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Abstract We show that if the principal graph of a subfactor planar algebra of modulus
δ > 2 is stable for two depths, then it must end in Afinite tails. This result is analogous
to Popa’s theorem on principal graph stability. We use these theorems to show that
an n − 1 supertransitive subfactor planar algebra has jellyfish generators at depth n
if and only if its principal graph is a spoke graph. This is the published version of
arxiv:1208.1564.
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1 Introduction

Every subfactor planar algebra embeds in the graph planar algebra of its principal
graph [14,21]. Thus one can construct a subfactor planar algebra by finding candidate
generators in the appropriate graph planar algebra, and then showing the planar algebra
they generate is a subfactor planar algebra with the correct principal graph. Since a
graph planar algebra satisfies all the unitarity conditions of a subfactor planar algebra,
one must only show the planar subalgebra P• is evaluable, i.e., dim(P0,±) = 1, to get
some subfactor planar algebra. Additional arguments are needed to verify the principal
graph of P• is the graph with which we started.
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The jellyfish algorithm of [3] is an evaluation algorithm with two main ingredients:

(1) Elements in a set of generators S± ⊆ Pn,± satisfy jellyfish relations, i.e., diagrams
like

where Š1 ∈ S−, S2 ∈ S+, can be written as linear combinations of trains, which
are diagrams where any region meeting the distinguished interval of a generator
meets the distinguished interval of the external disk, e.g.,

where S1, . . . , S� ∈ S± and T is a single Temperley-Lieb diagram (we suppress
the external disk, and the external star goes in the upper left corner).

(2) The generators in S±, together with the Jones–Wenzl projection f (n), form an
algebra under the usual multiplication

Given these two ingredients, one can evaluate any closed diagram in two steps.

(1) Pull all generators S to the outside of the diagram using the jellyfish relations,
possibly getting diagrams with more S’s, and

(2) Iteratively reduce the number of generators using the algebra property and an
inner-most disk argument.

The jellyfish algorithm was first used in [3] to construct the extended Haagerup
subfactor planar algebra with principal graphs

(the red markings at the even depths give the dual data), which completed the classi-
fication of non-A∞ subfactors in the index range (4, 3 + √

3). They found 2-strand
jellyfish relations

j (Š) ∈ span(trains5,+({S})) and j2(S) ∈ span(trains6,+({S}))

123



Principal graph stability and the jellyfish algorithm

to evaluate all diagrams that are unshaded on the outside (see Definition 4.1 for the
relevant notation).

The algorithm was used again in Han’s thesis [6] to give a planar algebra construc-
tion of the Izumi-Xu 2221 subfactor planar algebra with principal graphs

but with simpler 1-strand jellyfish relations:

j (Š1), j (Š2) ∈ span(trains4,+({S1, S2})) and

j (S1), j (S2) ∈ span(trains4,−({Š1, Š2})).

(Note that these relations immediately imply relations for j2(Si ), i = 1, 2).
In recent work [16], Morrison and Penneys use the jellyfish algorithm to automate

the construction of certain subfactor planar algebras whose principal and dual principal
graphs are spoke graphs, which are trees with at most one vertex of degree greater
than 2 (possibly with some multiple edges near the central vertex. See Definition 4.6).
They constructed a new 4442 spoke subfactor along with a number of known spoke
subfactors, including the Izumi-Xu 2221 (automating Han’s thesis), the Goodman-de
la Harpe-Jones 3311, and the Izumi 3333. Again, simpler 1-strand jellyfish relations
were found.

Bigelow, Morrison, Peters, and Snyder [3] noticed that 1-strand jellyfish generators
did not exist for the (extended) Haagerup subfactor planar algebra. Morrison and
Penneys also noticed their non-existence for all known examples of subfactor planar
algebras with annular multiplicities ∗10, i.e., for which the principal graphs (�+, �−)

are a translated extension of

(translating a principal graph means attaching an Ak graph to the left, and extending
means adding additional edges and vertices to the right). For more details on annular
multiplicities ∗10, see [5,12,18].

In this paper, we give necessary and sufficient conditions that jellyfish relations exist
for an n − 1 supertransitive subfactor planar algebra with generators at depth n. (Of
course, actually calculating these relations requires additional work, e.g., computations
in the appropriate graph planar algebra after obtaining the generators.)

Theorem 1.1 An n − 1 supertransitive subfactor planar algebra has jellyfish gener-
ators at depth n if and only if its principal graph is a spoke graph. There are 1-strand
jellyfish generators if and only if both the principal graph and dual principal graph
are spoke graphs. See Theorems 4.9 and 4.10 for more details.

To prove this result, we use techniques from Sect. 4 of Popa’s paper [25]. Popa calls a
(dual) principal graph � stable at depth n if � does not merge or split between depths n
and n+1, and all edges between depths n and n+1 are simple. He proves a remarkable
result, which we call Popa’s Principal Graph Stability Theorem. For context, let P•
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be a subfactor planar algebra of modulus δ with principal graphs (�+, �−), and let
�±(k) denote the truncation of �± to depth k.

Theorem 1.2 (Popa’s Principal Graph Stability Theorem 4.5 of [25]) If (�+, �−) is
stable at depth n, the truncation �±(n + 1) �= An+2, and δ > 2, then (�+, �−) is
stable at depth k for all k ≥ n, and �+, �− are finite.

In examining this theorem, we found that trains first appeared in [25] in the language
of λ-lattices! Using Popa’s techniques along with trains and ideas stemming from the
jellyfish algorithm, we prove an analogous result only looking at the principal graph,
which is a strengthening of (a) of Lemma 4.7 of [25].

Theorem 1.3 If �+ is stable at depths n and n +1, the truncation �+(n +1) �= An+2,
and δ > 2, then (�+, �−) is stable at depth k for all k ≥ n + 1, and �+, �− are finite.

