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CHAPTER 10

The main function of skeletal muscle is to provide power and strength for 
locomotion and posture, but this tissue is also the major reservoir of body 
proteins and amino acids. Thus, although the loss of muscle proteins has 
positive effects in the short term by providing amino acids to other tissues, 
an uncontrolled and sustained muscle wasting impairs movement, leads to 
difficulties in performing daily activities, and has detrimental metabolic 
consequences with reduced ability in mobilizing enough amino acids in 
case of illness and diseases. The resulting weakness increases the inci-
dence of falls and the length of recovery and when advanced, muscle wast-
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ing is correlated to morbidity and increased mortality. Consequently, one 
of the challenges we have to face is to supply amino acids to the tissues 
with higher requirements in catabolic states [1] but also to prevent a too 
important loss in muscle proteins and ultimately improve muscle recovery.

During the day, protein metabolism is modified by food intake. 
Whole-body proteins are stored during postprandial periods and lost in 
postabsorptive periods. With a muscle protein mass that remains con-
stant, the loss of muscle proteins is compensated for the same protein 
gain in the postprandial state. In adult volunteers, oral feeding is associ-
ated with an increase in whole-body protein synthesis and a decrease in 
proteolysis [2–5]. These changes are mediated by feeding-induced in-
creases in plasma concentrations of both nutrients and hormones. Many 
studies suggest that amino acids and insulin play major roles in promot-
ing postprandial protein anabolism [6]. Thus, in case of muscle wasting, 
muscle protein loss results from an imbalance between protein accretion 
and break-down rates which, in part, comes from a defect in the post-
prandial anabolism.

Although each muscle wasting situation is characterized by its specific 
mechanism(s) and pathways leading to muscle loss, an increase of cata-
bolic factors such as glucocorticoids, cytokines, and oxidative stress, often 
occurs and it is now well established that these factors have potential del-
eterious effects on the amino acids or insulin signalling pathways involved 
in the stimulation of muscle anabolism after food intake [7–11].

These signalling alterations lead to an “anabolic resistance” of muscle 
even if the anabolic factor requirements (amino acids e.g.) are theoreti-
cally covered, that is, with a normal nutrient availability fitting the rec-
ommended dietary protein allowances in healthy subjects. This anabolic 
resistance may be in part explained by an increase of the muscle “anabolic 
threshold” required to promote maximal anabolism and protein retention 
(Figures 1(a) and 1(b)). Because the muscle “anabolic threshold” is higher, 
the anabolic stimuli (including aminoacidemia) cannot reach the anabolic 
threshold anymore and by consequence, muscle anabolism is reduced with 
the usual nutrient intake (Figure 1(b)). A possible nutritional strategy is 
then to increase the intake of anabolic factors (especially amino acids) to 
reach the new “anabolic threshold” (Figure 1(c)). There are several ways 
to increase amino acid availability to skeletal muscle: increase protein in-



Muscle Wasting and Resistance of Muscle Anabolism 211

take, to supplement the diet with one or several free amino acids or to se-
lect the protein source on its amino acid composition and physicochemical 
properties when digested in the digestive tract. These nutritional strategies 
tested to increase postprandial amino acid levels above the increased ana-
bolic threshold and ultimately to restimulate muscle protein synthesis in 
situations of anabolic resistance led to conflicting results with no or more 
or less positive effects of the supplementation on nitrogen retention. This 
could be explained by variations in amino acid kinetics. The duration of 
the hyperaminoacidemia postprandially can also be of a variable magni-
tude and duration, depending of the form of the protein/amino acid supply 
in the diet. To illustrate this concept, we will take one example, that is, the 
loss of muscle mass during aging, while keeping in mind that this could be 
translated to any situation of muscle wasting.

Sarcopenia, as other catabolic states, has been found to result from a 
decreased response and/or sensitivity of protein synthesis and degradation 
to physiologic concentrations of amino acids [12–14]. This is related to 
a defect of the leucine signal to stimulate the mTOR signalling pathway 
activity [15]. These data suggest that increasing leucine availability may 
then represent a nutritional strategy to overcome the “anabolic threshold” 
increase observed during aging. Studies in both elderly humans and ro-
dents subjected to free leucine supplementation have shown that such sup-
plementations indeed acutely improved muscle protein balance after food 
intake by increasing muscle protein synthesis and decreasing muscle pro-
teolysis in the postprandial state (reviewed in Balage and Dardevet [16]). 
However, the few chronic studies conducted with such free leucine sup-
plementations did not succeed in promoting an increase in muscle mass 
[17–19]. Choosing free leucine as a supplement over a normal protein 
diet creates a desynchronization between leucine signal and the rise in all 
amino acids (Figure 2(a)). Indeed the free leucine is absorbed immediately 
whereas the other amino acids are released later after gastric emptying 
and proteolytic digestion in the gut. This nonsynchronization between the 
stimulation of muscle leucine-associated protein metabolism pathways 
and the delayed availability of amino acids as substrates can explain that 
protein anabolism was only stimulated for a very short period of time dur-
ing the postprandial period and then could not translate into a significant 
muscle protein accretion.
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FIGURE 1: The concept of increased anabolic threshold with associated altered muscle 
protein anabolism during the postprandial period.
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FIGURE 2: Free leucine, leucine rich proteins, and high protein diet in terms of amino 
acid kinetic and associated anabolic response in situation of increased muscle anabolic 
threshold.
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Studies with a synchronized leucine signal and amino acid availabil-
ity have been performed by using leucine rich proteins that are rapidly 
digested (whey proteins) [20]. With such proteins, leucine availability is 
increased simultaneously with the other amino acids to reach the increased 
muscle anabolic threshold (Figure 2(b)). However, as observed for free 
leucine supplementation, when such dietary proteins where given on the 
long term in elderly rodents [21], muscle anabolism was acutely improved 
but muscle mass remained unchanged. However, Magne et al. [22] have 
shown that in elderly rodents recovering from acute muscle atrophy, leu-
cine rich proteins were nevertheless efficient in improving recovery of 
muscle mass whereas free leucine supplementation remained ineffective. 
It may be postulated that, when given on the long term, protein muscle 
metabolism was adapted by increasing also protein catabolism in parallel 
with the increase of protein anabolism. However, after a catabolic state 
with an important muscle mass loss occurring within few days, this ad-
aptation may be delayed and leucine rich proteins remained efficient in 
improving muscle mass.

