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A B S T R A C T

This paper investigates the nonlinear stability and buckling behavior of the composite functionally graded
material (FGM) arches subjected to pressure and temperature loadings. By introducing an admissible displace-
ment function, the total potential energy is expressed explicitly following the thin-walled shell theory. The
nonlinear equilibrium equations are calculated by the variation of the potential energy function, and the critical
buckling pressure is predicted analytically. The verification is taken by the numerical simulation that traces the
pre- and post-buckling equilibrium paths, indicating that the numerical results are in good accordance with the
analytical predictions. It is found the temperature rise increases the thermal upward displacement, which is
beneficial to the buckling pressure, and reduces Young’s modulus, which is unbeneficial to the buckling pressure.
Therefore, the buckling pressure is nonlinear to the temperature rise. Finally, a series of parametric evaluations
are mainly focused on the effects of volume fraction exponent and temperature rise on the distributions of hoop
strain, stress, force and bending moment.

1. Introduction

Arch elements are the basic units in civil infrastructures. The in-
stability behavior of the arch element is common due to its high slen-
derness ratio, indicating the length is much higher than the dimensions
of the cross-section. Therefore, it is significant to study the buckling
responses of the arch structures. Existing studies [1–7] found that the
buckling performance was induced by excessive hoop stress, which
results from the mechanical loadings and/or thermal effects. When the
arch buckles, the deformation may be symmetrical or asymmetrical as
shown in Fig. 1 [8–10]. In the present investigation, the symmetrical
buckling mechanism is mainly concerned, and the asymmetrical buck-
ling mechanism can also be evaluated with a similar derivation pro-
cedure. Following the simulation results [11,12], the deformation is
sensitive to the initial imperfection, indicating symmetrical initial im-
perfection results in symmetrical deformed shape and asymmetrical
initial imperfection results in asymmetrical deformed shape, respec-
tively.

Functionally graded materials (FGM) have been widely used in re-
cent several decades. The concept of the FGM was proposed to dissipate
the heat of the outer surface of the aircraft due to its high performance
of thermal resistance [13]. And then, the FGM was extended in many
other fields, such as nuclear power plants, thermal power plants and so

on. In addition, the FGM was also used in the biological field for arti-
ficial bones or teeth, or in deep-sea apparatus for its high strength and
corrosion resistance [14]. Many studies were concerned with the sta-
bility mechanism of the FGM arches. A typical FGM arch consists of two
constituents with ceramic rich in outside surface and metal rich in in-
side surface as depicted in Fig. 2. Asgari et al. [15] reported the
buckling mechanism of the FGM arches under thermal effect. Based on
the scheme of virtual displacement, the theoretical prediction of the
critical temperature rise was obtained. It was concluded that material
failure was prior to the thermal buckling. Bateni and Eslami [16] stu-
died the collapse mechanism of the shallow FGM arches under a ra-
dially-directed concentrated load. Both pinned-pinned and clamped-
clamped FGM arches were discussed and the buckling load was pre-
dicted by solving a set of nonlinear equilibrium equation. Swaminathan
et al. [17] presented the buckling mechanism of the FGM plates under
different loadings types, boundaries, length-to-width ratios, and length-
to-thickness ratios. Simsek [18] examined the two-dimensional Ti-
moshenko FGM beams with the Ritz method. The critical buckling load
is predicted by taking polynomial forms of the axial, transverse dis-
placement and rotation of the beam cross-sections. Recently, Moita
et al. [19] reported the effect of material distribution on the buckling
behavior of the FGM structures based on the theory of higher-order
deformation. Five different types of FGM plates and panels were
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examined. Al-shujairi and Mollamahmutoğlu [20] examined the buck-
ling performance of FGM sandwich beams under the thermal varia-
tional field. The critical buckling load was obtained by using the gen-
eralized differential quadrature method.

All the above literature considered the arch was under a single load.
In engineering practice, an arch may be subjected to two or more
loading effects. Xi and Li [21] investigated a semicircle FGM arch under
uniform pressure in a thermal environment. The equilibrium paths were
traced numerically. Pi and Bradford [22] studied a homogeneous arch
under uniform radial and thermal loading. The critical buckling pres-
sure was obtained analytically and then verified by the numerical si-
mulations. The pressure capacity sustained by the arch was sensitive to
the temperature rise. Generally, the conventional approaches of de-
veloping the governing equilibrium equations were summarized as
static eigenvalue method [23] and energy method [24]. For the ei-
genvalue method, the geometric nonlinearities were neglected, re-
sulting in an overestimation of the buckling load especially for the very
shallow arches [25]. For the energy method, the principle of virtual
work was commonly used as Refs. [15,16,22]. Nevertheless, it was
difficult to obtain an explicit expression of the buckling load.

