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Abstract—The objective of this study was to develop an au-
tomatic signal analysis system for heart sound diagnosis. This
should support the general practitioner in discovering aortic valve
stenoses at an early stage to avoid or decrease the number of
surgical interventions. The applied analysis method is based on
classification of heart sound signals utilising parameter extraction.
From the wavelet decomposition of a representative heart cycle as
well as from the Short Time Fourier Transform (STFT) and the
Wavelet Transform (WT) spectra new time series were derived.
In several segments, parameters were extracted and analysed. In
addition, features of the Fast Fourier Transform (FFT) of the raw
signal were examined. In this study, 206 patients were enrolled,
159 with no heart valve disease or any other heart valve disease but
aortic valve stenosis and 47 suffering from aortic valve stenosis
in a mild, moderate or severe stage. To separate the groups, a
linear discriminant function analysis was applied leading to a re-
duced parameter set. The introduced two classification stage (CS)
system for automatic detection of aortic valve stenoses achieves
a high sensitivity of 100% for moderate and severe aortic valve
stenosis and a sensitivity of 75% for mild aortic valve stenosis.
A specificity of 93.7% for patients without aortic valve stenosis
is provided. The developed method is robust, cost effective and
easy to use, and could, therefore, be a suitable method to diagnose
aortic valve stenosis by general practitioners.

Keywords—Heart sound, Auscultation, Feature extraction,
Wavelet Transform, Fourier Transform.

INTRODUCTION

Cardiac murmurs are often the first symptoms of a patho-
logical change of heart valves. Therefore, the assessment of
heart sounds plays an important role in the diagnosis of heart
valve diseases.7,25 For a long time auscultation was the only
available method to examine the heart sound. In 1907, the
phonocardiography was introduced10 providing an instru-
ment to record heart sound and to analyse it. Phonocardio-
graphy was a useful technique to assess the characteristics
of heart murmurs, but it was not established in general
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clinical practice due to principal limitations such as the
difficulty to obtain high-quality, artefact-free recordings.2,6

Furthermore, auscultation and phonocardiography require
high qualification and extensive practical experience by the
physicians.14,15 In 1952, a standardization of the recording
hardware was developed by Maass and Weber, e.g. filters,
amplifiers, etc., which provided an important improvement
in phonocardiography.20

With the introduction of echocardiography an accurate
and reliable diagnosis of heart valve diseases became pos-
sible. However, this technology is associated with relative
high costs and is generally performed by cardiologists and
internists only. Therefore, all patients suspected of having
any heart valve disease are referred from the general prac-
titioner to the specialist. Consequently, the general practi-
tioner needs an easy-to-use and low-cost system to detect
pathological changes in heart sounds precociously to limit
the number of refers.

Several available devices and software solutions are able
to record and display heart sound signals digitally, partially
including the visualisation of the frequency spectra, but
none of them performs a complete automatic diagnosis.19

For an automatic classification several approaches are
recently under discussion as especially artificial neural
networks.5 This is a very powerful technique to assess com-
plex coherences. However, the interpretation of the results
regarding the correlation with pathological changes is rather
difficult and the training time is often very long.

In other studies, high sensitivity and specificity for the
detection of degenerated bioprosthetic valves in aortic and
mitral position are already achieved, combining different
frequency analysis methods with various classical classifi-
cation techniques (Bayes classificator, nearest neighbour)
as well as artificial neural networks.8,9,11

A stenosis of the aortic valve causes an overload of the
heart muscle that leads to a myocardial hypertrophy and
a reduced perfusion of the coronary arteries in the long
term. An early detection is desirable to avoid a surgical
intervention or decrease its extent.

Pavlopoulos et al.24 described a method to differentiate
aortic stenosis from mitral regurgitation using heart sounds
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based on feature extraction and a decision tree. This method
achieves high accuracy and is therefore useful for the dif-
ferential diagnosis but not for a first screening by a general
practitioner, because the diagnosis of a valve disease has to
be known in advance.

The introduced method of classifying aortic valve
stenosis is based on parameter extraction in time and
frequency domain as well as on a two classification stage
(CS) process, presupposing short computational times and
low requirements on computer hardware. This makes the
system easy to handle, low in costs and applicable for the
general practitioners.

