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INTRODUCTION

Behavioral experiments using different types of task
paradigms have led to two broad classes of mathemati-
cal models for decision making. On the one hand,
sequential-sampling models describe information accu-
mulation that unfolds in time and determine perfor-
mance accuracy and reaction times in perceptual and
memory tasks. On the other hand, game-theoretical
models and reinforcement learning models account for
dynamic choice behavior which is based on utility maxi-
mization and interplay with the environment or other
decision agents. These models are important for quanti-
tatively describing behavioral data and assessing theo-
retical ideas about the cognitive processes of decision
making. To truly understand the biological basis of deci-
sion behavior, however, it is critical to construct realistic
neural circuit models that allow us to uncover neural
machineries and collective dynamics of neural networks

in the brain underlying decision making. This has
recently become possible thanks to advances in animal
neurophysiology, human imaging and theory. This
chapter summarizes recent progress in this direction. It
discusses biological mechanisms and neural circuit mod-
els of choice behavior, and offers a unifying framework
for both perceptual decision making (see also
Chapter 19) and value-based choice behavior (see also
Chapter 20) in terms of a recurrent neural circuit model
endowed with reward-dependent synaptic plasticity.

MODELS OF DECISION MAKING

Drift-Diffusion, Leaky Competing Accumulator,
and Neural Circuit Models

Sequential-sampling models are based on the intui-
tive idea that a decision is reached when stochastic
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accumulation of information about alternative choices
reaches a particular threshold. For two-alternative
forced choice tasks, a specific implementation of par-
ticular importance is called the drift diffusion model
(DDM) which is described in Chapters 3, 8, and 19
(Ratcliff, 1978; Smith and Ratcliff, 2004). In this model,
an activity variable X represents the difference
between the respective amounts of accumulated infor-
mation about the two alternatives, say XA and XB,
X5XA2XB. The dynamics of X are given by the drift
diffusion equation,

dX

dt
5μ1wðtÞ ð23:1Þ

where μ is the drift rate, w(t) is a white noise of zero
mean and finite variance. The drift rate μ represents
the bias in favor of one of the two choices (and is zero
if there is no net bias). For instance, in a random-dot
motion direction discrimination task (see Chapter 19),
μ is proportional to the strength of motion signal. This
system is a perfect integrator of the input:

XðtÞ5μt1
ðt
wðt0Þdt0 ð23:2Þ

The integration process is terminated and the decision
time is read out, whenever X(t) reaches a positive thresh-
old (choice A) or a negative threshold (choice B). If the
drift rate μ is positive, then choice A is correct, whereas
choice B is an error. Therefore, this type of models is
commonly referred to as ramping-to-threshold model,
with the average ramping slope given by μ.

The DDM has been widely applied to fit behavioral
data of perceptual and memory experiments as described
in Chapter 3 (Ratcliff, 1978; Smith and Ratcliff, 2004).
This model (as written here) is the continuous-time ana-
log of the discrete-time Sequential Probability Ratio Test
(SPRT), which is the optimal procedure for making
binary choices under uncertainty, in the sense that it
minimizes the mean decision time among all tests for a
given lower bound of error rate (Bogacz et al., 2006;
Wald, 1948).

Can a ramping-to-threshold mechanism be instanti-
ated by neural circuits? One key issue in answering that
question is to determine the biological basis of time
integration. The drift diffusion model is an ideal, per-
fect integrator (with an infinite time constant), whereas
neurons and synapses are in actual fact “leaky” with
short time constants of tens of milliseconds (Kandel
et al., 2012). Usher and McClelland (2001) extended the
DDM by incorporating a leak so that the integrator
becomes “forgetful” with a decay time constant, an
issue discussed in Chapters 3 and 4. In that model,
there is a competition between the two dynamical vari-
ables XA and XB through mutual inhibition. What is

interesting is that this “leaky” competitive accumulator
model has proven to fit many behavioral datasets as
well as the drift diffusion model, provided that the inte-
gration time is sufficiently long, although the biological
basis of this long time constant of integration remains
unspecified.

It has been proposed that a long integration time
can be realized in a decision neural network through
recurrent interneuronal excitation (Wang, 2002).
Reverberating excitation represents a salient character-
istic of cortical local circuits that has been widely
observed empirically (Douglas and Martin, 2004).
When this positive feedback is sufficiently strong,
recurrent excitation in interplay with synaptic inhibi-
tion can create multiple stable states (known as attrac-
tors) in a network. Models of this type were initially
proposed for working memory, which is the brain’s
ability to actively hold information online in the
absence of direct sensory stimulus (Wang, 2001). The
same model, provided that excitatory reverberation is
slow, has been shown to be capable of decision-
making computations (Deco et al., 2009; Engel and
Wang, 2011; Machens et al., 2005; Miller and Wang,
2006a; Wang, 2002, 2008; Wong and Wang, 2006).
Interestingly, physiological studies in behaving non-
human primates often report neural activity correlated
with decision making in cortical areas, such as the pre-
frontal cortex or the parietal cortex, that also exhibit
mnemonic persistent activity during working memory.
Hence, this model and supporting experimental data
suggest a common, “cognitive-type” circuit mechanism
for decision making and working memory in the brain
(Wang, 2013).

What is Spiking Network Modeling?

Physiological experiments in behaving animals are
critical for uncovering neural signals correlated with
specific aspects of decision making. Biophysically
based neural modeling can delineate circuit mechan-
isms that give rise to the observed neural signals, and
identify key computational principles at the conceptual
level. For certain questions about decision making
such as those discussed below, it is important to cap-
ture neural firing of action potentials or spikes (electri-
cal signals often described mathematically as point
processes; see Chapter 5) through which neurons
transmit information and communicate with each
other.

To this end, single cells can be described by a spik-
ing neuron model, rather than a firing-rate model of the
kind that have so far been presented in this volume.
A popular choice for accomplishing this alternative
kind of representational model is to employ either the
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leaky integrate-and-fire model or the Hodgkin�Huxley
model. Such a model is calibrated by physiological
measurements, such as the electrical time constant
of the nerve cell membrane and the input�output
function (the spike firing rate as a function of the syn-
aptic input current), which can be different for differ-
ent classes of cells like excitatory pyramidal cells and
inhibitory interneurons.

