them have been 
reported within the state of the art and the rest are proposed as alter-
native solution methodologies. Specifically, this paper proposes the use 
of the particle swarm optimization (PSO) algorithm, the vortex search 
algorithm (VSA) and the crow search algorithm (CSA), which have not 
been considered yet in the literature, to estimate the parameters of an 
EAF system. The main reasons to select these algorithms are the fol-
lowing: the PSO is the most popular algorithm of swarm intelligence 
methods, which consists of a population of particles, known as a swarm, 
with each member of the swarm being associated with a position and a 
velocity. These terms are updated by using stochastic weights, previous 
positions and velocity rules. The VSA is easy to implement and proposes 
good candidate solutions for real optimization problems. The VSA is a 
natural phenomena approach that is inspired by the vortex pattern cre-
ated by the vortical flow of the stirred fluids. This algorithm proposes 
new candidate solutions from a Gaussian distribution by using the cur-
rent best solution at each iteration. The VSA uses an inverse incomplete 
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gamma function to decrease the value of the radius (the variance of 
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the Gaussian distribution) during each iteration. On the other hand, the 
CSA is another population intelligence technique that is easy to imple-
ment, depends on a few parameters and has flexibility. The CSA is based 
on the intelligent behavior of crows, that is, the algorithm follows the 
idea that crows store their excess food in safe places and get it back 
when they need it. The main contributions of this paper include the 
following:

• A novel methodology based on the minimization of a single-
objective function for estimating the EAF model parameters is 
introduced. According to the results obtained, this methodology al-
lows capturing the non-sinusoidal, non-linearity and time-varying 
random behavior that exhibits the real electric arc furnace samples, 
during the melting phase of the furnace operation.

• Five of the most commonly used meta-heuristic algorithms have 
been considered in the optimization problem, to estimate the pa-
rameters of the EAF model.

• A detailed comparative analysis of the considered meta-heuristic 
algorithms is presented. Real data have been used to evaluate the 
performance of the proposed method. In addition, a method based 
on least squares has been considered to evaluate its computational 
cost and accuracy concerning the meta-heuristic algorithms.

This paper is organized as follows: Section 2 presents a short de-
scription of the non-linear dynamic EAF model. Section 3 describes the 
proposed method to estimate the parameters of the electric arc model. 
Simulation results are presented in Section 4, and the conclusions are 
given in Section 5.

2. Electrical power supply system and model of the electric arc

The EAF used in this study is feeder by an electrical power circuit 
whose single-phase circuit diagram is shown in Fig. 1. The main com-
ponents of the circuit are: the utility grid which is modeled per phase 
by an electrical voltage source 𝑣𝑠 in series with an inductor 𝐿𝑠, the high 
voltage (HV)-medium voltage (MV) transformer T1 with Y-Δ connec-
tion, the MV-low voltage (LV) transformer T2 with Δ − Δ connection, 
and the flexible cooled cables which connect the LV side of the trans-
former T2 with the electrodes, represented in the circuit by the resistor 
𝑅𝑐 in series with the inductor 𝐿𝑐 . The actual voltage and current data 
used in this work were taken from the real installation described in 
[26]. Therefore, the values of the circuit elements shown in Fig. 1 were 
adjusted with the values presented in [26], where 𝑅𝑐 and 𝐿𝑐 were cal-
culated using real data. The values of the elements of the circuit are 
given in Appendix.

In this paper, the dynamic model of the electric arc presented in [29]
is used. The electric arc is modeled as a controlled voltage source, taking 
as input the electric arc current. Initially, the radius of the electric arc 𝑟
is calculated using the non-linear differential equation derived from the 
energy conservation principle as follows:

𝑘1𝑟
𝑛 + 𝑘2𝑟

𝑑𝑟

𝑑𝑡
=

𝑘3

𝑟𝑚+2
𝑖2, (1)

where 𝑖 is the arc current, 𝑘1 is the coefficient of the power transmitted 
in the form of heat to the external environment, 𝑘2 is the coefficient of 
the internal power of the electric arc, and 𝑘3 is the coefficient related 
to the electrical power input. The parameters 𝑚 and 𝑛 enable different 
voltage-current characteristics. The possible combinations of these pa-
rameters for the different stages of the arcing process are found in [29]. 
For the melting stage, these parameters are set as 𝑚 = 0 and 𝑛 = 2. The 
electric arc voltage 𝑣arc is obtained from 𝑟 using

𝑣arc =
𝑘3

𝑟𝑚+2
𝑖. (2)

The voltage signal 𝑣𝑎𝑟𝑐 is connected to the electrical power system 
as a current-controlled voltage source. In practice, the voltage measure-

ments are taken at the secondary side of the transformer T2, which is 
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Fig. 1. Single-phase circuit diagram of the EAF power system under study.

Fig. 2. Flowchart diagram of the proposed method used to estimate the parameters of the electric arc model.
indicated as the measurement point (MP) in Fig. 1. In this paper, the 
phase voltage at this place is denoted as 𝑣, its relationship with 𝑣arc and 
𝑖 is given by

𝑣 =𝑅𝑐𝑖+𝐿𝑐

𝑑𝑖

𝑑𝑡
+ 𝑣arc, (3)

where 𝑅𝑐 and 𝐿𝑐 are the values of resistance and inductance, respec-
tively, of the secondary circuit including flexible cables, bus tubes and 
the impedance of the electrodes. These values were calculated in [26], 
and the results obtained are used in this work.