METHODOLOGY

Data Acquisition and Patients

Heart sound signals of 206 patients were recorded for
15 s on seven different auscultation areas (Fig. 1) using
an electronic stethoscope (theStethoscope, Welch Allyn)
with a linear frequency response from 20 Hz to 20 kHz.
In parallel, a 1-lead ECG was recorded to provide a
delimitation of separate heart cycles. Both signals were
digitised by a soundcard providing a sampling frequency
of 44,100 Hz as well as a 16-bit resolution and were stored
in a database together with an echocardiographic report
confirmed by a cardiologist.

Records were divided into single heart periods
according to RR-intervals from the ECG signal. Therefore,
the R peaks were detected automatically, applying a
self-developed algorithm based on finding the highest
periodical amplitude in the signal. All records were
manually edited. Periods with any audible disturbance
were excluded from further analysis.

Additionally, a method for detection of the first and sec-
ond heart sound was applied. This was based on two inde-
pendent procedures, the calculations of Shannon energy16

of the wavelet filtered signal (0–172 Hz) over time and of

FIGURE 1. Auscultation areas 1–7.

TABLE 1. Patient groups.

Group Number of patients

REF + OVD 77 + 82
AVS ms 27
AVS l 20
Total 206

Note. REF + OVD: subjects without aor-
tic valve stenosis; AVS ms: patients with
moderate or severe aortic valve steno-
sis; AVS l: patients with mild aortic valve
stenosis.

the Total Power over time calculated by summing up all
coefficients per window of the Short Time Fourier Trans-
form (STFT) (power–time–STFT). The two highest max-
ima of every time series were detected within defined time
frames where the heart sounds were expected (first heart
sound: 0–150 ms, second heart sound: 350–600 ms). These
maxima were accepted as first and second heart sound, if
the difference of their position in both time series did not
exceed more than 70 ms. The location of the heart sounds
was finally calculated from the mean value of the maxima
positions in both time series.

From all accepted periods of one record, a single rep-
resentative heart period was chosen based on the highest
mean correlation coefficient against all the other accepted

FIGURE 2. Examples of heart sound detection and segmenta-
tion, healthy subject; top—original heart sound, centre—STFT,
bottom—squared sum of frequency contents.
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FIGURE 3. Application flow of parameter extraction, ot: over time.

periods in this record. To reduce calculating effort and time
only this representative heart period was used in all further
calculations.

In this study, only patients with native heart valves were
enrolled. The classification procedure is divided into two
steps: firstly, the detection of patients with moderate or
severe aortic valve stenosis and secondly, the detection of
patients with only mild aortic valve stenosis. Therefore,
patients were split into three groups (Table 1):

• Patients with no heart valve disease, as healthy sub-
jects (REF) or patients suffering from any other
heart valve disease but aortic valve stenosis (OVD).

FIGURE 4. Scheme of the two classification stage (CS)
process.

• Patients suffering from moderate or severe aortic
valve stenosis and possibly from any other addi-
tional heart valve disease (AVS ms).

• Patients suffering from mild aortic valve stenosis
and possibly from any other additional heart valve
disease (AVS l).

Signal Processing

Multiresolution Wavelet Analysis

Comparisons of several frequency domain methods
have shown that Wavelet Transform (WT) is appropriate for
rejecting disturbances and noise from phonocardiograms.23

Furthermore, heart sounds with low frequencies and heart
murmurs with high frequencies can be separated
sharply.12,23

A multiresolution wavelet decomposition (WT-
decomposition) causes a bisection of the wave band with
every step.21 The part containing high frequencies remains,
while the part with the low frequencies is bisected again in
two wave bands. For this study, only frequency scales from
10 to 2756 Hz were analysed, recognizing that significant
heart sounds and murmurs are situated within this range.

Segmentation of signals

Segmentation of the signals was based on the detection
of the first and second heart sound as shown in Fig. 2.
A signal is divided into 10 intervals of the same length
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TABLE 2. Description of parameters selected via stepwise discriminant function analysis.

Description

Parameter AA Parameter extraction method Frequency range (Hz) Time series Extracted parameter

PCS 1a

Par 1 1 3 STFT 15–172 Power–time–STFT Area S4
Par 1 2 2 WT decomposition 172–689 Shannon entropy (ot) Ratio of area of S5 to total area
Par 1 3 3 STFT 15–689 Power–time–STFT Ratio of area of S5 to total area
Par 1 4 1 STFT 172–345 Power–time–STFT Ratio of area of S4 to total area

PCS 2b

Par 2 1 1 WT 639–2205 Power–time–WT Ratio of area of S2 to total area
Par 2 2 1 WT 79–269 Power–time–WT Ratio of area of S4 to total area
Par 2 3 2 FFT 115–140 Spectrum Total power
Par 2 4 2 FFT 115–165 Spectrum Total power

Note. Significance level α ≤ 0.0000001, AA: auscultation area; ot: over time; normalized units; see also Fig. 3.
aREF + OVD + AVS l vs. AVS ms.
bREF + OVD vs. AVS l.

