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1 Introduction

Time series are a ubiquitous form of data occurring in virtually every scientific discipline
and business application. There has been much recent work on adapting data mining
algorithms to time series databases. For example, Das et al. attempt to show how
association rules can be learned from time series [7]. Debregeas and Hebrail [8]
demonstrate a technique for scaling up time series clustering algorithms to massive
datasets. Keogh and Pazzani introduced a new, scalable time series classification
algorithm [16]. Almost all algorithms that operate on time series data need to compute
the similarity between them. Euclidean distance, or some extension or modification
thereof, is typically used. However as we will demonstrate in Section 2.1, Euclidean
distance can be an extremely brittle distance measure.

The reason why Euclidean distance may fail to produce an intuitively correct measure of
similarity between two sequences is that it is very sensitive to small distortions in the
time axis. Consider Figure 1.A, the two sequences have approximately the same overall
shape, but the shapes are not aligned in the time axis. The nonlinear alignment shown in
Fig 1.B would allow a more intuitive distance measure to be calculated.

A method that allows this elastic shifting of the X-axis is desired in order to detect similar
shapes with different phases.  Such a technique has long been known in the speech
processing community [29, 26]. The technique, Dynamic Time Warping (DTW), was
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introduced to the data mining community by Berndt and Clifford [4]. Although they
demonstrate the utility of the approach, they acknowledge that the algorithm’s time
complexity is a problem and that “…performance on very large databases may be a
limitation”.  Despite this shortcoming of DTW, it is still widely used in various fields.  In
bioinformatics, Aach and Church successfully applied DTW to RNA expression data [1].
In chemical engineering, it has been used for the synchronization and monitoring of batch
processes in polymerization [14].  DTW has been successfully used to align biometric
data, such as gait, signatures and even fingerprints [11, 14, 22, 19]. Several researchers
including Vullings et al. [30] and Caiani et al. [5] have demonstrate the use of DTW for
ECG pattern matching.  Finally in robotics, Oates et al. demonstrated that DTW may be
used for clustering an agent's sensory outputs [23].
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Figure 1: Note that while the sequences have an overall similar shape, they are not aligned in the time axis.
Euclidean distance, which assumes the ith point on one sequence is aligned with the ith point on the other (A),
will produce a pessimistic dissimilarity measure.  A nonlinear alignment (B) allows a more intuitive distance
measure to be calculated.

Because of the algorithm’s relative lethargy, various modifications to the algorithm have
been suggested.  Yi et al. proposed a technique that maps the data into Euclidean space
such that their DTW distance is approximately preserved [33]. Unfortunately the method
allows false dismissals, and more importantly, does not allow user to have direct control
over the quality of the results returned.  Rafiei and Mendelzon proposed an extension to
their work on similarity searching to allow shifting and scaling of the time axis; however
their method only handles global scaling of the time axis, and not the more general case
of (local) time warping [27].

In previous work we introduced piecewise dynamic time warping (PDTW), a
modification of DTW that performs warping on a reduced dimensionality representation
of the data [17]. (Chan and Fu [6] later introduced a similar technique that operates on a
different, but logically equivalent representation [15].) We demonstrated that this
approach allows dramatic speedup with low probability of false dismissal. One important
limitation of this work, however, is that the user must carefully specify the compression
ratio used. If the user chooses too fine of an approximation, the gains in speed are
negligible.  In contrast, if the user chooses too coarse of an approximation, the number of
false dismissals becomes unacceptable.

It is this limitation that motivates our current work. The intuition behind IDDTW is that
for any given level of approximation, we can create a model describing the distribution of
the distance approximation errors. Then, for any two time series, we can calculate the
approximations of DTW at increasingly finer levels of representation and use the stored
distribution models to filter out poor matches with some user-specified tolerance. All that
the user needs to specify to the algorithm is simply the query and their tolerance for false
dismissals. In the worst case, if the user has zero tolerance for false dismissals, our
algorithm degrades to the classic DTW algorithm. However, as the users’ tolerance for
false dismissals increases, the search technique becomes much faster. The surprising
result is that, even a very small tolerance for false dismissals results in extremely large
gains in speed.