In brief, based on (1) and (2), the parameters of the electric arc 
model to be estimated are 𝑘1, 𝑘2 and 𝑘3. Notice that, the parameters 
𝑚 and 𝑛 are tuned depending on the operating phase of the EAF, and 
are not considered in the parameter estimation process. To facilitate 
the description of meta-heuristic algorithms used, it is convenient to 
define the vector 𝐤 = [𝑘1, 𝑘2, 𝑘3]⊤, whose entries are the parameters to 
be estimated.

3. Model parameters estimation

The main objective of this paper is to estimate the vector of electric 
arc parameters 𝐤 described in the previous section, using real measure-
ments of voltage and current taken at the MP of the EAF electrical 
circuit as shown in Fig. 1. The used methodology considers the param-
eters varying in each half cycle of the electric arc current. This idea is 
in accordance with some studies such as [28], [25] and [7]. The au-
thors indicate, despite having a stochastic behavior for the electric arc 
3

in a long observation window, it is possible to assume few variations 
in each half cycle [28,25,7]. They have also indicated when the system 
controller of a static VAr compensator (SVC) is designed, the reactive 
power consumed by the arc furnace is assumed time-varying in each 
half cycle [30]. Therefore, we also assume that the estimation process 
is carried out separately for each half-cycle.

Different techniques have been used to estimate the parameters of 
an electric arc model. Among the most outstanding, in [7] and [28] it 
is assumed the parameter estimation problem is a multi-objective opti-
mization problem using genetic algorithms (GA). The authors, through 
the GA, minimize two objective functions, which are related to differ-
ent parameters of the electric arc model such as the extinction voltage 
and arc resistance [28]. In contrast with the methods presented in [7]
and [28], this paper proposes an estimation methodology based on a 
single-objective optimization problem. The proposed method is shown 
in Fig. 2.

Specifically, the estimation procedure can be regarded as a con-
straint minimization problem, that is, [28]

min
𝐤∈Ω

𝑓 (𝐤) = OF(𝑣est.(𝐤), 𝑣meas.)

𝑠.𝑎 (4)

𝐤 ≤𝐤 ≤ �̄�

where 𝐤 and �̄� are the lower and upper limit of 𝐤, respectively. The 
objective function (OF) calculates the mean value of the rooted sum of 
squared errors between the measured voltage 𝑣meas𝑖 and the estimated 
voltage 𝑣est𝑖 samples of the voltage at the secondary side of the EAF 

transformer, as follows [7], [28]:
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Fig. 3. Implementation in Matlab-Simulink of the dynamic electric arc model, based on energy conservation principle, with 𝑚 = 0 and 𝑛 = 2.
OF = 1
𝑁

√√√√ 𝑁∑
𝑖=1

(𝑣est𝑖 (𝐤) − 𝑣meas𝑖 )
2 (5)

where 𝑁 is the number of samples in each half cycle. The estimated 
arc voltage is computed using the measured samples of the electric arc 
current as input to the electric arc model, named as 𝑖meas, then using 
the equations (1), (2) and (3), the estimated voltage is calculated. This 
OF was used in [7], [28] to define one of the objective functions to be 
minimized in the estimation of the parameters of an electric arc model. 
Fig. 3 shows the Matlab/Simulink implementation of the block diagram 
to obtain at the output the samples of 𝑣est , with 𝑚 = 0 and 𝑛 = 2 (melting 
phase), and taking as input the samples of 𝑖meas.

To solve the problem shown in Eq. (4), several meta-heuristic algo-
rithms have been used. These methods attempt to minimize a fitness 
function or objective function, by searching the model parameters on 
search space Ω, which is limited by predefined intervals formed by the 
possible solutions of the arc furnace parameters. The vast majority of 
meta-heuristic methods attempt to follow natural, physical or biologi-
cal principles. Thus, these methods find near-optimal solutions, do not 
use gradients or Hessians to compute optimal solutions and can apply 
to a wide class of optimization problems. In the next subsections, we 
explain briefly how to work meta-heuristic approaches in the context of 
parameter estimation in an electric arc model.

3.1. Particle swarm optimization

PSO is a population-based search method that follows the biologi-
cal community nature that exhibits both individual and social behavior
such as flocks of birds, schools of fishes and swarms of bees [31]. This 
technique can be considered the most popular of meta-heuristic tech-
niques and is based on the interaction of a swarm of particles, known 
as a swarm, with each member of the swarm being associated with a 
position vector 𝐱𝑡 and a velocity vector 𝐯𝑡 [31]. The size of 𝐱𝑡 and 𝐯𝑡
is equal to the dimension of the search space. Here, 𝐯𝑡, called a history 
term, represents the directional distance that the particle has covered 
in the (𝑡 − 1)th iteration.

