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Abstract—The increasing use of machine learning algorithms, such as
Convolutional Neural Networks (CNNs), makes the hardware accelerator
approach very compelling. However the question of how to best design an
accelerator for a given CNN has not been answered yet, even on a very
fundamental level. This paper addresses that challenge, by providing
a novel framework that can universally and accurately evaluate and
explore various architectural choices for CNN accelerators on FPGAs.
Our exploration framework is more extensive than that of any previous
work in terms of the design space, and takes into account various FPGA
resources to maximize performance including DSP resources, on-chip
memory, and off-chip memory bandwidth. Our experimental results using
some of the largest CNN models including one that has 16 convolutional
layers demonstrate the efficacy of our framework, as well as the need
for such a high-level architecture exploration approach to find the best
architecture for a CNN model.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are used for a broad

range of machine learning problems such as object classification

and semantic segmentation [1] [2]. Their state-of-the-art recognition

performance as well as very high computational complexity makes

them a very attractive target for hardware acceleration. In particular,

FPGAs, by virtue of reprogrammability, have been a platform of

choice for many large-scale CNNs [3]–[8].

The problem of accelerating convolutional neural networks hinges

on that of accelerating convolutional layers as they account for most

of the computational complexity.

A convolutional layer transforms a number (Z) of input feature

maps into a number (M ) of output feature maps, where each feature

map is a matrix, or a 2D array. One output feature map (Bm) is

generated by first performing 2D-convolution between each of the

input feature maps (Az) and a weight matrix (Wm,z), and then

summating the results: Bm =
∑

z
Wm,z ∗ Az , where ∗ is 2D-

convolution. Hence the computation can be described as a 6-deep

nested loop as shown in Figure 1.

A. Design Considerations

Optimal design of an accelerator involves a number of consider-

ations, among which there are three fundamental aspects. The first

is the shape and size of the compute array. The shape of a compute

array is the set of dimensions along which the compute array does

vectorization. Though a convolution layer includes copious amounts

of MAC (multiply-and-accumulate) operations, being distributed in

a 6D space, the length along each dimension may not be very large

compared with the number of MAC units available on a modern

FPGA. This is a problem because, if the number of MAC units does

not divide the number of MAC operations along a dimension, some
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for (m = 0; m < M ; m++)
for (r = 0; r < R; r++)

for (c = 0; c < C; c++)
for (z = 0; z < Z; z++)

for (y = 0; y < K; y++)
for (x = 0; x < K; x++)
B[m][r][c] +=W [m][z][y][x]×A[z][Sr + y][Sc+ x];

Fig. 1. Computation of a convolutional layer (adding bias is omitted).

of the MAC units must be idle at some times, lowering resource

utilization. For instance, if the Z-loop with Z = 210 is vectorized

using an array of 100 MAC units, every third invocation of the MAC

array will have just 10% utilization, with the overall utilization of

70% (= 210/300) only. This internal fragmentation in the usage of

MAC units, is why MAC arrays of different shapes and sizes may

lead to very different performance for different layers and CNNs.

The second has to do with data transfer. The size of feature

maps is often much larger than that of on-chip memory on FPGAs,

which necessitates loop tiling, also known as loop blocking, to avoid

repetitive reloading of same data. Maximizing data reuse, which

may be critical to achieving optimal performance for certain layers,

requires a careful selection of loop blocking parameters.

The third is execution order. Since one MAC array can handle only

so many MAC operations at a time, we must invoke the MAC array

many times to cover all the MAC operations in a convolution layer.

This again can be represented as a 6D nested loop, and different

orders of loops can result in different amounts of data transfer size

and performance.

These three aspects are inter-dependent, making it difficult to an-

swer even some basic questions, such as what is the best MAC array

shape for a given CNN model, independently of each other. In this

paper we present a Design Space Exploration (DSE) framework that

can guide system architects in making early decisions in designing

optimal CNN accelerators.

B. Contributions

This paper makes the following contributions. First we propose

a DSE framework for CNN synthesis that considers a large set of

architectural options, including MAC array shapes with all their

possible sizes, together with all blocking parameters and all loop

orders. This allows us, for the first time, to quantitatively compare

different MAC array shapes and sizes for a given CNN layer or

model, among other things.

Second, in order to perform DSE using the framework, we need a

method to evaluate every point in the design space in a universal way.

