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ABSTRACT

The aim of this review was to provide an overview of assistive exoskeletons that have specifically been
developed for industrial purposes and to assess the potential effect of these exoskeletons on reduction
of physical loading on the body. The search resulted in 40 papers describing 26 different industrial
exoskeletons, of which 19 were active (actuated) and 7 were passive (non-actuated). For 13 exoskeletons,
the effect on physical loading have been evaluated, mainly in terms of muscle activity. All passive
exoskeletons retrieved were aimed to support the low back. Ten-forty per cent reductions in back muscle
activity during dynamic lifting and static holding have been reported. Both lower body, trunk and upper
body regions could benefit from active exoskeletons. Muscle activity reductions up to 80% have been
reported as an effect of active exoskeletons. Exoskeletons have the potential to considerably reduce the
underlying factors associated with work-related musculoskeletal injury.

Practitioner Summary: Worldwide, a significant interest in industrial exoskeletons does exist, but a lack
of specific safety standards and several technical issues hinder mainstay practical use of exoskeletons
in industry. Specific issues include discomfort (for passive and active exoskeletons), weight of device,
alignment with human anatomy and kinematics, and detection of human intention to enable smooth
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movement (for active exoskeletons).

1. Introduction

Despite the on-going trend in automation and mechanisation
in industry, many workers are still exposed to physical work-
loads due to material handling (over 30% of the work popu-
lation in the EU), repetitive movements (63%) and awkward
body postures (46%) (Eurofound 2012). These data, which
have been relatively stable over the past decade, contribute to
the fact that work-related musculoskeletal disorders (WMSDs)
still affect a considerable number of workers. In the European
Union, yearly more than 40% of the workers suffer from low
back pain or neck and shoulder pain (Eurofound 2012).

Full automation would solve these problems, but this is
not always feasible. For instance, in dynamic manufacturing or
warehousing environments, a high product mix and relatively
small order sizes dictate high levels of flexibility, and in such
cases, full-automation is either not possible or prohibitively
expensive. In such a context of continuously varying products
and tasks, the human capacity to observe, decide and adopt
proper actions within split seconds, is still required. Thus, work-
ers are still exposed to various production activities such as
assembling or material handling and hence are exposed to

the associated risks for developing WMSDs. There is a grow-
ing movement in modern industry towards human robot
collaboration to improve use of robotics while retaining the
flexibility of humans (MacDougall 2014). For manual handling
tasks, one solution is to use exoskeletons. The main benefit
of the application of an exoskeleton above any type of robot
system (classical robots, full-automation systems or humanoid
robots), would be that, specifically in dynamic environments,
one will fully profit from the human’s creativity and flexibility,
while he is the one | charge, and there is thus no need for robot
programming or teaching of robots.

An exoskeleton can be defined as a wearable, external
mechanical structure that enhances the power of a person.
Exoskeletons can be classified as ‘active’ or ‘passive’. An active
exoskeleton comprises one of more actuators that augments
the human’s power and helps in actuating the human joints.
These actuators may be electric motors, hydraulic actuators,
pneumatic muscles or other types (Gopura and Kiguchi 2009).
A strictly passive system does not use any type of actuator,
but rather uses materials, springs or dampers with the abil-
ity to store energy harvested by human motion and to use
this as required to support a posture or a motion. A passive
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exoskeleton for instance may store energy when a person
bends forward, and while in this position, this energy may
support the person to keep that position or to erect the body
while lifting an object.

We can also distinguish exoskeletons by the supported
body part(s): providing power or support to the lower limbs
(lower body exoskeletons), to the upper extremities (upper
body exoskeletons) and to both upper and lower extremities
(full-body exoskeletons). Additionally, some single-joint exo-
skeletons have been described in literature.