The rest of this paper is organized as follows. Section 2 provides more detailed
motivation for IDDTW and a review of the classic DTW algorithm. Section 3 introduces
the IDDTW algorithm. In section 4 we experimentally compare IDDTW to DTW and
Euclidean distance on real and synthetic datasets. Section 5 contains a discussion of
related work.  Finally section 6 contains our conclusions and directions for future work.

2 Background

In this section, we motivate the utility of DTW with three original data mining
experiments. For completeness, we will then review the classic dynamic time warping
algorithm.

2.1 Dynamic Time Warping vs. Euclidean Distance

Although the utility of dynamic time warping has been extensively demonstrated in many
domains [1, 5, 11, 14, 22, 23, 29, 30], for completeness we will provide brief motivating
examples here. In particular, we consider the three most common data mining tasks,
classification, clustering and the discovery of association rules. In each example we
compare DTW to Euclidean distance, the most commonly used distance measure for time
series [2, 7, 8, 10, 15].

2.1.1 Classification
There has been much work on classification of time series. The most commonly studied
benchmark dataset is Cylinder-Bell-Funnel, a synthetic dataset introduced in [28] and
used by [21, 13, 9] and others. The dataset consists of a 3-class problem, with the classes
generated by the following equations:

c(t) = (6+η) • X[a,b](t) + ε(t)
b(t) = (6+η) • X[a,b](t) • (t-a)/(b-a) + ε(t)
f(t) = (6+η) • X[a,b](t) • (b-a)/(b-t) + ε(t)

X[a,b] = { 1, if a ≤ t ≤ b,  else 0  }

Where η and ε(t) are drawn from a standard normal distribution N(0,1), a is an integer
drawn uniformly from the range [16, 32] and (b-a) is an integer drawn uniformly from
the range [32, 96]. Figure 2 shows an example from each class.

C ylinder Bell Funnel

Figure 2: Examples of the Cylinder-Bell-Funnel dataset.

We performed a simple classification experiment on this dataset, using the one nearest
neighbor algorithm. The dataset consists of ten instances of each class, and the classifier
was evaluated using the “leave one out” strategy. Since we had the luxury of unlimited
data, we averaged the results over 100 runs. Although several researchers have suggested
methods to tune DTW to particular problems, we simply used the classic “off-the-shelf”
algorithm as described in Section 2.2. Table 1 contains the results.

Two observations are immediately apparent. Using DTW can reduce the error rate on this
problem by a factor of 10. However DTW is also many orders of magnitude slower than
Euclidean distance for this task.



Technique Mean Error Rate Mean Time (seconds)
Euclidean Distance 0.2610 1
DTW Distance 0.0287 4320

Table 1: A comparison of Euclidean distance and DTW distance on a classification task.

2.1.2 Clustering
For this experiment we attempted to cluster four power-demand time series. Each
sequence corresponds to a week’s demand for power in a Dutch research facility in 1997
[31]. Typically the weekly patterns vary little, with peaks beginning at 9:00am and
lasting until 5:00pm each weekday, and relatively little activity on the weekends
(sequences 1 and 2). However, in this experiment we included two anomalous sequences,
one in which Wednesday was a national holiday (sequence 3), and one in which Monday
was a national holiday (sequence 4). The results of clustering are shown in Figure 3.
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Figure 3: A comparison of Euclidean distance and DTW distance on a clustering task.

The Euclidean distance correctly identifies the two normal weeks as a cluster, but fails to
group the two vacation weeks together because the vacation days are different. In
contrast, DTW is able to discover the similarity between the two vacation weeks by
warping Monday in sequence 3 to Tuesday in sequence 4 etc. Note that the grouping
between sequences 3 and 4 is not as tight as the grouping between sequences 1 and 2,
because there is a penalty paid for the warping effort. This maps nicely on to our
intuitions of similarity.

2.1.3 Mining Association Rules
Although the discovery of association rules in discrete sequences is an area that has
attracted extensive research [3], less work has been done on the discovery of association
rules in time series.  The most frequently referenced work in this area is by Das et al. [7],
so we have implemented this method for our experiment. The method works by
clustering the subsequences of a time series using K-means (or a greedy approximation
thereof), then assigning a label to the centroid of each cluster. Once the data has been
discretized in this fashion, classic association rule mining algorithms are used to find
rules with a minimum support and confidence. The rules are then ranked by their J-
measure, a measure of their interestingness.