The velocity of each population member, that move into the search 
space, depends on previous 𝐯𝑡, the particle’s personal-best (𝐤𝑙) and the 
swarm’s best (𝐤𝑔), that is, it is given as,

𝐯𝑖,𝑡+1 =𝑤𝐯𝑖,𝑡 + 𝑐1𝐫1. ∗ (𝐤𝑙,𝑖 − 𝐱𝑖,𝑡) + 𝑐2𝐫2. ∗ (𝐤𝑔 − 𝐱𝑖,𝑡), (6)

𝐱𝑖,𝑡+1 = 𝐱𝑖,𝑡 + 𝐯𝑖,𝑡+1 (7)

where 𝑐1 ∈ ℝ and 𝑐2 ∈ ℝ are constants influencing the best local and 
global solutions; 𝑤 is a parameter (it is called the inertia weight con-
4

stant) that controls the impact of the previous velocity of a particle over 
the current one, impacting the exploration capacities of the algorithm. 
Finally, 𝐫1 and 𝐫2 are two parameters that introduce randomness, from 
the uniform distribution (𝐫1, 𝐫2 ∼ [0, 1]), into the search process.

The method could be summarized as follows: the swarm is initial-
ized, considering the restrictions of the problem; then the quality, using 
the objective function, of each particle is evaluated and 𝐤𝑔 , and 𝐤𝑖 are 
initialized; for each iteration the velocity and position of each particle 
are updated using Eq. (6) and (7), then the quality of each particle is 
evaluated, next 𝐤𝑔 and 𝐤𝑖 are updated if needed; and 𝑤 is decreased. 
This process is repeated until either a stopping criterion is reached or 
a minimum fitness value is obtained by a particle in the swarm. In the 
above description, the vector 𝐤𝑖 is composed by the parameters 𝑘1, 𝑘2
and 𝑘3.

3.2. Vortex search algorithm

The VSA is a meta-heuristic approach that follows the vortex pat-
tern inspiration created by the vortical flow of the stirred fluids. The 
VSA applies the generation and replacement procedures to propose a 
new candidate solution of the optimization problem. In the generation 
procedure, a set of candidate solutions is generated from the previous 
solution by using a multivariate Gaussian distribution. During the re-
placement phase, a solution is chosen from the candidate solutions to 
supply the previous solution set [32].

3.2.1. Proposing new candidate solutions

For generating new candidate solutions, the VSA computes an initial 
center �̂�0 to generate randomly a number of solutions from the previ-
ous solution. ̂𝐤0 is the midpoint of the search space. Using this center, a 
multivariate Gaussian distribution is employed to generate new candi-
date solutions, where the covariance matrix is based on the upper limit 
and lower limit of the decision variables [32], that is, the VSA assumes 
that a new solution is generated by

𝐤 ∼
(
𝐤 |||�̂�,𝚺)

, (8)

where 𝐤 ∈ ℝ𝑑×1 is a candidate solution; �̂� ∈ ℝ𝑑×1 is the vortex center; 
and 𝚺 ∈ ℝ𝑑×𝑑 is the covariance matrix. According to [32], the search 
space is modified using 𝚺. Here, we use a diagonal covariance matrix 
with 𝜎2 that controls the radio of contours of probability density for the 
Gaussian distribution. The idea behind the VSA is to improve the center 
and radio of the search space contour in each iteration.

3.2.2. Replacement of the current solution

Once we have generated new candidate solutions, these solutions 
must be ensured to be inside the search boundaries. Next, it is necessary 

to replace the current center ̂𝐤𝑡−1 of the search space contour and then, 
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a new set of candidate solutions is generated around the new center ̂𝐤𝑡. 
To replace �̂�𝑡−1 the memorized best solution is assigned to be the new 
center ̂𝐤𝑡. This process is repeated until the stopping criterion is satisfied 
[32]. Once the algorithm has finished, the center of the smallest circle 
is the optimum point found by the algorithm. Therefore, the VSA only 
memorizes the best solution and the radius of the center is iteratively 
decreased. This process of the memorization is similar to several search-
based meta-heuristic approaches, for example the Pattern Search and 
the iterated local search algorithm. For more information, see [32]. In 
our case, the vector ̂𝐤𝑡 is composed by the parameters 𝑘1, 𝑘2 and 𝑘3.

3.3. Crow search algorithm

The CSA is a meta-heuristic optimizer that follows the behavior of 
crows, which are considered as the most intelligent birds [33]. The idea 
behind this algorithm is the crows store their excess food in safe places 
and retrieve it when the food is needed. Additionally, they live in the 
form of flock, remind the position of their safe places, follow each other 
to obtain food and they conserve these safe places. For applying the 
CSA, it is necessary to define a flock of crows where each crow denotes 
a feasible solution of the problem. For each crow, the new position of 
crow 𝐤𝑔+1

𝑖
is obtained as follows,

𝐤𝑔+1
𝑖

= 𝐤𝑔
𝑖
+ 𝑟𝑖𝑓 𝑙

𝑔

𝑖

(
𝐦𝑔

𝑖
− 𝐤𝑔

𝑖

)
, (9)

where 𝑟 is a constant that introduces uncertainty, which is considered as 
a uniform random variable between 0 and 1; 𝑓𝑙𝑔

𝑖
is the flight length of 

crow 𝑖 at iteration 𝑔; and 𝐦𝑔

𝑖
is considered a safe place (or a better food 

place) at iteration 𝑔. In the CSA, the balance between exploration and 
exploitation is controlled by a parameter of awareness probability 𝛼𝐴𝑃
[33] over the Eq. (9), that is, if 𝑟𝑖 ≥ 𝛼𝐴𝑃 , the CSA updates the position 
𝐤𝑔
𝑖

using the Eq. (9) or explores the search space on a global scale. 
Otherwise, the CSA examines the local region where a current good 
solution is found. To estimate the parameters 𝑘1, 𝑘2 and 𝑘3, we use the 
best position of crow 𝐤𝑖.