Finally, exoskeletons can be classified according to the
level that the exoskeleton fits or resembles the human anthro-
pometry. Anthropomorphic exoskeletons have exoskeleton
joints with rotational axes that are aligned with the rotational
movement of the human joints, which is not the case in the
non-anthropomorphic types. A fully anthropomorphic type
enables the exoskeleton robot to make the same motions as
the wearer thereby offering a large freedom of motion. But
these systems pose major design challenges to ensure close
fit for different size users while simultaneously accommodat-
ing natural movements by the user. Non-anthropomorphic
types are generally simpler and can be designed to have an
optimised structure for specific tasks to be performed allowing
more effective energy consumption than anthropomorphic
systems (Lee et al. 2012a).

The main application area of exoskeletons has been for
medical /rehabilitation purposes where the devices are aimed
to support physically weak, injured, or disabled people to per-
form a wide range of motions involved in activities of daily
living, such as walking, traversing stairs, sitting and standing
up, reaching and grasping (Viteckova, Kutilek, and Jirina 2013).
A small number of exoskeletons have also been designed for
military applications for soldiers to lift or carry heavy loads.

Several scientific literature reviews have addressed the
technical aspects of exoskeletons Yang et al. (2008), Gopura
and Kiguchi (2009), Lee et al. (2012a) and Viteckova, Kutilek,
and Jirina (2013) with few, if any addressing the effect on the
human wearer. Viteckova, Kutilek, and Jirina (2013) conclude
from their technical review that, despite much progress in
the field of supportive robotic technologies, such as power
sources, small and sensitive sensors, powerful computers and
lightweight materials, there is still a need to further develop
lightweight exoskeletons compatible with operators. Some
key technical issues that must be addressed: the design of
actuators and artificial muscles, fast and effective control
loops, the anthropometric fit, and battery life times.

In this literature review, we address the impact of exoskele-
tons on the user. We focus on exoskeletons developed for use
in occupational fields to support shop floor workers perform
physically demanding activities. The aim of this review is (1)
to provide an overview of ‘industrial’ exoskeletons that have
been developed or are under development, and (2) to assess
the potential effect of these exoskeletons in terms of physical
load reduction on the wearer.

2. Methods

This review was based on an electronic literature search using
the Scopus search engine which accesses an estimated 40 mil-
lion scientific papers. The authors’ personal databases were
also included in the search. To be included, papers had to be
published in peer-reviewed journals in the English language
from January 1995 until August 2014. The review was con-
fined to publications in the formal scientific literature and did
not include books or ‘grey’ research reports. The references
retrieved by this search were first screened on the basis of
their titles and abstracts. In cases where abstracts did not
provide sufficient information, screening took place on full
paper texts. Papers fulfilling the inclusion criteria (see below)
were included in this review. The literature retrieved in this way
was supplemented with relevant studies cited in the retrieved
papers.

The following search terms were used: Exoskeleton, weara-
ble device, assistive device and wearable robot. An additional
inclusion criteria were that papers considered exoskeletons
with an occupational purpose, i.e. to give physical support to
workers in occupational settings. A simple reference to‘work;
‘worker;, ‘profession’ or an ‘occupational activity’ was consid-
ered to be sufficient for inclusion; however, papers consider-
ing other applications outside of occupational settings (e.g.
rehabilitation, medical, tele-operations, military and virtual
reality) were excluded. We included all types of exoskeletons,
i.e. passive and active, anthropomorphic or not, and lower
body, upper body and full-body exoskeletons. But exoskel-
etons covering the hand and wrist only were excluded from
the review as they were not considered suitable for manual
handling tasks. We included all papers on industrial exoskele-
tons irrespective of stage of design, ranging from early stage
prototypes tested in laboratory settings to commercially avail-
able products ready to be used in practice.

Hence, the retrieved studies were summarised to provide
an overview of industrial exoskeletons (first aim of the study)
while the scientific findings of the papers were used to sum-
marise the efficacy of active and passive exoskeletons (second
aim) in terms of physical load reduction provided.

3. Results

The search resulted in 40 papers in which an exoskeleton with
an industrial purpose was described. In these papers, a total of
26 different industrial exoskeletons were described (Table 1).
These were broken down as 20 upper body, 4 full body and 2
lower body exoskeletons, with 19 being active and 7 passive.

