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ARTICLE INFO ABSTRACT

Traditionally, structural optimization is a numerical process; candidate designs are created and evaluated
through numerical simulation (e.g., finite element analysis). However, when dealing with complex structures
that are difficult to model numerically, large errors could exist between the numerical model and the physical
structure. In this case, the optimization is less meaningful because the optimal results are associated with the
numerical model instead of the physical structure. Experiments can be included in the optimization algorithm to
represent complex structures or components. However, the time and cost limitations are prohibitive when
iteratively constructing and evaluating complete structural systems. Real-time hybrid simulation (RTHS) is an
efficient and cost-effective experimental tool that combines numerical simulation with experimental testing to
capture the total structural performance. This paper proposes a framework for real-time hybrid optimization
(RTHO); RTHS is used to evaluate the performance of candidate designs within the optimization process. The
framework creates a cyber-physical optimization environment using RTHS, a modern experimental technique
with roots in earthquake engineering. This paper outlines the framework for RTHO with accompanying proof-of-
concept studies. In a preliminary study, the base isolation design of a two-story building was optimized for
seismic protection. RTHO was further validated for the optimal selection of multiple semi-active control law
parameters for an MR damper installed in the isolation layer of a five-story base-isolated building. Both cases
used RTHS to evaluate the candidate designs and particle swarm optimization (PSO) to drive the optimization.
RTHO is well-suited to evaluate nonlinear experimental substructures, in particular those that do not undergo
permanent damage such as structural control devices. Structural damage, if of interest, can be modeled through
the numerical component. This paper proposes and demonstrates the integration of state-of-the-art optimization
algorithms with state-of-the-art experimental methods — a cyber-physical approach to structural optimization.
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1. Introduction the location of nodes and connections to vary. Topology optimization

uses the distribution of material and structural connectivity to find the

In the last two decades, design trends for civil infrastructure have
shifted from prescriptive code procedures to performance-based
methods. The structural engineers of tomorrow will be asked to produce
lighter, taller, and more cost-effective designs to meet performance
demands under natural and human-made hazards. Sustainable solutions
that consider long-term costs and benefits will require new approaches
to design and optimization. Structural optimization enables engineers
to minimize user-specified objectives (e.g., material use) while ensuring
strength and serviceability requirements constraints are met (e.g., re-
quirements for drift and acceleration). Structural optimization includes
size optimization, shape optimization, and topology optimization [1].
Size optimization focuses on optimizing the cross-section of the discrete
structural members such as beams and columns, or thickness of con-
tinuous material such as panels and slabs. Shape optimization allows
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optimal layout of the structure for a given shape.

Optimization enables engineers to produce more efficient designs in
an automated, algorithmic framework. In structural engineering, sys-
tems are often nonlinear and subject to physical or design code con-
straints, narrowing the field of optimization to nonlinear constrained
problems. In this type of optimization, engineers seek the parameter
values that minimize an objective function while subject to constraints.
The optimization problem must first be expressed in this basic mathe-
matical form and then solved using an optimization algorithm of
choice.

Two major categories of optimization algorithms include gradient-
based and heuristic algorithms. In gradient-based algorithms, the gra-
dient of the objective function is used to determine which design
variables have the greatest influence on the objective function. The
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gradient may be explicitly calculated or estimated by slightly changing
the variables around their current value, e.g., using finite differences
[2]. The gradient is used to create a subsequent design iteration that
most effectively decreases (or increases, depending on the type of
problem) the objective function. The major benefit of gradient-based
algorithms is that they adapt at each iteration, selecting the most effi-
cient path toward the optimum. Examples include Newton’s method,
conjugate gradient method, gradient descent, and subgradient method.

In contrast to gradient-based methods, heuristic methods make few
or no assumptions about the nature of the problem being optimized.
Common heuristic algorithms include simulated annealing (SA) [3-5],
genetic algorithms (GAs) [6,7], particle swarm optimization (PSO)
[8-12], and ant colony optimization (ACO) [11,13,14]. At each itera-
tion, a set of designs are generated with some degree of randomness
applied to the design variables. The development of candidate solutions
is based on probabilistic rules rather than deterministic rules. Designs
that are valid as defined by the constraints are then evaluated using an
analysis tools such as finite element methods (FEM). Analysis results
which satisfy any remaining constraints are then evaluated using the
objective function. The results are synthesized and designs that per-
formed best help inform the next generation of solutions. These
methods do not guarantee that an optimal solution will be found,
however they can be applied to very complex problems and without the
need to calculate a gradient. Additional benefits stem from the broad
search space and randomization, which can lead to non-intuitive solu-
tions.