Planar algebras are essential to our approach. We use the 1-click rotation (also
known as the Fourier Transform), which is natural from a planar algebra viewpoint,
in the important Lemma 3.2.

One of the biggest hurdles in the classification of subfactors to index 5 [7,18,20,27]
were weeds with initial quadruple points. (A weed represents an infinite family of
potential principal graphs obtained from a fixed subgraph by translating and extending.
See [20] for more details.) Arguments to rule out Q,Q′ in [7] were case specific; they
knew no general techniques for quadruple points to go beyond index 5. The theorems
in this paper and [25] not only simplify eliminating Q,Q′ in [7] (and B in [18]), but
also eliminate all remaining weeds with initial quadruple points up to index 3 + √

5,
providing more evidence for [17, Conjecture 2.2] of Morrison–Peters:

Conjecture Any [extremal] subfactor with index in the range (5, 3+√
5)has principal

graphs (A∞, A∞), or

Using our results, Morrison and Penneys have shown that to prove the conjecture of
Morrison–Peters, one needs to eliminate roughly 10 weeds with initial triple points.
These new weeds are similar to weeds eliminated in [18,20], but they are more com-
plex.

Numerous other applications of our results are given in Sect. 4. We anticipate that
our results will prove strong new obstructions to possible principal graphs.

1.1 Outline

Section 2 contains the background for this paper. Subsection 2.1 briefly recalls how
to get a rigid, unitary, spherical 2-category G(P•) from a subfactor planar algebra P•
and how to define the principal graphs (�+, �−) from G(P•). Subsection 2.2 gives
Popa’s definition of stability for planar algebras and principal graphs and shows they
are compatible.

In Sect. 3, we go through the proof of Popa’s Theorem 1.2 using planar algebras
and trains to prove Theorem 1.3. In Subsect. 3.1, we define trains, and we prove the
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important Lemma 3.2. In Subsect. 3.2, we show that stability is equivalent to trains
spanning. Subsection 3.3 connects trains and jellyfish, and Subsect. 3.4 contains the
proof of Theorem 1.3.

In Sect. 4, we give a number of applications of our results. Subsection 4.1 explains
the connection between the jellyfish algorithm and spoke principal graphs, proving
Theorem 1.1. Afterward, we give a few quick corollaries and a remark which uses
the classification of subfactors to index 5 [7,18,20,27] to classify all simply laced,
acyclic principal graphs of subfactors with at most 2 triple points. Subsection 4.2 gives
a simple proof of Jones’ quadratic tangles obstruction for annular multiplicities ∗10
subfactor planar algebras.

2 Background

We refer the reader to [3,12,13] for the definition of a (subfactor) planar algebra.

Remark 2.1 When we draw planar diagrams, we often suppress the external boundary
disk. In this case, the external boundary is assumed to be a large rectangle whose
distinguished interval contains the upper left corner. We draw one string with a number
next to it instead of drawing that number of parallel strings. We shade the diagrams
as much as possible, but if the parity is unknown, we often cannot know how to shade
them. Finally, projections are usually drawn as rectangles with the same number of
strands emanating from the top and bottom, while other elements may be drawn as
circles.

2.1 2-categories and fusion graphs

We recall how to get a rigid, unitary, spherical 2-category G(P•) from a subfactor
planar algebra P• and how to define the principal graphs (�+, �−) from G(P•) (see
also Sect. 4.1 of [19]).

Definition 2.2 The paragroup G(P•) of P•, a rigid, unitary, spherical 2-category, is
defined as follows.

The objects of G(P•) are the symbols and
The 1-morphisms of G(P•) are the projections of P•.

The identity 1-morphisms are the empty diagrams. Composition of 1-morphisms,
denoted ⊗, is given by horizontal concatenation; e.g., if and

then
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A 1-morphism p is called simple if dim(HomG(P•)(p → p)) = 1.
The 2-morphisms of G are as follows. If p1 ∈ Pi,± and p2 ∈ Pj,± then

HomG(P•)(p1 → p2) is p2 Pj→i p1, where Pj→i is Pi+ j with j strings on the bot-
tom and i strings on the top. Note that HomG(P•)(p1 → p2) = (0) if i and j do not
have the same parity.

The two types of composition of 2-morphisms are given by vertical and hori-
zontal concatenation of diagrams. If we have x ∈ HomG(P•)(p1 → p2) and y ∈
HomG(P•)(p2 → p3), then the vertical multiplication xy is given by

If x ∈ HomG(P•)(p1 → p2) and y ∈ HomG(P•)(p3 → p4) and p1, p2 are compos-
able with p3, p4 respectively, then the horizontal multiplication x ⊗ y is given by

The adjoint operation in G(P•) is the identity on objects and 1-morphisms. The
adjoint of a 2-morphism is the same as the adjoint operation in the planar algebra P•.
If x ∈ HomG(P•)(p1 → p2), where p1 ∈ Pi,± and p2 ∈ Pj,±, then we can consider x
as an element of Pi+ j,±, take the adjoint, and consider the result x∗ as an element of
HomG(P•)(p2 → p1).

123



Principal graph stability and the jellyfish algorithm

The duality operation on G(P•) is the identity on all objects. On 1-morphisms and
2-morphisms, duality is rotation by π .

Definition 2.3 The principal graph �+ of P• is defined as follows. The even ver-
tices of �+ are the isomorphism classes of simple 1-morphisms in
The odd vertices of �+ are the isomorphism classes of simple 1-morphisms in

The number of edges between vertices corresponding to simple pro-
jections and is

The basepoint � of �+ is the vertex corresponding to the unshaded empty diagram.
The depth of a vertex of �+ is its distance from �. This is equal to the minimum n
such that the vertex is the equivalence class of a projection p ∈ Pn,+.