The exoskeletons were most frequently aimed to support:
stooped working postures, static holding of a load, dynamic
lifting (and lowering) of a weight, and to support. Some studies
also mentioned carrying as an activity to be supported. Finally,
some job-specific activities were mentioned, i.e. patient lifting
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Table 1. Overview of retrieved exoskeletons, references, aimed type of industrial application and type of exoskeleton.
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Name or description of

Industrial activity to

exoskeleton References be supported Power supply mechanism Part of body
1 PLAD Abdoli-Eramaki, Agnew, Lifting/lowering Passive Upper
and Stevenson (2006)
Personal augmentive lifting Abdoli-Eramaki et al. (2007) Static holding Elastic straps
device Abdoli-E and Stevenson (2008)
Frost, Abdoli-E, and Stevenson (2009)
Godwin et al. (2009)
Graham, Agnew, and Stevenson
(2009)
Lotz et al. (2009)
Sadler, Graham, and Stevenson
(2011)
Whitfield et al. (2014)
2 Muscle suit Kobayashi, Aida, and Hashimoto Lifting Active Upper
(2009)
Kobayashi and Nozaki (2008) Static holding McKibben artificial muscle
Kobayashi and Nozaki (2007)
Muramatsu et al. (2011a)
Muramatsu et al. (2011b)
3 ‘Quasi-active exoskeleton’ Kim et al. (2009) Carrying (Quasi-)active Lower
Kim et al. (2013) Lifting Electric motors for knee only
4 PARM Kadota et al. (2009) Lifting Active Upper
Power-assisted robot arm Pneumatic artificial rubber muscle
5 SRL Davenport, Parietti, and Asada Static holding Active Upper
Supernumerary robotic (2012) Electric motor and viscoelastic
limbs elements
6 ‘Strengthen upper limb Deng etal. (2013) Lifting Active Upper
exoskeleton’ Hydraulic actuators
7 HAL Kawabata, Satoh, and Sankai (2009) Heavy lifting Active Full
Hybrid assistive limb Carrying
8 ‘Power assist wear’ Lietal. (2013) Lifting Active Upper
Static holding Pneumatic actuators
9 IKO Martinez et al. (2008) Static holding Active, cable-drive transmission, Upper
IKerlan’s Orthosis electric motor, pneumatic muscles
10 ‘Myosignal-based powered Rosen et al. (2001) Static holding Active Upper
exoskeleton’ Electric servo motor
1 ‘Human-robot integrated Ryu et al. (2012) Heavy lifting Active Full
exoskeleton’ (Mechanism not mentioned)
12 ESA EXARM Schiele (2009) Static holding Active Upper
(Mechanism not mentioned)
13 PAS Toyama and Yonetake (2007) Patient lifting Active Full
Power-assisted suit Patient transfer Ultrasonic motors
14 ‘Wearable agrirobot’ Toyama and Yamamoto (2010) Farming: kneeling, arm  Active Full
lifting, stooped work Electric motors
15 Skil Mate Umetani et al. (1999) Construction work Active Upper
McKibben artificial muscle
16 EXO-UL7 Yu and Rosen (2010) Static holding Active Upper
Electric servo motor
17 ‘Power assist suit’ Tsuzura, Nakakuki, and Misaki (2013)  Patient lifting Passive Upper
Patient transfer Torsion springs
18 ‘Lower limb assistive device’  Hasegawa and Muramatsu (2013) Patient lifting Passive Lower
Patient transfer Gas spring
19 ‘Wearable robot’ Naito et al. (2007) Carpentry overhead Active Upper
work Motor and springs
20 ‘Exoskeleton power assist Naruse et al. (2003) Lifting Active Upper
system’ Lowering Motor and cables
21 ‘Exoskeleton robot’ Leeetal. (2012b) Static holding Active Upper
(Mechanism not mentioned)
22 ‘Wearable moment restoring ~ Wehner, Rempel, and Kazerooni Lifting Passive Upper
device' (2009) springs
23 WSAD Luo and Yu (2013) Stooped work Active Upper
Wearable stooping-assist Servo motor
device
24 BNDR Ulrey and Fathallah (2013a) Lifting Passive Upper
Bending non-demand return Ulrey and Fathallah (2013b) Stooped work Springs
Barret and Fathallah (2001)
25 Happyback Barret and Fathallah (2001) Stooped work Passive Upper
Bungee cords
26 Bendezy Barret and Fathallah (2001) Stooped work Passive Upper