(S2–S11), whereas the length of an interval depends on
the distance between the first and second heart sound.
The first heart sound is always located within segment
S2, the second heart sound always within segment S7.
Segment S1 consists of all samples before S2 (from the
beginning of the RR interval) and segment S12 includes
all samples adjacent to segment S11 (until the end of
the RR interval). This dynamic partitioning guarantees
that segments with same mechanical phase of the heart
are being compared and analysed for different patients
respectively.

Short Time Fourier Transform and Wavelet Transform

STFT and WT are appropriate frequency domain meth-
ods for the analysis of non-stationary signals and therefore
suitable for analysing heart sound signals.1

The following parameters were chosen for STFT:

• Blackman–Harris–window function,
• window length 4096 samples (about 100 ms),
• window shifting of 100 samples (about 2.5 ms).

The Blackman–Harris–window function was chosen fol-
lowing the suggestions of Harris.13 Jamous et al. showed
that the optimal length of the time window is between 16

and 32 ms.17 However, the window length of 4096 samples
was chosen to ensure that the first and second heart sound
each fits into a window completely, considering that dura-
tion of the first heart sound sometimes exceeds 50 ms. In
addition, an appropriate frequency resolution was provided
at the same time.

For WT, the following parameters were chosen:

• wavelet Mexican Hat,
• length of wavelet from 20 to 4410 samples (about

0.5–100 ms) increasing in 100 steps,
• wavelet shifting of 10 samples (about 0.25 ms).

Parameter Extraction

From the STFT and the WT spectrum new time se-
ries were derived calculating the total power over time
(power–time–STFT, power–time–WT) for various fre-
quency ranges. In addition, the WT decomposed signal was
analysed applying calculations of the time domain measures
as absolute value over time, energy over time, Shannon en-
ergy over time and Shannon entropy over time. Four groups
of parameters were computed within each segment S1–S12:

(1) absolute area of one segment,
(2) ratio of area of one segment to area of all segments,

TABLE 3. Mean value and standard deviation.

CS 1 CS 2

Parameter REF + OVD + AVS l AVS ms Parameter REF + OVD AVS l

Par 1 1 9.831 ± 4.693 21.513 ± 4.996 Par 2 1 0.145 ± 0.104 0.141 ± 0.111
Par 1 2 0.066 ± 0.051 0.209 ± 0.093 Par 2 2 0.059 ± 0.033 0.130 ± 0.057
Par 1 3 0.064 ± 0.034 0.151 ± 0.048 Par 2 3 282.880 ± 272.147 407.861 ± 236.990
Par 1 4 0.065 ± 0.071 0.244 ± 0.112 Par 2 4 464.905 ± 437.137 702.125 ± 381.733

Note. Mean ± standard deviation of all parameters related to the different patient groups, CS: classification stage; normalized units.
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TABLE 4. Results of CS 1.

CS 1 REF + OVD + AVS l AVS ms

Test + 11 (fp) 26 (tp)
Test − 168 (tn) 1 (fn)

Note. Classification of patients after applying
discriminant function analysis with four parame-
ters; first group 179 patients of group REF, OVD
and AVS l, second group 27 patients of group
AVS ms. Sensitivity = 26/27 = 96.3%, Speci-
ficity = 168/179 = 93.9%, Correct classification
= 194/206 = 94.2%.

(3) sum of differences between two successive sam-
ples in one segment,

(4) sum of absolute values of differences between two
successive samples in one segment.

Supplementary, the total power within different wide
frequency ranges of the FFT of the raw signal was exam-
ined. The complete procedure of parameter extraction is
demonstrated in Fig. 3.

Statistics

Considering the problem of multiple testing, the neces-
sary significance level of a parameter must fulfil Bonfer-
roni’s inequality to guarantee significance (new significance
level α ≤ 0.000003).3,4 The most significant parameters
were used within the succeeding discriminant analysis to
obtain an optimal four parameter set.22

Initially, patients were divided into two groups which
were supposed to be separated with stepwise linear dis-
criminant function technique.