When an FGM arch is surrounded by a thermal rise field, a hoop
compressive force develops significantly, and an outward displacement
(wT) generates as shown in Fig. 3(a). This thermal displacement (wT)
may result in different defomation and buckling load. Therefore, it is
essential to explore the buckling, and the post-buckling behavior of the
pressurized FGM arch under the thermal variational field.

The present work focuses on the nonlinear stability mechanism of
the pressurized FGM arches in a temperature rise environment. Based
on the deformed shape in Fig. 3(b) [26–31], the analytical buckling
pressure is derived for both clamped-clamped and pinned-pinned ar-
ches. Subsequently, the analytical solution is compared with numerical
results for the FGM arch, as well as other closed-form predictions [22]
for the homogeneous arch, respectively. In the present numerical

model, the geometric nonlinearities are introduced and modified arc-
length algorithm is considered to track the pre- and post-buckling
equilibrium paths. Finally, the effects of material properties and tem-
perature rise on the internal forces and deformations are examined and
discussed.

2. Assumptions and formation of equilibrium equations

The geometric parameters are shown in Fig. 4, with central angle α
and its corresponding circumferential length L, where =L Rα, the
cross-section ×b t , and the radius R, respectively. An orthogonal cur-
vilinear coordinate system is defined, with x-, y- and z-axes in the
tangential, axial, and radial directions, respectively. Two hypotheses
are taken to facilitate the derivation process, yielding (1) the dimen-
sions of the cross section ×b t are much smaller than the length ( L2 )
and radius (R). Therefore, the cross-section remains in the plane during
deformations; and (2) the material properties of the two constituents
depend on temperature and only elastic properties are considered. The
buckling is prior to the material failure in the present investigation.

As seen in Fig. 4, the radial displacement is defined as =w w z ϕ( , )
and the tangential displacement is =v v z ϕ( , ), respectively. Here

=s Rϕ, where ϕ is the angle starting from the crown and works
clockwise, and − ≤ ≤ϕ α1 / 1 for the right-half arch, which is employed
for the analytical solution since loading and geometry are symmetrical
to the vertical axis that passes through the mid-span as shown in Fig. 4.
Following the thin-walled shell theory, the displacement components
are expressed into

= +v z ϕ v ϕ z
R

dw ϕ
dϕ

( , ) ( )
( )

0
0

(1)

=w z ϕ w ϕ( , ) ( )0 (2)

where v ϕ( )0 and w ϕ( )0 are the tangential (circumferential) and radial
displacements at the mid-surface of the arch, respectively. z is the
distance from any point to the mid-surface in the radial direction. The

Fig. 1. A homogeneous arch deforms with (a) symmetrical, and (b) asymmetrical shapes.

Fig. 2. Material distributions of an FGM arch.

Fig. 3. Deformed shapes of an FGM arch under (a) a temperature rise field, and
(b) combined temperature rise field and pressure field.
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arch consists of two material mixtures as shown in Fig. 2. The volume
fraction of ceramic Vc and metal fraction Vm take the form of
[15,16,21,32]

= ⎛
⎝

− ⎞
⎠

= −V z
t

V V1
2

and 1c

n

m c (3)

where n ( ≥n 0) is volume fraction exponent. Fig. 5 shows the effect of
volume fraction exponent (n) on the fraction of ceramic (Vc). Following
Voigt mixture theory, Young’s modulus E z( ) and coefficient of thermal
expansion λ z( ) vary in the thickness direction, yielding

= + − ⎛
⎝

− ⎞
⎠

E z E E E z
t

( ) ( ) 1
2m c m

n

(4a)

= + − ⎛
⎝

− ⎞
⎠

λ z λ λ λ z
t

( ) ( ) 1
2m c m

n

(4b)

where Ec (Em) is Young’s modulus of the ceramic (metal), and λc (λm) is
the coefficient of thermal expansion of the ceramic (metal), respec-
tively.

At any position of the arch wall, the total strain ε ϕ( ) consists of two
parts: one is the strain at the mid-axis ε ϕ( )0 , and the other is the strain
induced by bending curvature, zκ, respectively. Therefore, we have

= +ε ϕ ε ϕ zκ( ) ( )0 (5a)

= −
∂

∂
− ⎡

⎣⎢
∂

∂
⎤
⎦⎥

ε ϕ
w ϕ

R R
v ϕ

ϕ R
w ϕ

ϕ
( )

( ) 1 ( ) 1
2

( )
0

0 0
2

0
2

_ (5b)

The temperature rise ( TΔ ) is introduced before the external pres-
sure. The hoop strain induced by this thermal effect is

=ε λ z T( )ΔT (6)

Similarly, the bending curvature is obtained from

= +
∂

∂
κ

w ϕ
R R

w ϕ
ϕ

( ) 1 ( )0
2 2

2
0

2 (7)

