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Abstract .  Since 1985 various evolutionary approaches to multiobjec- 
tive optimization have been developed, capable of searching for multiple 
solutions concurrently in a single run. But the few comparative studies of 
different methods available to date are mostly qualitative and restricted 
to two approaches. In this paper an extensive, quantitative comparison 
is presented, applying four multiobjective evolutionary algorithms to an 
extended ~0/1 knapsack problem. 

1 I n t r o d u c t i o n  

Many real-world problems involve simultaneous optimization of several incom- 
mensurable and often competing objectives. Usually, there is no single optimal 
solution, but  rather a set of alternative solutions. These solutions are optimal in 
the wider sense that  no other solutions in the search space are superior to them 
when all objectives are considered. They are known as Pareto-optimal solutions. 

Mathematically, the concept of Pareto-optimality can be defined as follows: 
Let us consider, without loss of generality, a multiobjective maximization prob- 
lem with m parameters (decision variables) and n objectives: 

Maximize y = f (x )  = ( f l (x ) ,  f 2 ( x ) , . . . ,  f,~(x)) (1) 

where x = ( x l , x 2 , . . . , x m )  e X and y = ( y l , y 2 , . . . , y ~ )  E Y are tuple. A 
decision vector a E X is said to dominate  a decision vector b E X (also written 
as a >-- b) iff 

V i e { 1 , 2 , . . . , n } : l ~ ( a ) > _ f ~ ( b )  A ~ j e { 1 , 2 , . . . , n } : f j ( a ) > f j ( b )  (2) 

Additionally, in this study we say a covers b iff a ~- b or a = b. All deci- 
sion vectors which are not dominated by any other decision vector are called 
nondominated or Pareto-optimal. 

Often, there is a special interest in finding or approximating the Pareto- 
optimal set, mainly to gain deeper insight into the problem and knowledge about 
alternate solutions, respectively. Evolutionary algorithms (EAs) seem to be es- 
pecially suited for this task, because they process a set of solutions in parallel, 
eventually exploiting similarities of solutions by crossover. Some researcher sug- 
gest that  multiobjective search and optimization might be a problem area where 
EAs do better than other blind search strategies [1][12]. 

Since the mid-eighties various multiob]ective EAs have been developed, ca- 
pable of searching for multiple Pareto-optimal solutions concurrently in a single 



293 

run. But up to now, no extensive, quantitative comparison of different meth- 
ods has been reported in literature. The few comparisons available to date are 
mostly qualitative and restricted to two different methods; quite often, the test 
problems considered are rather simple. 

In this study, however, we provide a comparison which a) uses two comple- 
mentary quantitative measures to evaluate the performance of the EAs, b) bases 
on a NP-hard test problem (0/1 knapsack problem), which represents an impor- 
tant class of real-world problems, and c) includes four different multiobjective 
EAs as well as a pure random search algorithm. The comparison focuses on 
the effectiveness in finding multiple Pareto-optimal solutions, disregarding its 
number. Nevertheless, in the case the trade-off surface is continuous or contains 
many points, the distribution of the nondominated solutions achieved is also 
an important aspect. Although we do not consider the distribution explicitly, it 
indirectly influences the performance of the EA. 

The paper is organized in the following way. The next section gives a brief 
overview of evolutionary approaches in the field of multiobjective optimization 
and a more detailed description of the EAs considered in this investigation. 
Section 3 introduces a multiobjective 0/1 knapsack problem, discusses the test 
data sets used in the experiments and presents the chromosome coding and 
decoding for the EAs. Afterwards, the experimental results are summarized in 
Section 4, and Section 5 comprises conclusions and future perspectives. 

2 M u l t i o b j e c t i v e  E v o l u t i o n a r y  A l g o r i t h m s  

A comprehensive overview of EAs in multiobjective optimization was published 
by Fonseca and Fleming [1]. The authors categorized several evolutionary ap- 
proaches regarding plain aggregating approaches, population-based non-Pareto 
approaches and Pareto-based approaches; moreover, approaches using niche in- 
duction techniques were considered. 