Springs
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18%
At 60° Erector Spinae (thoracic) AMP 735%,
Erector Spinae (lumbar) AMP 740%

Latissimus Dorsi AMP ©'22%
At 90° Erector Spinae (thoracic) AMP 742%,

Erector Spinae (lumbar) AMP ¥47%

At 30° Erector Spinae (thoracic) AMP 730%,
Latissimus Dorsi AMP ©'28%

Erector Spinae (lumbar) AMP 734%

Latissimus Dorsi AMP
Rectus Abdominis AMP 79%

Rectus Abdominis AMP 76%
Significantly lower and higher value, respectively, for condition with exoskeleton vs. without exoskeleton.

Rectus Abdominis AMP 74%
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Stooped postures for 5 min with trunk flexion

at 300, 60° and 90°

Luo and Yu (2013) Laboratory,

Mean power frequency of EMG signal.

Amplitude of EMG signal.

Not statistically evaluated differences between conditions with vs. without exoskeleton.

+ = Estimated effects based on figures.

Vand ¥V
AMP
MPF

WSAD
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and transfer (for three different exoskeletons), construction
work, agricultural and overhead carpentry work.

For 13 of the 26 industrial exoskeletons, some evaluations
of the physical load reductions were performed (see Tables
2 and 3, for passive and active exoskeletons, respectively).
However, most evaluations included only 1 to 3 participants.
Scientific evaluation including statistical testing has only
been performed for five exoskeletons, i.e. PLAD (Personal
Augmentive Lifting Device), the Muscle Suit, BNDR (Bending
Non-Demand Return), the HappyBack and the Bendezy.

All studies evaluating exoskeletons involved a repeated
measures type experimental design to include within-subject
comparisons of with and with-out exoskeleton use. Remark-
ably, all studies took place in a laboratory setting, except for
one, namely the evaluation of PLAD by Graham, Agnew, and
Stevenson (2009).

Physiological parameters studied included muscle activity
(i.e. effort) in the back, shoulder, arm and leg region mainly,
as determined by the amplitude of the EMG signal, and mus-
cle fatigue as determined by the combination of amplitude
increase and decrease in frequency content over time in the
EMG signal. Biomechanical parameters studied included the
loading on the back expressed by the estimated net joint
torque, spinal compression and shear forces for the lumbar
or thoracic regions. Generally, positive effects, either tested
statistically or not, have been reported for the physiological
(EMG) and biomechanical parameters, both for the passive
and the active exoskeletons.

4. Discussion

The development of passive and active exoskeletons to sup-
port humans dates back to the 1960s and 1970s. Currently
available lightweight materials and new technologies in sens-
ing and actuating enable the development of a next genera-
tion of exoskeletons. Most exoskeletons have been developed
to give support to disabled people in their daily activities. The
development of exoskeletons suitable for industrial applica-
tions lags behind. This review extracted a total of 40 papers
from the literature presenting 26 different exoskeletons. Eight-
een of these papers have been published in 2010 or later,
showing the current, high interest in industrial exoskeleton
applications.