It is worth emphasizing that in a biophysically
based model, synapses must also be modeled accu-
rately. Unlike connectionist models in which coupling
between neurons is typically an instantaneous func-
tion of firing activity, synapses have their own rise-
time and decay time constant, and exhibit summation
properties. That is an important property in this class
of model because synaptic dynamics turn out to be a
crucial factor in determining the integration time of a
neural circuit dedicated to decision making, as well
as controlling the stability of a strongly recurrent
network. Once these “building blocks” (single cells
and synapses) have been constructed for a particular
model, they are used to construct a network
endowed with a biologically plausible architecture.
A commonly assumed circuit organization is local
excitation between neurons of similar selectivity com-
bined with a more global inhibition throughout the
network. Dynamic balance between synaptic excita-
tion and inhibition is another feature of cortical
microcircuit that has been increasingly recognized
experimentally and incorporated in cortical network
models.

A Recurrent Circuit Mechanism for Decision
Making

A neural circuit model (NCM) for decisions with two
alternative choices is schematically illustrated in
Figure 23.1A (Wang, 2002, 2008; Wong and Wang,
2006). Two neural pools are selective for choice options
(A or B), each consisting of a number of spiking neu-
rons that are strongly connected with each other by
excitatory synapses. The two neural pools compete
with each other via shared inhibition. Conflicting and
noisy evidence for two choice alternatives is described
as the relative difference in the inputs (the differential
input) to two neural groups, A and B, in a cortical
decision circuit. Each neural group (say A) integrates
input information over time, by virtue of quasi-linear
stochastic ramping activity for hundreds of millise-
conds, which is faster (with a larger ramping slope)
when the evidence is stronger for option A. The two
neural groups compete through feedback inhibition
from interneurons so that, eventually, one of them
wins and rises (red, Figure 23.1B), whereas the other

loses and decays away (blue, Figure 23.1B). Whichever
(A or B) ramps up to a particular activity level triggers
an all-or-none neural signal downstream, which leads
to a categorical behavioral response.

The NCM can be viewed in two different ways. In
contrast to the temporal plots of neural activity
(Figure 23.1B), one can portray the dynamics of a deci-
sion circuit in a so-called state space, where the firing
rates of neural pools selective for different options are
plotted against each other (Figure 23.1C). According to
this view, different choices are represented by distinct
attractor states. The mathematical term attractor here
simply means a dynamical system state which is
stable against small perturbations. An attractor does
not have to be a steady state but can be a complex spa-
tiotemporal pattern. And it is important to note that a
system’s attractor landscape is not necessarily rigidly
fixed. Any relatively sustained input (external stimulus
or top-down cognitive control signal) readily alters the
attractor landscape in the state space (Figure 23.1C left
versus right panels).

Neural Substrate of a Decision Threshold

Numerous monkey experiments (Chapter 19) have
revealed ramping-to-threshold neural activity at the
single cell level that is correlated with perceptual deci-
sion (Gold and Shadlen, 2007; Roitman and Shadlen,
2002) and action selection (Hanes and Schall, 1996;
Schall, 2001). How can a decision threshold be instanti-
ated by neurons, rather than prescribed in an ad hoc
manner? One natural hypothesis is that, when decision
neurons integrate inputs and reach a particular firing
rate level, this event triggers an all-or-none response in
downstream neurons and leads to the generation of a
behavioral output. This idea was tested for oculomotor
decision tasks in which the motor response is a rapid
saccadic eye movement. In an extended, two-stage cir-
cuit model (Lo and Wang, 2006), decision neurons in
the cortex (as described above) project to movement
neurons in the superior colliculus (SC), an important
command center for saccades (Figure 23.2A). This
model also includes a direct pathway in the basal gan-
glia, with an input layer (caudate, CD) and an output
layer (substantia nigra reticulata, SNr). As a neural
pool in the cortex ramps up in time, so do their synap-
tic inputs to the corresponding pool of SC movement
neurons. When this input exceeds a well-defined
threshold level, an all-or-none burst of spikes is trig-
gered in the movement cells, signaling a particular
(A or B) motor output. In this scenario, a decision
threshold (as a bound of firing rate of decision neu-
rons) is instantiated by a hard threshold of synaptic
input for downstream motor neurons. Figure 23.2B
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shows a sample trial of such a model simulation. The
rate of ramping activity fluctuates from trial-to-trial, as
a result of stochastic firing dynamics in the cortex, and
is inversely related to the decision time (as defined by
the time when a burst of action potentials is triggered
in the SC) on a trial-by-trial basis (Figure 23.2C). When
the task is more difficult, ramping activity is slower,
leading to longer reaction times. However, the threshold
of cortical firing activity that is read out by the down-
stream motion system has the same narrow distribution,

regardless of the ramping speed or reaction times (Lo
and Wang, 2006). Therefore, this model realizes a robust
threshold detection mechanism, and the variability of
reaction times is mostly attributed to the irregular ramp-
ing of neural activity itself rather than a stochastic deci-
sion bound. With this implementation of a decision
threshold, the model can produce quantitative behav-
ioral metrics such as accuracy (psychometric function)
and reaction time (Figure 23.2D) that can be compared
with experimental measurements.

(A) (B)

(C)

A B

With stimulusWithout stimulus

40

30

F
iri

ng
 r

at
e 

r A
(H

z)

20

10

0

40

30

20

10

0
0 10 20 30 40 0 10

Firing rate rB (Hz)

20 30 40

Sensory inputs

Reward

Inh

Choice

Excitatory
20Hz

rA

rB

1 sec

Inhibitory

Modulatory
Plastic

FIGURE 23.1 (A) A neural circuit model (NCM) for deicison making with two-alternatives. There are two pools of excitatory neurons, each
of which is selective to one of the two choice options A and B. Within each pool there are strong recurrent excitatory connections that can sus-
tain persistent activity triggered by a transient preferred stimulus. The two neural pools compete through feedback inhibition from interneur-
ons. Depending on the task design, one of the choices may be rewarded with some probability, whereas the other may not, in any given trial.
The outcome signal (reward or not) is assumed to modulate Hebbian plasticity of input synapses cA and cB. Since the network’s decision
dynamics depends on cA and cB, altered synaptic strengths lead to adaptive choice behavior across trials. (B) Two neural populations selective
for different choices display graded ramping followed by winner-take-all competition, in a simulation of motion direction discrimination task.
Top: spike trains of single neurons in the two competing neural pools A and B; middle: population firing rate rA and rB as a function of time;
bottom: inputs to the two neural pools. (C) The population dynamics of a NCM is displayed in the state space of firing rates rA and rB without
external input (left panel) and in the presence of a motion stimulus (right panel). Note that the attractor landscape sensitively depends on the
input (left versus right panel). Adapted with permission from Wang (2002, 2008).
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This model has been applied to a monkey experi-
ment using a visual motion direction discrimination
task (see Chapter 19). In that experiment, the subject
was shown a display of moving random dots, a frac-
tion of which moved coherently in one of two possible
directions (say A5 left, B5 right), and the remaining
dots moved in random directions. The task difficulty
was varied from trial to trial by varying the motion
coherence (0�100%). In monkeys performing this task,
single neurons in the lateral intraparietal (LIP) cortex
were found to exhibit slow ramping activity that is