3.4. Genetic algorithm

The GA was first applied by Holland in 1975 [34]. It was inspired in 
the Darwin’s theory of evolution, imitating the biological evolution of 
the living organism. The algorithm starts with a population of candidate 
solutions also called chromosomes, which are represented as a vector 𝐤, 
the entries of which are the genes 𝑘𝑗 , 𝑗 ∈ {1, 2, 3}, that are created from 
random values of the parameters to be estimated, within the domain 
[𝑘min

𝑗
, 𝑘max

𝑗
] previously defined. The number of chromosomes in each 

generation is referred to as the population size [28,35]. The population 
evolves in each generation, by using selection, crossover and mutation 
operations. The selection strategy is applied to choose the parents for 
the next generation, as described below.

First, the fitness of each chromosome of the current population is 
calculated using the fitness function given by (5). After the evaluation 
of all the population, those chromosomes which have better fitness val-
ues are selected as parents to create the next population. The stochastic 
universal sampling strategy is utilized as selection function, this method 
is comparable to using a roulette wheel in a casino, where each chromo-
some in the population has a slot of the wheel proportional to its fitness 
value. The roulette wheel is divided into a number of equally spaced 
selection points around it. A single spin of the weighted roulette wheel 
yields the parents candidate, by selecting the slots below the selection 
points. In this way, more highly fit chromosomes have more opportuni-
ties to survive into the succeeding generation [36]. It is should be noted 
that, a percentage of the chromosomes at the current population with 
the best fitness values are chosen as the elite, and its genes survive to the 
next generation. The value of these percentages is referred as the “elite 
individuals”. A crossover operation is utilized to extract the best genes 
from different individuals and recombine them to increase the quality 
5

of chromosomes for the next generation. The number of individuals that 
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are created using the crossover rule is computed by the value of the pa-
rameter “crossover fraction”. The crossover operator used in this study, 
combines two chromosomes at the current generation, to form a new 
crossover chromosome of the offspring. For this procedure, a crossover 
point within the genes is chosen at random. The mutation operator is 
used to create the mutation chromosomes of the offspring, that allow to 
maintain diversity in the population, and enables the GA to search in a 
broader space [35]. In this study, it is used the mutation operation de-
scribed in [37], in which a fraction of the chromosomes of the current 
population is taken to make a small random changes over its genes, by 
adding a random number taken from a Gaussian distribution which has 
a mean of 0 and a standard deviation computed according to

𝜎𝑗,𝑔 = 𝜎𝑗,𝑔−1

(
1 − 𝑔

𝑔max

)
(10)

where 𝜎𝑗,𝑔 is the standard deviation at the 𝑔th generation and at coor-
dinate 𝑗 of the parent vector 𝐤, and 𝑔max is the maximum number of 
generations. The standard deviation at the first generation is given by 
𝜎𝑗,0 = 𝑘max

𝑗
− 𝑘min

𝑗
.

The algorithm is repeated until emerges a candidate solution that 
satisfies a predefined criterion. In this paper, the algorithm is stopped 
when the maximum number of generation defined by the user is 
reached.

3.5. Differential evolution algorithm

The DE algorithm was proposed in 1997 by Storn and Price [38] as 
a meta-heuristic optimization algorithm, which maintains a population 
of potential solutions in the search space by applying the idea of sur-
vival of the fittest. In this case, the search space is formed by predefined 
intervals for values of the electric arc model parameters. The main ad-
vantages of DE is its convenient implementation, lack of a differentiable 
cost function, good converge properties, and few control variables to 
achieve the minimization.

The DE algorithm makes use of three main rules: mutation, 
crossover, and selection. Initially, a population is generated. Each indi-
vidual of the population has following structure:

𝐤𝑔 = [𝑘𝑔1 , 𝑘
𝑔

2 , 𝑘
𝑔

3] (11)

where 𝑔 represents the 𝑔th generation.
In the mutation rule a mutant vector is created following the rule:

�̂�𝑔+1 = 𝐤𝑔1 +𝑚𝑡(𝐤
𝑔

2 − 𝐤𝑔3) (12)

where 𝑚𝑡 is a mutation factor ∈ [0, 1.2], and 𝐤𝑔1 , 𝐤𝑔2 , 𝐤𝑔3 , are three random 
vectors taken from the population in the 𝑔th generation.

The crossover rule generates a trial vector 𝐤𝑔+1, where each one of 
its entries is computed as follows:

𝑘
𝑔+1
𝑗

=

{
�̂�
𝑔+1
𝑗

, if 𝜗 ≤ 𝑐𝑟

𝑘
𝑔

𝑗
, otherwise

(13)

for 𝑗 = 1, 2, 3. 𝜗 is a random variable which follows a normal distribution 
in the range [0, 1], and 𝑐𝑟 is known as crossover constant.