The dual principal graph �− is defined in exactly the same way as �+, but reversing
the roles of and The basepoint � of �− is the vertex corresponding to the shaded
empty diagram.

Our graphs are always drawn with the basepoint � at the left.

Remark 2.4 The “plus or minus” symbol ± is meant to be read respectively throughout
an entire statement.

Remark 2.5 If �± is simply laced, and p ∈ Pn,± is a minimal projection such that the
vertex [p] has depth n, then we identify [p] with p.

Definition 2.6 Alternatively, from an operator algebras viewpoint, we can define the
(dual) principal graph as the principal part of the Bratteli diagram of the tower of finite
dimensional von Neumann algebras P± = (Pn,±), where Pn,± includes into Pn+1,±
unitally via the right inclusion

If zn+1,± is the central support of the Jones projection
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then for each n ∈ N,

zn+1,± Pn−1,± ⊂ zn+1,± Pn,± ⊂ zn+1,± Pn+1,±

is the Jones basic construction of finite dimensional von Neumann algebras [4,9].
Hence the Bratteli diagram of P± between depths n and n +1 consists of the reflection
of the Bratteli diagram between depths n − 1 and depth n, which is referred to as the
“old part,” and a “new part,” which can be identified with the Bratteli diagram of the
inclusion

(1 − zn+1,±)Pn,± ⊂ (1 − zn+1,±)Pn+1,±.

The principal graph is formed from only the “new parts.” See [4] for more details.

2.2 Popa’s stability criterion

In [25, Sect. 4], Popa gives a stability criterion for λ-lattices that has very strong con-
sequences. We define the criterion, summarize the proof, and list some consequences.

Let P• be a subfactor planar algebra, let P± = (Pn,±) be the respective towers of
algebras, and let (�+, �−) be the principal and dual principal graphs. Let T L• ⊂ P•
be the Temperley-Lieb planar subalgebra.

Definition 2.7 The (dual) principal graph �± of P± is said to be stable at depth n if
every vertex at depth n connects to at most one vertex at depth n + 1, no two vertices
at depth n connect to the same vertex at depth n + 1, and all edges between depths
n and n + 1 are simple. We say (�+, �−) is stable at depth n if both �+ and �− are
stable at depth n.

Definition 2.8 (Popa’s stability criterion) We say P+ is stable at depth n if and only
if

Pn+1,+ = Pn,+ + Pn,+en,+ Pn,+,

where we identify Pn,± with its image in Pn+1,± under the right inclusion (see Def-
inition 2.6). We say P• is stable at depth n if both P+ and P− are stable at depth
n.

Remark 2.9 We remark that Pn,+ + Pn,+en,+ Pn,+ is the set of linear combination of
diagrams of the form
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where x, y, z ∈ Pn,±. We say P• is stable at depth n if both P+ and P− are stable at
depth n.

Lemma 2.10 When we identify Pn,± with its image in Pn+1,± by adding one vertical
string to the right,

Pn,± + Pn,±en,± Pn,± = 〈Pn,±, T Ln+1,±〉,

where the angled brackets denote the algebra generated by Pn,± and T Ln+1,± under
the usual multiplication.

Proof Let e1,±, . . . , en,± be the standard algebra generators of T Ln+1,±. All of these
lie in Pn,± except for en,±, so

〈Pn,±, T Ln+1,±〉 = 〈Pn,±, en,±〉.

For any x ∈ Pn,±, we have en,±xen,± = EPn−1,±(x)en,±, where EPn−1,±(x) is the
conditional expectation (partial trace) of x . We can use this to reduce any word in
Pn,± and en,± until it has at most one occurrence of en,±.

The following is [25, Proposition 4.3, Corollary 4.4]. We include a short proof for
the reader’s convenience.

Proposition 2.11 (Popa) The following are equivalent:

(1) P± is stable at depth n.
(2) �± is stable at depth n.

Proof As in Definition 2.6, let zn+1,± be the central support of en,± in Pn+1,±, and
identify Pn,± with its image in Pn+1,± under the right inclusion. Then

P± is stable at depth n ⇐⇒ Pn+1,± = Pn,± + Pn,±en,± Pn,±
⇐⇒ (1 − zn+1,±)Pn+1,± = (1 − zn+1,±)Pn,±
⇐⇒ �± is stable at depth n.

��
Definition 2.12 Let �±(k) be the truncation of �± to depth k consisting of all vertices
with depth at most k and all edges connecting them.

If �± is stable at depth k for all k ≥ n then �± can be obtained by attaching graphs
of type A to �±(n). The following theorem implies that, with some simple exceptions,
these attached graphs of type A have finite length. We call them Afinite tails.

Theorem 2.13 ([26]) If a connected component of �±\�±(n) = A∞ for some n ≥ 0,
then �± ∈ {A∞, A∞,∞, D∞}.

Note that this theorem also follows from Theorem 6.5 in [23], which applies to
infinite depth subfactors by [21].
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3 Principal graph stability via trains

In this section, we prove Popa’s Principal Graph Stability Theorem 1.2 and our
Theorem 1.3 using planar algebras and trains.

3.1 Trains

Let P• be a subfactor planar algebra, and let T L• ⊂ P• be its Temperley-Lieb planar
subalgebra.

Definition 3.1 Given a set S± ⊂ Pn,±, a train from S± is a planar tangle T labeled by
elements from S± such that for each input disk of T , its distinguished interval meets
the region that meets the distinguished interval of the output disk. A train in Pk,± can
be drawn in the form

where S1, . . . , S� ∈ S±, T is a single Temperley-Lieb diagram, and the distinguished
interval of the external disk is at the top.

An �-car train from S± is a train from S± with � labeled input disks. Note that
any single diagram from T Lk,± is a 0-car train from S±. We let trainsk,±(S±)

denote the set of trains from S± in Pk,±. We say trains from S± span P± if
Pk,± = span(trainsk,±(S±)) for all k ≥ n.