correlated with the perceptual decision about the
direction (leftward or rightward) of the motion stimu-
lus (Gold and Shadlen, 2007). At lower motion coher-
ence, the subject’s reaction time was longer, and the
ramping of LIP neuronal firing rate was slower but
reached the same firing activity level at the time when
the behavioral response was produced, regardless of
the motion coherence (Roitman and Shadlen, 2002).
Thus, LIP neurons display a ramping-to-threshold pro-
cess at the cellular level. Our neural circuit model suc-
cessfully simulated this monkey experiment, with the
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FIGURE 23.2 Decision making in a multiple-module neural circuit. (A) Schematic architecture of the model for two-alternative forced-
choice oculomotor tasks. Neural pools in the cortical network integrate sensory information in favor of two choice options A and B, and
compete against each other. They project to both the superior colliculus (SC) and the caudate nucleus (CD) in the basal ganglia. CD sends
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lation firing rates of Cxe, SNr, and CD, and SCe. A burst of spikes in premotor neurons (SCe) is triggered when their synaptic inputs exceed a
threshold level, which results from both direct excitation by cortical neurons, and disinhibition from SNr via the cortico-striatal projection.
Time zero corresponds to stimulus onset. (C) The ramping slope of Cxe firing rate is inversely related to decision time on a trial-by-trial basis
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and mean response time as a function of the differential input, the relative difference in the mean inputs to the cortical neural pools A and B.
Adapted with permission from Lo and Wang (2006).
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motion coherence given by the relative input strength.
This model reproduces the monkeys performance and
reaction times, as well as salient physiological data of
LIP neurons (Lo and Wang, 2006; Wang, 2002; Wong
et al., 2007).

Speed�Accuracy Trade-Off

How can a decision threshold be adaptively tuned
in this circuit? For instance, in a speed�accuracy trade-
off, too low a threshold leads to quicker responses but
more errors, whereas too high a threshold improves
the accuracy but prolongs response times. Neither of
these yields maximal rewards. Since in this model the
decision threshold is defined as the minimum cortical
firing needed to induce a burst response in the
downstream SC neurons, one would expect that this
threshold could be adjusted by plastic changes in the
cortico-collicular pathway: the same level of cortical
input to the superior colliculus could be achieved with
less firing of cortical neurons, if the synapses of the
cortico-collicular projection are stronger. Interestingly,
this is not the case when the system is gated by the
basal ganglia. This is because neurons in SNr normally
fire tonically at a high rate (Figure 23.2B), and provide
a sustained inhibition to SC movement neurons
(Hikosaka et al., 2000). This inhibition must be
released, as ramping activity in the cortex activates CD
neurons, which in turn suppresses the activity in the
SNr, in order for SC neurons to produce a burst of
action potentials as an output. This highly nonlinear
disinhibition mechanism implies that the decision
threshold is much more readily adjustable by tuning
the synaptic strength of the cortico-striatal pathway
(Lo and Wang, 2006). Indeed, such an adaptive tuning
of decision threshold is expected to depend on reward
signals (Reynolds et al., 2001), and cortico-striatal
synapses represent a major target of innervations by
dopamine neurons which play a critical role in rein-
forcement signaling (Reynolds and Wickens, 2002).
Our work suggests that the dopamine-dependent plas-
ticity of cortico-striatal synapses is a likely neural locus
for adaptive tuning of the decision threshold in the
brain.

It should be noted that synaptic plasticity takes a
long time to affect decision making across trials. On
the other hand, we are able to adjust speed versus
accuracy almost instantaneously, for example by an
instruction at the beginning of each individual trial. It
has been shown that, actually, a constant input readily
affects speed and accuracy (Furman and Wang, 2008).
This input could correspond to a top-down control sig-
nal in the brain. Interestingly, if such a control signal
projects to both excitatory and inhibitory neurons in a

decision circuit in a balanced way, then it can instanti-
ate speed�accuracy trade-off by adjusting the slope of
neural ramping activity (Lo and Wang, 2009). Indeed,
a recent monkey experiment has shown that single
neurons in the frontal cortex reduced the ramping
slope when subjects traded speed in favor of accuracy
(Heitz and Schall, 2012). Human studies using func-
tional MRI suggest that both the prefrontal cortex and
striatum have been implicated in speed�accuracy
trade-off (Bogacz et al., 2010; Forstmann et al., 2008).
More refined task designs could differentiate distinct
brain mechanisms operating over disparate timescales
for learning versus top-down control as suggested by
the modeling work.

Comparison Between the Drift Diffusion Model
and Neural Circuit Model

How does the neural circuit model compare with
the drift diffusion model? First, one should note that
they are two quite different levels of abstraction. The
DDM assumes an infinite integration time; whereas
NCM proposes a long but finite integration time. A
possible neural basis of a long integration time is the
NMDA receptor dependent recurrent synaptic excita-
tion. Second, the functional benefit of time integration
was demonstrated in the model by showing that per-
formance improves when the system is allowed to
integrate inputs over a longer time, but eventually pla-
teaus with sufficiently long integration as the system
reaches an attractor state representing a categorical
choice (Wang, 2002; Figure 23.1C, right panel). This
prediction was confirmed in a recent monkey experi-
ment (Kiani et al., 2008). Third, whereas in DDM evi-
dence shown at different time points has equal weight,
NCM asserts that evidence available early on has a
larger impact on the ultimate choice than evidence
presented later and immediately before a decision is
made. This NCM prediction was supported in an
experiment where a brief pulse of sensory information
was introduced at different time points (Huk and
Shadlen, 2005; Wong et al., 2007). However, in more
general situations when sensory data or attention var-
ies continuously in time, information provided a long
time ago may be forgotten, and a commitment may be
reversed in the face of newly presented evidence
(Resulaj et al., 2009). The biological basis and possible
fundamental limitation of integration time in decision
making remains an outstanding subject of future
research.