We experimented on an ECG dataset because there are simple and obvious rules in such
data. For example, if we see the first half of a single heartbeat (the RST wave), we should
expect to see the second half of a heartbeat (the PQR wave) with very high confidence
and support.  Figure 4 shows the results of a single experiment (only the top three rules
are shown).
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Figure 4: A comparison of Euclidean distance and DTW distance on an association rule task, where c, s, and J
are confidence, support and “interestingness” respectively. (Parameter settings were w (length of prototype
shapes) = 80, k (size of alphabet) = 10, T (maximum distance between antecedent and consequent) =10).

The most obvious result is that, with the Euclidean version, the prototypical shapes do not
resemble the familiar electrocardiogram (with the exception of the highest ranked
consequent). This is because the Euclidean centroid of the clusters do not produce shapes
that are representative of the cluster. In contrast, the DTW centroid of the clusters
produces a prototype that closely resembles all the members of the cluster. This allows
DTW to find higher quality, more intuitive rules. To be fair, by carefully adjusting the
three input parameters, we can make Euclidean distance produce more intuitive results
but clearly DTW is more robust at finding meaningful rules.

2.2 The Dynamic Time Warping Algorithm

For completeness, we now review the classic DTW algorithm. The reader may skip this
section without loss of continuity.

Suppose we have two time series Q and C, of length n and m respectively, where:

Q = q1,q2,…,qi,…,qn (1)
C = c1,c2,…,cj,…,cm (2)

To align these two sequences using DTW, we construct an n-by-m matrix where the (ith,
jth) element of the matrix contains the distance d(qi,cj) between the two points qi and cj

(Typically the Euclidean distance is used, so d(qi,cj) = (qi - cj)
2 ). Each matrix element (i,j)

corresponds to the alignment between the points qi and cj. This is illustrated in Figure 5.
A warping path, W, is a contiguous (in the sense stated below) set of matrix elements that
defines a mapping between Q and C. The kth element of W is defined as wk = (i,j)k, so we
have:

W = w1, w2, …,wk,…,wK max(m,n) ≤ K < m+n-1 (3)

The warping path is typically subjected to several constraints.

• Boundary conditions: w1 = (1,1) and wK = (m,n). Simply stated, this requires the
warping path to start and finish in diagonally opposite corner cells of the matrix.

• Continuity: Given wk = (a,b) then wk-1 = (a’,b’), where a–a' ≤1 and b-b' ≤ 1. This
restricts the allowable steps in the warping path to adjacent cells (including
diagonally adjacent cells).

• Monotonicity: Given wk = (a,b) then wk-1 = (a',b'), where a–a' ≥ 0 and b-b' ≥ 0.
This forces the points in W to be monotonically spaced in time.

There are exponentially many warping paths that satisfy the above conditions, however
we are interested only in the path which minimizes the warping cost:

    (4)
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The K in the denominator is used to compensate for the fact that warping paths may have
different lengths. This path can be found very efficiently using dynamic programming to
evaluate the following recurrence which defines the cumulative distance γ(i,j) as the
distance d(i,j) found in the current cell and the minimum of the cumulative distances of
the adjacent elements:

 γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (5)
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Figure 5: An example warping path.

The Euclidean distance between two sequences can be seen as a special case of DTW,
where the kth element of W is constrained such that wk = (i,j)k , i = j = k. Note that it is
only defined in the special case where the two sequences have the same length. The time
complexity of DTW is O(nm).

This review of DTW is necessarily brief; we refer the interested reader to [20] for a more
detailed treatment.

2.3 Why Dynamic Time Warping is Resistant to Optimization

Because similarity measurement can be computationally expensive, we would like to
optimize the calculations as much as possible. Euclidean distance (Equation 6), the most
common distance measure, is amiable to several optimizations.