Lemma 3.2 Suppose k > n. If trains from Pn,+ span Pk,+, then trains from Pn+1,−
span Pk,−.

Proof Consider the Fourier transform (one click rotation) of a train from Pn,+, which
can be drawn with an arc passing over the � labelled disks S1, . . . , S� ∈ Pn,+. We then
combine each Si with a segment of this arc to obtain j (Si ) ∈ Pn+1,−, and thus obtain
a train from Pn+1,−.. For example, in the case of a 3-car train, we have the following:

Since trains from Pn,+ span Pk,+, and the one click rotation is a vector space
isomorphism, it follows that trains from Pn+1,− span Pk,−. ��
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3.2 Trains and stability

Trains first appeared in [25]. The following lemma allows us to translate between the
above planar algebra definition of trains and Popa’s λ-lattice formalism.

Lemma 3.3 For all k > n, span(trainsk,+(Pn,+)) = 〈Pn,+, T Lk,+〉.
Here, Pn,+ is considered as a subalgebra of Pk,+ by the inclusion operation of

adding k−n vertical strands on the right, and the angled brackets denote the associative
algebra generated by Pn,+ and T Lk,+ under the usual multiplication.

Proof The inclusion

〈Pn,+, T Lk,+〉 ⊆ span(trainsk,+(Pn,+))

is obvious. For the other inclusion, suppose X ∈ trainsk,+(Pn,+) is an �-car train.

Claim Either

Here, the rectangle in each diagram indicates a Temperley-Lieb diagram T , and the
dashed lines inside the rectangle partition T into Temperley-Lieb subdiagrams, i.e.,
they intersect the indicated number of strands of T transversely. Note that in the second
case, � ≥ 2.

If X is as in the first diagram of the claim then X = T1ST2, where T1, T2 ∈ T Lk,+
and S ∈ Pn,+. If X is as in the second diagram of the claim then the result follows by
induction on �.

It remains only to prove the claim. First we define a metric on the regions of the
Temperley-Lieb diagram T . Suppose x and y are two points in T that do not lie on
the edges of T . A path in T from x to y is a geodesic if it crosses the edges of T
transversely and a minimum number of times. The distance d(x, y) is the number of
crossings in a geodesic from x to y. This determines a metric on the regions of T . This
is the same as the graph metric on the tree dual to T . We will use basic properties of
metrics on trees, which we defer to two technical Lemmas 3.4 and 3.5.
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Let p be a point on the bottom edge of T . Let x0, . . . , x� be points along the top
edge of T that separate S1, . . . , S�. Here, x0 is the top left corner, x� is the top right
corner, and every other xi separates Si and Si+1.

We have that

• d(xi , xi+1) ≤ 2n for all i ∈ {0, . . . , � − 1}, and
• d(x0, p), d(x�, p) ≤ k.

By Lemma 3.4, either

• d(x0, x�) ≤ 2n, or
• d(xi , p) ≤ k for some i ∈ {1, . . . , � − 1}.

First suppose d(x0, x�) ≤ 2n. By Lemma 3.5, there is a point y in T such that

• d(x0, y), d(x�, y) ≤ n, and
• d(y, p) ≤ k − n.

Furthermore, we can assume these inequalities are equalities modulo two. We now
define the Y -shaped graph as in the first case of the claim. The central vertex is y. For
the spokes, start with geodesics and introduce switchbacks as needed to increase the
number of intersection points.

Now suppose d(xi , p) ≤ k. In this case we can find a vertical edge as in the second
case of the claim. Start with a geodesic from xi to p and introduce switchbacks as
needed to increase the number of intersection points. ��
Lemma 3.4 Suppose x0, . . . , x� and p are vertices in a tree such that

• d(xi , xi+1) ≤ 2n for all i ∈ {0, . . . , � − 1}, and
• d(x0, p), d(x�, p) ≤ k.

Then either

• d(x0, x�) ≤ 2n, or
• d(xi , p) ≤ k for some i ∈ {1, . . . , � − 1}.

Proof If d(xi−1, xi+1) ≤ 2n for some i , then we can omit xi from the sequence and
the hypotheses will still hold. Thus, without loss of generality,

d(xi−1, xi+1) > 2n for all i ∈ {1, . . . , � − 1}.

Under this assumption, we show d(xi , p) ≤ k for every i ∈ {1, . . . , � − 1}.
Fix i ∈ {1, . . . , � − 1}. The geodesics connecting the three points xi−1, xi , xi+1

form a Y -shaped subtree, and the spoke ending at xi must be the shortest of the three
spokes. It follows that

d(xi , p) < max(d(xi−1, p), d(xi+1, p)).

Thus largest value of d(x j , p) occurs when either j = 0 or j = �. In particular,
d(xi , p) ≤ k for all i ∈ {1, . . . , � − 1}. ��
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Lemma 3.5 Suppose x0, x� and p are vertices on a tree such that

• d(x0, x�) ≤ 2n, and
• d(x0, p), d(x�, p) ≤ k,

and these inequalities are equalities modulo two. Then there is a vertex y such that

• d(y, x0), d(y, x�) ≤ n, and
• d(y, p) ≤ k − n,

and these inequalities are equalities modulo two.

Proof The geodesics connecting the three points x0, x� and p form a Y -shaped subtree.
Let z be the central vertex of this subtree.

Suppose d(x0, z) ≥ n. Let y be the point on the geodesic from x0 to z such that
d(y, x0) = n. Then d(y, x�) = d(x0, x�) − n and d(y, p) = d(x0, p) − n. Thus y is
the required vertex.

The cases d(x�, z) ≥ n and d(p, z) ≥ k − n are similar.
Finally, suppose d(x0, z) < n, d(x�, z) < n, and d(p, z) < k − n. Either all three

or none of these inequalities are equalities modulo two. Thus we can take y to be either
z or any vertex adjacent to z. ��

We now summarize our results on trains and stability in the following theorem,
which follows by a simple induction argument together with Lemma 2.10, Proposition
2.11, and Lemma 3.3.