The selection rule compares the value of the OF given by (5) for 
the trial vector and the OF for the target vector 𝐤𝑔 , and select the best 
solution that is stored in the population for the next generation (𝑔 + 1), 
as follows

𝐤𝑔+1 =
{

𝐤𝑔+1, if OF(𝐤𝑔+1) ≤ OF(𝐤𝑔)
𝐤𝑔 , otherwise

(14)

The above procedure is repeated for each individual of the popula-
tion. The algorithm stops when the number of maximum generations 

𝑔max defined by the user is reached.



J.J. Marulanda-Durango and C.D. Zuluaga-Ríos

3.6. Least squares method

There is other methodology proposed in the literature [25], differ-
ent to the meta-heuristics algorithms, that has been used to estimate 
the parameters of the electric arc model in each half cycle, based on a 
transformation of the non-linear differential equation that describes the 
dynamic behavior of the 𝑣-𝑖 characteristic of the model, into a linear 
equation whose solution can be done by LSM. In effect, replacing (2) in 
(1), and with 𝑚 = 0 and 𝑛 = 2, following equation is obtained

𝑘1𝑟
2 + 𝑘2𝑟

𝑑𝑟

𝑑𝑡
= 𝑣arc𝑖 (15)

From (2), the arc radius can be expressed in terms of a new variable 
𝑢 as:

𝑟 = 𝑘
1
2
3 𝑢 (16)

where the variable 𝑢 depend of the real measurements of arc voltage 
and arc current as follows

𝑢 =
(

𝑖

𝑣arc

) 1
2

(17)

replacing (16) in (15), result the following equation

𝑘1𝑘3𝑢
2 + 𝑘2𝑘3𝑢

𝑑𝑢

𝑑𝑡
= 𝑣arc𝑖 (18)

the above equation can be written in the form of a linear regression 
model, as follows

𝑎𝑥1 + 𝑏𝑥2 = 𝑦 (19)

where⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1 = 𝑘1𝑘3

𝑥2 = 𝑘2𝑘3

𝑎 = 𝑢2

𝑏 = 𝑢
𝑑𝑢

𝑑𝑡

𝑦 = 𝑣arc𝑖

(20)

Notice that, it is possible compute the values of 𝑎 and 𝑏 for each 
sample of real measurement of the electric arc current 𝑖, and the phase 
voltage 𝑣. Considering 𝑁 samples of real measurements of arc voltage 
and arc current in each half cycle, (19) is rewritten as,

⎡⎢⎢⎢⎢⎣
𝑎1 𝑏1
𝑎2 𝑏2
⋮ ⋮
𝑎𝑁 𝑏𝑁

⎤⎥⎥⎥⎥⎦
[
𝑥1
𝑥2

]
=

⎡⎢⎢⎢⎢⎣
𝑦1
𝑦2
⋮
𝑦𝑁

⎤⎥⎥⎥⎥⎦
(21)

The above equation is of the form 𝐀𝐱 = 𝐲. The solution vector 𝐱∗ that 
minimize the residual error, can be calculated with linear least square 
method, from 𝐱∗ = (𝐀⊤𝐀)−1𝐲. In this method, it is necessary to adjust 
previously the value of 𝑘3 to compute the values of 𝑘1 and 𝑘2, using 
𝑘1 = 𝑥1∕𝑘3 and 𝑘2 = 𝑥2∕𝑘3, where 𝑥1 and 𝑥2 are the entries of the vector 
𝐱∗.

4. Results and discussion

This section presents the results obtained from the proposed method-
ologies to estimate the parameters of the arc furnace model, which are 
based on the meta-heuristic optimization algorithms. The description of 
the real data of phase voltage and arc current, that it is used in the es-
timation process, is presented in the subsection 4.1. In subsection 4.2, 
the hyperparameters and the performance comparison of the different 
meta-heuristic algorithms are also displayed. Finally, in subsection 4.3, 
the best estimated parameters obtained for the electric arc model, and 
the comparison between the real and simulated voltage and current 
6

waveform are shown.
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Table 1

Lower and upper bound of each one of the parameters 
to be estimate.

Parameter Lower Limit Upper Limit

𝑘1 1000 5000
𝑘2 1 5
𝑘3 10 30

Fig. 4. Values of the objective function in each cycle of GA, ED, PSO, VSA and 
CSA, for optimizing the fitness function.

4.1. Real data used to estimate the parameters of the model

In order to test all the proposed methodologies, real data were taken 
from the secondary side of the transformer T2 in the power system as 
shown in Fig. 1. These data correspond to the phase voltage and the arc 
current. A PQ meter (AEMC 8333 Power Pad III) connected at phase 
A of the MP, was used to measure ten consecutive cycles (or 20 half 
cycles) of voltage and current at fundamental frequency of 50 Hz. The 
measurements have a fixed sampling rate of 8192 samples per second, 
it were taken during several seconds in the melting phase of the arc 
furnace operation, and ten consecutive cycles were randomly selected 
to evaluate the predictive performance of the methods considered.