The quality of the optimization not only depends on the algorithm
but also on the mathematical models for the structural system being
optimized. In structural engineering, optimization algorithms seek the
optimal configuration of a numerical model representing a physical
system. Candidate designs are numerically created and evaluated at the
cost of computational time. However, when studying complex struc-
tures that are difficult to model numerically, large errors could exist
between the numerical model and the physical structure. In that case,
the optimization is less meaningful because the results are optimal for
the numerical model instead of the physical structure. Experiments can
be included in the optimization framework for complex structures or
components. However, it is expensive and labor intensive to iteratively
create and evaluate entire structural systems in the laboratory. Real-
time hybrid simulation (RTHS) provides a cost-effective alternative to
investigate the optimal performance of complex structures or compo-
nents, creating a cyber-physical optimization framework.

RTHS is a powerful experiment technique to evaluate the perfor-
mance of structural components subjected to dynamic excitations.
RTHS provides an attractive alternative to traditional shake table
testing for earthquake engineering studies [15] by combining experi-
mental testing and numerical simulation in an efficient and cost-effec-
tive framework. Structural components for which the response is well
understood are modeled numerically, greatly reducing the required
laboratory space and equipment. Because only the less understood,
critical structural components are physically tested, they can be large or
full-scale representations of the actual components, reducing size ef-
fects. In this way, even small laboratories can conduct accurate ex-
periments of complex structures. It is a variation of hybrid simulation;
the defining feature is that the experiment is executed in real time,
offering the capability to test rate-dependent components, such as
seismic dampers [16,17].

One of the challenges for RTHS is that it requires a fixed, small
sampling in execution of each testing cycle. Moreover, unless properly
compensated, time delays and time lags introduced by the experimental
equipment are likely to lead to stability and accuracy problems [18].
One of the most effective approaches to mitigate the effect of time
delays and time lags is through actuator control strategies designed to
compensate for the modeled dynamics of the servo-hydraulic system
[19,20]. In addition, the structural damping and the relative con-
tribution of the numerical and experimental substructures to the overall
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structural response plays an important role in RTHS stability and ac-
curacy [21,22]. Accurate control of the servo-hydraulic systems enables
the evaluation of structures with lower inherent damping and larger
relative experimental substructures.

RTHS, a cyber-physical system in itself, is proposed herein for in-
tegration into a cyber-physical optimization framework. The numerical
optimization algorithm is partitioned into numerically driven optimi-
zation and the experimental evaluation of candidate designs.
Experiments are then partitioned through RTHS into numerical and
experimental structural components. The proposed real-time hybrid
optimization (RTHO) is a promising new approach for the optimization
of structures, components, or supplemental devices that are difficult to
model numerically. The framework must incorporate strategies to
maintain RTHS stability and accuracy in the presence of iteratively
changing structural dynamics. Variable bounds must be included to
avoid RTHS instabilities. Stability checks based on the RTHS parti-
tioning can be made prior to each test, such as those reported in
Maghareh et al. [21].

This paper presents the development of a cyber-physical optimiza-
tion framework for structural optimization using RTHS. The framework
incorporates substructure experimental testing for accurate and cost-
effective evaluation of candidate designs. The framework was explored
through two proof-of-concept studies. First, a linear-elastic base-iso-
lated structure was evaluated, facilitating accurate comparisons with
numerical models. Second, the control algorithm of a magnetorheolo-
gical (MR) damper was optimized to demonstrate the benefits as ap-
plied to nonlinear systems for which numerical models may be in-
adequate.

In RTHO, because the specimen is iteratively evaluated, it should
not be subject to permanent damage. RTHO is well-suited to evaluate
nonlinear experimental substructures, in particular those that do not
undergo permanent damage such as structural control devices.
Structural damage, if of interest, can be modeled through the numerical
component. Examples of recently developed structural control tech-
nologies that could be studied through RTHO include building mass
dampers with semi-active control [23], tuned inertial mass electro-
magnetic transducers [24], and magnetorheological elastomers as
seismic isolators [25].

2. Real-time hybrid optimization (RTHO)

This section presents the development of RTHO. Particle swarm
optimization (PSO) is introduced as an example optimization algorithm
and integrated into the RTHO framework. PSO can be replaced by other
optimization algorithms based on the problem of interest.