It is noted the underlined term in Eq. (5b) is the increase of strain at
the neutral axis due to bending curvature [23,31,33]. Therefore, this
term is the geometric nonlinear term and significantly affects the
buckling pressure [34]. Based on the one-dimensional thermoelastic
scheme, the hoop stress yields

= + +σ z ϕ E z ε ϕ zκ ε( , ) ( )[ ( ) ]T0 (8)

For the half arch, the total potential energy function is calculated by

∭= + + −E z ε ϕ ε zκ dV WΠ 1
2

( )[ ( ) ]
V

T0 0
2

(9)

where V is the volume of half arch, and W is the work done by external
pressure. Therefore

∫=W Pb w ϕ ds( )
L

0 0 (10)

where =s Rϕ, and P is the pressure loading, respectively.

3. Determination of critical buckling pressure

When an FGM arch is in a thermal rise environment, an upward
displacement occurs. In such a case, external pressure on the arch will
result in deformations as shown in Fig. 6. Due to symmetrical de-
formations to line OC, only the right-half arch is examined. The radial
displacement is assumed to be [22,26,29]

=
⎧

⎨
⎩

− + + ≤ ≤

≤ ≤

−

−
−

w ϕ
w w cos w ϕ ϕ

w cos ϕ ϕ α
( )

( ) ; 0

;
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2
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(11a)

=
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pinned pinned ends
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0

0
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(11b)

The rotation and bending curvature are calculated by taking the first
and second derivatives of w ϕ( )0 to s, so we have

∂
∂

=
⎧

⎨
⎩

≤ ≤

≤ ≤
−

+

−
−

−
−

R
w ϕ

ϕ

sin ϕ ϕ
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(11c)
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Fig. 4. Coordinate system and displacement definition of an FGM arch.
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The curvature is continuous at =ϕ ϕ0, so we get

=
⎧

⎨
⎪

⎩⎪

− +
−

− + −
−

w
w

w

; clamped-clamped ends

; pinned-pinned ends

γ γ
γ

γ γ
γ

1

2
( 1) 2

2 4 1
2( 1) 2

2

2

2

2 (12)

where =γ α ϕ/ 0. Here, the hoop strain is averaged through the arch
span to obtain the equilibrium paths. Following the previous work
[26–31], the averaged hoop strain ε̄ yields

∫ ∫= ⎧
⎨⎩

−
∂

∂
− ⎡

⎣⎢
∂

∂
⎤
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⎫
⎬⎭

ε ds
w ϕ

R R
v ϕ

ϕ R
w ϕ
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2
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Noting that the following integration vanishes

∫ ⎡
⎣⎢

−
∂

∂
⎤
⎦⎥

= − =
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v ϕ
ϕ

ds v v α1 ( )
(0) ( ) 0

Rα

0
0
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Since =v (0) 00 at the crown and =v α( ) 00 at the right ends for both
clamped-clamped and pinned-pinned arches, respectively. With the
introduction of Eqs. (11), (12) and (14) to Eq. (13), we obtain

= −ε w
R

τ
w π

R α
τ¯

16
2

1
2
2 2

2 2 2 (15a)

where

=
⎧

⎨
⎪
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After substituting ε ϕ( )0 by ε̄ in Eq. (9), the energy function Π is
expressed into

=

⎧

⎨

⎪⎪

⎩
⎪
⎪

+ −

+ + −+
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where N̄ is the averaged hoop force, and written by

= +N ε N¯ Γ ¯ T1 (17a)

=
⎧

⎨
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−

−
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=
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τ
γ
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(17c)

Here, Γ1, Γ2, Γ3 are the stretching, stretching-bending and bending
stiffness respectively, and NT , MT are the thermal hoop force and
bending moment respectively, and take the form of

∫= = + − +
−

b E z dz bt E E E nΓ ( ) [ ( )/( 1)]
t

t
m c m1 /2

/2

(18a)
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+ +−
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t c m
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3.1. Clamped-clamped ends arch

Two unknowns, w2 and γ , exist in Eq. (16). For the clamped-
clamped arch, the principle of minimum potential energy requires the
first derivative of the total potential energy function =δΠ 0, and the

Fig. 6. Geometric parameters of half heated FGM arch under external pressure for (a) clamped-clamped, and (b) pinned-pinned arches.
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second derivative <δ Π 02 , yielding

= ∂
∂

+ ∂
∂

= → ∂
∂

= ∂
∂

=δ
w

δw
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δγ
w γ

Π Π Π 0 Π 0 and Π 0
2

2
2 (19a)

<δ Π 02 (19b)