4.2. Performance comparison of the algorithms

After having analyzed how the data were captured, all the meta-
heuristic algorithms were applied them as explained in section 3. Here, 
all the algorithms were executed with a population size of 30, and a 
maximum number of generations (or iterations) of 100, which corre-
spond to typical values as shown in [28]. The remaining algorithm 
parameters were adjusted as follows. In the PSO algorithm, 𝑐1 and 𝑐2
were both fixed in 2, and 𝜔 = 1.1. In CSA, 𝑓𝑙 and 𝛼𝐴𝑃 were adjusted as 
𝑓𝑙 = 1.2 and 𝛼𝐴𝑃 = 0.1. In GA, the crossover fraction was set to 0.8, elite 
individuals were of 5% of the population, and the tolerance was set to 
0.01. In the DE algorithm were set 𝑚𝑡 = 0.8 and 𝑐𝑟 = 0.5.

As mentioned in Section 3, the search space of optimization algo-
rithms Ω is limited by the intervals [𝑘max

𝑗
, 𝑘min

𝑗
] where 𝑗 ∈ {1, 2, 3}. In 

Table 1, the lower and upper limits for each one of the model param-
eters are shown. These values correspond to typical values reported in 
previous studies as in [26] and [39]. With the data in Table 1, the pro-
posed algorithms were applied to the real data described above. Fig. 4
shows the behavior of the methods in terms of the objective function.

From Fig. 4 note that the optimal OF values are similar in each 
half cycle, there is no single meta-heuristic algorithm that will always 
provide the minimum OF value in all the half cycles. Also noted that, the 
GA, VSA and PSO present comparable behavior in all the observation 
windows.

To notice the differences among the methods, in Table 2 are re-

ported the average value of the OF values shown in Fig. 4. This average 
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Table 2

Average value of the OF function, error indices of voltage and current, and 
running time for the studied methods.

Method OFavg RMSEavg 𝐸𝑣 𝐸𝑖 UEI Running time [min]

PSO 𝟑.𝟒𝟐± 0.68 𝟑𝟎.𝟗𝟔± 6.16 𝟎.𝟐𝟓 𝟎.𝟎𝟖 𝟎.𝟏𝟔 𝟐.𝟑𝟕± 0.72
VSA 3.43 ± 0.67 31 ± 6.04 0.25 0.08 0.17 3.32 ± 0.12
CSA 3.68 ± 0.64 33.33 ± 5.82 0.36 0.10 0.23 3.32 ± 0.15
GA 𝟑.𝟒𝟐± 0.68 𝟑𝟎.𝟗𝟔± 6.16 𝟎.𝟐𝟓 𝟎.𝟎𝟖 𝟎.𝟏𝟔 3.32 ± 0.74
DE 3.42 ± 0.76 30.97 ± 6.86 0.26 0.08 0.17 12.7 ± 0.80
LSM − − 7.68 0.16 3.92 20𝜇 ± 4.0𝜇

Fig. 5. Single-phase diagram of the secondary circuit at transformer T2 , imple-
mented in Matlab/Simulink.

value is named as OFavg. Notice that, the OFavg obtained by all the al-
gorithms are very similar (around 3.5), being the running time for each 
half cycle the unique difference between them. The running time in the 
estimation process for each half cycle has been computed using a desk-
top computer with an Intel(R) Core(TM) processor i7-3612QM CPU @ 
2.10 GHz. From Table 2, the PSO obtained the lowest running time. 
The root mean square error (RMSE) given by (22) was used to evaluate 
the estimation performance of the algorithms considered. Similar to the 
OF, the RMSE changes in every half cycle, therefore its average value 
is reported in Table 2. The relationship between the OF (5) and RMSE 
(22) is given by RMSE =

√
𝑁OF, the unique difference between them is 

the scale factor 
√
𝑁 , therefore the results obtained for each algorithm 

maintain the same trend.

RMSE =

√∑𝑁

𝑖=1(𝑣est𝑖 (𝐤) − 𝑣meas𝑖 )
2

𝑁
(22)

The error index shown in (23), which is defined by [25], has been 
used to evaluated the performance of the meta-heuristic algorithms.

𝐸𝑥 =
1

𝐿 × 𝑑

𝐿∑
1

𝑑∑
1

𝑥meas,𝑘 − 𝑥est,𝑘|𝑥meas,𝑘| (23)

where 𝑥 represents a voltage or current signal, 𝑑 is the number of 
samples in each half cycle, 𝐿 is the number of half cycles of real mea-
surement signals, 𝑥meas,𝑘 represent the 𝑘th sample of real signal, and 
𝑥est,𝑘 is the 𝑘th sample of estimated signal. To compute the estimated 
electric arc current 𝑖est , it is used the electrical circuit shown in Fig. 5, 
which has two controlled voltage sources. The voltage of the left source 
corresponds to the estimated voltage 𝑣est (i.e. phase voltage at the sec-
ondary side of transformer T2), which is computed using the measured 
current 𝑖meas and the estimated parameters, as shown in Fig. 3. The volt-
age of the right source corresponds to the electric arc voltage 𝑣arc, which 
is calculated using Eqs. (1) and (2), taking as input the estimated arc 
current 𝑖est (𝑡) and the estimated parameters 𝐤est .