2.1. Particle swarm optimization

PSO is inspired by the social behavior of animals such as fish
schooling, insects swarming, and birds flocking [26]. It involves a
number of particles, which are initialized randomly in the search space
of an objective function. The group of particles is referred to as a
swarm. Each particle of the swarm represents a potential solution of the
optimization problem. The particles explore the search space; their
positions are updated based on their current path, their own best known
design, and the swarm’s best known design. In each iteration, the
swarm is updated using the following equations:

Vit = oVl + an P — XH + en@f - xH 1)

X} = XF 4y %)

where X; and V; represent the current position and the velocity of the i-
th particle, respectively; P; is the best previous position of the i-th
particle and P, is the best global position among all the particles in the
swarm; r; and r, are two uniform random sequences generated from U
(0, 1); and w is the inertia weight used to preserve a portion of the
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previous velocity of the particle [27].

First, the swarm of particles is initialized with sequence numbers
and initial velocities that are randomly distributed throughout the de-
sign space. Second, the objective function values are evaluated using
the design space positions. Next, the optimum particle position at the
current iteration and the global optimum particle position are updated.
Then, the velocity vector of each particle is updated considering the
current position of the particle, the current velocity of the particle, the
best position of the particle, and the best position of the swarm. The
sequence number for the position of each particle is updated. Finally,
the previous steps are repeated until the pre-determined number of
iterations or a stopping criteria is reached.

2.2. Development of RTHO framework

The RTHO framework is created by replacing the numerical simu-
lation (e.g., FEM) with RTHS. The objectives calculated from the
measured structural responses are used to guide the particles’ move-
ments in solution searching. RTHS is conducted for each candidate
design solution (particle) under each evaluation case (excitation). The
performance of the candidate designs are evaluated and the results are
used to populate a subsequent group of designs for evaluation. The
process continues until an acceptable solution is found. The iterative
framework is illustrated in Fig. 1.

The fundamental challenges of RTHS resurface in the RTHO fra-
mework. Each RTHS experiment much be stable such that the experi-
ment can be conducted. The design variables must be properly con-
strained or checked before conducting RTHS to avoid instability.

Another major challenge is the creation of a cyber-physical platform
with automatic updates in particle positions (experimental specimen
parameters) followed by automated execution of RTHS and analysis
through the optimization algorithm. The realization of RTHO requires
automatic control, data exchange, and updating. A platform was de-
veloped in AutomationDesk embedded with ControlDesk, MATLAB, and
Python to achieve data exchange and update in the RTHS and optimi-
zation algorithm. AutomationDesk is a powerful test automation tool
for hardware-in-the-loop (HIL) testing. Testing routines can be created
graphically in AutomationDesk with libraries containing many built-in
functions. The automation of testing with predefined variables (i.e., a
test matrix) is simple using AutomationDesk. When using variables
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determined online (i.e., during optimization), the programming be-
comes more complex. Fig. 2 shows the testing sequence created for
RTHO in AutomationDesk. Numerical substructure and excitations are
defined in MATLAB with the initialization of variables and particle
positions. Python scripts are used as the bridge for data exchange be-
tween MATLAB and AutomationDesk. In each iteration, the particle
positions are updated following Eq. (2) and used in RTHS after checking
the variable boundaries to ensure the RTHS stability. RTHS is con-
ducted using dSPACE hardware with ControlDesk software controlling
the parameters, testing process, and measurements. The sequence of
conducting RTHS testing through ControlDesk is created in Auto-
mationDesk as shown in Fig. 2(b). After each test, the measurements are
processed in MATLAB to evaluate the objective functions. Local best
positions are updated when a better solution is found for each particle.
The global best position is then updated if a local best position is a
better solution than in previous iterations. RTHS continues in following
iterations with updated particles’ velocities and positions until reaching
the maximum iteration or triggering the stopping criteria. In addition, a
pause and resume algorithm is added such that the optimization can be
safely interrupted as needed.

2.3. Earthquake ground motions

The framework was analyzed and verified using a group of ground
motions developed previously by Somerville [28] for use in the FEMA
project on steel moment-resisting frames. The group consists of 20
horizontal ground acceleration records adjusted so that their mean re-
sponse spectrum matches the 1997 NEHRP design spectrum. In this
study, the group of earthquakes corresponding to downtown Los An-
geles was selected for seismic hazard levels corresponding to a 10%
probability of exceedance in a 50-year period. These 20 earthquake
records, designated as LA01-LA20, were derived from fault-parallel (FP)
and fault-normal (FN) orientations of ten earthquake records.