Aggregation methods combine the objectives into a higher scalar function 
which is used for fitness calculation; they produce one single solution and require 
profound domain knowledge which is often not available. Population-based non- 
Pareto approaches, however, are able to evolve multiple nondominated solutions 
in parallel; thereby, the population is mostly monitored for nondominated solu- 
tions. But in contrast to the Pareto-based approaches they do not make direct 
use of the concept of Pareto dominance. Pareto-based EAs compare solutions 
according to the ~- relation in order to determine the reproduction probability 
of each individual; this kind of fitness assignment was first proposed by Gold- 
berg [3]. 

Since preservation of diversity is crucial in the field of multimodal optimiza- 
tion, many multiobjective EAs incorporate niching techniques, the mostly im- 
plemented of which is fitness sharing [2]. Fitness sharing bases on the idea that 
individuals in a particular niche have to share the resources available, similar 
to nature. Thus, the fitness value of a certain individual is the more degraded 
the more individuals are located in its neighborhood. Neighborhood is defined 
in terms of a distance measure and specified by the so-called niche radius asha~e. 
Sharing can be performed both in genotypic space and phenotypic space. 



294 

In this study we consider two population-based non-Pareto EAs and two 
Pareto-based EAs: the Vector Evaluated Genetic Algorithm (VEGA) [10], an 
EA incorporating weighted-sum aggregation [4], the Niched Pareto Genetic Al- 
gorithm [5][6], and the Nondominated Sorting Genetic Algorithm (NSGA) [11]; 
all but VEGA use fitness sharing to maintain a population distributed along the 
Pareto-optimal front. Pure aggregation methods are disregarded here because 
they are not designed for finding a family of solutions. 

2.1 Vector Evaluated Genetic Algorithm 

Probably the first who recognized EAs to be applicable in multiobjective opti- 
mization was Schaffer [10]. He presented a multimodal EA called Vector Evalu- 
ated Genetic Algorithm (VEGA) which carries out selection for each objective 
separately. In detail, the mating pool is divided in n parts of equal size; part i 
is filled with individuals that are chosen at random from the current population 
according to objective i. Afterwards, the mating pool is shuffled and crossover 
and mutation are performed as usual. Schaffer implemented this method in com- 
bination with fitness proportionate selection. 

2.2 Aggregat ion  by Variable Objective Weighting 

Another approach which is based on plain aggregation was introduced by Hajela 
and Lin [4]. They use the weighted-sum method for fitness assignment. Thereby, 
each objective is assigned a weight wi E]0, 1[, such that ~ w~ = 1, and the scalar 
fitness value is calculated by summing up the weighted objective values wi. fi  (x).l 
To search for multiple solutions in parallel, the weights are not fixed but coded 
in the genotype. The diversity of the weight combinations is promoted by phe- 
notypic fitness sharing. As a consequence, the EA evolves solutions and weight 
combinations simultaneously. Finally, the authors emphasize mating restrictions 
to be necessary in order to "both speed convergence and impart stability to the 
genetic search" [4, p. 102]. 

2.3 Niched Pareto Genetic Algorithm 

The Niched Pareto Genetic Algorithm proposed by Horn and Nafpliotis [5][6] 
combines tournament selection and the concept of Pareto dominance. Two com- 
peting individuals and a comparison set of other individuals are picked at random 
from the population; the size of the comparison set is given by the parameter 
tdom. If one of the competing individuals is dominated by any member of the 
set, and the other is not, then the latter is chosen as winner of the tournament. 
If both individuals are dominated or not dominated, the result of the tourna- 
ment is decided by sharing: The individual which has the least individuals in its 
niche (defined by ashare) is selected for reproduction. Horn and Nafpliotis used 
phenotypic sharing on the objective values fl (x), f2 (x) , . . . ,  f,~(x) in their study. 
1 Normally, the objectives values have to be scaled in the case the magnitude of each 