(6)

One obvious optimization is derived from the observation that the square root function is
monotonic, thus we can remove it from the calculation and get identical
rankings/classifications/clusterings. Once the square root step has been removed another
optimization for similarly searching become apparent. The code to calculate the squared
Euclidean distance can be modified to break out the loop if the partially accumulated
distance exceeds the smallest distance encountered thus far.

accumulated_distance = 0; (7)
for i in 1 .. length_of_time_series loop

      accumulated_distance = accumulated_distance + (qi – ci)
2;

      if (accumulated_distance > best_so_far) then

         break;

        end if;

end for;
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As soon as the accumulated distance exceeds the best_so_far, we can terminate and
discard the candidate from further consideration. As the size of the database grows, this
optimization reduces the effective complexity from linear to constant time.  In contrast,
DTW cannot be optimized using similar methods. The reason is that in order to establish
the warping path, we must first calculate the distance between every point from the query
sequence to every point in the candidate sequence. This alone guarantees that we are
facing an O(n2) task.  In addition, unlike the above method for Euclidean distance, DTW
uses no accumulator. Instead it uses a stack as an implicit accumulator to store the entire
set of distances before recursively retrieving them to determine the minimum warping
path. It is not until O(n2) calls to the stack have been made that the first partial sum is
available for consideration. This resistance of DTW to optimization suggests that we
must look to approximation if we wish to speed up the distance calculations.

3 A New Approach: Iterative Deepening Dynamic Time
Warping

In this section we introduce the IDDTW algorithm. Previous work allows us to
approximate DTW at arbitrary levels of precision [17].  The idea behind the IDDTW
algorithm is to obtain probabilistic models of the approximation errors for all levels of
approximation prior to the querying process. The algorithm iteratively examines
sequences at increasingly finer levels of approximation and compares the results to the
probabilistic models and the user-specified tolerance for false dismissals. Using this
information the algorithm iteratively considers whether the candidate sequence should
either be dismissed as being unlikely to be a good match, or is worth considering at a yet
finer approximation level. We begin by reviewing the technique that allows us to
approximate DTW at arbitrary levels of precision.

3.1 Dimensionality Reduction

Keogh et al. [15] and Yi & Faloutsos [32] independently introduced a dimensionality
reduction technique which approximates a time series by dividing it into equal-length
segments and recording the mean value of the data points that fall within each segment.
The authors use different names for this representation; for clarity we will refer to it as
Piecewise Aggregate Approximation (PAA).  Keogh & Pazzani [17] demonstrate a
modification of DTW that operates on the PAA reduced dimensionality representation,
which they called PDTW. They show that the resulting alignments are very similar to
those produced by DTW. Figure 6 shows a typical example.  PDTW has been shown to
effectively generate a speedup of one to three orders of magnitude, compared to the
classic DTW algorithm, with no significant loss of accuracy for classification and
clustering tasks.

DTW PDTW

Figure 6: A) Two similar time series and the alignment between them, as discovered by DTW.  B) The
same time series in their PAA representation, and the alignment discovered by PDTW.  This presents
strong visual evidence that PDTW finds approximately the same warping as DTW.
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Figure 7: A) Example of warping path with DTW and B) PDTW.

We refer the reader to the original paper for full details of the PDTW algorithm. Here we
just note that it can be thought of as the classic algorithm using the PAA coefficients as
input. Figure 7 illustrates this idea.

A drawback of PDTW is that it requires the user to choose a compression rate for the
dimensionality reduction, and the algorithm is very sensitive to the value chosen.  A high
compression rate means a coarser approximation, which leads to an increase in false
dismissals.  A lower compression rate signifies a finer approximation, but slower in
computational time.  The selection of the appropriate level of dimensionality reduction is
dependent on the domain/dataset/query/task in question and requires careful fine-tuning
to achieve the best result.

It is this drawback that motivates us to introduce IDDTW. With IDDTW, users only need
to provide the system with a query and their tolerance for false dismissal.  This option
offers the user full control over the quality of their search result.

3.2 Iterative Deepening Algorithm Intuition

For notational simplicity we assume that the length n of the time series in question is a
power of two. We can approximate a time series sequence using the PAA representation
at any level of compression and use the PDTW algorithm to get an approximation to the
true DTW distance. In general, the coarsest level approximation that is useful is to
approximate the sequences with just 4 PAA coefficients (i.e. the original sequence is
represented as four constant segments as in the top-right corner of Figure 8). We call this
level of approximation d1, (for “depth 1”). If we need to calculate a more accurate
approximation we can double the resolution to 8 PAA coefficients, which we call d2 etc.
At dlog2(n)-1 the “approximation” degenerates to the original data.