(1) Group: REF + OVD + AVS l.
(2) Group: AVS ms.

While the patients suffering from mild aortic valve steno-
sis (AVS l) still remained in the first group, a second dis-
criminant function had to be applied splitting this group
into the following subgroups.

TABLE 5. Results of CS 2.

CS 2 REF + OVD AVS l

Test + 8 (fp) 15 (tp)
Test − 151 (tn) 5 (fn)

Note. Classification of patients after
applying discriminant function analy-
sis with four parameters; first group
159 patients of group REF and OVD,
second group 20 patients of group
AVS l. Sensitivity = 15/20 = 75%,
Specificity = 151/159 = 95%, Correct
classification = 166/179 = 92.3%.

TABLE 6. Final results after the two classification stages.

CS 1 + CS 2 REF + OVD AVS ms + AVS l

Test + 3 + 7 (fp) 27 + 15 (tp)
Test − 74 + 75 (tn) 0 + 5 (fn)

Note. Classification of patients after application of two discrimi-
nant functions; patients that are tested negative in classification
stage one are tested again in classification stage two. Sensi-
tivity(AVS ms) = 27/27 = 100%; Sensitivity(AVS l) = 15/20 =
75%; Sensitivity(AVS total) = 42/47 = 89.4%. Specificity =
149/159 = 93.7%. Correct classification = 191/206 = 92.7%.

(1.1) Group: REF + OVD.
(1.2) Group: AVS l.

A two CS process (Fig. 4) including two discriminant
functions each with four parameters was introduced.

The automatically selected parameter sets PCS 1 and
PCS 2 are explained in Table 2.

The performance of all the developed method was evalu-
ated by computing the percentages of sensitivity, specificity
and correct classification using the following equations:

sensitivity = tp/(tp + fn)

specificity = tn/(tn + fp)

correct classification = (tn + tp)/(fp + tn + tp + fn)

where tp is the number of true positives, tn the number of
true negatives, fp the number of false positives and fn the
number of false negatives.

RESULTS

The aim was to separate patients with moderate or severe
aortic valve stenosis from all other patients and healthy
subjects respectively.

With the application of PCS 1, including Par 1 1, Par
1 2, Par 1 3 and Par 1 4 (Table 3), we achieved a sensi-
tivity of 96.3% and a specificity of 93.9% for the correct
classification of moderate or severe aortic valve stenosis
(Table 4).

The aim of the second classification stage was to separate
patients suffering from mild aortic valve stenosis (AVS l)
from patients with no disease on heart valves (REF) or
suffering from any other heart valve disease but aortic valve
stenosis (OVD). With the application of PCS 2 including
Par 2 1, Par 2 2, Par 2 3 and Par 2 4 (Table 3), we achieved
a sensitivity of 75% and a specificity of 94.9% for correct
classification of mild aortic valve stenosis (Table 5).

Combining the results of both classification stages pro-
vides the final classification of aortic valve stenosis. All
patients who are not classified as suffering from moderate
or severe aortic valve stenosis in the first test stage are tested
again for suffering from a mild aortic valve stenosis using
the second test stage. (It has to be considered that patients



1172 VOSS et al.

from groups AVS l and REF + OVD that are classified
as AVS ms in CS 1 are not involved in CS 2 and patients
from group AVS ms that are not detected in CS 1 are tested
again in CS 2.) Finally, 100% of all patients suffering from
moderate or severe aortic valve stenosis and 75% of all
patients suffering from mild aortic valve stenosis are cor-
rectly diagnosed. The total sensitivity for the classification
of aortic valve stenosis reaches 89.40%, the specificity for
patients without aortic valve stenosis (REF + OVD) attains
93.70% (Table 6).

Figures 5–8 show examples of heart sound signals and
their derived time series where the selected parameters were
extracted from. Figures 5 and 6 show the differences be-
tween a subject of group REF in comparison to a subject of
group AVS ms (PCS 1). Figures 7 and 8 demonstrate the
differences between a subject of group REF and a subject
of group AVS l (PCS 2).

FIGURE 5. First classification stage. Heart sound of a subject
of group REF. (A) Original heart sound; (B) power–time–STFT
15–172 Hz; (C) Shannon entropy over time of (A); (D) power–
time–STFT 15–689 Hz; (E) power–time–STFT 172–345 Hz; sig-
nificant segments in comparison to AVS ms are highlighted.