Theorem 3.6 The following are equivalent:

(1) P± is stable at depth n, n + 1, . . . , k − 1,
(2) �± is stable at depth n, n + 1, . . . , k − 1.
(3) Pk,± = 〈Pn,±, T Lk,±〉, and
(4) Trains from Pn,± span Pk,±.

3.3 Trains and jellyfish

Lemma 3.7 Suppose S+ ⊂ Pn,+ generates P• as a planar algebra. Then trains from
S+ span P+ if and only if

for all S ∈ S+.

Proof The “only if” direction is trivial. The “if” direction is the first part of the
jellyfish algorithm from Section 4 of [3]. Suppose S+ satisfies the above jellyfish
relations. Given an element of Pk,+ that is a tangle labeled by elements of S+, we
use the jellyfish relation to pull a copy of S ∈ S+ closer to the region that touches
the distinguished interval of the outside boundary. This will typically give a linear
combination of labeled tangles that contain more elements S ∈ S+. Nevertheless, the
algorithm terminates with an element of span(trainsk,+(S+)).
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Lemma 3.8 Suppose S+ ⊂ Pn,+, S− ∈ Pn,−, and S = S+ ∪ S− generates P• as a
planar algebra. Then trains from S span P• if and only if

for all S± ∈ S±.

Proof This is similar to the proof of Lemma 3.7. ��
Proposition 3.9 Suppose P• is generated as a planar algebra by Pn,+. Then

(1) If (�+, �−) is stable at depth n, then (�+, �−) is stable at depth k for all k ≥ n.
(2) If �+ is stable at depths n and n + 1, then (�+, �−) is stable at depth k for all

k ≥ n + 1.

Proof

(1) The first statement is [25, Proposition 4.2]. In our terminology, the proof is as
follows. Suppose (�+, �−) is stable at depth n. If S ∈ Pn,± then, by Theorem 3.6,

j (S) ∈ Pn+1,± = 〈Pn,±, T Ln+1,±〉 = span(trainsn+1,±(Pn,±)).

By Lemma 3.8, trains from Pn,± span P±, so again by Theorem 3.6, (�+, �−) is
stable at depth k for all k ≥ n.

(2) Suppose �+ is stable at depths n and n + 1. If S ∈ Pn,+ then, by Theorem 3.6,

j2(S) ∈ Pn+2,+ = 〈Pn,+, T Ln+2,+〉 = span(trainsn+2,+(Pn,+)).

By Lemma 3.7, trains from Pn,+ span P+, so again by Theorem 3.6, �+ is stable
at depth k for all k ≥ n.
It remains to show that �− is stable at depth k for all k ≥ n + 1. Since trains
from Pn,+ span P+, trains from Pn+1,− span P− by Lemma 3.2. Once more, by
Theorem 3.6, �− is stable at depth k for all k ≥ n + 1. ��

3.4 The proof of Theorem 1.3

The proof of Popa’s Principal Graph Stability Theorem has three main ingredients.
First, the stability of (�+, �−) is used in Proposition 3.10 to construct a planar sub-
algebra Q• ⊂ P• whose principal graphs (�+,�−) are stable at all higher depths.
Second, by Theorem 2.13, the main result of [26], �± has no A∞ tails, so Q• is finite
depth. Finally, the graph norm argument in Theorem 3.11 (and Corollary 3.12) shows
�+ = �+, so Q• = P•. Theorem 3.11 is distilled from the last statement in the proof
of Popa’s Principal Graph Stability Theorem. We provide a proof for the convenience
of the reader.

Since we are proving an analogous result, we proceed in the same manner, but we
will use the 1-click rotation argument from Lemma 3.2 in a crucial way.
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Recall that �±(k) is the truncation of �± to depth k. The first part of the following
proposition is similar to [25, Proposition 4.1].

Proposition 3.10 Suppose P• is a subfactor planar algebra, and fix n ≥ 0. Let Q•
be the planar subalgebra generated by Pn,+. Let (�+,�−) be the principal and dual
principal graph of Q•, and note that �±(n) = �±(n).

(1) If (�+, �−) is stable at depth n, then �±(n + 1) = �±(n + 1), and (�+,�−) is
stable at depth k for all k ≥ n.

(2) If �+ is stable at depths n and n + 1, then �+(n + 2) = �+(n + 2), �+ is stable
at depth j for all j ≥ n, and �− is stable at depth k for all k ≥ n + 1.

Proof

(1) Since (�+, �−) is stable at depth n, by Proposition 2.11,

Pn+1,± = span(trainsn+1,±(Pn,±)) = Qn+1,±,

and thus �±(n + 1) = �±(n + 1). Since Q• is generated by Qn,+ = Pn,+ and
(�+,�−) is stable at depth n, trains from Qn,± span Q±, and �± is stable at
depth k for all k ≥ n by Proposition 3.9.

(2) Since �+ is stable at depths n and n + 1, by Theorem 3.6,

Pn+2,+ = 〈Pn,+, T Ln+2,+〉 = span(trainsn+2,+(Pn,+)) = Qn+2,+,

and thus �+(n+2) = �+(n+2). Since Q• is generated by Qn,+ = Pn,+ and �+
is stable at depths n and n + 1, trains from Qn,+ span Q+, �+ is stable at depth
j for all j ≥ n, and �− is stable at depth k for all k ≥ n + 1 by Proposition 3.9.

Theorem 3.11 Suppose � and � are finite, connected bipartite graphs with base-
points and have the same norm δ > 2. Suppose we have Frobenius-Perron eigenvectors
λ and γ for � and � respectively and there is some n ≥ 1 such that

• �(n) = �(n) �= An+1,
• λ|�(n) = γ |�(n), and
• � is stable at depth k for all k ≥ n.

