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Abstract—Due to the open app distribution and
more than two billion active users, Android platform
continues to serve as low-hanging fruit for malware
developers. According to the McAfee threat report,
the number of malware families found in the Google
Play increased by 30% in 2017. Permission-based
access control model is one of the most important
mechanisms to protect Android apps against malware.
In this paper, we propose a new permission-based
model that enhances the efficiency and accuracy of
Android malware analysis and detection, and has the
capability of potentially detecting previously unknown
malware. In this new model, we improve the feature
selection by introducing a new weighting method,
named TF-IDFCF, based on the class frequency (CF)
of the feature. The results of our experiments show
that our proposed method has a detection rate of
greater than 95.3% with a low false positive rate, when
tested with different classifiers.

Index Terms—Android, Permissions, Malware Anal-
ysis and Detection, TF-IDF, Machine Learning.

I. Introduction
Recently, Android has become the most selling operat-

ing system on mobile devices [1]. Android OS monthly
has over two billion active users. Malware writers are
actively and continuously developing malware programs
to target Android platform. This continuous evolution
and the diversity of malware pose a major threat to
Android applications. According to the McAfee threat
report, number of malware families found in the Google
play increased by 30% in 2017 [2]. Different solutions
have been proposed to protect mobile users from the
increasing threats of Android malware. Permission-based
access control model is the most important mechanism for
Android protection against malware apps. In this paper,
we use multiple machine learning algorithms with permis-
sion datasets to build and train models to classify Android
malicious apps. We improved the Term Frequency-Inverse
Document Frequency (TF-IDF) method, introduced new
feature selection method that increases the detection ac-
curacy. In this paper, we propose a new permission-based
static analysis framework for the classification of Android
applications into benign and malware. We improve upon

other permission-based approaches by introducing a fea-
ture selection method based on TF-IDF. This method
improves the efficiency of malware analysis and detec-
tion, and obtains a high accuracy. The results of our
experiments show that our proposed framework has a
detection rate of more than 95.3% using most of the basic
classifiers, such as SVM, J48, Naive Bayes and KNN. Our
contribution of this paper is an improvement of TF-IDF
weighting on vector space model. The TF-IDF method
considers both TF and IDF [3]. If the TF is high and
the term only appears in some part of the applications,
then this term has a very good ability to differentiate the
applications. A feature occurring frequently in the appli-
cations within same class represents more characteristics
of the class. Therefore, we use total feature occurrence as
a new parameter and enhance the TF-IDF to improve the
efficiency of our classifier.

The remaining parts of the paper are organized as
follows. In section 2 related works are presented. The
proposed model is introduced in section 3. In section 4
experimental results are given. The last section is conclu-
sions.

II. Related work
Many research has been performed on Android malware

classification, using permission related features. We high-
light some of related works of permission-based malware
detection.

X. Liu and J. Liu proposed a framework that consid-
ers both requested and used permissions in the Android
applications [4]. This framework is two layered malware
detections and uses machine learning techniques to get
high detection accuracy with the potential of detecting
Android malware applications based on permissions. P.
Rovelli and Ý. Vigfússon proposed a simple, client-server
architecture malware detection system based on permis-
sions which views requested permissions as behavioral
markers [5]. The system has the server-side and client-
side permission checker parts. The client-side part extracts
the permissions from the Android apps and forwards the
extracted permissions to the server-side part. The server-
side part classifies the application as benign or malware.



Z. Aung and W. Zaw proposed machine learning based
framework for malicious apps detection and security en-
hancement of Android based mobile device users [6]. This
framework monitors different permission-based features
extracted from Android applications and uses machine
learning classifies to tag the application as benign or
malicious. The system uses information gain as feature
selection method. They extracted more permissions from
different downloaded applications from Android markets
to generate the model. Z. Xiaoyan, F. Juan proposed a
malware detection system that analyzes the application
activity of the mobile phone. [7]. Extracts features, uses
principal component analysis method as feature selection
and applies support vector machine method to train and
build classifier for malware detection. With the contribu-
tions of the android based mobile device users, this frame-
work has the ability to classify the android apps as benign
and malicious. D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, K. Rieck, and C. Siemens proposed a lightweight
Android malware detection approach that enables detect-
ing malware applications in the smartphones directly [8].
The approach performs broad static analysis by collecting
all possible features of Android APK. It embeds in a joint
vector space the whole features and automatically detects
the malicious apps. The approach gives the advantage of
time efficiency in analyzing unknown apps. The approach
can be used on the mobile phone directly, and enables
protection of installation from untrusted sources. Y. Aafer,
W. Du, and H. Yin, have performed a study thorough
malware analysis for extracting malware relevant features
and behavior captured at API level, they trained multiple
robust and lightweight machine learning classifiers using
the generated dataset from the extracted feature set [9].
Their experiment result using KNN classifier shows a TPR
of 99% and 2.2%.

III. Overview of the system
In this section, we highlight the preprocessing model,

feature selection and the learning methods we used in the
proposed framework. Figure 1 shows the overview of the
proposed framework.