Instead of developing an optimizing synthesis system of the full CNN

accelerator for each design point, which would require enormous
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Fig. 2. A CNN accelerator consists of a compute array and three double-
buffered on-chip buffers.

engineering effort, we develop a set of methods to characterize and

evaluate different architectural options in terms of the three aspects

mentioned above, viz., computation, data transfer, and execution or-

der. In particular, for compute time and compute resource usage (i.e.,

DSP blocks) we provide an accurate model and validate its accuracy

through HLS-driven RTL synthesis. For data transfer part, we provide

a lower-bound on data transfer time based on bandwidth analysis

as it is extremely hard to find out both optimal and implementable

designs, which are continuously improved with human ingenuity. For

execution order we use simulation, which is accurate.

Third, while we assume, like the previous work, that the FPGA is

not dynamically reconfigured across layers of a CNN model, we do

allow execution order to be different across layers. This helps simplify

our DSE evaluation engine in addition to extending the design space

and consequently helps achieve slightly higher performance.

Fourth, we present our DSE results involving 5 different large-scale

CNN models and multiple FPGA architectures.

There are some limitations. First, we do not vectorize K-loops (see

Figure 1), since K is relatively small and often varies across layers;

however, fully unrolling them as in [4], [7] is a trivial extension.

Second, we assume that the clock speed is given by the user, which

can be justified since we use DSP blocks (e.g., DSP48E in Xilinx

FPGAs) to implement MAC operations, and in that case the critical

path lies in the MAC units, and is not very sensitive to the size

or shape of the array. Third, a recent proposal [4] uses LUTs

(look-up tables) to synthesize some MAC units. While it can help

create larger MAC arrays and thus achieve higher performance, the

drawback is that estimating the number of MAC units available

becomes very difficult, jeopardizing parameter optimization. Indeed

our experiments in Section IV-F demonstrate that our framework,

though not using LUTs, can still generate solutions competitive with

that of [4] that uses LUTs thanks to our exhaustive DSE.

Through our exploration we find that the variation in performance

is indeed great among different architectures in a quite unpredictable

way. We also confirm that the best MAC array shape is not necessarily

fixed, but depends a lot on the CNN model and to a lesser degree on

the target FPGA. Finally even with the same MAC array shape our

framework can often find (potentially) better architectures than the

previous work, again thanks to its extensive exploration capability.

The rest of the paper is organized as follows. In Section II

we present our DSE framework. In Section III we present our

universal evaluation method for DSE. In Section IV we present our

experimental results, discuss related work in Section V, and conclude

in Section VI.

II. OUR EXPLORATION FRAMEWORK

A. Accelerator Overview

Our accelerator model consists of a compute array and three on-

chip buffers as illustrated in Figure 2. A compute array is an array

of compute elements, which are more or less homogeneous blocks

1 for (m2 = 0; m2 < M ; m2+=BM )
2 for (r2 = 0; r2 < R; r2+=BR)
3 for (c2 = 0; c2 < C; c2+=BC)
4 for (z2 = 0; z2 < Z; z2+=BZ)

5 for (m1 = m2; m1 < min(M,m2 +BM ); m1+=TM )
6 for (r1 = r2; r1 < min(R, r2 +BR); r1+=TR)
7 for (c1 = c2; c1 < min(C, c2 +BC); c1+=TC)
8 for (z1 = z2; z1 < min(Z, z2 +BZ); z1+=TZ)
9 for (y = 0; y < K; y++)

10 for (x = 0; x < K; x++)

11 for (m = m1; m < min(M,m1 + TM ); m++) // unroll

12 for (r = r1; r < min(R, r1 + TR); r++) // unroll

13 for (c = c1; c < min(C, c1 + TC); c++) // unroll

14 for (z = z1; z < min(Z, z1 + TZ); z++) // unroll

15 B[m][r][c] +=W [m][z][y][x]×A[z][Sr + y][Sc+ x];

Fig. 3. Convolutional layer computation, after loop blocking.

containing multipliers and adders. In this paper we use the terms

compute array and MAC array interchangeably. A compute array

implements the loop body computation of the kernel expanded along

some dimensions of the iteration space. The set of those dimensions

is called the shape of a compute array, which dictates the internal

structure of the compute array.