Then � = �.

Proof Fix a vertex a1 of depth exactly n in �.
First, suppose a1 has no adjacent vertices of depth n + 1 in �. Now δλ(a1) is the

sum of the values of λ over vertices adjacent to a1. But a1 and all vertices adjacent
to it lie in �(n) = �(n), and γ = λ when restricted to �(n). Thus a1 also has no
adjacent vertices of depth n + 1 in �.

Now suppose a1 has an adjacent vertex a2 of depth n + 1 in �. Since � is stable at
depth n and higher, a1 is attached to an Afinite tail a1, . . . , ak in �. The values of λ(ai )

for all i are determined by the values of δ and λ(ak). The most important property for
us is

δλ(ai+1) < 2λ(ai )

for i = 1, . . . , k − 1.
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Now consider the set of vertices b in � that are adjacent to a1 and have depth n +1.
The sum of the values of γ over these vertices is equal to λ(a2). If there are at least
two such vertices, or one with multiplicity at least two, then one of them must satisfy

γ (b) ≤ λ(a2)/2.

But then

δγ (b) ≤ δλ(a2)/2 < λ(a1) = γ (a1).

This contradicts the fact that δγ (b) is the sum of the values of γ over the vertices
adjacent to b. It follows that a1 has exactly one adjacent vertex at depth n + 1 in �,
which we name a2, and we have γ (a2) = λ(a2).

Applying the same argument recursively gives a path a1, a2, . . . , ak in � where
a2, . . . , ak−1 have valency two, ak has valency one, and γ (ai ) = λ(ai ) for all i .

Thus every vertex of depth n in � is attached to an Afinite tail with the same length
as the corresponding vertex in �. We conclude that � = �. ��
Corollary 3.12 Suppose Q• is a planar subalgebra of P• with δ > 2, and let �+ be
the principal graph of Q•. Assume that there is an n ≥ 1 such that

• �+(n) = �+(n) �= An+1, and
• �+ is finite and stable at depth k for all k ≥ n.

Then �+ = �+, so Q• = P•.

Proof First, the depth of P• is at most the depth of Q•. If Q• is depth q, then q + 1
parallel strings factor through q parallel strings, since any Pimsner-Popa basis for
Qq+1,+ over Qq,+ is a Pimsner-Popa basis for Pq+1,+ over Pq,+. Hence �+ is finite,
and δ = ‖�+‖ = ‖�+‖ by [10].

Since �+(n) = �+(n), dim(Qn,+) = dim(Pn,+), as both are equal to the number
of loops of length 2n on �+ starting at �. Thus Qn,+ = Pn,+. Since the traces agree
on Qn,+ and Pn,+, the resulting Frobenius-Perron eigenvectors on �+ and �+ agree
up to depth n, and the hypotheses of Theorem 3.11 are satisfied. Thus �+ = �+.

Finally, by counting dimensions once more, we have Qk,+ = Pk,+ for all k ≥ 0,
and thus Q• = P•. ��

We now have all the tools necessary to prove Popa’s Principal Graph Stability
Theorem 1.2 and our Theorem 1.3.

Proof of Theorem 1.2 By Proposition 3.10, there is a planar subalgebra Q• ⊆ P• with
principal graphs (�+,�−) such that �±(n + 1) = �±(n + 1) and �± is stable at
depth k for all k ≥ n. By Theorem 2.13, �± is finite and obtained from the truncation
�±(n+1) by adding Afinite tails. Finally, by Corollary 3.12, �± =�±, so Q• = P•. ��
Proof of Theorem 1.3 By Proposition 3.10, there is a planar subalgebra Q• ⊆ P• with
principal graphs (�+,�−) such that �+(n + 2) = �+(n + 2), �+ is stable at depth
j for all j ≥ n, and �− is stable at depth k for all k ≥ n + 1. By Theorem 2.13, �± is
finite and obtained from the truncation �±(n + 1) by adding Afinite tails. Finally, by
Corollary 3.12, �± = �±, so Q• = P•. ��
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4 Applications

4.1 Jellyfish and spokes

Recall that a subfactor planar algebra P• is called k supertransitive if k is maximal
such that T Lk,± = Pk,±. Let P• be an (n −1) supertransitive subfactor planar algebra
with n < ∞. In particular, P• �= T L•.

Definition 4.1 We call a set S+ ⊂ Pn,+ a set of 2-strand jellyfish generators for P•
if

(1) (Trains span) Trains from S+ span P•, and
(2) (Structure algebra) span(S+ ∪ { f (n)}) ⊆ Pn,+ is an algebra under the usual

multiplication.

Remark 4.2 Note that if S+ is a set of 2-strand jellyfish generators for P•, then we
also have

Definition 4.3 We call a set S = S+ ∪ S− with S± ⊆ Pn,± a set of 1-strand jellyfish
generators for P• if

(1) (Trains span) Trains from S± span P•.
(2) (Structure algebra) span(S+ ∪ { f (n)}) ⊂ Pn,+ and span(S− ∪ { f̌ (n)}) ⊂ Pn,− are

algebras under the usual multiplication.

Remark 4.4 As in Remark 4.2, if S is a set of 1-strand jellyfish generators, then we
also have

Remark 4.5 If S = S+ ∪ S− is a set of 1-strand jellyfish generators for P•, then S+
is a set of 2-strand jellyfish generators for P•, and S− is a set of 2-strand jellyfish
generators for the dual of P• (obtained by reversing the shading).
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Definition 4.6 A simply laced spoke graph is a tree with two distinguished vertices �

and c such that � has valence 1 and every vertex except possibly c has valence at most 2.
In general, a spoke graph is a graph obtained from a simply laced spoke graph by

replacing some edges with multiple edges. Further, we require these multiple edges
to be incident to c, but not include the edge from c in the direction of �.