At any level of approximation we can use the PDTW algorithm to approximately
calculate the true DTW distance and obtain an idea of the quality of the approximation.
The idea is to obtain a distribution of approximation errors for the given level of
approximation. This can be achieved by sampling the database, calculating the PDTW
distance and the true DTW distance, and noting their difference.

During similarity search we can use the error distribution model to help prune off
unpromising candidates without performing the full and expensive DTW calculation. The
idea is that we perform the full DTW calculation on the first item in the database to



initialize a best_so_far variable. Thereafter, when presented with a candidate
sequence to test, we first test it using PDTW at d1, the coarsest resolution. The distance
returned by PDTW is only an estimate but because we have an error distribution model
for this estimate, we can calculate the probability that the new candidate sequence is
actually a better match than the current best_so_far. We can compare this
probability to the user-specified tolerance for false dismissal. There are only two possible
outcomes to this test:

1) The probability is out of tolerance. In this case the sequence can be pruned, i.e.,
it is too unlikely to be a good match.

2) The probability is within tolerance. In this case we should compare the
sequences at a higher resolution, so we compare them at d2, d3 , etc, each time
testing to see if the sequence can be pruned, or if we must continue to the next
level.

Eventually, as we compare the sequences at iteratively deeper levels of approximation,
we will either prune away the candidate sequence, or be forced to compare them at depth
dlog2(n)-1 . At that level there is no uncertainty about the calculated distance; if it is better
than best_so_far we update it and continue to the next sequence.

The astute reader will note that, in the worst case, the iterative deepening could reach the
maximum depth each time. Then it will be slower than the classic DTW algorithm.
However as suggested below, the computation time for PDTW of the previous level is ¼
of that for the current one.  Therefore, the amount of extra computation is at most 1/3 of
the original cost for the original DTW.
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This is a worst case bound. In practice, the algorithm rarely has to explore sequences all
the way to depth dlog2(n)-1 and dramatic speedup is observed.

3.3 Iterative Deepening Algorithm Details

We demonstrate our proposed method within the structure of a K-nearest neighbor
algorithm.  The algorithm begins by approximating the query Q and a candidate C using
the PAA representation at the compression rate of Wd1 to find the distance DPDTW(d1).
Using the error distribution, described in Table 2, for depth d1 and the user confidence (or
the acceptable tolerance for false dismissal), we determine whether C could be a potential
object for expansion.  If so, we compare the sequences at a higher resolution.  We
calculate Q and C with a more precise approximation using a finer compression rate of
Wd2 to determine DPDTW.  This process continues until d has reached the maximum depth.
At that point, the “approximation” becomes the original data and we calculate the true
warped distance DDTW between Q and C.

The algorithm used to build the error distribution models of the approximated distance
for all levels of approximation is described in Table 2.  The inputs are the dataset N and
the number of levels L.  The output is a set of standard deviations StdDev from each of
the error distribution models found.



 Algorithm BuildErrorDistribution(N,L)
// N = dataset, L = number of depths
// d = {1,..,L}, C = {d range of compression rates}
for sample size i to build error distributions
   {Randomly pick 2 sequences of same lengths, Na and Nb, where a != b}
   Ri := DTW(Na, Nb); // True DTW of Na and Nb

   for the range of d
      Approx_ Na := PAA(Na, Cd); // Dimensionality reduced representation of Na and Nb

      Approx_ Nb := PAA(Nb, Cd);
      REid := DTW(Approx_ Na, Approx_ Nb); // PDTWd of Na and Nb

      Eid :=REid – Ri;                 // Error between DTW and PDTWd

      Pd :={Pd, Eid };                 // Accumulates each error at d in Pd

   end for;
   StdDevd is found from Pd // StdDevd is the standard deviation for each Pd

end for;
Table 2: Algorithm to build the error distributions.