objective criterion is quite different. In this study, however, scaling was not imple- 
mented due to the nature of the test problems used. 
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2.4 Nondominated Sorting Genetic Algorithm 
Another multiobjective EA which is based on Pareto ranking is the Nondomi- 
nated Sorting Genetic Algorithm (NSGA) developed by Srinivas and Deb [11]. 
The fitness assignment is carried out in several steps. In each step, the non- 
dominated solutions constituting a nondominated front are assigned the same 
dummy fitness value. These solutions are shared with their dummy fitness values 
(phenotypic sharing on the parameter values xl, x2 , . . . ,  x~), and ignored in the 
further classification process. Finally, the dummy fitness is set to a value less 
than the smallest shared fitness value in the current nondominated front. Then 
the next front is extracted. This procedure is repeated until all individuals in 
the population are classified. In the original study [11], this fitness assignment 
method was combined with a stochastic remainder selection. 

3 T h e  K n a p s a c k  P r o b l e m  

A test problem for a comparative study like this has to be chosen carefully. 
On the one hand, the problem should be understandable and easy to formulate 
so that the experiments are repeatable and verifiable. On the other hand, it 
ideally represents a certain class of real-world problems. Both applies to the 
knapsack problem: the problem description is simple, yet, the problem itself is 
difficult to solve (NP-hard). Moreover, due to its practical relevance it has been 
subject to several investigations in various fields, in particular, in the domain of 
evolutionary computation (e.g. [8]). 

3.1 Formula t ion  as Mul t iob jec t ive  Op t imiza t ion  P r o b l e m  

Generally, a 0/1 knapsack problem consists of a set of items, weights and profits 
associated with each item, and an upper bound for the capacity of the knapsack. 
The task is to find a subset of all items which maximizes the total of the profits 
in the subset, yet, all selected items fit into the knapsack, i.e. the total weight 
does not exceed the given capacity [7]. 

This single-objective problem can be extended straight forward for the mul- 
tiobjective case by allowing an arbitrary number of knapsacks. Formally, the 
multiobjective 0/1 knapsack problem considered here is defined in the following 
way: Given a set of m items and a set of n knapsacks, with 

p~,j = profit of item j according to knapsack i 
w~,j = weight of item j according to knapsack i 

ci = capacity of knapsack i, 

find a vector x = ( x l , x 2 , . . .  ,xm) e {0, 1} TM, such that 

Yi E {1 ,2 , . . . ,n}  : ~-'~wi,j . x j  < c~ (3) 
j - ~ l  

and for which f(x)  = ( f l (x ) , /~ (x) , . . . ,  ]n(x)) is maximum, where 
~2 

f , ( x )  : (4) 
j • l  

and xj = 1 iff item j is selected. 
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3.2 Test  D a t a  

In order to obtain reliable and sound results, we used nine different test problems, 
where both number of knapsacks and number of items were varied. Two, three, 
and four objectives were taken under consideration, in combination with 100, 
250, and 500 items. 

Following suggestions in [7], uncorrelated profits and weights were chosen, 
where Pi,j and wl,j are random integers in the interval [10,100]. The knapsack 
capacities were set to half the total weight regarding the corresponding knapsack: 

m c~ = 0.5 ~ j = l  w~,j. As reported in [7], about half of the items are expected to 
be in the optimal solution (of the single-objective problem), when this type of 
knapsack capacities is used. 2 

3.3 I m p l e m e n t a t i o n  

Concerning the chromosome coding as well as the constraint handling, we draw 
upon results published by Michalewicz and Arabas [8]. They examined EAs with 
different representation mappings and constraint handling techniques on the 
(single) 0/1 knapsack problem. Concluding from their experiments, an approach 
using a vector representation and a greedy repair algorithm to correct infeasible 
solutions appears to be most appropriate for various kinds of knapsack capacities. 
We adopted this approach with a slightly modified repair mechanism. 