For a (dual) principal graph � to be a spoke graph, we require that � be the basepoint
of �.
Remark 4.7 Since P• is n −1 supertransitive, If �± is a spoke graph, then c is at depth
n − 1.
Example 4.8 Some examples of finite simply laced spoke graphs are the 2221, 3311,
3333, and 4442 principal graphs:

An example of an infinite simply laced spoke graph is the D∞ principal graph

Examples of spoke graphs that are not simply laced are the principal graphs of fixed-
point subfactors RG ⊂ R for G non-abelian, e.g., G = S3:

Theorem 4.9 Suppose P• is an (n −1) supertransitive subfactor planar algebra with
δ > 2 and principal graphs (�+, �−). The following are equivalent.

(1) Pn,+ ∪ Pn,− is a set of 1-strand jellyfish generators for P•.
(2) �+ and �− are finite spoke graphs.
(3) �+(n + 1) and �−(n + 1) are spoke graphs.

Proof

(1) ⇒ (2): Since trains from Pn,± span P•, �± is stable at depth k for all k ≥ n
by Theorem 3.6. By Theorem 2.13, �+, �− are finite.
(2) ⇒ (3): Trivial.
(3) ⇒ (1): Note that (�+, �−) is stable at depth n, so let Q• be the subfactor
planar algebra generated by Pn,± as in Proposition 3.10, and note that trains
from Pn,± span Q•. Since P• is (n − 1) supertransitive, Pn,+ ∪ Pn,− is a set of
1-strand jellyfish generators for Q•. Finally, by Popa’s Principal Graph Stability
Theorem 1.2, Q• = P•. ��

Theorem 4.10 Suppose P• is an (n − 1) supertransitive subfactor planar algebra
with δ > 2 and principal graph �+. The following are equivalent.

(1) Pn,+ is a set of 2-strand jellyfish generators for P•.
(2) �+ is a finite spoke graph, and �− is stable at depth k for all k ≥ n + 1.
(3) �+(n + 2) is a spoke graph.

Proof

(1) ⇒ (2): Since trains from Pn,+ span P•, �+ is stable at depth k for all k ≥ n
by Theorem 3.6. By Lemma 3.2, trains from Pn+1,− span P−, so again �− is
stable at depth k for all k ≥n+1. By Theorem 2.13, �+ is finite (and thus so is �−).
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(2) ⇒ (3): Trivial.
(3) ⇒ (1): Note that �+ is stable at depths n and n + 1, so let Q• be the subfactor
planar algebra generated by Pn,± as in Proposition 3.10, and note that trains from
Pn,+ span Q•. Since P• is (n −1) supertransitive, Pn,+ is a set of 2-strand jellyfish
generators for Q•. Finally, by Theorem 1.3, Q• = P•. ��

Remark 4.11 If P• is a subfactor planar algebra with principal graphs (�+, �−), and
if �+ and �− are simply laced spoke graphs, then �+ = �−. The traces of projections
that are dual to each other must be equal, and thus the Frobenius-Perron dimensions
of vertices of �+, �− at odd depths must agree.

Corollary 4.12 There is no set of jellyfish generators in P6,± (1 or 2-strand) for the
Asaeda-Haagerup subfactor planar algebra [1] with principal graphs

Proof This is immediate from Theorems 4.9 and 4.10 and Remark 4.5. ��
Proposition 4.13 Recall there are n non-isomorphic subfactor planar algebras with
principal graphs (D(1)

n+2, D(1)
n+2) for 4 ≤ n < ∞ [8,24].

If P• is such a subfactor planar algebra, then P• is not generated by P2,±.

Proof Let Q• be the subfactor planar algebra generated by P2,± as in Proposition
3.10, and note that trains from P2,± span Q•. If Q• has principal graphs (�+,�−),
then �± is stable at depth k for all k ≥ 2, so �± = D∞. ��
Remark 4.14 In [15], Morrison and Penneys give a planar algebra presentation by
generators and relations for the A(1)

2n−1 and D(1)
n+2 planar algebras using jellyfish of

different sizes. The A(1)
2n−1 planar algebras are generated by one 2-box and two n-

boxes, and the D(1)
n+2 planar algebras are generated by one 2-box and one n-box. The

differences in the relations for each of the n distinct subfactor planar algebras are the
rotational eigenvalues of the n-boxes.

Definition 4.15 Recall from [20] that translating a principal graph means attaching
an Ak graph to the left, and extending means adding additional edges and vertices to
the right, where by convention, the basepoint � corresponding to the empty diagram
is always at the left, and vertices are placed left to right corresponding to depth.

Corollary 4.16 If �+ is a translated extension of

then (�+, �−) is one of
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Proof By the classification of subfactors with index 4 [24],

is not the principal graph of a subfactor, so �+ must be a nontrivial translated extension,
and thus δ > 2. Thus by Theorem 4.10, �+ is a finite spoke graph. By [10], the modulus
of a finite depth subfactor planar algebra is equal to the norm of its principal graph, so

(by Lemma A.4 of [18], the infinite graph above has a strictly positive �2-eigenvector
whose weights are given by the labels above corresponding to eigenvalue t + t−1

where t = √
2. The norm of the infinite graph is then t + t−1 by Theorems 4.4 and

6.2 of [22]). By the classification of subfactors below index 5 [7,18,20,27], we know
(�+, �−) ∈ {H, EH}. ��
Remark 4.17 The classification of subfactors to index 5 can be used to completely
classify all subfactor planar algebras P• of modulus δ > 2 whose principal graph �+
is a tree with no vertices of degree greater than 3 and at most two triple points. Note
that �+ must be finite by Theorem 2.13, and 2 < δ = ‖�+‖ by [10].