Algorithm IDDTW_K_NearestNeighbor(Q, N, UserConf, StdDev, K)
// N = dataset, Q = query sequence, UserConf = user confidence
// StdDev = standard deviations for each d, K = number of nearest neighbors
// d = {1,..,MAX_DEPTH}, C = {d range of compression rates}
R := {K*inf};
For i in size of N
C_better := true;
   While (c_better = true) and (d <= MAX_DEPTH)
      best_so_far  := argmax{R};                // Use largest of R as reference for best_so_far
      if (best_so_far = inf) or (d = MAX_DEPTH)     // For first K R’s, use full DTW
         DDTW := DTW(Q, Ni);
         D := MAX_DEPTH;
      else
         Approx_ Q := PAA(Q, Cd); // Dimension reduced representation of Q and NI

         Approx_ Ni := PAA(Ni, Cd);
         DDTW := DTW(Approx_ Q, Approx_ Ni);
         C_better := could_approx_be_better(DDTW, best_so_far, UserConf, StdDevd);

            // c_better := false, if estimated probability (using parameter StdDevd) < UserConf
  // c_better := true, otherwise

      end if;
      d := d +1;
   end while;
   if c_better = true
      {updates R with DDTW} // replaces argmax{R} with current DDTW, if DDTW < argmax{R}
   end if;
end for;

Table 3: The IDDTW K-nearest neighbor algorithm

The IDDTW K-nearest neighbor algorithm used to query the dataset is described in Table
3. The inputs are the query Q, the dataset N, the user confidence user_conf (or tolerance
for false dismissals), and the set of standard deviations StdDev obtained from
BuildErrorDistribution in Table 2. The output is the K nearest neighbor
matches.  The algorithm for IDDTW begins by using the classic DTW on the first K
candidates from the dataset. The results of the best matches to the query are contained in
R, with |R|=K. The best_so_far is determined from argmax{R}. We want to use
argmax{R} as an object for comparison so that we could always update the worst of the
K matches each time we find a better result.  W is the possible compression rates, from
coarse to fine. Both Q and each subsequent candidate C after the first K candidates are
approximated using PAA representations with Wd to determine the corresponding DPDTW.



From this result, we can perform a test to determine whether C can be pruned off or to
continue to the next level. If {result of the test is} found to have a probability that it could
be a better match than the current best_so_far, a higher resolution of the
approximation is required. The process of approximating Q and C to determine the DPDTW

and re-applying the test is repeated for all level of approximations until they fail the test
or their true distance DDTW is determined.  Then we update R if DDTW is found to be less
than best_so_far.  We repeat this process for each query-candidate pair until all the
candidates in N are examined.

To determine whether a candidate is worth expanding, we perform a test,
could_approx_be_better, on the approximated Q and C and comparing the
result with the best_so_far. The best_so_far contains the true distance of the
current “best match” so far.  A worked-out example of this process is depicted in Figure
8.  At depth 1 of the approximation, we find the estimated distance DPDTW between query
Q and candidate C to be 40.  The best_so_far was found to be 30.  The difference
between the estimated distance and the best_so_far is 10.  This is considered to be
the estimated distance error. At that point we can view our error distribution as being
centered around the approximated distance. By knowing that the best_so_far is 10
units away, we can determine the probability that the candidate could be better by
examining the area beyond the location of the best_so_far (shown in solid black in
Figure 8). We disqualify a candidate if the probability found is less than the user-
specified acceptance for error. However, if determined to be a potential candidate, a finer
approximation will be used and the test is re-applied to the next depth. This process
continues until the full DTW is performed on the actual C and Q.

Depth: 1
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Depth: 2
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Figure 8: Demonstrates the intuition behind IDDTW. We have an error distribution at each depth. A is the
approximated distance and B is the best_so_far.  The mean of the distribution is at 0. If we center the
distribution around A, then the distance between A and B is the approximated distance error. The shaded area
can be seen as the probability that A could be better than the best_so_far. This also demonstrates the complexity
of finding a warping path at each level of approximation.

A more detailed explanation might be in order.  In addition to using PDTW values,
(approximations of the true DTW distances) we compute a random sample of errors
between PDTW and DTW values.  We use the sample of errors to determine when we
should keep a candidate even though we would discard the candidate if the PDTW
computation were known to be exact.  The possible error in PDTW value, which we
estimate based on the random sample, causes us to keep a candidate.



If we were to take every pair (i,j) of time series in the database and compute both the
DTW and PDTW for the pair (we will assume some fixed compression level for PDTW
in this discussion), we would get a set of errors eij = DDTW - DPDTW between the exact
DTW and approximate PDTW values.  Since we want to keep computation time small,
we compute only a random sample of the eij,  Specifically, we choose two time series
uniformly at random from the database and we compute eij, repeating to obtain a set of
samples.  We do the sample computation (for each compression level) in just one initial
step.