In detail, a binary string s of length m is used to encode the solution x E 
{0, 1}'L Since many codings lead to infeasible solutions, a simple repair method r 
is applied to the genotype s: x = r(s). The repair algorithm step by step removes 
items from the solution coded by s until all capacity constraints are fulfilled. The 
order in which the items are deleted is determined by the maximum profit/weight 
ratio per item ; for item j the maximum profit/weight ratio qj is given by the 
equation qj = max,= 1 {pi,j/wi,j }.3 The items are considered in increasing order 
of the qj. 

4 E x p e r i m e n t s  

4.1 M e t h o d o l o g y  

In the context of this comparative study several questions arose: What  quanti- 
tative measures should be used to express the quality of the outcomes so that  
the EAs can be compared in a meaningful way? What  is the outcome of an mul- 
tiobjective EA regarding a set of runs? How can side effects caused by different 
selection schemes or mating restrictions be precluded, such that  the comparison 
is not falsified? How can the parameters of the EA, particularly the niche radius, 
be set appropriately? In the following we deal with these problems. 

2 We also examined more restrictive capacities (c~ = 200) where the solutions contain 
only a few items; however, this had no significant influence on the relative perfor- 
mance of the EAs. 

3 This is a straight forward extension to the single-objective approach presented in [8] 
where qj = pl,j /wl j .  
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Two complementary measures were used in this study to evaluate the Pareto 
fronts produced by the various EAs. The first concerns the size of the objec- 
tive value space which is covered by a set of nondominated solutions. In the 
two dimensional case each Pareto-optimal solution x covers an area, a rectangle, 
defined by the points (0,0) and ( f l (X) , f2(x)) .  The union of all rectangles cov- 
ered by the Pareto-optimal solutions constitutes the space totally covered, its 
size is used as measure. This concept may be canonically extended to multiple 
dimensions. An advantage of this measure is that  each EA can be evaluated in- 
dependent of the other EAs. On the other side, convex regions may be preferred 
to concave regions, possibly leading to overrating of certain solutions. 4 There- 
fore, we additionally compared the outcomes of the EAs directly by using the 
coverage relation (cf. Section 1). Given two sets of nondominated solutions, we 
computed for each set the fraction of the solutions which are covered by solutions 
in the other set. 

Since in this study the focus is on finding the Pareto-optimal set rather  
than obtaining a uniform distribution over the trade-off surface, we did not 
consider the on-line performance of the EAs but the off-line performance. Thus, 
the Pareto-optimal set regarding all individuals generated over all generations 
is taken as output  of an EA. In addition, to restrict the influence of random 
effects, the experiments were repeated ten times per test problem, always using 
a different randomly generated initial population (per experiment all EAs ran on 
the same initial population). The performance of a particular EA on a given test 
problem was calculated by averaging its performances over all ten experiments. 

Actually, each multiobjective EA should be combined with the selection 
scheme originally applied. But the influence of the selection scheme on the out- 
come of an EA cannot be neglected, e.g., fitness proport ionate selection, which is 
used in VEGA, is well-known to have serious disadvantages. In order to guarantee 
a fair comparison, all EAs considered were implemented with the same selection 
scheme, binary tournament  selection. 5. Unfortunately, a conventional combina- 
tion of fitness sharing and tournament selection may lead to chaotic behavior 
of the EA, as reported by Oei, Goldberg and Chang [9]. Therefore, NSGA as 
well as Hajela's and Lin's approach were implemented using a slightly modified 
version of sharing, called continuously updated sharing, which was proposed by 
the same researchers. Thereby, not the current generation but rather  the part ly 
filled next generation is used to calculate the niche count. Horn and Nafpliotis 
introduced this concept in the Niched Pareto GA, too. Moreover, mating was 
not restricted. 6 

4 In our opinion, this problem will probably always occur if the optimal Pareto front 
as well as the density of the search space are unknown. 

5 This selection method turned out to be superior to both stochastic remainder selec- 
tion (used in [11]) and linear ranking selection on our test problems - that has been 
confirmed experimentally. Moreover, Srinivas and Deb themselves proposed to apply 
the combination of tournament selection and sharing to NSGA, which we used in 
this study. 