A. Preprocessing Model
In this stage, to get the resources we decompile the

Android APK sample files using the APKTool. We extract
the permissions that the Android applications requested
from their AndroidManifest.xml file. After extracting the
permissions, we identify the unique permissions in mal-
ware and benign then we build a binary matrix storing
(0,1) binary values for the features, and then we applied
improved TF-IDF weighting method for feature selection
to build our datasets.

B. Feature selection
The TF-IDF weighting method in vector space model

is often used in information retrieval and categorization,

Fig. 1. Overview of the system

gives more weight only to the term that appears rarely in
an application.

wi = tfi × log(
N

ni
) (1)

In equation (1), tfi represents the raw frequency of
the term i, N is the total number of applications in the
corpus (corpus means the complete dataset), and ni is
the number of applications that feature i appears in. We
know some features can have different weights in different
classes, so we improved the TF-IDF method to represent
more class’s characteristics, by considering the feature
frequently appearing in the applications within the same
class.

wi = tfi × log(
n

ni
) × ci (2)

In equation (2), we use a class-based TF-IDF, instead
of corpus-based method, tfi is the raw frequency of the
feature i, n is the total number of applications in the
class, and ni is the number of applications in the class that
feature i appears in. To give priority to the feature that
appears more frequently in the same class, we introduced
another term ci which is the class frequency of feature i,
and hence this new equation/model also includes class’s
characteristics.

In this stage, we collect all possible features extracted
from the Android APK files. We use the new TF-IDF
based method, named TF-IDF-CF shown in equation (2),
to select best features and give them weights in order to en-
hance the detection accuracy of our proposed framework,
and to make the learning easy. After that the selected
features as binary values are stored as a feature vector.
Following is an example of the benign and malware feature
vectors extracted from an Android APK file:

1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(a) Benign

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(b) Malware

C. Model Learning and Generation
In this stage, in order to detect automatically potential

malicious applications, we trained multiple classifiers using
the following machine learning algorithms: J48 decision
tree, Naive Bayes, SVM and KNN.

We used the J48 Ross Quinlan’s implementation of C4.5
Decision Tree-based learning algorithm.J48 [10] decision
tree is an important type of algorithm that builds classi-
fication model in the form of a tree. J48 is a machine-
learning model based on the prediction that makes a
decision tree which is based on the attribute values of the
training data for classifying a new item. Naive Bayes [11] is
one of the supervised classification methods and a powerful
algorithm for predictive modeling. The classification tech-
niques of Naive Bayes are probabilistic algorithm based
on Bayes’ Theorem with an assumption of independence
among predictors. Naive Bayes is an easy model to build
and works well in large datasets. It observes the whole
attributes separately and makes their usage in the data
simpler. SVM [12] primarily a classier method based on de-
cision planes concept. In machine learning Support Vector
Machines are one of the most popular algorithms. SVMs
can efficiently perform linear and non-linear classifications.
The KNN [13] is a non-parametric classification method.
It is very effective and simple classification algorithm
which is fundamentally different from the other learning
algorithms. KNN mostly referred lazy learner because of
memorizing from the training dataset.

IV. Classification and Evaluation

A. Dataset
We have 1000 APK samples (500 malware and 500 be-

nign) collected from different sources. The benign samples
are collected from the Google Play Store [14]. The sample
of malicious apps we took from Contagio Mobile [15] and
Android Malware Genome Project [16]. We decompiled,
extracted the features and, created training and testing

datasets of 700 and 300 samples respectively. Total 385
features were selected to enhance the accuracy.

TABLE I
Datasets

Samples Malware Benign Attributes

Training 700 350 350 385

Testing 300 150 150 385

Total 1000 500 500 385

Fig. 2. Frequency of specific permissions (15 shown here) in 500
malwares and 500 benign APKs

B. Permissions and Security
Permission is a special privilege that allows applica-

tions to access sensitive media or hardware feature in a
smartphone. Certain permissions (such as, Camera and
Location, etc.) should be given with greater care. The
permissions required by an Android application is declared
in its Android manifest file, and it can also define some
additional permissions to use for restricting some compo-
nents. During the runtime an Android application asked
from the user to allow (permit) certain actions.

For security and privacy purposes, during installation
Android System gives each application a unique user and
group ID. In this way the data for each application remains
private, and the other applications have no access to this
data. The only exception is where a user gives permissions
to other applications to access this data, such as contacts,
media files etc. Number of permissions asked in the 500
malwares and 500 benign samples are shown in Figure 2.
Here we discuss some important permissions that can be
used to perform malicious actions:

WRITE_SMS, SEND_SMS and READ_SMS: These
permissions allow an application to gain access to harmful
API calls, and hence allowing the application to read,



write, and send SMS (such as contacts, banking infor-
mation etc.) without notifying the user. CALL_PHONE:
This permission allows an application to make calls
on behalf of a user without confirming from the user,
and hence is dangerous to the privacy of a user.
READ_HISTORY_BOOKMARKS: This permission al-
lows an application to read a user’s browsing history
and bookmarks, and hence is a risk to the privacy
of a user. ACCESS_COARSE_LOCATION and AC-
CESS_FINE_LOCATION: These permissions allow an
application to access the coarse (e.g., Cell-ID, Wi-Fi)
and fine (e.g., GPS) locations citesarma2012android of a
smartphone, and hence pose a risk to the privacy of a user.