We apply the sample set as follows.  We compute a PDTW distance DPDTW(C,Q) for a
candidate relative to a query object, and we have some current threshold distance
DDTW(Cbest,Q) {best_so_far} (typically the distance between a "good" candidate and
the query item)  that tells us how close the current candidate has to be for us to continue
looking at it.  Suppose DPDTW(C,Q) > best_so_far, but we also have an error e_C for
the candidate, and it holds that e_C > |DPDTW(C,Q) - best_so_far|.  In this case we do
not want to discard the candidate, as it may be within our threshold distance to the query
item. To make this work, we must have a way to estimate error e_C.

We set a decision error value to be edecision = |DPDTW(C,Q) - best_so_far|.  We then
look at our precomputed sample set and count the number of error distances that satisfy
eij > edecision.  The ratio r of this number to the total size of the sample set gives us a
probability that we risk false dismissal.1 We choose to discard a candidate only if the
probability p(eC > edecision), which we estimate with MLE r, is less than our tolerance T for
false dismissals.

4 Experimental Evaluation

In this section we conduct a number of experiments to compare IDDTW to classic DTW
and Euclidean distance. We are interested in the speedup obtained over the classic DTW
algorithm and the precision of the answer set. In general, techniques for similarity search
tend to be either I/O bound or CPU bound, depending on the distance measure used.
Since DTW is heavily CPU bound, we report only the CPU costs.

4.1 Results and Analysis

To demonstrate the effectiveness of IDDTW, we tested our algorithm on two datasets
with varying properties. One is a homogeneous synthetic data set generated by the
random walk expression, xt = xt-1 + zt, where zt (t=1,2,..) are independent, identically
distributed (uniformly) random variables. The other is a heterogeneous data set that is a
concatenation of ten diverse datasets. The ten datasets were chosen to avoid any biased
results and to represent the extremes along the following dimensions, stationary/non-
stationary, noisy/smooth, cyclical/non-cyclical, symmetric/asymmetric, etc.  In addition,
the data sets represent the diverse areas in which data miners apply their algorithms
including finance, medicine, manufacturing and science. Figure 9 illustrates the two

                                                          
1 The true probability θ that error e_C is greater than edecision is this same ratio computed for all pairs of items in
the database.  Since we have a random sample of the errors, our model is a Bernoulli trial for the event that eij is
greater than edecision. The ratio r is (as discussed in introductory statistics texts) a maximum likelihood estimate
(MLE) of the true parameter θ. (We note that for a truly rigorous treatment we should look at confidence
intervals for r.)



datasets used in the experiments.  All the data, including the query sequences, are
normalized to mean of zero and a standard deviation of one.

For each experiment, we created a database with 256 sequences. For the heterogeneous
data, we randomly extracted sequences of length 512 and placed them in the database.
For the random walk dataset, we randomly generated sequences, also of length 512. The
query sequences are generated as follows: For the random walk data, we use the same
generator and parameters to generate the queries. For the heterogeneous data, we
randomly extracted sequences, rejecting sequences only if they already appeared in the
database (this would make our results optimistic).
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Figure 9: A) The random walk synthetic dataset used in the experiments. B) The heterogeneous datasets: 1.
Radio Waves. 2. Exchange Rates. 3. Tickwise II. 4. Tickwise I. 5. Water Level. 6. Manufacturing. 7. ECG. 8.
Noisy Sine Cubed. 9. Sine Cube. 10. Space Shuttle.

We compare three distance measures:

1) DTW: The classic dynamic time warping algorithm.

2) IDDTW: The iterative deepening dynamic time warping algorithm proposed
in this work.

3) Euclidean distance: We used Euclidean distance as part of our experiment
because it is the simplest distance measurement and a standard strawman
commonly used in the literature.

The hardware used for all experiments was a Pentium III 500MHz with 256MB RAM.
We used Matlab to implement all algorithms.  Since Matlab is an interpreted language,
the overall time is slow, but we are only interested in the relative performances.
For each experiment we ran eight different 10-Nearest Neighbor queries, testing the
IDDTW algorithm at various tolerance levels for false dismissals. We define the accuracy
of IDDTW, at various levels of tolerance for false dismissals, as the fraction of the
number of objects retrieved by DTW alone which are also retrieved by IDDTW. An
analogous definition is also made for the accuracy of retrievals using the Euclidean
distance.