According to these data, it can be concluded that besides counteract-
ing the muscle anabolic resistance, the duration during which the anabolic 
resistance is muzzled also plays a critical role in leading to a significant 
muscle protein accretion. A prolonged stimulation could not be achieved 
with fast proteins at normal dietary level (even enriched with leucine) 
since the concentration of amino acids as substrates declines rapidly af-
ter their intake [23]. However, by strongly increasing protein intake, such 
ideal situations could be nevertheless achieved (Figure 2(c)). The “protein 
pulse feeding” initially developed by Arnal et al. [24–26] have shown that, 
by concentrating 80% of the total daily protein intake in one meal, protein 
retention was improved in elderly women subjected to a such nutritional 
strategy. Similarly, when very large amount of amino acids (wherein leu-
cine formed the highest percentage of the mixture), positive results have 
been observed [27–30].

The above nutritional strategies discussed raised the problem that 
the organism has to cope with large amount of nitrogen to eliminate. 
This point can be critical with already frail sarcopenic subjects or pa-
tients for who the renal function will be oversolicited whereas it may be  
already altered.
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FIGURE 3: Strategies aiming at partially decreasing the muscle “anabolic threshold” and 
increasing the efficiency of the postprandial period.
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In order to minimize this deleterious side effect of high protein intake, 
a strategy to reverse the increase in the “anabolic threshold” would restore 
the anabolic stimulation during the postprandial period with lower intake 
of dietary proteins or amino acid supplementations (Figures 3(a) and 3(b)). 
This requires the knowledge of the factors involved and responsible in the 
“anabolic threshold” elevation. The causes can be multiple and specific 
for each catabolic state. However, most of these muscle loss situations 
have in common an increase of the inflammatory status. Regarding aging, 
levels of inflammatory markers, such as interleukin-6 (IL6) and C reac-
tive protein (CRP), increase slightly, and these higher levels are correlated 
with disability and mortality in humans [31, 32]. Even if the increase is 
moderate, higher levels of cytokines and CRP increase the risk of muscle 
strength loss [33] and are correlated with lower muscle mass in healthy 
older persons [34]. We have recently shown that the development of a low 
grade inflammation challenged negatively the anabolic effects of food in-
take on muscle protein metabolism and that the pharmacologic prevention 
of this inflammatory state was able to preserve muscle mass in old rodents 
[7, 8]. A resensitization of muscle protein synthesis to amino acids could 
be also achieved with other nutrients such as antioxidants [11, 35] but it is 
not known yet if such supplementations could be effective in preserving 
muscle mass. Interestingly, Smith et al. [36] have tested n-3 polyunsaturat-
ed fatty acids supplementation to increase the sensitivity of muscle protein 
metabolism to anabolic factors (amino acids and insulin) by increasing the 
cellular membrane fluidity in elderly volunteers. Although they obtained 
a resensitization of the mTOR signalling pathway with the n-3 fatty acids, 
it is not known if the decrease of the “anabolic threshold” has been large 
enough to translate into sufficient postprandial protein accretion and then 
preserve muscle mass in the long term if not associated with a concomitant 
dietary increase in amino acids.

By choosing muscle mass loss during aging as an example of muscle 
wasting, it becomes obvious that skeletal muscle “anabolic threshold” is 
increased in such situations and that muscle protein metabolism becomes 
resistant to dietary anabolic factors even if these factors are supplied at the 
level they elicit maximal effects in normal physiological situations. It is 
important to note that this anabolic resistance during aging may be specific 



Muscle Wasting and Resistance of Muscle Anabolism 217

to amino acids [37]. Because the muscle “anabolic threshold” is more el-
evated, the duration of the stimulation by anabolic signals (as leucine) and 
the overcome of amino acid supply above the threshold is reduced with 
usual nutrient intake. Two strategies can be used (alone or in combination) 
to deal with this decreased “efficient” postprandial period: (1) by increas-
ing the anabolic signals, and particular amino acid availability; however, it 
is necessary to synchronize the anabolic stimuli with the substrates in or-
der to optimize the incorporation of amino acids into muscle proteins; (2) 
by increasing the efficiency of the postprandial period with strategies aim-
ing at partially restoring (i.e., decreasing) the muscle “anabolic threshold”.
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