The NCM is a nonlinear dynamical system capable
of more than one mode of operation. Indeed, in a so-
called jumping mode neurons could show a sudden
jump of firing rate instead of a smooth quasi-linear
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time course, but the time at which the discrete jump
occurs may vary from trial-to-trial randomly so that
the trial-averaged neural activity still displays smooth
ramping dynamics (Deco et al., 2007, 2009; Gigante
et al., 2009; Lo and Wang, 2009; Miller and Katz, 2010;
Miller and Wang, 2006c; Okamoto et al., 2007; Wang,
2012). The two (ramping and jumping) modes can be
realized in the same model with modest variations of
parameters, suggesting that they could occur in differ-
ent local circuits of the brain or under different condi-
tions in a single area.

Notably, in the jumping mode, without noise the
system would remain in the resting state, therefore
fluctuations are required for decision making. The
sources of noise or stochasticity in a decision process
have only begun to be examined experimentally
(Brunton et al., 2013). Perceptual decisions (identifica-
tion, discrimination, etc.) are often hard because sen-
sory information is noisy, and integration of sensory
data over time is computationally desirable because it
improves signal-to-noise ratio (Luce, 1986). However,
there is also stochasticity intrinsic to a decision circuit,
and the Fano factor (the ratio of the variance versus
mean of spike counts) of neural integrators may itself
increase over time (Miller and Wang, 2006b;
Churchland et al., 2011). This is likely to be generally
true for neural circuits involved in both perceptual
decisions and value-based choices, and stochastic neu-
ral dynamics of decision systems may play a critical
role in indeterminacy of decision behavior (Glimcher,
2005; Wang, 2008).

ADAPTIVE VALUE-BASED CHOICE

A Decision-Making Circuit Endowed with
Reward-Dependent Learning

In the NCM, decisions are made by stochastic neu-
ral dynamics in any given trial. Across many trials, the
probability of choosing A (i.e., the fraction of trials
when the neural pool selective for option A wins the
competition through attractor dynamics) is in effect the
psychometric function (Figure 23.2D, upper panel),
which can be described by a softmax function of the
difference in the strengths (cA and cB) of inputs to the
two competing neural pools (Soltani and Wang, 2006):

PAðcA 2 cBÞ5 1=ð11 expð2 ðcA 2 cBÞ=σÞÞ ð23:3Þ
where σ expresses the amount of stochasticity due to
irregular spike firing in the network and also depends
on other model properties such as firing rates of input
neurons. Importantly, a softmax decision criterion is
widely assumed in more abstract models of choice
behavior; indeed it is the same equation used in the

reinforcement learning model for fitting monkey and
human behavioral data (see Chapter 26 as well as
Section 3 of this volume). The neural circuit modeling
lends support to this general assumption, and sheds
insights into its underlying stochastic recurrent neural
dynamics.

In order to account for the trial-by-trial learning in
adaptive choice behavior, reward-dependent learning
can be incorporated into this class of model. Suppose
that input synaptic connections cA and cB are plastic,
then synaptic modifications will alter the networks
future decision behavior, which in turn will lead to
further changes in the synapses (Figure 23.1A). For
instance, if in a trial the choice is correct (say A), a pos-
itive outcome might trigger dopamine release that
leads to a potentiation of cA. As a result, in the next
trial the probability for choosing A will be enhanced.

One working hypothesis is that input synapses onto
a decision circuit are up-dated according to such a
reward-dependent Hebbian learning rule (see also
Seung, 2003). For this purpose a number of studies
have used binary synapses (Amit and Fusi, 1994; Fusi,
2002) that undergo a Hebbian learning rule, namely
that synaptic plasticity depends on coactivation of pre-
synaptic and postsynaptic neurons (Hebb, 1949).
Specifically, synapses between two neurons are
assumed to have two (Down and Up) states, and cA
(respectively cB) is the fraction of synapses from an
input neuron to a decision neuron in the pool A
(respectively B) that are in the Up state.

In such a model it is assumed that synapses for
inputs to decision neurons are potentiated only if the
choice is rewarded, and depressed otherwise (Fusi
et al. 2007; Soltani and Wang, 2006; Soltani et al., 2006).
If A wins in a trial, implying that the firing rate is high
for decision neural pool A and low for pool B, only cA
undergoes a plastic change, whereas cB remains the
same. If the choice is correct, yielding a reward, then
cA is potentiated according to

cA 5 cA 1 q1ð12 cAÞ; ð23:4Þ

if A is incorrect and no reward is delivered, cA is
depressed according to

cA 5 cA 2 q2cA ð23:5Þ

where q1 and q2 are the learning rates. Their inverses
are the time constants with which the system keeps
the memory trace for past reward and non reward out-
comes. Note that these simple equations ensure that cA
remains positive and between 0 and 1. As a result of
synaptic modifications, the input strengths for the
competing neural groups of the decision network vary
from trial to trial, leading to adaptive dynamics of
choice behavior.
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Dopamine and Synaptic Plasticity

The above reward-dependent learning rule is
broadly supported by neurophysiological data.
Dopamine, which plays an important role in reward-
related signaling (see Chapters 15�18), can reverse the
sign of plasticity (from depression to potentiation) at
cortico-striatal synapses (Reynolds et al., 2001) and
synapses on prefrontal neurons (Matsuda et al., 2006;
Xu and Yao, 2010). This finding has recently been
refined with the use of stimulation protocols that