On the other hand, a unified error index (UEI) was used to group in 
a single error the error index of voltage (𝐸𝑣) and the error index of the 
current (𝐸𝑖) as is shown in [25]. The UEI is defined as follows

UEI =
|𝐸𝑣|+ |𝐸𝑖|

2
(24)

Returning to Table 2, it can be observed that the GA and PSO present 
the minimum values for the 𝐸𝑣, 𝐸𝑖 and the UEI. From the values of 
7

UEI calculated by all the methods considered, it is very clear that LSM 
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Fig. 6. Optimal values for the parameters 𝑘1 , 𝑘2 and 𝑘3 , obtained by the PSO 
algorithm.

obtained the worst performance. However, the LSM requires around 
20 μs to perform the parameters estimation. It is worth mentioned that 
the values of the UEI index obtained with the meta-heuristic algorithms 
are lower than the UEI values reported in [25].

In brief, the performance of the meta-heuristic algorithms utilized is
very similar, but it is necessary to take into account the running time, 
where the PSO obtained the best performance. Due to the performance 
shown by the PSO, the rest of the results are reported with the estimated 
parameters obtained with this technique.

4.3. Real and simulated voltage and current waveform with the best 
estimated parameters

After having shown the application of the different methods to esti-
mate the parameters of the system, we are going to present the optimal 
parameters 𝑘1, 𝑘2 and 𝑘3 in each half cycle during the observation win-
dow, obtained with the PSO algorithm. In Fig. 6, it is possible to note 
that the parameter 𝑘3 is equal to 3 during the major part of the ob-
servation window. The parameters 𝑘1 and 𝑘2 change with an aperiodic 
behavior, as expected in this type of loads. That is, the electric arc dy-
namic is focused on the variation of the parameters 𝑘1 and 𝑘2. This 
time-varying behavior is analyzed in [25] using an auto regressive mov-
ing average model.

Fig. 7 shows ten cycles of the measurement and estimated samples 
of phase voltage taken at the MP, when the parameters 𝑘1, 𝑘2 and 𝑘3
are adjusting in each half cycle with the values shown in Fig. 6. As can 
be seen, the estimated samples of the phase voltage are very similar 
with the real samples in all the observation window. The difference 
between each sample of the real and simulated voltage is shown in 
Fig. 7. The RMSE between these signals is 0.0188 kV, which is according 
to the small difference during the major part of the observation window 
between these signals. The maximum absolute value of the difference is 
0.09 kV and occurs in 𝑡 = 60.9 ms, when the value of the actual voltage 
is 0.4 kV.

Fig. 8 displays ten cycles of the measurement and estimated sam-
ples of the electric arc current taken at the MP. As can be seen, the 
estimated samples of the current can capture the non-sinusoidal and 
time-varying random behavior that exhibit the real samples. Also, the 
figure shows the difference between each sample of measurement and 
estimated samples. The RMSE between these signals is 5.33 kA. Notice 
that, the maximum difference is 10.9 kA, and occurs in 𝑡 = 133.6 ms, 
when the actual sample of the arc current is equal to −73.74 kA, as can 
be seen in the figure at the right.

Fig. 9 (a) shows the measurement and estimate voltage-current char-
acteristic, using the samples of the phase voltage and the arc current at 
the secondary side of T2 transformer (see Fig. 1). Fig. 9 (b) shows the 
voltage-current characteristic of the electric arc, where the arc volt-

age has been calculated by solving the Eq. (3) for 𝑣arc, due to it is not 
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Fig. 7. Measurement (meas) and estimated (est) phase voltage, adjusting the model parameters with the PSO algorithm.

Fig. 8. Measurement (meas) and estimated (est) arc current, adjusting the model parameters with the PSO algorithm.

Fig. 9. Measurement (meas) and estimated (est) voltage-current characteristic, during the melting stage of the arc furnace operation, (a) at MP, (b) at the electric 

arc.

possible to obtain measurements of the electric arc voltage directly. 
The “measurement” (meas) arc voltage has been calculated using the 
voltage and current at the MP, and the estimated (est) arc voltage has 
been calculated using the estimated voltage and current samples at the 
MP. Notice that the electric arc model used is able to capture the non-
linearity between the voltage and the arc current. These results validate 
the proposed methodology for estimating the parameters 𝑘1, 𝑘2 and 𝑘3.

Once the estimates of the voltage and current signals had been val-
idated, an analysis of the harmonics present in these two signals was 
8

performed. Therefore, the short-time Fourier transform (STFT) has been 
used to compute the harmonics of the real and estimated waveforms 
of voltage and current. The STFT has been computed considering the 
harmonics and interharmonics of the measurement and estimate sig-
nal. Each segment of the signal is windowed with a Hamming window 
of 5-Hz resolution, with an overlap of 90% between the segments. The 
considered frequencies have a range of 5 to 650 Hz, with steps of 5 Hz 
for 5 Hz to 100 Hz, and 50 Hz for larger frequencies. The STFT of a 
signal 𝑥 is a matrix 𝐒𝑥, where each column of 𝐒𝑥 contains the short-
time, time-localized frequency content of 𝑥. The magnitude of each 

element of the resulting matrix has been averaged over its columns. 
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Fig. 10. Measurement (meas) and estimated (est) spectrogram of the phase voltage, during the melting stage of the arc furnace operation.