3. Experimental setups

This section presents the experimental setup of two proof-of-concept
studies for validating the proposed RTHO framework. In a preliminary
study, the base isolation design of a two-story building was optimized
for seismic protection. RTHO was further validated for the optimal
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Fig. 1. Schematic of RTHO.
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Fig. 3. (a) Two-story building specimen mounted on shake table; (b) Five-story base-isolated building with an MR damper at isolation layer.

selection of multiple semi-active control law parameters for an MR
damper installed in the isolation layer of a five-story base-isolated
building. This section presents the experimental setup of both the two-

story and five-story building, shown in Fig. 3.

3.1. Two-story base-isolated building

setup. The setup consisted of a uni-axial shake table controlling the
RTHS interface between numerical and experimental substructures, a
two-story steel building specimen, and a control and data acquisition

system. The dynamic properties of both the 2-degree-of-freedom (DOF)
experimental substructure and the 3DOF total structure are presented in
this section. The specimen and equipment are located at the University
of Maryland and is part of the Structural Engineering Laboratory.

The RTHO framework was verified using a small-scale experimental
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3.1.1. Uni-axial shake table and sensors

The uni-axial shake table used in this study is a model APS 400
ELECTRO-SEIS manufactured by SPEKTRA. It has a 35.6 cm X 35.6 cm
top plate driven by an electrodynamic vibration generator with a stroke
of +15.8 cm. The shake table has a dynamic load capacity of 445N and
it can support a payload up to 23 kg.

The control hardware for the shake table consisted of a dSPACE
DS1103 Controller Board and a windows-based host PC. The controller
board, working as a real-time controller, is fully programmable from
the MATLAB Simulink block diagram environment. The dSPACE board
performs numerical integration, provides shake table control through
the proposed algorithms, and records all data. The sensors and data
acquisition system included a dSPACE 16-bit high-speed multifunction
data acquisition board with 8 D/A channels and 20 A/D channels, a 4-
channel PCB Piezotronics signal conditioner (Model 4821C), and four
PCB Piezotronics accelerometers (Model 393B04). The accelerometers
have a measurement range of +5 g, a frequency range of 0.05-750 Hz,
and a sensitivity of 1000 mV/g. The accelerometers were attached on
both shake table and the specimen. The overall RTHO was controlled by
dSPACE’s AutomationDesk.

The input-output model of the shake table is determined using a
0-10 Hz band-limited white noise voltage command to the shake table
and measured acceleration of the base. A feedforward controller is
created as an inverse of the identified model to compensate for the
modeled dynamics of the shake table, reducing time delays and time
lags for stable shake table RTHS. This approach to shake table RTHS is
further discussed in Zhang et al. [22].

The reference earthquakes of Table 1 were passed through a 2-pole
Butterworth high-pass filter with a cutoff frequency of 0.25Hz to re-
move the low-frequency drift without altering the desired frequency
content. The earthquake records were scaled down to 5% for LA15 and
LA16 and 10% for all other records (relative to the magnitudes shown
in Table 1) in experiments due to the stroke limitation of the small-scale
shake table. All acceleration measurements in time-domain were fil-
tered using a low-pass filter with a cutoff frequency of 20 Hz in post
processing.

3.1.2. Experimental setup

A two-story steel building model was used as the experimental
specimen in this study as shown in Fig. 3(a) mounted on the shake
table. The floor size is 20.3 cm X 20.3 cm and the height of each story is
14.0cm. At each floor, six steel blocks was attached as additional
masses. The total mass of the first and second floors was 6.36 kg and
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6.40 kg, respectively. Two spring steel sheets (SAE Grade 1095) with a
thickness of 0.5 mm connected the floor plates as shown in Fig. 3. The
spring steel’s high yield stress ensured that the building could undergo
large deformations without yielding. The bare steel structure exhibited
very low inherent damping, approximately 0.95% and 0.23% for the 1st
and 2nd modes, which was insufficient for stability during RTHS. The
apparent damping ratios of the specimen was increased to 5% in both
modes through an artificial specimen damping method proposed by the
Zhang and Phillips [29].

The specimen was subjected to a 0-10 Hz band-limited white noise
base excitation to determine the natural frequencies and extract the
stiffness. The stiffness is determined as 2.81 kN/m for the 1st story and
4.08 kN/m for the 2nd story. The identified mass, damping, and stift-
ness were combined into a 2 degree-of-freedom (DOF) building model.
The first and second natural frequencies of the structure were 2.2 Hz
and 6.3 Hz, respectively.

The total two-story base-isolated building consisted of a numerically
simulated base isolation and experimentally represented upper stories.
The mass of the base was chosen as the average of the mass of the upper
two stories. The stiffness of the isolation was selected as 0.61 kN/m,
resulting in undamped natural frequencies of 0.85Hz, 3.82Hz, and
6.44 Hz. The viscous damping coefficient of base isolation was selected
as the design variable for optimization.