The results are summarized in Figures 10 and 11.  Euclidean distance does a reasonable
job considering that it has no flexibility to warp, however it is clearly not accurate enough
a proxy for DTW to warrant serious consideration. In contrast IDDTW exhibits high
accuracy for all tolerance levels.  As we expect, the lower the tolerance for false
dismissal specified by the user, the greater the accuracy. To understand the relationship
between tolerance and speedup, we also compared the CPU time for using the classic
DTW and IDDTW at each tolerance level. The results are summarized in Figure 11.
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Figure 10: Comparison of Euclidean distance and IDDTW at various tolerances for false dismissals (T = 0.01,
0.10, 0.20) in terms of accuracy (to true DTW) for random walk data (left) and heterogeneous data (right).
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Figure 11: Comparison of DTW and IDDTW at various tolerance for false dismissals (T = 0.01, 0.10, 0.20) in
terms of CPU cost (seconds) for random walk data set (left) and heterogeneous data set (right).

The time for DTW is linear in the number of objects in the database. In contrast, with
IDDTW, the bound for filtering out poor matches becomes tighter as more sequences
have been observed.  Because of this property of IDDTW, the speedup over DTW is
proportion to the size of the data.  In other words, the larger the database of sequences,
the greater the speedup obtained by IDDTW.

5 Related Work

Yi et al. introduced a method to speed up DTW by combining two techniques, which can
be used in a pipelined manner [33]. The first technique is using FastMap to index and
filter out non-qualifying sequences (FastMap is a dimensionally reduction technique that
takes objects in a database and maps them onto a k-dimensional space, where k is the
reduced dimension [10]). The objects are filtered out by comparing them in terms of their
k-dimensional Euclidean distances.  This technique results in possible false-dismissals
and requires the parameter k to be pre-determined, either by being specified by the user
or tuned for performance. The second technique is a lower bounding distance function,
which underestimate the warping distance. Objects that pass both tests are then subjected
to the normal DTW algorithm. While the work was pioneering, the approach was only
tested on relatively short queries with the speedup reported being only a small constant.



In addition, there are several parameters to be set, and it is not clear how best to choose
them.

Park et al. introduced a time warping measure that uses a symbolic representation that is
itself obtained from a piecewise linear representation [24]. They demonstrate that this
approach can be indexed in a suffix tree. However they only report the speedup for the
indexing scheme (which is relatively small), and there is no comparison in terms of
accuracy to the true DTW.  Thus we can say nothing of the quality of the answer set.
Their technique also allows false dismissals.  They pointed out in their paper that “…it is
possible that a subsequence similar to a query in terms of the original time warping
distance may not be included in the answer set in our approach”. In fact, this disclaimer
greatly understates the problem with their approach, which rarely finds a true best match
to a query.

Perng et al proposed the Landmark Model for pattern querying in time series databases
[25].  This model does not rely on Euclidean distance.  Rather it identifies features of
landmarks that are invariant under the several transformations. Instead of working
directly with raw data, they proposed a method for data representation using landmarks
from the original data, such as local extrema, inflection points, etc. Using increasing
types of landmarks will produce a more accurate representation. But fewer landmarks
result in a smaller index tree. The most suitable selection of landmarks and the number of
them used are domain-driven by the data. Since landmarks are sequential, it can reduce
an indexing problem into a string-indexing problem. While the work does allow a flexible
query language, the feature-extracting step requires the careful choice of several
parameters, and it is not clear if the query language can emulate true DTW, which has
well-documented success rate in real-world applications [1, 5, 11, 14, 22, 23, 29, 30].

6 Conclusions and Future Work

In this paper we introduced a modification of DTW that exploits the idea of iterative
deepening along with a dimensionality reduction technique to produce a dramatic
speedup which increases with database size. Our algorithm has the desirable properties of
containing true DTW as a special case (when T = 0), and not requiring the careful
adjustment of system parameters. In addition our approach gives the end-user complete
and explicit control over the quality/time tradeoff through a single intuitive parameter,
their tolerance for the probability of a false dismissal.

Future work includes a more detailed analysis of our approach and extensions to other
similarity search problems that feature distance measures that are expensive, but can be
approximated at different levels of precision.
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