Fig. 11. Measurement (meas) and estimated (est) spectrogram of arc current, during the melting stage of the arc furnace operation.
The result is a vector 𝐬𝑥 ∈ ℝ31×1, where 31 correspond to the number 
of frequencies considered. In this paper, the command spectrogram of 
Matlab has been used for computing the STFT of the signals. In Fig. 10, 
the averaged spectrogram of the measurement and estimated voltage 
are shown. As can be seen, the spectrum of both signals are very sim-
ilar through of the range of frequencies considered, the fundamental 
component at 50 Hz, has been zoomed in Fig. 10 to show the simili-
tude in this component. The relative error between the measurement 
and estimated fundamental component is 0.22%. In the same way, the 
spectrogram of the measurement and estimated arc current are shown 
in Fig. 11. The fundamental component has been zoomed in the same 
figure. The relative error between the measurement and estimated fun-
damental component of the arc current is 7.6%. The authors consider 
that this result is a good approximation due to randomness present in 
the measured current.

The total harmonic distortion (THD) index has been considered to 
evaluate the distortion of the measured and estimated signals of the 
voltage and current. THD is calculated according to the definition given 
in the IEEE standard 519-2014, where the first 20 harmonics have been 
taken into account in the calculation. The equation used to calculate 
the THD is shown in Eq. (25)

THD𝑠 =
⎛⎜⎜⎜⎝
1
𝑠1

√√√√√√ 20∑
𝑘=2,
𝑘≠1

𝑠2
𝑘

⎞⎟⎟⎟⎠ ⋅ 100% (25)

where 𝑠𝑘 is the 𝑘th component of the vector 𝐬, and 𝑠1 is the main compo-
nent at the frequency of 50 Hz. Those components have been calculated 
using the discrete Fourier transform. Table 3 presents a comparison be-
tween the mean value and the standard deviation of the THD values 
9

calculated in each cycle of the measured and estimated voltage and 
Table 3

Comparison between the THD index of the spectrum of the measured and esti-
mated voltage and current.

measured estimated relative error of the mean value

THD𝑣 33.05%± 3.66% 33.15%± 3.77% 0.3%
THD𝑖 7.83%± 1.7% 7.98%± 1.6% 1.91%

current signals shown in Fig. 7 and Fig. 8. The relative errors between 
the THD of measured and estimated signals of voltages and arc currents 
are 0.3% and 1.91%, respectively, which demonstrate the coincidences 
between the measured and estimated signals. These relative errors are 
smaller than the corresponding errors reported in [26].

5. Conclusions

This paper presents the performance comparison of the five most 
commonly used meta-heuristic optimization algorithms, used to esti-
mate the parameters of an EAF model. A half cycle estimation approach 
of the measured signal was used, which is consistent with the ideas 
presented in previously published studies as [5,28,25,7]. Three algo-
rithms were considered as new alternatives to optimize the parameter 
estimation of an electric arc furnace model: PSO, VSA and CSA algo-
rithms. Their results were compared with two state-of-art approaches: 
GA [28,7], and LSM [25]. After adjusting the parameters of the electric 
arc model with the estimated parameters, the model was run to obtain 
the simulated signals of voltage and current. Error indices and running 
time were considered in order to compare the performance of the stud-
ied algorithms. According to the results, the PSO algorithm presented 
the best performance to estimate the parameters of an electric arc fur-

nace model, the PSO algorithm is capable to estimate the parameters 



J.J. Marulanda-Durango and C.D. Zuluaga-Ríos

with the lowest running time and error rates. Likewise, the simulated 
signals shown that their nonlinear and time-varying characteristics can 
be captured by the simulated signals generated by the model. Finally, 
the proposed methodology allowed to estimate the parameters of the 
electric arc furnace model by optimizing a single optimization func-
tion, in contrast to the proposed methods presented in [28] and [7], 
in which the estimation process is performed by minimizing two objec-
tives functions, which leads to an increase in computational time. With 
the proposed methodology of this paper, the computation time in the 
estimation process is reduced, with low error indexes. As future work, 
the authors recommend the use of the proposed method to calibrate the 
parameters of any parametric system described by nonlinear equations. 
Also, it is necessary to emphasize the following: hyper-parameters of the 
meta-heuristic algorithms such as 𝑐1, 𝑐2, 𝜔, 𝑓𝑙 or 𝛼𝐴𝑃 must be carefully 
selected to obtain a satisfactory estimate. Therefore, it is recommended 
to investigate parameter-free optimization methodologies [40,41] to es-
timate the parameters of the system.
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Appendix A. Parameters of electric arc furnace installation shown 
in Fig. 1

Utility grid: Ideal three-phase sinusoidal ac voltage with phase to 
phase RMS nominal voltage 115 kV, X/R ratio: 10. Transformer 𝑇1:
𝜖𝑐𝑐 = 12%, nominal power: 42 MVA, X/R ratio: 10. Transformer 𝑇2:
𝜖𝑐𝑐 = 10%, nominal power: 30 MVA, X/R ratio: 10. Secondary circuit:

𝑅𝑐 = 0.2 mΩ, 𝐿𝑐 = 8 μH.
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