3.2. Five-story base-isolated building with MR damper

To investigate nonlinear systems where numerical models may be
inadequate, RTHO was used to optimize the semi-active control law of a
large-scale MR damper. Numerical models of MR dampers are avail-
able, however their accuracy drops under semi-active conditions. For
this study, the damper was considered as supplemental seismic pro-
tection for a base-isolated building. The building was five stories with
one horizontal DOF per story including the base. The building was as-
sumed to behave linear elastically because of the supplemental pro-
tection from the MR damper. The structural properties of the building
can be found in Zhang and Phillips [30] and are based on a low-
damping base-isolation control study in Johnson et al. [31]. For the
superstructure above the isolation layer, the fundamental natural fre-
quency is 1.85Hz and the damping ratio in first mode is 2%. For the
total structure, the fundamental natural frequency is 0.40 Hz and the
damping ratio in the first mode is 4%. The MR damper was installed in
the isolation layer to increase damping as shown in Fig. 3(b). The MR
damper was experimentally evaluated while the rest of system was

Table 1
Earthquake index for structural optimization.
Index Description Magnitude Distance Scale Factor PGA (g)
LAO1 FN Imperial Valley, 1940, El Centro 6.9 10.0 2.01 0.46
LAO2 FP Imperial Valley, 1940, El Centro 6.9 10.0 2.01 0.68
LAO3 FN Imperial Valley, 1979, Array #05 6.5 4.1 1.01 0.39
LAO4 FP Imperial Valley, 1979, Array #05 6.5 4.1 1.01 0.49
LAOS FN Imperial Valley, 1979, Array #06 6.5 1.2 0.84 0.30
LAO6 FP Imperial Valley, 1979, Array #06 6.5 1.2 0.84 0.23
LAO7 FN Landers, 1992, Barstow 7.3 36.0 3.20 0.42
LAO8 FP Landers, 1992, Barstow 7.3 36.0 3.20 0.43
LAO9 FN Landers, 1992, Yermo 7.3 25.0 2.17 0.52
LA10 FP Landers, 1992, Yermo 7.3 25.0 2.17 0.36
LA11 FN Loma Prieta, 1989, Gilroy 7.0 12.0 1.79 0.67
LA12 FP Loma Prieta, 1989, Gilroy 7.0 12.0 1.79 0.97
LA13 FN Northridge, 1994, Newhall 6.7 6.7 1.03 0.68
LA14 FP Northridge, 1994, Newhall 6.7 6.7 1.03 0.66
LA15 FN Northridge, 1994, Rinaldi RS 6.7 7.5 0.79 0.53
LAl6 FP Northridge, 1994, Rinaldi RS 6.7 7.5 0.79 0.58
LA17 FN Northridge, 1994, Sylmar 6.7 6.4 0.99 0.57
LA18 FP Northridge, 1994, Sylmar 6.7 6.4 0.99 0.82
LA19 FN North Palm Springs, 1986 6.0 6.7 2.97 1.02
LA20 FP North Palm Springs, 1986 6.0 6.7 2.97 0.99
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modeled numerically through RTHS. In the RTHS loop, the numerically
evaluated base DOF displacement was input to the physical MR damper
using a servo-hydraulic actuator. The restoring force measured by the
actuator was then returned to the numerical model. This loop of action
and reaction continued for the duration of each RTHS experiment.

3.2.1. Semi-active control law

The semi-active control law for the MR damper was based on a
causal model for rate-independent linear damping (RILD). RILD pro-
vides direct control over displacement, a desirable feature for low-fre-
quency structures such as base-isolated structures. When low-frequency
structures are subjected to high-frequency ground motions, RILD pro-
duces similar reduction in response displacements and velocities when
compared to viscous damping; however, the damping forces and floor
accelerations are substantially smaller. In RILD, the restoring force is
proportional to displacement but advanced in phase m/2rad, a non-
causality that has limited its practical applications. To realize the
benefits of direct displacement control for low-frequency structures, a
causal realization of RILD was proposed in Keivan et al. (2017). The
causal model uses a first-order all-pass filter to approximate the desired
RILD force. This model, shown in Eq. (3), was taken as the primary
semi-active control law. The isolation layer displacement was input to
the model and the output was taken as the desired force in the MR
damper. A secondary semi-active controller (clipped-optimal control;
Dyke et al. [32]) was then used to minimize tracking error between
desired and measured MR damper forces.

iw — (2]

iw + wr 3)
Two parameters are present in the primary semi-active control law: the
loss factor # and radial frequency wy. The loss factor 5 affects the RILD
force magnitude and is present in both causal and non-causal models.
The radial frequency wy is only present in the causal model (Eq. (3)) and
adjusts the skew of the force-displacement hysteresis. If w; exactly
matches the response frequency across the isolation layer, then the
hysteresis will show zero skew, creating a perfect match with non-ca-
sual RILD. The optimal values for these parameters depend on the de-

sign objective as well as the dynamics of the structure and the magni-
tude and frequency content of the ground motions.