The first derivative of the averaged hoop force yields

⎜ ⎟

∂
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= ⎛
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Therefore, two nonlinear equilibrium equations are obtained from
Eq. (19a), yielding
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Substituting Eqs. (21a) into (21b) to eliminate the term PRb, the
averaged hoop force takes an alternative form of

=N π
R α

¯ Γ Φ3
2

2 2 1 (22a)

where
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Introducing Eq. (17a) to Eq. (22a), a quadratic equation is obtained
in terms of w2, yielding
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Solving Eq. (23) yields two positive roots
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and only the smaller positive one satisfies Eq. (19b). By substituting Eq.
(24) into Eq. (12), the crown displacement can be calculated as
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Introducing Eq. (22a) into Eq. (21a), the pressure is in the form of

= + −P π
bR α

π τ τ
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wΓ Φ Γ ( Φ )
8
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3 2 1
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4
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Then introducing Eq. (24) to Eq. (26) to eliminate w2, the pressure is
obtained as
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To identify the practical equilibrium path, it is necessary to take the
first derivative of P to γ , yielding

∂
∂

=P
γ

0
(28)

Newton-Raphson iteration will be used to obtain γcr in Eq. (28). The
specific iteration is as follows: defining an initial γ0, then substituting γ0

into Eq. (28), if ≥∂
∂ 0.0001P

γ , then define = −γ γ 0.0011 0 , if

≥∂
∂ 0.0001P

γ , then define = −γ γ 0.0012 1 …repeating the above process

until to find <∂
∂ 0.0001P

γ and its corresponding γcr . With the substitu-
tion of γcr into Eq. (27), the critical buckling pressure for the clamped-
clamped arches is
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where τ cr1 , τ cr2 , τ cr3 and Φ cr1 correspond to =γ γcr .

3.2. Pinned-pinned ends arch

Taking the first derivative of the energy function Eq. (16) for the
pinned-pinned case to the two unknowns w2 and γ , the two equilibrium
equations in Eq. (21) are revised into
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Substituting Eq. (30a) into (30b), we get a cubic formula in terms of
w2, yielding
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where
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For a given value of γ , we get three roots of w cr2 in Eq. (31), and
only the minimum positive root, w cr2 satisfies Eq. (19b). With the
Newton-Raphson iteration algorithm, the critical γcr is obtained in Eq.
(31). Then substituting w cr2 and γcr in Eq. (30a), the buckling pressure is
calculated as
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where τ cr1 , τ cr2 , τ cr3 and τ cr4 correspond to =γ γcr . Noting that the pres-
sure capacity (Pcr) is independent of the arch width (b) after substituting
Eq. (18) into Eq. (33). Accordingly, the unity width ( =b 1) and plane
stress condition are employed to improve the computational efficiency
in the following numerical simulations.

4. Numerical analysis

4.1. Definition of the numerical model

The instability mechanism of the heated FGM arches under uniform
pressure is evaluated by the software ABAQUS [35]. Following Refs.
[36,37], the ceramic material of the outside layer is Silicon Nitride
(Si3N4) and the metal material of the inside layer is Stainless steel
(SUS304), respectively. The material properties can be expressed
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quantitatively into

= + + + +−
−T T T TΛ Λ (Λ 1 Λ Λ Λ )0 1

1
1 2

2
3

3 (34)

where −Λ 1, Λ0, Λ1, Λ2 and Λ3 are constant as shown in Table 1. Here, the
averaged Young’s modulus (Ē), as well as the coefficient of thermal
expansion (λ̄) are integrated as

∫ ∫= = + − +
− −

E bE z dz bdz E E E n¯ ( ) / [ ( )/( 1)]
t

t

t

t
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/2

/2

/2

(35b)

and plotted in Fig. 7. One may state that λ̄ is linear with temperature
when n increases from 0 to 5. On the other hand, Ē reduces with
temperature except for the case =n 5, where Ē increases first to a
maximum level at =T K235.6 , and then decreases with the temperature
rise. It is easy to implement the definition of Young’s modulus and
coefficient of thermal expansion by turning on the switch “use tem-
perature dependent data” in Property module. Poisson’s ratio is 0.28 for
simplicity [36].

The geometric parameter is defined as: the radius =R 1m and the
thickness =t 0.005m, so we get =R t/ 200. For the shallow arch, the
central angle α varies from π/12 to π/4. In the thickness direction, the
arch is divided evenly into twenty layers ( =N 20). The material
properties are the same in each layer and varies from one layer to an-
other. The effect of layer number on the buckling pressure will be ex-
amined later. The arch is discrete with 9600 CPS R8 elements for the
case =R t/ 200 and =α π/12 as shown in Fig. 8(a), where CPS R8 re-
presents eight-node reduced-integration plane stress elements. For the
clamped-clamped arch, the two ends are fixed without any displace-
ments or rotations. For the pinned-pinned arch, the two ends rotate
freely as shown in Fig. 8(b). The ambient temperature field (i.e.