induce spike-timing dependent plasticity (STDP) (Bi and
Poo, 2001; Dan and Poo, 2006). STDP refers to the fact
that Hebbian synaptic modification depends on the rel-
ative timing of presynaptic and postsynaptic spikes:
with positive spike timing (the presynaptic neuron of a
connected pair fires first before the postsynaptic neu-
ron by less than tens of milliseconds, therefore can
contribute to the generation of postsynaptic spiking),
potentiation is induced; whereas with negative timing
(the presynaptic spike does not affect the postsynaptic
firing) depression occurs (Figure 23.3A). The synaptic
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than 100%) when the induction protocol used positive spike timing, and depressed (less than 100%) with negative spike timing. (B) Triad
arrangement involving the dopamine input to the cortex. Left: afferents labeled with a dopamine- (DA) specific antibody terminate on the
spine of a pyramidal cell in the prefrontal cortex, together with an unidentified axon (UA). Middle: enlargement of axospinous synapses illus-
trated in the left panel. Right: diagram of ultrastructural features of the axospinous synapses illustrated in middle panel; the dopamine termi-
nal (darkened profile representing DA immunoreactivity) forms a symmetrical synapse; the unidentified profile forms an asymmetrical
synapse with the postsynaptic membrane. Adapted with permission from Goldman-Rakic (1995) with data published in Goldman-Rakic et al. (1989).
(C) Dopamine gates the sign of plasticity for cortical synapses on D1 receptor-expressing medium spiny neurons in the striatum. Positive spike
timing produces long-term potentiation (red), whereas negative timing does not induce plastic changes (black). When D1 receptors are
blocked by SCH23390, negative timing induced long-term depression is unmasked (blue). Adapted with permission from Surmeier et al. (2010)
with data published in Shen et al. (2008). (D) Dopamine alters the STDP window in hippocampal neurons. STDP window in control conditions
(black circles) and when dopamine was present during the STDP induction protocol (red circles). With positive spike timing, dopamine
allowed for longer intervals between spike and synaptic activation to induce potentiation of synaptic strength. With negative spike timing,
dopamine enabled potentiation induction with a protocol that induced depression under control conditions. Adapted with permission from
Zhang et al. (2009).
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triad arrangement (synapse colocalizing with dopa-
mine input) at cortico-striatal synapses (Freund et al.,
1984; Surmeier et al., 2010) and excitatory synapses
onto prefrontal neurons (Figure 23.3B; Goldman-Rakic,
1995) suggest that dopamine can potently modulate
synaptic plasticity. Indeed, it has been found (Shen
et al., 2008) that at cortico-striatal synapses, in the pres-
ence of dopamine D1 receptors, positive timing leads
to potentiation (Figure 23.3C, red) and negative timing
does not induce synaptic change (Figure 23.3C, black).
When D1 receptors are blocked pharmacologically,
however, negative spike timing yields depression
(Figure 23.3C, blue). In hippocampal neurons, bath
application of dopamine enlarged the temporal win-
dow for potentiation with positive spike timing and
converted depression to potentiation with negative
spike timing (Figure 23.3D; Zhang et al., 2009). Taken
together, these experimental results are consistent with
the modeling proposal that dopamine activation (pre-
sumably mediated by D1 receptors) can reserve the
signal of synaptic modification. This is worth noting
that other neuromodulators (such as noradrenaline;
Seol et al., 2007) can also alter synaptic modification or
reverse its sign (reviewed in Pawlak et al., 2010).

Are there general mathematical models for reward-
dependent learning rules? The aforementioned learn-
ing rule is simple and turns out to be validated by its
applications to a number of adaptive processes
(see below). Various reward-dependent learning rules
have been proposed, where plasticity is gated by either
reward or reward prediction error (RPE) (Frémaux et al.,
2010; Izhikevich, 2007; Legenstein et al., 2010;
Loewenstein and Seung, 2006; Pfeiffer et al., 2010).
RPE, of course, plays a key role in reinforcement learn-
ing theory (see Chapters 15 and 16; Dayan and Abbott,
2001; Rutledge et al., 2010; Sutton and Barto, 1998), and
phasic spiking activity of dopamine neurons is known
to resemble an RPE signal (Bayer and Glimcher, 2005;
Montague et al., 1996; Schultz, 1998; Schultz et al.,
1997). It is presently unclear whether the existing mod-
els are fundamentally different, or they are essentially
similar under different mathematical forms. For
instance, it has been shown that the covariance of neu-
ral activity and reward is a common denominator of
several reward dependent learning rules (Frémaux
et al., 2010; Loewenstein and Seung, 2006). Also, theo-
retical work suggests that RPE must be distinct for
each task and stimulus (Frémaux et al., 2010), whether
that holds true and how that might be realized by the
dopamine system remain unclear. A related question
is exactly what dopamine neurons compute and how
their computations depend on subcortical (Bromberg-
Martin et al., 2010) and prefrontal (Takahashi et al.,
2011) inputs, and intrinsic circuit properties within the
ventral segmental area (Cohen et al., 2012). Furthermore,

a major open issue is concerned with the so-called eli-
gibility trace of Chapter 16 linking an action and its
reward outcome that are temporally separated (Dayan
and Abbott, 2001; Izhikevich, 2007; Sutton and Barto,
1998). The biological substrate of such eligibility trace
remains uncertain.

Computation of Returns by Synapses: Matching
Law Through Melioration

The NCM described here endowed with such three-
factor synaptic plasticity is a general one rather than
designed for a particular task. This model has been
further tested by applying it to a foraging task, in
which a subject makes successive choices adaptively in
a stochastic environment (Lau and Glimcher, 2005,
2007; Sugrue et al., 2004). In these tasks, whether a sub-
ject’s choice yields reward or not depends on the sto-
chastic environment. In either case, the model
simulates a decision maker whose choice outcomes
lead to synaptic plasticity that in turn influences future
choices, thereby learning to forage adaptively.

In foraging tasks commonly used in laboratories,
rewards are delivered to two response options stochas-
tically at baiting rates λA and λB, respectively, accord-
ing to a particular concurrent reinforcement schedule
(Herrnstein et al., 1997; Lau and Glimcher, 2005;
Sugrue et al., 2004). Behavioral studies using this task
have led to Herrnstein’s matching law, which states
that a subject allocates her or his choices in a propor-
tion which matches the relative reinforcement obtained
from these choices (Herrnstein et al., 1997). Moreover,
the spiking activity of neurons in the lateral intraparie-
tal cortex (LIP) is modulated by a representation of
value that was defined as fractional income (Sugrue
et al., 2004). To explore a cortical circuit mechanism of
matching behavior, one can endow this neural circuit
model of decision with reward-dependent synaptic
plasticity. As shown in Figure 23.4A, B, the model
applied to the foraging task reproduces the matching
behavior observed in the monkey experiment. As
the reward rate λA/λB varies from one block of
trials to the next block, the choice behavior of the
model changes quickly, so that the probability of
choosing A versus B matches approximately λA/λB. It
has been shown analytically that the synaptic strengths
(cA and cB) are proportional to the returns (reward
per choice) rather than income (the amount of reward
per unit time) of the two targets, namely cACRA and
cBCRB.