Fp causal (w) = k’?(

3.2.2. Experimental setup

Fig. 4 shows the testing setup of this structure. The specimen is a
second-generation 200-kN MR damper manufactured by Lord Cor-
poration. The unique properties of MR dampers are derived from the
internal MR fluid. When a magnetic field is applied, the fluid changes
from a linear viscous fluid to a semi-solid with controllable yield
strength. The actuator and MR damper were mounted on steel angle
plates placed on top of an I-beam that was secured to the strong floor
using tie-downs. The actuator and MR damper were connected through
a connection plate with a large threaded rod and four high strength
bolts. A 250-kN MTS servo-hydraulic controlled actuator was used to
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provide the boundary interaction (e.g., displacement and force in real
time) from numerical substructure. Displacement was measured using a
linear variable differential transformer (LVDT) and force was measured
using a load cell. A model-based actuator controller was developed to
reduce actuator time delay and time lag [33].

4. Results
4.1. Two-story base-isolated building

This section presents the performance of RTHO for the two-story
base-isolated building introduced in Section 3.1. PSO was used for
optimal solution searching with the objective of minimizing maximum
structural absolute acceleration across all ground motions considered
and the constraint of maintaining base drifts under 2 cm (model scale).
The damping coefficient c,, of base isolation was taken as the design
variable. To ensure the RTHS stability, c, was restrained with a lower
limit of 4.55 Ns/m, which gives a 2% damping ratio in 1st mode. An
upper limit of 201.73 Ns/m was used to ensure that the damping ratio
of fundamental mode never exceed 100%. For PSO, a swarm with five
particles and a maximum iteration of 50 was considered. The inertia
weight in Eq. (1) was selected as 1.0 and acceleration coefficients were
each selected as 2.0. The study first looks at optimization under a single
earthquake excitation. Then, it follows with optimization under several
earthquakes. Lastly, the optimization under all 20 design earthquakes
was conducted. To demonstrate the performance of RTHO, results are
compared to PSO using numerical simulation (FEM) to evaluate can-
didate solutions. Two cases are listed below.

1. Optimization of the base-isolated building in numerical simulation
(OPT-SIM); and

. Cyber-physical optimization of the base-isolated building, where the
upper two stories are physically tested and the base isolation is
numerically modeled (RTHO).

Overall agreement between RTHO and OPT-SIM was expected; the
linear-elastic structure is a proof-of-concept. Table 2 summarizes all
results with details given in the following subsections. Minimum peak
absolute accelerations match well for all earthquake scenarios. Dis-
crepancies between RTHO and OPT-SIM appear most clearly in the
damping value that achieves the minimum peak acceleration. This
difference can be attributed to the relatively flat solution space around
the minimum peak acceleration where large changes in ¢;, produce
small changes in the minimum peak acceleration. This makes the op-
timal c;, sensitive to errors in numerically modeling the specimen and
experimental error including measurement noise and shake table con-
trol.

4.1.1. Structural optimization using RTHO under a single earthquake
First, the optimal design of the base-isolated building was in-

vestigated when subjected to LA0O2. The objective was to minimize the

maximum structural absolute acceleration for all DOF i under LA02 as

Load cell -

Fig. 4. Testing setup of large-scale MR damper for RTHS testing.
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Table 2
Comparison summary of RTHO and OPT-SIM results.
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Criteria Single earthquake Multiple earthquakes Suite of earthquakes
RTHO OPT-SIM RTHO OPT-SIM RTHO OPT-SIM
Optimal ¢, (Ns/m) 48.0 61.4 43.8 50.4 77.2 102
Minimum peak acceleration (m/s?) 0.4661 0.4435 0.4879 0.4810 0.7074 0.6763
Percent difference in acceleration (relative to OPT-SIM) 5.10% 1.43% 4.60%
(a) Particle position of Cb in RTHO
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Fig. 5. Particle positions in optimization in (a) RTHO; (b) OPT-SIM.