=T K293.15amb ) and the expected temperature T are defined in the
first step and the second step of the Abaqus model. Therefore, the
temperature rise ( = −T T TΔ amb) generates. After that, the uniform
pressure is applied at the outside surface as shown in Fig. 8(b).

In addition, the geometric nonlinearities are introduced by
switching on the Nlgeom (Non-linear-geometry) option in the Step
module of the numerical model. The modified arc-length algorithm is
taken to trace the load-displacement path [38–40] since large dis-
placements or rotations may occur in the present simulation. Only four
parameters are defined, including the initial, minimum, maximum in-
crements, and the initial reference loading in the first step. The sub-
sequent pressure value and the displacement size are calculated auto-
matically to track the whole equilibrium paths in the following steps.

4.2. Comparisons and discussions

The numerical results are compared with the analytical solutions of
Eq. (29) for clamped-clamped arches and Eq. (33) for pinned-pinned
arches as shown in Table 2. One may observe the numerical buckling
pressure are in good agreement with the analytical solutions, and the
maximum difference is no more than 5% for all examined cases with
two temperature rises ( TΔ ), four different central angles (α) and five
different volume fraction exponents (n), respectively. Moreover, a
higher value of volume fraction exponent results in a lower critical
buckling pressure except for a few pinned-pinned cases with =n 5 and

=T KΔ 400 . This is because a higher thermal displacement (wT in
Fig. 3(a)) generates due to the more non-symmetrical distribution of the
material properties to the mid-surface of the pinned-pinned arch with

=n 5 when =T KΔ 400 . Such displacement (wT) contributes more to
the critical buckling pressure than the effects of the modulus reduction
induced by temperature rise.

Table 1
Material properties of SUS304 and Si3N4.

Material Properties −Λ 1 Λ0 Λ1 Λ2 Λ3

SUS304 −λ K( )m 1 0 × −12.33 10 6 × −8.086 10 4 0 0

E Pa( )m 0 ×210.04 109 × −3.079 10 4 − × −6.534 10 7 0
Si3N4 −λ K( )c 1 0 × −5.8723 10 6 × −9.095 10 4 0 0

E Pa( )c 0 ×348.43 109 − × −3.07 10 4 × −2.16 10 7 − × −8.946 10 11

Fig. 7. The variation of averaged Young’s Modulus and coefficient of thermal expansion with temperature.

Fig. 8. (a) Mesh, and (b) boundaries of a typical
FGM arch.
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Fig. 9 emphasizes the effects of layer number (N ) on the pressure
capacity (buckling pressure). The central angle =α π/12 and aspect
ratio =R t/ 200. For both boundary conditions examined, the variation
of the buckling pressure is negligible when ≥N 20. Therefore, =N 20 is
recommended in industrial manufacturing of the thin-walled FGM

structures.
Figs. 10 and 11 depict the comparison of analytical and numerical

pressure-displacement equilibrium curves. For clamped-clamped ar-
ches, the analytical equilibrium curves are obtained by combining

=w w γ( )1 1 in Eq. (25) and =P P γ( ) in Eq. (27), while for pinned-
pinned arches, the curves are obtained by combining =w w γ( )2 2 in Eq.
(31) and =P P γ( ) in Eq. (33), respectively. Noting the crown dis-
placement w γ( )1 can be calculated by substituting the root of Eq. (31)
into Eq. (12) for the pinned-pinned arches. For comparison, the corre-
sponding numerical equilibrium paths are also replotted in Figs. 10 and
11, respectively. These numerical equilibrium paths show multiple
maximum and minimum pressure, which will be explained later in next
section. For the two boundary cases, the analytical equilibrium paths
agree well with the numerical equilibrium paths both in pre- and post-
buckling stages. However, the analytical equilibrium curves only obtain
their paths from → →a b c, after point c, the equilibrium paths are
unavailable from the analytical solution. This is because the displace-
ment function of Eq. (11) is based on the symmetrical snap-through
buckling deformation, and other deformations are not considered in Eq.
(11). In fact, the equilibrium paths → →a b c in Figs. 10 and 11 are
enough since the post-buckling stages after point b are unstable and
may be avoided in engineering applications.

To verify the validity and consistency of the present analytical and
numerical results, a comparison study is performed with the result
obtained by Pi and Bradford [22] for the homogeneous arch ( =n 0)
under external pressure and temperature loading. The arch material is
ceramic, and the material properties depends on Eq. (33) with Young’s
modulus =E 348, 430MPac , and coefficient of thermal expansion

= × − −λ K5.8723 10c
6 1 when =T 0. The temperature increases from the

ambient temperature Tamb to T , where =T K293.15amb , and =T K493.15
and K693.15 , respectively. The buckling pressure of the present analy-
tical and numerical results, as well as the prediction proposed by Pi and
Bradford [22], are depicted in Fig. 12. For two temperature rises

=T KΔ 200 and K400 , the present analytical and numerical results are
in good accordance with the prediction from Pi and Bradford [22] for
both clamped-clamped and pinned-pinned arches. Therefore, the pre-
sent numerical results are accurate and reliable to take the parametric
study in the next section.