Buffers are scratchpad memories that partially or fully store the

input/output arrays and weight parameters. If partially stored, it is

backed up by the external memory (such as DRAM), and data must be

transferred between buffers and the external memory, which happens

simultaneously with computation thanks to double buffering. Thus a

buffer must be double-buffered unless it need not be backed up by

the external memory.

We assume that multipliers and adders needed to execute the

loop body operations of the kernel are implemented using DSP

blocks. Likewise buffers are assumed to be implemented using RAM

blocks. We assume that the maximum sustained memory bandwidth is

given, which can be obtained empirically by simulating the memory

controller(s) for long enough time.

Completing one convolutional layer requires performing the many

multiply-and-accumulate (MAC) operations of the kernel, which

takes many cycles even if all the DSP blocks of an FPGA are used.

Thus layers of a CNN are done one after another, and we use the

same FPGA configuration for all layers (in other words, no runtime

reconfiguration).

B. Design Space

Building on the previous work’s [3] intuition that different accel-

erator architectures can be generated from differently transformed

loop nests, we explore all loop nests created by loop unrolling, loop

interchange, and loop blocking (also known as loop tiling). Many of

the transformations are duplicate from the performance perspective,

and there are only a finite number of cases we need to deal with.

The most general version, before loop interchange, is obtained

by tiling each loop level twice and fully unrolling the inner one.

One such loop nest is shown in Figure 3, where K-loops are not

tiled since K is typically small and varies across layers (When K
is constant, unrolling them is trivial). In the figure the four inner-

most loops (lines 11–14) are fully unrolled and implemented as the

compute array. Thus they can be regarded as an atomic operation,

which we call compute-array operation. Since one compute-array

1148 2017 Design, Automation and Test in Europe (DATE)



TC

X

+X

+X

+X

+

X
+

X
+

X
+

X
+

X
+

X
+

X
+

X
+

X
+

TZTR

TM  = 2

Fig. 4. A 4D compute array with the configuration of (TM , TR, TC , TZ ) =
(2, 3, 3, 4).

operation is equivalent to TMTRTCTZ MACs, and it needs to

be invoked roughly K2�M/TM��R/TR��C/TC��Z/TZ� times to

complete one convolution layer.

The difference between the four outermost loops and the six middle

loops is that the latter performs its computation using on-chip buffers

only, as is typically the case with conventional loop blocking. In other

words we would like to set the B-parameters (i.e., BM , BR, BC , BZ )

such that the required buffers can fit in the available on-chip memories

of an FPGA. We require that a B-parameter be a multiple of a

corresponding T -parameter due to the granularity of compute-array

operations. Then the number of iterations in the outermost loops

determines how many times each buffer must be reloaded, also called

trip count, with one caveat—some buffers need not be reloaded in

certain iterations due to data reuse. For instance, an increment of z2
at line 4 does not change the subset of the output array that needs to

be on-chip, making it unnecessary to reload the output buffer along

the z2-loop except in the first iteration.

Clearly loop interchange makes a difference only among the four

outermost loops (lines 1–4). For the K-loops (lines 9–10) we allow

full blocking, i.e., BK = K, since K is relatively small.

This leads to the definition of a configuration as an 8-tuple

including all the T -parameters (also called unroll parameters) and

B-parameters (blocking parameters), plus the loop order of the four

outermost loops. Since the loop order is software-controlled, it need

not be the same across layers. Exploration of nonuniform as well

as uniform loop orders, which has not been done before, is another

minor feature of our DSE. The design space we consider in our DSE

framework does not cover every accelerator design conceivable, but

is a superset of those of the previous work all combined.

III. EVALUATION OF A DESIGN POINT

The objective of our exploration is to minimize cycle count, and

when the cycle count is equal, minimize the bandwidth requirement.

As for the constraints we consider the number of DSP blocks, the

amount of on-chip RAM, and the off-chip memory bandwidth. Thus

it is necessary to evaluate any given configuration in terms of cycle

count, bandwidth requirement, and resource usage (DSP and RAM).

In the following we use superscript to denote the layer parameter of

a particular layer. For example Sl is the stride value of layer l.