Eq. (4) through optimization of cy,.

min[max{max [} (£)I}]

LAO2 £ (4)
The particle positions over iterations from optimization in RTHS and
SIM are shown in Fig. 5(a) and (b), respectively. Fig. 6(a) and (b) show
the iteration history of the objective function values for optimization in
RTHS and SIM respectively. The convergence of particle position and
objective function can be clearly observed from both figures. The op-
timal viscous damping coefficient of the isolation layer is found to be
47.98 Ns/m, achieving the smallest maximum absolute acceleration of
0.4661 m/s%. The damping ratio is around 19.0% in the fundamental
mode. The optimal solution obtained using the RTHO framework is
comparable to the optimal solution from OPT-SIM, which is 61.41 Ns/m

(a) Optimization in RTHO

«—
o
S
= 05
c
Ke)
©
Q@
2 0.48
o
©
©
2 0.46
E
®»
%
< 0.44
0 10 20 30 40
Iteration

50

minimizing the maximum structural acceleration to 0.4435 m/s>. Good
agreement is observed between RTHO and OPT-SIM optimal accelera-
tion, as shown in Table 2. Fig. 7 shows the structural responses with the
optimal damping of base isolation. Results match well between the
optimal design using both RTHO and OPT-SIM. The base drift is within
the constraint of 0.02 m.

4.1.2. Structural optimization using RTHO under a suite of design
earthquakes

Seismic design of building structures often considers a suite of
earthquakes with the response spectrum matching the design spectrum
(e.g., LAO1-LA20). In this section, the viscous damping coefficient of the
isolation layer was optimized to improve structural responses

(b) Optimization in OPT-SIM

0.5¢
0.48
0.46
0.44
0 10 20 30 40 50
Iteration

Fig. 6. Iteration history of objective functions for optimization in (a) RTHO; (b) OPT-SIM.
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Drift of base isolation
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Fig. 7. Time history analysis of the optimal design from RTHO and OPT-SIM.

considering all design earthquakes. The objective, therefore, was to
minimize the maximum structural absolute acceleration under the
worst earthquake excitation as Eq. (6).
. . LA20 .
minimize ILIIA%)I( 1% gps ®)
It is time-consuming and inefficient to evaluate all 20 earthquakes
during optimization. To achieve optimal design more quickly, a pre-
liminary test matrix was create to determine the general relationship
between isolation layer damping and the maximum structural accel-
eration under all 20 earthquakes. Five discrete damping coefficients
uniformly distributed between [4.55, 201.7] Ns/m were selected as
37.41, 70.28, 103.1, 136.0, and 168.9 Ns/m. The bar plot in Fig. 8
shows the maximum structural accelerations at the five damping
coefficients under all design earthquakes. Note that is not an optimi-
zation run, rather a test matrix used to narrow down the earthquakes
considered. For each damping coefficient, the worst earthquake re-
sulting in the maximum acceleration was found. To be more con-
servative, the worst two earthquakes for each damping coefficient were
selected as the dominant earthquake candidates. From Fig. 8, it can be
clearly seen that the maximum acceleration happens under the worst
two earthquakes {LA20, LA14}, {LA18, LA20}, {LA18, LA19}, {LA19,
LA18}, and {LA19, LA18} for the five damping coefficients respec-
tively. A consistent conclusion was obtained for test matrices created

Max. accel. (m/sz)

200

using RTHS and numerical simulation (FEM/SIM) in Fig. 8. Therefore,
earthquakes LA14, LA18, LA19, and LA20 were determined as the
dominant earthquake candidates for structural optimization. This ap-
proach works well when the number of design variable is small, e.g., in
this case the only design variable is the supplemental viscous damping
in the isolation layer. More efficient algorithms will be developed for
many design variables in future studies (e.g., multi-interval PSO in
Zhang et al. [34]).

Based on the governing earthquakes selected, optimization was run
for both RTHO and OPT-SIM cases. Fig. 9 shows the particle positions of
damping coefficients during optimization in RTHS and SIM. The op-
timal damping coefficient is found as 77.20 Ns/m in RTHO with a
damping ratio of 30.7% in 1st mode, compared to the optimal damping
coefficient in OPT-SIM as 101.9 Ns/m. The iteration history of objec-
tives is shown in Fig. 10(a) and (b) for optimization in RTHO and OPT-
SIM respectively. The achieved optimal objective is 0.7074m/s? in
RTHS and 0.6763 m/s> in SIM. Good agreement is observed between
RTHO and OPT-SIM in optimizing the structural performance subjected
to all 20 designed earthquakes as shown in Table 2. Fig. 11 shows the
time history of the base drift and acceleration of top floor under the
dominant earthquake LA20 (i.e., the worst earthquake for the optimal
design). Time history responses match well between RTHO and OPT-
SIM. Note that after obtaining the optimal designs for both RTHO and
OPT-SIM, the optimal designs were evaluated under all 20 earthquakes.