Figure 23.4C shows the probability of choosing
option A (PA) along with the input synaptic strengths
(cA and cB) across six blocks of trials. The process of
synaptic plasticity is stochastic, and there is
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considerable variability within each block of 200 trials.
However, on average (indicated by the blue line for
PA), the choice probability ratio matches that of rates
at which rewards are delivered to the two targets, and
this matching behavior is learned through plastic syn-
apses. For instance, if in a block of trials, the reward
probability λA is larger than λB then cA is more likely
to be potentiated than cB through the successive deci-
sions of the network across trials because the return
from choosing A is higher, leading to a larger PA. The
converse occurs in a block of trials where λB is larger
than λA.

Note that synaptic modifications take place on a
trial-by-trial basis, locally in time. Moreover, synapses
are forgetful and behave like a leaky integrator of past
choice outcomes. In our model, synaptic integration of
past rewards has a time constant of a few trials, and
therefore the decision behavior is influenced only by
rewards harvested locally in time, in agreement with
behavioral (Lau and Glimcher, 2005; Sugrue et al.,
2004, 2005) and neurophysiological (Seo and Lee, 2007;
Seo et al., 2007) observations. There is no prescription
in the model for global optimization (Bogacz and
Larsen, 2011; Sakai and Fukai, 2008). The models

performance is close to the matching behavior, which
is achieved dynamically through a so-called melioration
process, i.e., the model chooses the alternative with a
higher return, so that the interplay between decision
behavior and synaptic plasticity iteratively improves
the total income (reward per unit time) to the maxi-
mum possible, given the constraints of the stochastic
neuronal and synaptic dynamics. The model also
reproduces the observation that in the monkey experi-
ment, matching is not perfect, and the relative proba-
bility of choosing the more rewarding option is
slightly smaller than the relative reward rate (under-
matching) (Figure 23.4B). A model analysis explained
this finding, revealing that under-matching is a natural
consequence of stochasticity in neural activity (Soltani
and Wang, 2006).

Furthermore, because neural activity depends on
input strengths, the model naturally reproduces the
experimental observation that neural activity in LIP is
parametrically modulated by the values of the choice
options (Figure 23.5; Soltani and Wang, 2006). The
implication is that, although activity of LIP neurons
depends on values of response options, valuation may
occur elsewhere, possibly at the synaptic level and in
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the choice probability (blue) plotted as a
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block. In each block the synaptic strengths
fluctuate according to the returns from the
two choices (not shown). Adapted with per-
mission from Soltani and Wang (2006).
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the form of returns. For the sake of simplicity, Soltani
and colleagues considered a local network model, but
importantly they remained agnostic about the actual
site of synaptic plasticity that is critically involved
with valuation. Candidate loci include the cortico-
striatal connections in the basal ganglia (Lo and Wang,
2006), or synaptic pathways within the orbitofrontal
cortex (see Chapter 13).

Random Choice Behavior in Matching
Pennies Game

This class of models has also been extended to
decision making in competitive games between multi-
ple agents (introduced in Chapter 2). The idea cap-
tured by this line of research is that several such
models, each simulating a “decision maker,” can inter-
act according to a payoff matrix. This class of model
can thus be used to simulate monkey experiments
using game-theoretic tasks (Chapter 26; Barraclough
et al., 2004; Dorris and Glimcher, 2004), in which mon-
keys play matching pennies with a computer opponent
that uses three different algorithms (0, 1 and 2, see
Chapter 26). The model reproduces many salient
behavioral observations (Soltani et al., 2006). If the
opponent is not interactive (using Algorithm 0), the
model decision behavior is idiosyncratic, and might,
for instance, choose one of the targets exclusively.
When the opponent uses algorithm 1, the model exhi-
bits prominent win-stay-lose-switch (WSLS) behavior, as
observed in monkeys. Finally, when the opponent uses

algorithm 2 and is fully interactive according to the
rules of matching pennies, the model behavior
becomes quasi-random. This is shown in Figure 23.6,
with several different sets of initial values for the syn-
aptic variables cA and cB (Figure 23.6, left panel).
Different cA and cB values yield different initial proba-
bility PA of choosing response A versus B (Figure 23.6,
right panel). Competitive interaction with the oppo-
nent, however, quickly equalizes the synaptic variables
(Figure 23.6, left panel), and the choice probability
becomes very close to 0.5 (Figure 23.6, right panel),
regardless of the initial state of the system. For
instance, if initially the system chooses target A more
frequently because cA is larger than cB, it would be
exploited by the opponent, and the unrewarded out-
comes from choosing A induce depression of cA of the
synapses to the neural pool A, so that the difference
cA2 cB decreases over time, and the system gradually
chooses B more frequently.

Interestingly, the model, with a reinforcement learn-
ing rule that changes only synapses onto neurons
selective for the chosen option, does not capture all the
details of the monkeys behavior. In particular, it shows
a probability of WSLS, P(WSLS), below a limited value
(about 0.65), whereas P(WLSL) can be nearly 1 in mon-
keys with algorithm 1. Further studies have revealed
that P(WLSL) C 1 can be realized in this model with a
different learning rule, according to which synapses
onto both neural populations (selective for the chosen
and unchosen targets) are modified in each trial. This
is akin to a belief-dependent learning rule (discussed in
Chapter 25; Camerer, 2003; Lee et al., 2005).

Although the model can reproduce monkey behavior
obtained with different opponent-algorithms, different
model parameters are required for each algorithm. How
can these model parameters be tuned adaptively, as the
opponents algorithm is changed? To address this ques-
tion, Soltani and colleagues (2006) incorporated a meta-
learning rule proposed by Schweighofer and Doya
(2003) that maximizes long-term rewards. They found
that the enhanced model captures the very slow changes
of the monkey’s behavior, as the opponents algorithm
changes from session to session.