A. Computation: Compute Time and DSP Usage

1) DSP Usage: We show that the optimal number of DSP units

to implement a given shape and size of a compute array, as specified

by a 4-tuple (TM , TR, TC , TZ ), is indeed TMTRTCTZ , and that it

achieves the maximal throughput of TMTRTCTZ MAC ops/cycle. It

is obvious that we need at least TMTRTCTZ DSP units. The question

is whether it is always possible to implement a compute unit with the

maximal throughput using only the minimum number of DSP units.

Our solution is illustrated in Figure 4, which can implement any of

the compute array shapes. If TZ = 1, the MAC pipeline in the figure

is reduced to a pair of multiplier and adder, which is then replicated

TMTRTC times. In this case it is obvious that we need TMTRTC

DSP units only, since one DSP unit can implement a multiplication

and an addition with the initiation interval of 1 cycle.

If TZ ≥ 2, we need the pipeline structure. In this case it is not

obvious whether we need an extra DSP unit for the last accumulator.

But our experiment in Section IV-B shows that no extra DSP unit

is needed, and that the accumulator can be paired with the first

multiplier, while achieving the minimum initiation interval of 1 cycle.

The pipeline structure in Figure 4 can support bias addition and

initial value without extra DSP units, by modifying the feedback path

in the accumulator to receive either the accumulator value, bias, or

initial value. Initial value is needed if the output feature map value

must be updated, e.g., when Z > TZ .

2) Compute Time: The compute array has the initiation interval

of 1 cycle, and therefore compute time, or the total number of cycles

to complete all the MAC operations of a convolution layer l is:

T l
comp = (KlKlDMDRDCDZ + TZ − 1)

⌈
M l/BM

⌉⌈
Rl/BR

⌉⌈
Cl/BC

⌉⌈
Zl/BZ

⌉
,

where DM = BM/TM (others are similarly defined) and (TZ − 1)

is due to pipeline filling. The ceiling operator here is what causes

internal fragmentation, and also why simply doubling the size of a

MAC array may not double the computation rate, let alone the overall

performance.

B. Data Transfer

1) Effective Buffer Size and SRAM Usage: There is often a tradeoff

between physical buffer size and bandwidth. Bandwidth requirement

can be reduced if we can afford larger on-chip buffers. Thus while

most previous work except [6] did not consider maximizing the on-

chip memory usage, optimization of buffer size could be critical to

achieving the highest performance.

One tricky aspect of physical buffer size, unlike bandwidth calcula-

tion (see the next section), is that we must know the width and depth

of buffers (as opposed to the capacity), and that we must synthesize

buffers with the dimensions that can support all layers (i.e., we must

use the maximum width and depth across all layers).

The width can be determined from the requirement that the

compute array must be able to read (and write) a certain number

of words simultaneously in order to sustain the initiation interval of

1 cycle. For example, the output buffer must provide the bandwidth

of TMTRTC words/cycle. For the input buffer, due to the inherent

data reuse in the convolution operation, there is a large gap between

naı̈ve vs. optimized versions. We use the lowest value assuming full

data reuse, which can be implemented using a structure like the one

proposed in [5].

Bwdth
o = TMTRTC

Bwdth
w = TMTZ

Bwdth
i = max

l
tlZ(S

l(tlR − 1) +Kl)(Sl(tlC − 1) +Kl)

where the unit is words. For Bwdth
i we use effective unroll pa-

rameters, tlZ , t
l
R, t

l
C , which are defined as tlZ = min(TZ , Z

l) and

analogously for the others, instead of their corresponding unroll

parameters so as to lower the physical buffer size requirement. For

instance, an optimized design for AlexNet [1] has TZ value (=7) that

is greater than Zl in the first layer which is only 3. Coincidentally Sl

and Kl in the first layer are also very high, leading to huge savings
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in the required buffer size as compared to using the original unroll

parameters, and consequently increased performance.

The required capacity of a buffer for each layer (the numerator

part in the following equations) can be similarly determined, from

which one can find buffer depth for each layer as follows.

Bdpth
o = max

l

⌈
blMblRb

l
C/B

wdth
o

⌉

Bdpth
w = max

l

⌈
blMblZK

lKl/Bwdth
w

⌉

Bdpth
i = max

l

⌈
blZ(S

l(blR − 1) +Kl)(Sl(blC − 1) +Kl)/Bwdth
i

⌉

The effective blocking parameters, blM , blR, etc., are defined similarly,

e.g., blM = min(BM ,M l). Since blocking parameters are usually

very large (certainly much larger than unroll parameters), using the

effective versions is critical to obtaining realistic buffer sizes.