FIGURE 6. First classification stage. Heart sound of a sub-
ject of group AVS ms. (A) Original heart sound; (B) power–
time–STFT 15–172 Hz; (C) Shannon entropy over time of (A);
(D) power–time–STFT 15–689 Hz; (E) power–time–STFT 172–
345 Hz; significant segments in comparison to REF are high-
lighted.

DISCUSSION

The presented method achieved a sensitivity of 100%
for the detection of moderate or severe aortic valve stenosis
and a sensitivity of 75% for mild aortic valve stenosis. In
only 10 cases (6.3% of all patients in REF and OVD) a
misclassification as aortic valve stenosis occurred. Interest-
ingly, 7 of these 10 patients suffer from another heart valve
disease (aortic, mitral, tricuspid and/or pulmonary insuf-
ficiency in different combinations or severities) but aortic
valve stenosis.

Diagnosing aortic valve diseases by auscultation is usu-
ally confirmed by a systolic murmur between the first and
second heart sound.14,15 The applied parameters Par 1 1,
Par 1 2, Par 1 3, Par 1 4 and Par 2 2 correspond with this
diagnosing criteria. All of these parameters are located in
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FIGURE 7. Second classification stage. Heart sound of a
subject of group REF. (A) Original heart sound; (B) power–
time–WT 639–2205 Hz; (C) power–time–WT 79–269 Hz; (D)
FFT 15–700 Hz divided into frequency bands of 25 Hz; (E) FFT
15–700 Hz divided into frequency bands of 50 Hz; significant
segments in comparison to AVS l are highlighted.

segment 4 or 5, which are situated between first and second
heart sound. Especially Figs. 5(B) and (C) and 6(B) and
(C) show the differences of power and energy within the
segments (located between the first and second heart sound)
between a healthy subject and a subject suffering from se-
vere AVS caused by the pathological heart murmur. Par 2 1
is located in segment S2 that indicates a change of the first
heart sound. The examples in Figs. 7(B) and 8(B) lead to
the assumption that the first heart sound is attenuated when
suffering from a mild aortic valve stenosis. The FFT spectra
in Figs. 7(D) and (E) and 8(D) and (E) show an increasing
power between 100 and 200 Hz represented by parameters
Par 2 3 and Par 2 4 due to the occurring heart murmur. The
revealed frequency parameters Par 1 1, Par 1 3, Par 1 4 and
Par 2 1–Par 2 4 represent the established frequency bands
of heart murmurs caused by aortic valve stenosis. This was
also proved by Kim et al., who showed that durations of

FIGURE 8. Second classification stage. Heart sound of a
subject of group AVS l. (A) Original heart sound; (B) power–
time–WT 639–2205 Hz; (C) power–time–WT 79–269 Hz; (D) FFT
15–700 Hz divided into frequency bands of 25 Hz; (E) FFT
15–700 Hz divided into frequency bands of 50 Hz; significant
segments in comparison to REF are highlighted.

the spectra at different frequencies were correlated to the
Doppler echocardiogram-derived mean and peak pressure
gradients as an indicator for an aortic valve stenosis.18

All selected parameters (Table 2) are extracted from
recordings of auscultation area 1, 2 or 3. Parameters of
auscultation area 4 or 5 did not contribute significantly
to the discrimination between patients. Nevertheless, they
might become relevant for diagnosing other valve diseases
and, therefore, should be considered in further studies. The
classification of the degree of aortic valve stenosis still
remains difficult especially for lower degrees. Only one of
all detected moderate or severe AVS is diagnosed as mild
AVS, but six mild AVS are classified as moderate or severe
AVS.

The advantages of parameter extraction are especially
the low calculation and technical efforts. Parameter extrac-
tion can be performed with a common computer system,
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a special database is not required. Due to the low compu-
tational time, the physician receives all necessary results
within consultation time. However, at least one noise free
and disturbance free heart period is required from auscul-
tation area 1–5. To preserve low noise heart sound signals,
all records should be performed within a quiet environment
and an adequate recording time has to be provided.

The introduced analysis will be verified in a prospective
study that did already start. Furthermore, all other preva-
lent heart valve diseases (aortic valve insufficiency, mitral
valve insufficiency) might be investigated following the
same procedure. An extension on other heart diseases is
also conceivable.

CONCLUSIONS

The introduced automatic heart sound classification
technology offers a safe, easy-to-use and low-cost method
for the general practitioner to diagnose aortic valve stenosis
at an early stage. In addition, the amount of unnecessary
referrals caused by false positive results can be reduced.
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