4.3. Parametric evaluations

Some parameters are evaluated and the numerical results are de-
picted in Figs. 13–28. Unless otherwise mentioned, the central angle

=α π/12, and the aspect ratio =R t/ 200. The ambient temperature is
=T K293.15amb . Figs. 13 and 14 depict the effects of volume fraction

exponent =n( 0, 0.5, 2, 5) on the pressure capacity when =T KΔ 200 .
The pressure capacity decreases with the increase of volume fraction
exponent (n). This is because Young’s modulus reduces when n

Table 2
The comparison of critical buckling pressure between present analytical and
numerical results.

TΔ α n Clamped-clamped (MPa)
difference

Pinned-pinned (MPa) difference

FEM
(Pe)

Eq. (28)
(Pa)

−Pa Pe
Pa

FEM (Pe) Eq. (32)
(Pa)

−Pa Pe
Pa

200 π/12 0 1.97 1.98 0.00 1.084 1.100 0.01
0.5 1.74 1.74 0.00 0.862 0.886 0.03
1 1.65 1.66 0.00 0.800 0.830 0.04
2 1.59 1.59 0.00 0.772 0.798 0.03
5 1.54 1.52 0.01 0.772 0.784 0.02

π5 /36 0 0.711 0.711 0.00 0.383 0.392 0.02
0.5 0.623 0.622 0.00 0.297 0.308 0.03
1 0.591 0.591 0.00 0.276 0.286 0.04
2 0.568 0.567 0.00 0.266 0.275 0.03
5 0.546 0.540 0.01 0.262 0.269 0.02

π7 /36 0 0.367 0.362 0.02 0.193 0.199 0.03
0.5 0.321 0.316 0.02 0.151 0.155 0.03
1 0.305 0.300 0.01 0.139 0.144 0.04
2 0.292 0.288 0.02 0.133 0.138 0.04
5 0.281 0.274 0.03 0.132 0.135 0.02

π/4 0 0.228 0.219 0.04 0.116 0.120 0.04
0.5 0.199 0.191 0.05 0.0913 0.0938 0.03
1 0.188 0.181 0.04 0.0829 0.0868 0.05
2 0.182 0.174 0.05 0.0799 0.0828 0.04
5 0.174 0.165 0.05 0.0791 0.0815 0.03

400 π/12 0 1.99 2.06 0.03 1.115 1.154 0.03
0.5 1.74 1.78 0.02 0.794 0.839 0.05
1 1.65 1.68 0.02 0.728 0.764 0.05
2 1.59 1.60 0.01 0.692 0.730 0.05
5 1.53 1.52 0.01 0.709 0.731 0.03

π5 /36 0 0.701 0.726 0.03 0.383 0.402 0.05
0.5 0.607 0.619 0.02 0.263 0.278 0.05
1 0.571 0.582 0.02 0.237 0.249 0.05
2 0.546 0.554 0.01 0.225 0.236 0.05
5 0.523 0.521 0.00 0.227 0.236 0.04

π7 /36 0 0.359 0.367 0.02 0.193 0.203 0.05
0.5 0.310 0.312 0.01 0.129 0.136 0.05
1 0.291 0.293 0.01 0.117 0.123 0.05
2 0.278 0.278 0.00 0.109 0.115 0.05
5 0.266 0.262 0.02 0.110 0.116 0.05

π/4 0 0.222 0.221 0.00 0.116 0.121 0.04
0.5 0.192 0.188 0.02 0.0780 0.0824 0.05
1 0.180 0.176 0.02 0.0696 0.0735 0.05
2 0.173 0.167 0.03 0.0658 0.0693 0.05
5 0.164 0.157 0.04 0.0668 0.0694 0.04
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Fig. 9. Effect of layer number (N ) on the pressure capacity of the FGM arches.
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increases as shown in Eq. (35a). Multiple equilibrium paths are ob-
served for both clamped-clamped and pinned-pinned arches, respec-
tively. Similar to the multiple equilibrium paths observed in the
homogeneous arch as reported in Ref. [41], the FGM arch also shows
equilibrium paths. For example, one typical multiple equilibrium path
consists of three upper pressure limit (the maximum pressure) points,
two lower pressure limit (the minimum pressure) points, and three
displacement limit (the maximum and minimum displacements) points
respectively, as shown in Fig. 13(a). The arch reaches its first buckling
at point b, beyond which, the arch shows its unstable post-buckling
behavior with large deformations. Therefore, the stages after point b are
meaningless and may be avoided in engineering applications.