Finally physical buffer size requirement is simply the product of

width and depth of the buffer. The sum of physical buffer sizes of all

three buffers must be no greater than the available on-chip memory,

which is the SRAM constraint.

2) Data Transfer Size and Bandwidth: To calculate bandwidth

requirement, we need to know the trip count, or the number of

buffer reloadings (see Section III-C). Then the amount of external

data transfer needed for each buffer, for each layer, is simply the

required capacity of the buffer (defined above) multiplied by the trip

count. For example, for output buffer it is τ l
ob

l
MblRb

l
C , where τ l

o is

the trip count of output buffer for layer l.
Then the total data transfer for each layer is the sum of the data

transfers of all three buffers, from which one can calculate T l
dt, the

data transfer time for layer l (in cycles).

T l
dt = DataTransSizel · fCLK/BW limit (1)

Finally the execution time (T =
∑

l
T l) and the required bandwidth

of the design are given as:

T l = max(T l
comp, T

l
dt) (2)

BW = max
l

DataTransSizel/T l. (3)

C. Execution: Calculating Trip Counts

Previous work uses predefined formulas to calculate trip counts,

which is fine only if the compute array shape and the loop order

are all fixed. In our case, coming up with formulas for all of the

360 combinations (= 15 × 4!) is tedious and error-prone. In order

to find accurate trip counts for any design point, we use simulation.

Our simulation finds the number of reloadings necessary in the four

outermost loops (lines 1–4 of Figure 3) for any given layer, buffer,

and loop order. It takes as input all the four layer parameters (M, R,

C, Z) and four blocking parameters.

Like the previous work (e.g., [3]), the trip count for the output

buffer is multiplied by 2, since it is both read and written, unless it

is loaded only once. One effect that is overlooked in the previous

work including [3] is that some of the loops in lines 1–4 of Figure 3

may disappear due to having one iteration only. Our simulation can

find out exact trip counts, by keeping track of the range of block

addresses needed in each iteration and incrementing the trip counts

only if the block addresses change between consecutive iterations of

the four outermost loops.

While our evaluation covers most important aspects, viz., compu-

tation, data transfer, and execution, it does not guarantee exactness or

feasibility, which is due to the data transfer part. First our evaluation

does not consider data alignment, which uses LUTs as well as many

registers, and could make some design points infeasible. Second

TABLE I
CNN MODELS

CNN Description #Conv. Layers #MAC Ops
CNN1 AlexNet [1] 5 1.33 B
CNN2 Speed sign recognition [6] 3 5.40 B
CNN3 Street scene parsing [9] 4 13.10 B
CNN4 ConvNet-A (VGG11) [2] 8 14.97 B
CNN5 ConvNet-E (VGG19) [2] 16 39.01 B

TABLE II
CHANGE IN RESOURCE USAGE

Last tap #Cycles Tcomp (pred.) #DSP #LUT fCLK

Accumulator 55,765 55,360 2,688 56,418 205
AND gate 55,765 55,360 2,688 63,586 205

our buffer size estimation is idealized, giving the minimum size

requirement; the actual synthesized buffer sizes tend to be larger.

On the other hand, our evaluation gives the upper bound of the

performance for any given design point, which can be useful for

a limit study and in guiding designers making early decisions.

IV. EXPERIMENTS

A. Experimental Setup

We use five CNN models listed in Table I, which are among

the largest reported in the literature. Each CNN contains 5∼16

convolution layers, with 36 layers used in total.

The data type of a MAC operation affects the frequency and

effective bandwidth (BW) limit, which we obtain from our RTL

synthesis and simulation results using Vivado 2016.1 targeting Xilinx

Virtex7-485T FPGA on a VC707 evaluation board. We use 16-bit

fixed-point precision as 16-bit results are shown to be accurate enough

[4]. From our RTL synthesis results of our ZM- and MRC-shaped

MAC array designs, with parameters optimized for the CNN1 case,

we have verified that 16-bit MAC arrays can achieve 200 MHz clock

speed, which is the maximum speed of our DDR memory controller.