4.1. Effects of passive exoskeletons on physical load

For six passive exoskeletons, the effectiveness in terms of
physical load reduction has been evaluated for the activities
of dynamic lifting and static trunk bending. The amount of
assistance by the PLAD device in dynamic lifting and lower-
ing has been evaluated in a series of laboratory experiments
(Abdoli-Eramaki, Agnew, and Stevenson 2006; Abdoli-Eramaki
et al. 2007; Abdoli-Eramaki and Stevenson 2008; Frost,
Abdoli-E, and Stevenson 2009; Godwin et al. 2009; Lotz et al.
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2009; Sadler, Graham, and Stevenson 2011; Whitfield et al.
2014).The PLAD principle comprises elastic elements that are
situated in parallel to the erector spinae, so as to permit a shar-
ing of the load between the spine, shoulders, pelvis and lower
extremities. When the PLAD is worn during lifting tasks, energy
is stored within the elastic elements as the upper body is low-
ered and/or the trunkis flexed. On the ensuing upward phase,
this stored energy is released (Abdoli-Eramaki, Agnew, and
Stevenson 2006). As a result, the muscular activity required to
lift is lowered. Back muscle EMG amplitude decrease ranged
from 10 to 40% across several studies (Abdoli-Eramaki, Agnew,
and Stevenson 2006; Abdoli-Eramaki and Stevenson 2008;
Frost, Abdoli-E, and Stevenson 2009; Whitfield et al. 2014). As
an effect of this, the manifestation of muscle fatigue in the
EMG signal (as defined as the combination of an amplitude
increase and a frequency content decrease (Basmajian and
Deluca 1985)) is dramatically less in the case of prolonged
repetitive lifting and lowering over 45 min (Godwin et al. 2009;
Lotz et al. 2009). Another effect that is mentioned is the low-
ered internal forces on the lumbar spine when wearing PLAD,
e.g.L4/L5 compression estimated to be 23-29% lower (Abdo-
li-Eramaki et al. 2007). Finally, some other positive effects of
PLAD, e.g. post-trial endurance and maximal back strength,
further support the above findings.

For the BNDR device, a reduction of muscle activity was
also reported in dynamic lifting, but only for those subjects
not experiencing the flexion-relaxation phenomenon of the
back muscles at deep back flexion (Toussaint et al. 1995). The
BNDR was also found to reduce torso flexion in stooped lifting
(Ulrey and Fathallah 2013a). The reductions in back muscle
activity when wearing BNDR were attributed to the device’s
ability to limit torso flexion rather than a transferring of loads
(Ulrey and Fathallah 20133, 2013b).

The effects of passive exoskeletons in static trunk bending
were investigated by Graham, Agnew, and Stevenson (2009)
and by Ulrey and Fathallah (2013a) for PLAD and BNDR, respec-
tively. Both studies showed positive effects on back muscle
activity during static trunk bending (decrease ranging from 10
to 25%), spinal loading (estimated lumbar compression force
decreased by 12-13%) (Graham, Agnew, and Stevenson 2009;
Ulrey and Fathallah 2013a).

In a short conference paper, Barret and Fathallah (2001)
describe the effects of the BNDR, HappyBack and Bendezy
during static bending while holding loads. These three passive
exoskeletons differed with respect to materials and mecha-
nism, but all showed positive effects, ranging from 21 to 31%
reduction in erector spinae activity when using the devices.

Beside the positive effects described above, some concerns
should be mentioned. Depending on lifting technique, reduced
back muscle activity might be accompanied with increased
activity of other muscles (Frost, Abdoli-E, and Stevenson 2009).
An increase in leg muscle activity (tibialis anterior) has been
reported for the HappyBack and Bendezy (Barret and Fathallah
(2001)). The BNDR also showed a significant increase in lower

leg muscle activity (Ulrey and Fathallah 2013a). The increase in
leg muscle activity could be explained by the fact that external
forces applied by the equipment needs to be counteracted
to retain balance, both in static holding and in dynamic lift-
ing activities. For the PLAD, subjects were observed changing
their lifting technique towards a more squat-like lifting pattern
(Sadler, Graham, and Stevenson 2011), which might also may
be an explanation for higher muscle activity in the leg muscles
when wearing a passive exoskeleton.

In prolonged lifting and lowering work, increased leg
muscle activity could be expected to require increase oxygen
uptake. However, for PLAD, in prolonged repetitive lifting and
lowering, oxygen consumption was not affected (Whitfield
et al. 2014). Whitfield et al. conclude that the biomechanical
advantage in terms of unloading the back was not accompa-
nied by an increase in energy consumption.