The equilibrium paths with different temperature rises
=T K K K K(Δ 100 , 200 , 300 , 400 ) are plotted in Figs. 15 and 16 for both

clamped-clamped and pinned-pinned arches, respectively. In all cases,

the displacement starts from a negative value in the horizontal axis due
to the thermal radially-outward displacement. Furthermore, the buck-
ling pressure of the clamped-clamped arches in Fig. 15 is much higher
than that in Fig. 16 for pinned-pinned arches, indicating the boundary
condition exhibits a significant effect on the buckling pressure. In ad-
dition, the buckling pressure varies slightly with the temperature rise
because the temperature rise shows two effects on the arch: on one
hand, the temperature rise increases the radially-outward displacement,
which is beneficial to the buckling pressure; on the other hand, the
temperature rise reduces Young’s modulus, which is unbeneficial to the
buckling pressure. Therefore, the buckling pressure may be nonlinear
with the temperature rise.

Figs. 17 and 18 show the distributions of bending moment through
the arch span for clamped-clamped and pinned-pinned arches, respec-
tively. All the values correspond to the critical buckling stage. For both
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Fig. 10. Comparisons of equilibrium paths between analytical and numerical results for clamped-clamped arches.
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Fig. 11. Comparisons of equilibrium paths between analytical and numerical results for pinned-pinned arches.
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Z. Li, et al. Engineering Structures 199 (2019) 109606

8



boundary conditions, the maximum positive bending moment occurs on
the crown (mid-span), while the maximum negative bending moment
occurs on the position between mid-span and edge, corresponding to
the position with the maximum radial displacement. Furthermore, a

higher temperature rise results in an increase in the bending moment.
In addition, the bending moment is nonlinear with respect to volume
fraction exponent n( ). This is because the thermal moment generates
due to the non-symmetrical distribution of material properties in the
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Fig. 13. The equilibrium paths of clamped-clamped FGM arches with different volume fraction exponents n( ).
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Fig. 14. The equilibrium paths of pinned-pinned FGM arches with different volume fraction exponents n( ).
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cross-section of the arch. From Eq. (18e), the thermal moment does not
vary uniformly with volume fraction exponent. However, the difference
of the bending moment is very small when volume fraction exponent
varies from 0.5 to 5, for both clamped-clamped and pinned-pinned

arches, respectively.
The distributions of the hoop force through the arch span are shown

in Figs. 19 and 20 for clamped-clamped and pinned-pinned arches,
respectively. All the values correspond to the critical buckling level. The
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Fig. 15. The equilibrium paths of clamped-clamped FGM arches under varied temperature rises.
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hoop force decreases with the increase of volume fraction exponent n( ),
and a higher temperature rise results in a lower hoop force. This is
because the increase of volume fraction exponent and temperature rise
will reduce Young’s modulus. A few fluctuations of the hoop force are
observed, and these fluctuations are neglected in Eq. (17). The hoop
force is simplified as constant. Such a simplification results in an in-
significant difference on the buckling pressure as shown in Table 2.

Figs. 21–23 depict the distribution of the hoop strain and stress at
the top, bottom and middle surfaces through the span of the clamped-
clamped arch. At the top surface, the strain and stress are positive near
the crown area ( =ϕ α/ 0) whereas the hoop strain and stress are ne-
gative near the area with the maximum radial displacement as shown in

Fig. 21(a) and (b). These features indicate that tension occurs at the top
surface of the crown areas, while compression occurs at the top surface
of the area with the maximum radial displacement. The top surface
tensile strain on the crown area increases with increasing volume
fraction exponent and temperature. However, the compressive stress
and strain near the maximum displacement change slightly when the
temperature rise increases from K200 to K400 . On the other hand, the
strain and stress at the bottom surface are negative near the crown area
( =ϕ α/ 0) whereas the hoop strain and stress are positive near the po-
sition with the maximum radial displacement as shown in Fig. 22. The
bottom surface tensile strain on the maximum radial displacement area
increases with increasing volume fraction exponent and temperature.
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(a)
-1.0 -0.5 0.0 0.5 1.0

-5.0

-2.5

0.0

2.5

5.0

7.5

B
en

di
ng

 m
om

en
t M

 (k
N

⋅ m
)

Normalized hoop position (φ /α)

n=0  n=0.5  n=1  n=2  n=5

ΔT=200 K
R/t=200
α=π/12

(b) 
-1.0 -0.5 0.0 0.5 1.0

-5

0

5

10

B
en

di
ng

 m
om

en
t M

 (k
N

⋅ m
)

Normalized hoop position (φ /α)

n=0 n=0.5  n=1  n=2  n=5

ΔT=400 K
R/t=200
α=π/12

Fig. 18. The bending moment of the pinned-pinned arch with different temperature rises.