A general insight that can be drawn from this work
is that a decision circuit produces random choice
behavior, not necessarily because the system has a pre-
scribed “random number generator,” but because the
trial-to-trial choice dynamics forces the decision agent
to play randomly. This is well demonstrated in the
model, because the same model produces either stereo-
typical responses or random responses, depending on
the behavior of its opponent. The model decision maker
thus does not have a goal to play randomly, but simply
tries to play at its best, given the environment and other
decision agent(s) involved in the game. This conclusion

40

30

20

F
iri

ng
 r

at
e 

(H
z)

10

0
0 400 800 1200

Time (ms)
1600

FIGURE 23.5 Graded activity of model neurons as a function of
the input synaptic strengths which encode the values (returns) of
choice options in a matching task. The activity of decision neurons
shows a graded pattern, if single-trial firing rates are sorted and
averaged according to the network’s choice and the difference
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to 0.05 (medium), 0.05 to 0.16 (thick)]. Reproduced with permission from
Soltani and Wang (2006).
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is consistent with previous behavioral studies and mod-
els, emphasizing the critical importance of feedback in
the production of quasi-random behavior (Camerer,
2003; Rapoport and Budescu, 1992). Moreover, the model
suggests that irregular neural firing that gives rise to sig-
moid decision criterion, and the stochastic nature of syn-
aptic learning, contribute to the generation of random
choice behavior, which can be desirable and even opti-
mal in interactive decision tasks. Thus, this model sheds
insights into neural processes in the brain underlying the
randomness observed at the psychological level
(Glimcher, 2005; Wang, 2008). In this way, neurobiologi-
cally based neural modeling helps to bridge the gap
between cognitive behavior and its underlying neural
network mechanisms.

Reward Memory and Reinforcement Learning
on Multiple Time Scales

As mentioned above, the synaptic learning rule
described above assumes certain time constant(s) with
which the system integrates past reward events, and
the memory trace decays away in the absence of
reward delivery. This is generally the case for rein-
forcement learning models. In a simple model, a vari-
able V represents the value of certain action, which is
updated as

Vðt1 1Þ5VðtÞ1αδ ð23:6Þ

where α is a learning rate, and δ5 r2V is RPE (the
difference between the actual reward r and the

expected reward V). The inverse of α is a time constant
τ. For instance, in the absence of reward delivery, V(t)
decays over time exponentially as exp(2 t/τ).

Intuitively, the learning rate α should be dynami-
cally adjustable: if the environment is stochastic but
stable, then it is desirable to deploy a long integration
time in order to learn about and exploit the statistics of
the environment; whereas if the environment is highly
uncertain, one should use a short time constant and
high learning rate to explore different options quickly.
Indeed, in a human experiment where the volatility of
reward delivery statistics is systematically varied and
the learning rate of human subjects was estimated by
fitting behavioral data with a mathematical model, it
was found that the estimated learning rate is higher
when the environment is more unpredictable (Behrens
et al., 2007).

Can such a time constant for integrating past
reward events be extracted from single cells in deci-
sion making? By developing a novel data analysis,
Bernacchia and colleagues (2011) analyzed how
rewards in previous trials affect the firing activity of
neurons in the dorsolateral prefrontal cortex, anterior
cingulate cortex and intraparietal cortex from monkeys
performing the matching pennies task. Surprisingly,
they was found that the histogram of time constant (τ)
extracted from about 800 individual neurons display a
power law like B1/τ2, whereas the history of the
memory trace amplitude (A) behaves lawfully as
exp(2A) (Figure 23.7, upper panels). The power law tail
of the time constant distribution means that very long
time constants have a much higher probability than if
the distribution is Gaussian or exponential.
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The implication is that a “reservoir” of time con-
stants are heterogeneously distributed in prefrontal
and parietal neurons, and that the reward memory
system operates in a high dimensional space. Indeed,
Bernacchia and colleagues showed that a simple linear
neural network model in an infinite dimensional space,
under certain conditions (such as “at the edge of
chaos”), reproduces the same power law distribution
of time constant and exponential distribution of
memory trace (Figure 23.7, lower panels). Further
experimental and modeling work is needed in order to
assess the validity of this model. Regardless, these
results suggest that reinforcement learning modeling
should be extended to more than one dimension, in
order to allow for reward-dependent learning over
many timescales. It is worth mentioning that reinforce-
ment learning has been extended to a hierarchical
structure with an inherently high dimensionality
(Botvinick et al., 2009). We propose that such a system
is dynamical and endowed with a very broad range of
time constants. Therefore, in principle, a readout sys-
tem could deploy short or long time constants (high or
low learning rates) from this reservoir, exibly, depend-
ing on the degree of volatility of the environment.

Probabilistic Inference

The same framework of a decision circuit endowed
with reward-dependent learning has been applied to
other decision processes, such as arbitrary sensori-
motor mapping (Asaad et al., 1998; Fusi et al., 2007;
Wise and Murray, 2000) and pattern matching deci-
sions (Engel and Wang, 2011). Unexpectedly, the model
was also found to be capable of statistical calculations
at the core of probabilistic inference. In a weather predic-
tion task, several (for example four) sensory cues
(si, i5 1, 2, 3, 4) are shown, each is associated with a
weight of evidence (WOEs), defined by log likelihood ratios
(LRs) log P(sijA)/log P(sijB), that one of the two out-
comes A (rain) and B (shine) is true (Gluck and Bower,
1988; Knowlton et al., 1994). When the prior p(A)5 p(B),
this is also log posterior ratio, but real-life situations
involve unequal priors, or “base rates.” The subject is
required to make a decision (“rain” or “shine”) based
on the combined evidence, the sum of WOEs of four
cues presented in a single trial (Gluck et al., 2002). How
can such a quantity as summated log likelihood ratio or log
posterior ratio be actually computed in the brain? Using
the reward-dependent learning rule described above, it
was found that summing log posterior odds can be
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readily realized, through approximations, by plastic
synapses (provided that synapses are bounded) in a
decision circuit (Soltani and Wang, 2010). Specifically,
one can show that, according to our three-factor learn-
ing rule, synaptic strength cA and cB from sensory neu-
rons encoding stimulus s to decision neurons A and B
compute posteriors p(Ajs) and p(Bjs), respectively.
Moreover, recall that the decision circuit generates
choices in such a way that the probability of selecting A
is a softmax function of the differential input,
cA 2 cB 5 pðAjsÞ2 pðBjsÞ5 2pðAjsÞ2 1 ðwith pðBjsÞ5 12
pðAjsÞÞ. Mathematically, x2 ð12 xÞClogðx=ð12 xÞÞ;
if 0:2# x# 0:8. It follows that, for the intermediate
range of posteriors where the model’s choice behavior is
stochastic, the difference in the synaptic strengths is lin-
early proportional to the log posterior ratio. For smaller
or larger values of posteriors, the choice behavior is
deterministic (the probability of choosing A is close to 0
or 1). As a result, decision making is based on log poste-
rior ratio, as required by probabilistic inference.