6 Hajela and Lin found it necessary to use mating restrictions in their evolutionary 
approach to multiobjective optimization. Therefore, all runs were also carried out 
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Table  1. Results of the experiments concerning the size of the space covered by the 
nondominated solutions. The numbers set in bold face give the best value achieved per 
test problem. 

On all test problems the population size was set to 100, the probabilities of 
crossover and mutat ion were fixed (0.65 and 0.057 , respectively), the crossover 
operator  used was one-point crossover. Each single EA run was aborted after 500 
generations. 8 The niche radii were determined experimentally, for each EA and 
test problem separately: First, and based on experiments,  we sized the range 
of meaningful values for O'share- Then, we chose five different niche radii and 
ran the EA on the test  problem for each single niche radius. Afterwards, the 
niche radius which yielded the best result regarding the size of the space covered 
was selected. Finally, an analogous procedure was applied in order to find the 
appropriate  values for tdom, a parameter  used by the Niched Pareto GA. On 
each test problem, we tried six different values (1, 5, 10, 15, 20, 25) and chose the 
one providing the best results concerning the space covered. Thereby, the niche 
radii were determined in the aforementioned manner  for each value separately. 

4.2 R e s u l t s  

The results concerning the size of the space covered are shown in Table 1, where 
the column titled Random is related to the outcomes produced by a simple ran- 
dom search algorithm. This probabilistic algorithm, which serves as additional 
point of reference, randomly generates a certain number  of individuals per gener- 
ation, according to the rate of crossover and mutat ion (but neither crossover and 
mutat ion nor selection are performed)�9 Hence, the number  of fitness evaluations 
is the same as for the EAs. The output  of the algori thm is the Pareto-optimal  
set of all solutions generated. 

On all test problems NSGA outperformed the other approaches regarding 
this quality measure. Furthermore,  all EAs achieved higher values than the pure 

with mating restrictions, where we tried several mating radii O'mat and niche radii 
O'shar e (following the common practice of setting t r m a t  = O ' s h a r e ) .  Oil all test problems 
no improvement of the results could be observed�9 

7 Michalewicz and Arabas [8] used the same values in their study. 
s It has been experimentally verified that no significant improvement has been 

achieved when increasing the number of generations. This has also been observed 
by Michalewicz and Arabas for the single-objective 0/1 knapsack problem�9 
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Fig. 1. Nondominated fronts for two objectives; for each method the nondominated 
solutions regarding all ten runs are plotted; for better visualization the points achieved 
by a particular method are connected by dashed lines. In the case of 100 items, the 
solid curve represents optimal nondominated solutions which have been calculated by 
integer linear programming using weighted-sum scalarization. 

random search strategy. The absolute values must not be overrated, however, 
for the two-dimensional case the ranking of performance is very well reflected by 
the Pareto fronts depicted in Figure 1. 

The direct comparison of the multiobjective optimization methods is given in 
Table 2. Again, NSGA covers the greatest fraction of the Pareto sets achieved by 
the other algorithms. Regarding two objectives VEGA has second best perfor- 
mance in this comparison, similar to the results concerning the absolute size of 
the space covered. On the remaining test problems, VEGA and the weighted-sum 
approach show almost equal performance. 

Comparing the Niched Pareto GA with the weighted-sum based approach, 
it can be observed that the former clearly outperformed the latter in the two- 
objective case, while the latter performed better in the three-objective case. 
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7Ai77:  4 500 mo n 
Random Weighted 1,1% 0% 0% 0% 0% 0% 0% 0% 0% 0 ,1% 

Niched 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
VEGA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
NSGA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Weighted Random 98% 100% 100% 100% 100% 100% 99.3% 99.9% 100% 90 .7% 
Niched 2.5% 1.5% 0% 72.7% 72.6% 75,7% 30.8% 49.5% 79.2% 42.T% 
VEGA 0% 0% 0% 41.4% 32.9% 30.6% 38% 30% 40.9% 23 .8% 
NSGA 0% 0% 0% 23.2% 22% 14.1% 24.1% 11.7% 27% 1 3 . 6 %  