-1.0 -0.5 0.0 0.5 1.0
1.0

1.2

1.4

1.6

1.8

2.0

H
oo

p 
fo

rc
e 

N
 (k

N
)

Normalized hoop position (φ /α)

n=0  n=0.5  n=1  n=2  n=5

ΔT=200 K; R/t=200; α=π/12

×103

(a) (b)
-1.0 -0.5 0.0 0.5 1.0

1.0

1.2

1.4

1.6

1.8

2.0

n=0  n=0.5  n=1 n=2  n=5

ΔT=400 K; R/t=200; α=π/12

H
oo

p 
fo

rc
e 

N
 (k

N
)

Normalized hoop position (φ /α)

×103
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Nevertheless, the volume fraction exponent, as well as the temperature
rise, show small effects on the crown compressive stress and strain. In
the middle surface, it is found the hoop strain is positive whereas the
stress is negative and compressive as shown in Fig. 23. This is induced
by the nature of thermal stresses. It should be noted that the case of

=n 0 shows different strain and stress distributions from other cases
because the material property of =n 0 is uniform in the cross-section.
However, for other cases ( =n 0.5, 1, 2, 5), additional hoop stress and
strain are generated due to the non-symmetrical distribution of the
material properties with respect to the middle surface of the FGM ar-
ches.

Figs. 24–26 depict the distribution of the hoop strain and stress at
the top, bottom and middle surfaces of the pinned-pinned arch. Like the

clamped-clamped cases, the maximum tensile strain and stress occur at
the crown whereas the maximum compressive strain and stress occur at
the maximum radial displacement position of the top surface in Fig. 24.
On the contrary, the maximum compressive strain and stress occur at
the crown whereas the maximum tensile strain and stress occur at the
maximum radial displacement position of the bottom surface in Fig. 25.
At the middle surface, all hoop strains are positive and change slightly
through the arch span as shown in Fig. 26. The hoop stresses are
compressive, which is similar to the clamped-clamped arches.

Figs. 27 and 28 illustrate the distribution of hoop strain and stress in
the thickness direction of the mid-span ( =ϕ α/ 0). All strain and stress
correspond to the critical buckling level. It is seen that the hoop strain is
distributed linearly in the thickness direction for both clamped-clamped
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Fig. 20. The hoop force of the pinned-pinned arch with different temperature rises.
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Fig. 22. The distribution of strain and stress at the bottom surface of the clamped-clamped arch.
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Fig. 23. The distribution of strain and stress at the middle surface of the clamped-clamped arch.
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Fig. 24. The distribution of strain and stress at the top surface of the pinned-pinned arch.
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Fig. 25. The distribution of strain and stress at the bottom surface of the pinned-pinned arch.
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Fig. 26. The distribution of strain and stress at the middle surface of the pinned-pinned arch.
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Fig. 27. Distribution of mid-span strain and stress in the thickness direction for the clamped-clamped arch.
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and pinned-pinned arches, respectively. Generally, the higher the
temperature, the higher the hoop strain and stress. Similarly, the higher
the volume fraction exponent, the higher the hoop strain except for the
vicinity of the bottom surface. However, the stress is distributed non-
linearly due to the non-symmetrical dispersion of Young’s modulus in
the thickness direction ( >n 0). For a homogeneous arch ( =n 0), the
stress is linear in the thickness direction.

5. Conclusions

The stability mechanism of the FGM arch is evaluated when it is
subjected to external pressure and thermal loading. Based on the pre-
sent analytical and numerical investigation, several main conclusions
are emphasized:

(1) The derived analytical buckling pressure is verified successfully by
the numerical results for both clamped-clamped and pinned-pinned
arches, respectively. For a homogenous arch ( =n 0), the present
analytical and numerical results are consistent with available other
closed-form expressions.

(2) The strain and stress of the FGM arch ( >n 0) are distributed dif-
ferently from the homogeneous arch due to the non-symmetrical
distribution of the material properties in the cross-section.

(3) The temperature rise generates a thermal radially-outward dis-
placement and a reduction on Young’s modulus, which are positive
and negative to the critical buckling pressure of the FGM arch, re-
spectively.

(4) The layer number =N 20 in the thickness direction is accurate
enough to converge the buckling pressure. Therefore, =N 20 is
recommended to industrial manufacturing of the thin-walled FGM
structures.

The present investigation is mainly concerned with the elastic
buckling of the FGM arch. Further experimental verification is neces-
sary before it is applied to engineering applications. In addition, the
inelastic material properties are ignored in the present model. However,
they may exist in practical systems and have significant effects on the
buckling pressure.
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