If �+ has exactly one triple point, then the same argument as in Corollary 4.16
shows that (�+, �−) ∈ {H, EH}. If �+ has exactly two triple points, and (�−, �+) /∈
{H, EH}, then

To see this, note that

(once again, the infinite graph has a strictly positive �2-eigenvector corresponding to
eigenvalue t + t−1 where t = 1

2 (1 +√
5)). A simple induction argument shows that if

we subdivide the simple edge between the two triple points in the infinite graph above,
the norm will decrease, i.e.,

(see [2, 3.1.2]). Hence if �+ has exactly two triple points, then ‖�+‖ <
√

5, and the
claim follows. Finally, note there is exactly one subfactor planar algebra with each of
the principal graphs H, EH,AH [1,3].
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4.2 Another proof of the quadratic tangles formula

The annular multiplicities of a subfactor planar algebra with δ > 2 were defined
in [11,12] in terms of the decomposition of P• into irreducible annular Temperley-
Lieb modules. Using only this decomposition, Jones obtains a formula, [12, Theorem
5.1.11], for annular multiplicities ∗10 subfactor planar algebras which gives a strong
restriction to possible principal graphs. In fact, this formula was used to rule out various
weeds in the classification of subfactors to index 5 [18].

By Ocneanu’s triple point obstruction [5,12,18], if P• has annular multiplicities
∗10, then (�±, �∓) is a translated extension of

We now provide another proof of [12, Theorem 5.1.11] using the fact that one of the
graphs above is not a spoke graph. By passing to the dual of P• if necessary (i.e.,
by switching the shading), we may assume (�+, �−) are translated extensions of the
above graphs.

The statement of [12, Theorem 5.1.11] uses the following notation.

• [k] = (qk − q−k)/(q − q−1), where [2] = q + q−1 = δ,
• n ∈ N is such that P• is (n − 1) supertransitive,
• ř ≥ r ≥ 1 is the ratio of the projections at depth n of �−, �+ respectively (by

calculating Frobenius-Perron dimensions, ř = [n + 2]/[n]),
• S ∈ Pn,+ is a low-weight rotational eigenvectors with eigenvalue ωS ,
• σS = ω

1/2
S , which is determined by ř ≥ r ≥ 1,

• Š = σ−1
S F(S) ∈ Pn,−, where F(S) is the one click rotation of S,

• {∪i (S)|0 ≤ i ≤ 2n+1} is the basis of annular consequences of S, and
{∪̂i (S)|0 ≤ i

≤ 2n + 1} is the dual basis, and similarly for Š,

• is the quadratic tangle which lies in annular conse-

quences, and similarly for Š ◦ Š, and
• Wk,ωS = qk + q−k − ωS − ω−1

S .

Our proof of Jones’ result only uses Jones’ formulas for the dual basis ∪̂i (S)’s in
terms of the annular basis ∪i (S). (For annular multiplicities ∗10, S ◦ S lies in annular
consequences, so taking inner products is easy.)

Proposition 4.18 If P• has annular multiplicities ∗10, then there is no set of 1-strand
jellyfish generators for P• in Pn,+. Moreover, n is even, and

r + 1

r
= 2 + 2 + ωS + ω−1

S

[n + 2][n] .

Remark 4.19 Before we prove Proposition 4.18, we will briefly explain the idea of
the argument. Since P• has annular multiplicities ∗10, we can write S ◦ S as a linear
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combination of the ∪i (S). If the coefficient of ∪0(S) = j (Š) is non-zero, then

j (Š) ∈ span(trainsn+1,+({S}),

and similarly swapping + with − and S with Š. A priori, one would not expect either
of these coefficients to vanish, so one might expect that {S} ∪ {Š} is a set of 1-strand
jellyfish generators for P•. However, since Ocneanu’s triple point obstruction tells us
�− is not a spoke graph, we cannot have 1-strand jellyfish generators, so at least one
of these coefficients must vanish, giving some constraint.

Proof of Proposition 4.18 Since �− is not a spoke graph, the first claim follows from
Theorem 4.9.

To prove the quadratic tangles constraint, note that since �+ is stable at depth n,
by Theorem 3.6,

and since �− is not a spoke graph, by Theorems 3.6 and 4.9,

Hence the coefficient of j (S) = ∪0(Š) in Š ◦ Š must be zero. Since Š is uncappable,
〈Š ◦ Š,∪i (Š)〉 = 0 for i �= 0, n + 1, so by [12, Proposition 4.2.9 (ii)],

0 = 〈Š ◦ Š, ∪̂0(Š)〉
=

〈
Š ◦ Š,

[2n + 2]
W2n+2,ωS

∪0(Š) + [n + 1]
W2n+2,ωS

((−σS)n+1 + (−σS)−n−1)∪n+1(Š)

〉

= [2n + 2]
W2n+2,ωS

Tr(S3) + σ n
S

[n + 1]
W2n+2,ωS

((−σS)n+1 + (−σS)−n−1) Tr(Š3). (1)

If n is odd, then Tr(S3) = ± Tr(Š3) (by sphericality), and thus

qn+1 + q−n−1 = [2n + 2]
[n + 1] = ±(σS + σ−1

S ) ≤ 2,

which is impossible if q > 1. Now substituting

Tr(S3) = r1/2 − r−1/2

[n + 1]1/2 , Tr(Š3) = ř1/2 − ř−1/2

[n + 1]1/2 , and ř = [n + 2]
[n]
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into Eq. (1), it simplifies to

(r1/2−r−1/2)[2n + 2]−(σS + σ−1
S )

(( [n + 2]
[n]

)1/2

−
( [n + 2]

[n]
)−1/2

)

[n+1]=0.

Solving for r1/2−r−1/2 and squaring gives the desired equation after using the identity

[2n + 2]2 − [n + 1]2([n + 2]2 + [n]2 − 2[n + 2][n]) = 0.
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