Other concerns relate to subjective reports of localised
discomfort (e.g. shoulders or knees). Exoskeletons need
to apply pressure on the body to function. If not carefully
designed these contact areas may experience discomfort and
possibly injury, which may lead to user reluctance to use the
exoskeleton.

4.2. Effects of active exoskeletons on physical load

For several active exoskeletons, the effects in terms of physical
load reduction have been evaluated, but statistical comparison
data have only been reported for the Muscle Suit (Kobayashi
and Nozaki 2007; Muramutsu et al. 2011a). Originally, the Mus-
cle Suit was intended to aid the physically challenged, but
for reasons of ethics and safety, it was decided to deploy the
device for use by manual workers to help solve problems of
WMSDs (Muramutsu et al., 2011a). The Muscle Suit covers the
thighs, trunk and upper extremities and includes three joints,
at waist, shoulder and elbow level. For the complex shoulder
joints, a 4 degrees of freedom mechanism was constructed
allowing rotation around three orthogonal axes and trans-
versal sliding of the centre of rotation. The Muscle Suit was
constructed to give support to shoulder flexion, elbow flexion
and trunk flexion in the sagittal plane. The McKibben artificial
muscle (Chou and Hannaford 1996) was selected as the Muscle
Suit actuator because of its light weight.

Experiments including static holding and dynamic lift-
ing showed positive effects of the Muscle Suit for a large
range of muscles in the upper extremities. Muscle activity
reductions were reported in the range of 20-35% for the
deltoideus anterior in dynamic lifting and up to 40-65% for
the Flexor Carpi Radialis in dynamic lifting and static holding
(Muramutsu et al., 2011a). While holding a weight above the
head, the suit resulted in a decrease in muscle activity for the
Biceps Brachii (30-70%) and the Trapezius pars transversa
(40-70%). These results show the Muscle Suit’s potential for
reducing the physical load on the shoulder and arms for a
large range of occupational activities including dynamic lifting
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and carrying, static work in a forward bended posture and
overhead work.

Aside from the Muscle Suit, seven other active exoskel-
etons with potential effects on physical loading were eval-
uated (see Table 3). However, these evaluations involved
between one and three participants, and thus, statistical
tests have not been performed on the data. These exoskel-
etons vary a lot with respect to body structures supported
(either lower, upper or full body), the materials used and
the activation type. For the technical descriptions, we refer
to the individual papers shown in Table 3. With regard to
their effect on physical load, it can be concluded that these
papers show the potential of decreasing muscle activity in
both the lower extremities (for instance, in walking and stairs
climbing), the back (in lifting and static bending), and in the
shoulders and upper extremities (in various types of hand-
arm work).

4.3. Practical implementation of exoskeletons

Despite the high interest for exoskeletons with an industrial
application purpose, a large-scale implementation of exo-
skeletons in industry has still a long way to go. Actually, for
the exoskeletons considered in this review, all evaluations
took place in the laboratory, except for the study on PLAD
of Graham, Agnew, and Stevenson (2009). The exoskeleton
devices reviewed are largely at an experimental stage and not
ready yet to be used in practice. Technical issues need to be
considered and solved first.

Even the more simple passive devices are not yet widely
used in practice. One reason might be the level of discomfort
associated with wearing the exoskeleton. In a few studies,
some concerns about this aspect have been reported (e.g.
Abdoli-Eramaki et al. 2007). With the biomechanical advantage
being established, the elimination of discomfort at the physi-
cal user interface with the equipment could be the next chal-
lenge in the design of exoskeletons, bearing in mind that even
aminimal level of discomfort might hinder user’s acceptance.
The latter might be different from the exoskeletons aimed at
supporting disabled people, where the exoskeleton could
determine being able to walk or grasp or not. Another con-
cern with regard to the passive devices concerns the potential
increased activity of leg muscles. This aspect certainly needs
consideration in further developments towards final ready-
to-be-used products.