FEM/SIM

Fig. 8. Relationship of damping ratio and earthquakes on structural acceleration.
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Fig. 9. Particle positions in optimization in (a) RTHO; (b) OPT-SIM.

This comprehensive evaluation confirmed that the selected earthquakes
did govern for the optimal solution.

4.2. Five-story base-isolated building with MR damper

The optimal seismic design of the five-story base-isolated building
with supplemental control, introduced in Section 3.2, was conducted
using the proposed RTHO framework. PSO was used as the search al-
gorithm in this study with a swarm of five particles and a maximum
iteration of 50. Each particle has two DOF, i.e., the two control law
design parameters # and w;. The objective was selected to minimize the
maximum absolute structural accelerations as given in Eq. (3). Ad-
ditionally, the isolation drift was constrained under 10 cm for experi-
mental safety and practical design limitations. The design earthquake
was taken as LAO2 with a magnitude scaling of 20%. As in the previous
study, additional earthquakes can be included as required.

Fig. 12 shows the particle positions over iterations for the optimi-
zation in RTHS. The optimal positions of # and w; are found as 0.2720
and 4.2327 rad/s, respectively. The objective function history is shown
in Fig. 13 with a minimum maximum absolute acceleration of
0.4637 m/s> achieved. The convergence of multiple variables and ob-
jective can be clearly seen from both figures. Fig. 14 shows the actuator
tracking performance using the feedforward controller for the final
optimal design. A near perfect match is observed between desired and

measured responses, showing that the boundary conditions between
substructures in RTHS was achieved. The drift of base isolation is
maintained within the 10 cm limit. Fig. 15 shows the MR damper
control performance with optimal control of # and w; as 0.2720 and
4.2327 rad/s. The hysteresis of the MR damper is shown in Fig. 16. The
MR damper’s clipped-optimal controller is able to track the desired
forces from Eq. (3) as observed between desired and measured beha-
vior. The hysteresis of the optimal design has a large enclosed area to
increase damping and a slight negative skew to reduce accelerations.

5. Conclusions and recommendations

This study presents a new approach for conducting structural opti-
mization. The proposed RTHO framework is a cyber-physical optimi-
zation environment; optimization is numerically driven while the eva-
luation of candidate designs is conducted experimentally using RTHS.
RTHS offers an efficient and cost-effective test method through the
substructuring of dynamic systems into numerical and experimental
components, another example of a cyber-physical system. The devel-
opment of RTHO is discussed in detail and built around PSO, a popular
heuristic search algorithm. PSO offers many benefits including broad
search of the solution space; however, RTHO can easily be adapted to
any optimization algorithm.

RTHO was demonstrated to be effective in both linear elastic and

<« (a) Optimization in RTHO (b) Optimization in OPT-SIM
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Fig. 10. Iteration history of objective functions for optimization in (a) RTHO; (b) OPT-SIM.
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Drift of base isolation
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Actuator tracking performance in RTHO
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Fig. 14. Time history of actuator (base drift) for the optimal design under LAO2.
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Fig. 16. Hysteresis of MR damper for the optimal design under LA02.

nonlinear proof-of-concept studies. Through the RTHO, the base isola-
tion design of a linear elastic structure was optimized for the seismic
protection of a two-story building. The optimal design against single
and multiple earthquakes was conducted to show the versatility for
inclusion in performance-based design. The results using RTHO were
compared with numerical optimization. Overall good agreement is
observed between RTHO and numerical optimization for this simple
structure, building confidence in applying RTHO to study complex
systems that are difficult to model numerically. To show the benefits of
RTHO when numerical models may be inadequate, a five-story base-
isolated building with a nonlinear MR damper at the isolation layer was
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investigated. The control law of a physically modeled MR damper as
optimized to mitigate structural acceleration against seismic loads.
RTHO quickly converged for the nonlinear and multi-variate optimi-
zation problem. The hysteresis for the optimal solution looks as ex-
pected, with a large enclosed area to increase damping and a slight
negative skew to reduce accelerations.

The RTHO approach has many potential applications in civil en-
gineering across a variety of hazards. In particular, the approach can be
applied to structural control problems when the specimen is designed
not to experience permanent damage and can be iteratively evaluated.
Additionally, in wind engineering many specimens are designed not to
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experience damage and are suited for repeated experiments. RTHS, a
cyber-physical system in itself, is well suited for integration into a
cyber-physical optimization environment.
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