Niched Random 100% 100% 100% 100% 99.6% 100% 99,6% 99.9% 100% 99 .9% 
Weighted 92.5% 95% 100% 12.9% 20.1% 14.6% 40.8% 26.5% 4.5% 45 .2% 

VEGA 0.9% 10.3% 0% 12,4% 14.2% 7,6% 47.8% 23.3% 8.6% 13,9% 
NSGA 0.7% ~4,4% 2,2% 7.7% 5.6% 0.8% 27.1% 8.8% 3.6% 6.8%70 

VEGA Random 100% 100%1100% 100% 100% 100%199.4% 100% 100% 99.9%/0 
Weighted 100% 98.8% 100% 43.8% 54.6% 47.4%'34.3% 48.3% 34.7% 62.4% 

Niched 86.5~ 87.9%, 92% 73,2% 77.6% 80% 31.7% 59.7% 79.6% ~'4.2% 
NSGA 25.8~ 16.9%20.5% 20.8% 23.8% 16% 22.4% 16.9% 26% 21% 

NSGA Random 100%i100%'100% 100% 100% 100%~99.5% 100% 100% i99.9% 
Weighted 100% 100% 100% 59.7% 67.2%172.7% 49.9% 72.8% 49.7% 74.7% 

Niched 93,8% 97.5% 98.8% 88% 89,7%195.2% 51.1% 84.4% 91% 87.7~ 
VEGA 58% 76.3% 67.4% 62.5% 58.7% 72.7% 60.5% 72.4% 58% 65.2% 

Table 2. Direct Comparison of the outcomes achieved by the different multiobjective 
EAs; each cell gives the fraction of nondominated solutions evolved by method B, 
which are covered by the nondominated points achieved by method A in average; the 
last column comprises the mean values for each row. 

Considering the problems with four objectives, neither can be said to be superior. 
The bad performance of the Niched Pareto GA in the three-objective case 

may be explained by suboptimal parameter settings for tdom. However, for these 
test problems tdom was set to 10, which corresponds to guidelines given in [5] 
(10% of the population size); all other five tdom-settings lead to worse results. 
As stated by Horn and Nafpliotis, the value of tdom iS critical to the convergence 
of the Niched Pareto GA, and to our experience, it seems to be rather difficult 
to find the optimal tdom. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this study we compared four multiobjective EA on a multiobjective 0/1 knap- 
sack problem with nine different problem settings. The quality of the Pareto- 
optimal sets achieved was measured quantitatively by the size of the space cov- 
ered. Additionally, the approaches were compared directly by evaluating the 
outcomes regarding the concept of Pareto dominance. 

All EAs clearly outperformed a pure random search strategy which ran- 
domly generates new points in the search space without exploiting similarities be- 
tween solutions. Among the EAs the Nondominated Sorting Genetic Algorithm 
(NSGA) proposed by Srinivas and Deb [11] achieved the best evaluations on all 
test problems, followed by Schaffer's VEGA [10] when all nine test problems are 
considered. Concerning the other two approaches, the results are ambiguous: In 
the two-objective case, the Niched Pareto Genetic Algorithm presented by Horn 
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and Nafpliotis [5] outperformed the weighted-sum based approach proposed by 
Hajela and Lin [4]. On the other side, the latter EA achieved better evaluations 
for three objectives. In the case of four objectives neither of them was superior. 

Regarding future perspectives, the issue of distributing the population over 
the tradeoff surface might be subject to further examinations. In many applica- 
tions, where the tradeoff surface is continuous or containing a huge number of 
solutions, it is essential that the EA is capable of "selecting" representative so- 
lutions. Furthermore, the influence of mating restrictions might be investigated, 
although restricted mating is not very widespread in the field of multiobjective 
EA. Finally, as stated in [1] a theory of evolutionary multiobjective optimization 
is much needed, examining different fitness assignment methods in combination 
with different selections schemes. 
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