Active exoskeletons may have a larger potential of reduc-
ing physical loads. While passive exoskeletons mainly have a
potential of unloading the back, the active devices may unload
many joints throughout the body. However, with increasing
numbers of joints (each requiring actuators and power sup-
ply), the weight of the exoskeleton will increase. For instance,
an upper body exoskeleton with lightweight actuators like
the MuscleSuit, already has a total weight of 9 kg (Muramutsu
etal., 2011b). To unload the worker from this constant weight
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burden, an extension of the exoskeleton towards the ground
would be beneficial, but this increases the complexity of the
design.

The exoskeletons reviewed in this paper were all anthropo-
morphic. That is, the exoskeleton has a similar skeletal struc-
ture compared to the human body involving a series of many
actuated joint. The main advantage is that the footprint of
the exoskeleton is relatively small as it adheres directly to the
body, and the movements should in theory be unrestricted.
The movements of the worker are copied by the exoskeleton,
i.e. the limbs of the human and the exoskeleton are aligned
during motion. This necessitates detection of human move-
ment intention to initiate the appropriate responses of the
exoskeleton’s actuators. Distinction of intended from unin-
tended movements is often difficult and results in systems
with many different kinds of sensors and complex signal pro-
cessing. Yang et al. (2008) address the necessity for improved
control strategies to enable smooth movements at a normal
to fast pace, but the cooperation and function allocation,
man-machine information exchange, real-time motion plan-
ning and safety control are the difficulties faced by building
such a control strategy.

It remains a challenge for anthropomorphic active exoskel-
etons to reflect the human anatomy, kinematics and kinetics
to enable natural and comfortable movements. We mentioned
the shoulder as a complex joint to incorporate in exoskeletons
as it comprises three orthogonal axes of rotation plus transver-
sal sliding of the centre of rotation. The knee may also form a
challenge as the centre of rotation shifts during flexion. More-
over, rotational movement in any joint requires movement
between the skin and skeletal structure. To accommodate this
during movement, the exoskeleton should ideally extend or
shorten. This is a design feature that was not readily observed
in the exoskeletons observed.

The industrial use of passive and active exoskeletons
requires consideration of several specific safety issues. Var-
ying risk scenarios can be defined for the worker wearing an
actuated exoskeleton in the occupational field, for example
on the shop floors in production industry, in warehouses, in
hospitals, or outdoors in agriculture or construction. Exo-
skeletons used in the context of robots for personal care
are governed by ISO 13482. However, to date, international
safety standards for industrial application of exoskeletons
does not yet exist, and this is a significant barrier to their
adoption.

A final concern has been raised earlier by Eisinger, Kumar,
and Woodrow (1996) with regard to lumbar orthoses (i.e. close
fitting rigid lumbar supports). They reported that prolonged
use of orthoses could be associated with deconditioning of
trunk muscles. Therefore, they recommend either to limit the
duration of their use or to combine the use with strengthening
exercises. The same phenomenon and recommendation may
hold for exoskeletons used in industry.
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4.4. Conclusions

This review shows a wide interest in passive and active exo-
skeletons for industrial purposes, but most developments are
at an early stage of technology development with many con-
cepts not tested beyond the laboratory.

Passive industrial exoskeletons are aimed at supporting or
unloading the lower back region and appear to be quite suc-
cessful herein for both dynamic lifting or static holding activi-
ties. Some concerns have been raised regarding the potentially
negative effects associated with increasing leg muscle activity,
high levels of discomfort and muscle deconditioning.

The potential effect in reducing physical loads seems to be
even higher for active exoskeletons. Both lower body, trunk
and upper body regions could benefit from large reductions
in loading.

Exoskeletons thus have the potential to considerably
reduce the underlying factors associated with developing
work-related musculoskeletal injuries. The true impact on
potentially reducing injury prevalence, however, still needs
to be determined, as until now significant technical challenges
and a lack of specific safety standards stands in the way of
large-scale implementation in workplaces.
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