C. Classification Models
In this section, we evaluated using Weka tool the clas-

sification capability of our framework for Android APK
files as benign or malware on two datasets, a training set
of 700 and a testing set of 300 samples. This framework
gets the original feature set by extracting permissions
from Android APK files using reverse engineering tool
and forms the feature set by using the newly introduced
method named TF-IDF-CF. We used the techniques of
machine learning to classify the Android applications.
We used multiple learning algorithms such as J48, Naive
Bayes, SVM and KNN to test our model. The metrics we
used are as follows:
TP (True Positive): Correctly detected number of mal-
ware apps. FP (False Positive): Number of benign applica-
tions wrongly identified as malware. TN (True Negative):
Correctly detected number of benign apps. FN (False Neg-
ative): Number of malware applications wrongly identified
as benign.

We used the below metrices to evaluate the performance
of our proposed permission-based detection framework.
True Positive Rate (TPR): Number of samples cor-
rectly classified as malware out of the total malware
dataset (TP / TP+FN). False Positive Rate (FPR):
Number of samples wrongly classified as malware out
of the total benign dataset (FP / TN+FP). Overall
Accuracy (ACC): Proportion of Android apps, that
are correctly identified as either malicious or benign app.
(TP+TN / TP+TN+FP+FN).

D. Evaluation
To check the accuracy of our permission-based detec-

tion method we also used dataset containing 1000 APK
samples, including 500 malwares and 500 benign samples,
with 10-fold cross-validation method. This method divides
the dataset into ten parts and, takes one part the 10% as
testing set and the rest 90% as training test.

To further evaluate and make a comparison with our
proposed technique, we selected two other well-known in-
formation mining techniques, Principal Component Anal-
ysis (PCA) [17] and Information Gain [3]. Both these
techniques reduce the number of attributes to achieve a

TABLE II
Experimental Results

Dataset Method TPR FPR ACC

Training J48 0.991 % 0.009 % 99.1429 %
Training Naive Bayes 0.98 % 0.02 % 98 %
Training SVM 1 % 0 % 100 %
Training KNN 1 % 0 % 100 %

Test J48 0.97 % 0.03 % 97 %
Test Naive Bayes 0.97 % 0.03 % 97 %
Test SVM 0.983 % 0.017 % 98.3333 %
Test KNN 0.953 % 0.047 % 95.3333 %

high detection rate. PCA is a statistical method used to
emphasize variation and bring out strong patterns in a
dataset. Information Gain depends on the entropy of an
attribute and selects a feature that provides the foremost
information gain. Using the same dataset, we compared
our method to Information Gain and PCA. Results are
shown in table III. As seen in table III the use of our
proposed method for assigning weights to each feature
extracted from the APK has higher accuracy rate than
the other two techniques.

TABLE III
Compared Results

Information Gain Method

Cross Validation Classifier TPR FPR ACC

10-fold J48 0.86 % 0.14 % 86 %
10-fold Naive Bayes 0.819 % 0.181 % 81.9 %
10-fold SVM 0.864 % 0.136 % 86.4 %
10-fold KNN 0.856 % 0.144 % 85.6 %

Principal Component Analysis Method

Cross Validation Classifier TPR FPR ACC

10-fold J48 0.864 % 0.136 % 86.4 %
10-fold Naive Bayes 0.578 % 0.422 % 57.8 %
10-fold SVM 0.815 % 0.185 % 81.5 %
10-fold KNN 0.843 % 0.157 % 84.3 %

Our Proposed (TF-IDF-CF) Method

Cross Validation Classifier TPR FPR ACC

10-fold J48 0.975 % 0.025 % 97.5 %
10-fold Naive Bayes 0.973 % 0.027 % 97.3 %
10-fold SVM 0.986 % 0.014 % 98.6 %
10-fold KNN 0.968 % 0.032 % 96.8 %

E. Limitations
In this work, our weight assigning method relies on the

labeled (into classes) data. Before training, the data needs
to be divided into classes, which enables us to calculate
the class frequency (ci) and allows us to use class-based
instead of corpus based TF-IDF. Currently the only classes
data is divided into, before training, are malware and
benign.



V. Conclusions
Permission is one of the most important features in

Android security, and meaningful in malware detection.
Our proposed permission-based framework uses machine
learning algorithms to detect potentially malware apps.
Also, to improve the efficiency of permission-based An-
droid malware analysis and detection we introduced a
new method based on TF-IDF to assign weight to each
feature extracted from an Android APK file. We evaluated
the new technique using different metrics and achieved
a detection rate higher than 95.3% using different clas-
sifier algorithms. To further improve malware detection,
in future we will add more features, such as, API calls
etc., to our proposed framework. To improve the weight
assigning method, in future, we are going to divide the
data (especially malware samples) into more (than two)
classes based on similarity measures.
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