When several cues are presented to inform a deci-
sion, log posterior ratios for the presented stimuli are

readily added by virtue of convergence of cue-
encoding neurons to decision neurons (Figure 23.8A).
Therefore, a decision circuit endowed with such
synapses makes choices on the basis of the summed
log posterior ratios and performs near-optimal cue
combination. This model was validated by reprodu-
cing not only behavioral performance of monkeys
of the Yang and Shadlen experiment (Yang and
Shadlen, 2007; Figure 23.8B), but also single-neuron
physiological data recorded from behaving monkeys
(Figure 23.8C-D).

Another study (Pfeiffer et al., 2010) considered an
ideal three-factor Bayesian�Hebb rule that was
designed to yield synaptic weights wi equal to the log
likelihood ratio. They found that updating wi requires
an exponential function of wi. However, when the
exponential function is approximately linearized, the
learning rule becomes precisely the same as that of
(Soltani and Wang, 2010). Moreover, it was shown that
the linearized Bayesian�Hebb rule performs nearly as
well as the theoretical optimum in a number of bench-
mark tasks, including the weather prediction task.
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Furthermore, when the choice alternatives have
unequal priors, the model predicts deviations from
the Bayes’ decision rule that are akin to an effect
called “base-rate neglect” commonly observed in
human studies, namely a cue that is equally predictive

of each outcome is perceived to be more predictive
of the less probable outcome (Soltani and Wang,
2010). Therefore, our model might be sufficiently gen-
eral to describe more complex probabilistic problem
solving.
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FIGURE 23.9 Deviation from theory of rationality in three-choice decision making. (A) A proposed generalization of DDM to three-choice.
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Deviation from Rational Behavior: An Example

The notion of rational behavior is linked to that of
optimality, but often times what constitutes an optimal
strategy for a given decision task is unclear. Whereas
SPRT is optimal for two-alternative forced choice tasks,
optimal tests for three or more options are not known.
There are multiple ways to generalize the DDM to
multi-alternative choice (Churchland et al., 2008;
Krajbich and Rangel, 2011; McMillen and Holmes,
2006; Niwa and Ditterich, 2008), one of them is shown
in Figure 23.9A compared to a generalized NCM to
muti-alternative decision making (Albantakis and
Deco, 2009; Furman and Wang, 2008; Smith and Wang,
2008; Usher and McClelland, 2001) shown in
Figure 23.9B. As shown in Figure 23.9C, the decision
behavior of a three-choice version of the attractor
network model can be well described by a softmax func-
tion, Pð1Þ5 expðσV1Þ=ðexpðσV1Þ1 expðσV2Þ1 expðσV3ÞÞ,
where V1, V2, and V3 are the values or strengths of
evidence for the three options, and σ is a parameter that
quantifies the amount of stochasticity. This model (Smith
and Wang, 2008) fits well with human performance data
from a 3-choice visual motion direction discrimination
experiment (Niwa and Ditterich, 2008).

One prediction of the softmax decision criterion is
that the relative probability of choosing one of two
options (say 1 and 2), P(1|11 2)5P(1)/(P(1)1P(2)), is
independent of the strength of the third option (V3).
This prediction has been shown to be contradicted by
observed economic choice behavior in a surprising way.
In one experiment using both monkeys and humans,
three choice options were associated with different
reward values (1: best, 2: second best, 3; Louie and
Glimcher, 2011; Louie et al., 2012). The third option has
a lower value than both the first and second options,
thus is irrelevant and should be ignored. Yet, when the
value for the worst option 3 was increased (while
remaining lower than options 1 and 2), subjects reduced
the relative probability for choosing the best of the two
better options, contrary to normative models of rational
behavior (Figure 23.9D). Similar findings were reported
in another monkey experiment, but only when the
medial orbitofrontal cortex was lesioned (Figure 23.9E;
Noonan et al., 2010). Why this deviation from rational
behavior was found in normal subjects in one experi-
ment, yet only in animals with brain damage in another
experiment, needs to be elucidated in future studies.

Interestingly, deviations from rational behavior in
the monkey experiment of (Louie and Glimcher, 2011;
Louie et al., 2012) can be concisely accounted for with
the assumption that the neural circuit is endowed with
divisive normalization, namely the activity of a neuron
is divided by the sum of its neighboring neurons.
Divisive normalization has been widely observed in a

number of cortical circuits (Carandini and Heeger,
2011). Therefore, this combined approach using mon-
key behavior, physiology and model demonstrated
how a neural circuit mechanism predicts behavioral
trends that are not anticipated nor easily explained by
optimality-based theories.

CONCLUSION

Much of the research in behavioral economics focuses
on how the decision makers choose among various
options when the information about the uncertain future
prospects are provided explicitly. For example, in studies
on decision making under risk, the decision makers are
given specific information about the magnitudes and
probabilities of possible payoffs from each choice. Given
the knowledge, one should devise a behavioral strategy
to strive for global optimality. In real life, however, infor-
mation about the magnitude, likelihood, and temporal
delay of reward and punishment resulting from a particu-
lar choice often has to be estimated through experience
by trial and error. Furthermore, such reward contingen-
cies often change over time, and this happens frequently
when multiple agents interact. Recent findings summa-
rized here and in other chapters suggest that adaptive
choice behavior is more dynamical, through choice-by-
choice melioration; and that memory of past reward
events is leaky both at the behavioral and neuronal levels.
Nevertheless, the brain is endowed with a reservoir of
disparate time constants for reward memory hence poten-
tially reinforcement learning, which is functionally desir-
able for dynamical exploitation�exploration trade-off.

Neurophysiological experiments with behaving ani-
mals and computational work have begun to establish
an empirically well tested core neural circuit model,
that is characterized by strongly recurrent or attractor
dynamics and endowed with reward-dependent
Hebbian synaptic plasticity. This model has been suc-
cessfully applied to perceptual decision making, forag-
ing, flexible sensori-motor mapping, competitive game,
and probabilistic causal learning. These studies pro-
vide important clues as to how adaptive stochastic
decision making, such as matching behavior in a forag-
ing task, approximate Nash equilibrium in a competi-
tive game or probabilistic inference, result from a
dynamic interplay between a decision-making network
and its environment. The model will need to be
extended to investigate how a neural network or a sys-
tem of networks can suitably combine the information
about various aspects of reward and punishment, such
as their magnitude, uncertainty, and temporal delay.

Also, the biophysical basis of reward-dependent plas-
ticity in the brain remains to be fully elucidated. Recent
work illustrated how deviations from optimality might
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be naturally explained by known neural mechanisms,
future research along these lines will shed fundamental
insights into the discrepancy between the behaviors of
humans and animals and the theory of rational choice.
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