The Virtex7-485T FPGA contains 2,800 DSP slices and over 4.7 MB

on-chip memory (Block RAM). For 200 MHz the off-chip bandwidth

from RTL simulation is found to be at least 9 GB/s (hence our BW

limit), which is the same BW per clock frequency as in previous

work [3], [5].

We perform DSE in an exhaustive way, employing some obvious

heuristics for pruning. In reporting results we often use performance

numbers in GOPS (109 Ops/s) or Tera OPS, which are converted

from cycle count numbers for easier comparison among different

CNN models. One MAC is counted as 2 operations.

B. Validation of Our Compute Array Characterization

We have validated our DSP count and cycle count model for

compute array in three ways. First, we generate two designs for

(TM , TR, TC , TZ) = (14, 8, 8, 3); one as in Figure 4 and the other

with the accumulator replaced with an AND gate. This is to see the ef-

fect of the accumulator on the DSP usage. We use the parameters for

the first layer of VGG19, and (BM , BR, BC , BZ) = (42, 64, 64, 3).
Our result summarized in Table II shows that the DSP count is not

changed at all (and it matches the predicted value) and the AND-gate

version uses significantly more LUTs (Look-Up Tables), implying

that our architecture in Figure 4 uses the minimal number of DSP

units. Additionally it demonstrates the accuracy of our cycle count

and DSP count estimation.

Second, we have generated 15 different configurations, synthesized

the compute arrays using Vivado HLS, and compared the DSP usage
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Fig. 5. Performance vs. MAC array shape (100% resources).

with our DSP count model. We find that in all the cases the DSP

count exactly matches the prediction by our model, while meeting

the initiation interval of 1 cycle and the target clock frequency of 200

MHz. Third, for 4 out of the 15 configurations that use both R and

C dimensions, we have completed the accelerator design including

computation and data transfer, and measured the cycle count after

RTL synthesis by Vivado HLS. In all the 4 cases the cycle count

matches our prediction model, with less than 1% error.

C. Effect of CNN Model

A common misconception in the evaluation of CNN accelerators

is that an architecture that works well for one CNN will work

equally well for other CNNs. This fallacy is often manifested in

comparisons between accelerators using GOPS ratings obtained from

different CNNs, which seems quite prevalent perhaps because of the

convenience it offers. After all, one may think, all CNN models

belong to the same application—the convolutional neural network—

with the same computation and communication patterns, so why not?

To show that it is a fallacy, we perform an exploration for the five

CNN models with respect to different MAC array shapes, which are

shown on the x-axis of Figure 5. MAC array shape ZM, for instance,

means that TR = TC = 1 and only TZ and TM are explored.

The B-parameters and the loop order are always explored. The best

performance number for each MAC array shape is plotted.1

First we note that the performance of architectures depends heavily

on the CNN model. The RC shape, for instance, is the best among

2D shapes when running CNN3, but is indeed the worst for CNN1.

(Note that what we refer to as architecture is not a specific accelerator

design but an architecture template, whose parameter values are

optimized through exploration.) There is no consistent winner among

architectures, with ZM being the most polarizing: it tends to be either

the best or the worst 2D architecture. Even among 3D architectures,

there is no one that is optimal for all CNN models. For instance,

MRC is overall very good but is not optimal for CNN1.

The graph also shows that the 3D shapes are generally better

than 2D shapes, which is partially because a 3D shape can always

degenerate to a 2D shape if 3D does not give a competitive edge (i.e.,

ZMR becoming MR when TZ = 1). But a close examination reveals

that there is indeed a significant gap between 2D and 3D performance,

meaning that the 3D shapes do have a distinct advantage over 2D

shapes.

1In our evaluation we assume that the clock frequency is the same across
MAC array shapes, which is based in part on the results of Section IV-B. But
some simpler MAC array shapes could achieve higher clock frequency than
our target frequency. Such constraints, once quantified, can be incorporated
into our exploration framework.
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TABLE III
PERFORMANCE (IN GOPS) IMPROVES AS EXPLORATION EXPANDS

CNN [3] +LO +FB +MAS Optimal
CNN1 260.79 267.31 269.39 967.65 MRZ
CNN2 25.58 25.58 25.58 895.53 MRC
CNN3 127.89 127.89 127.89 1,000.45 MRC
CNN4 887.78 914.48 914.48 1,023.32 MRCZ
CNN5 963.25 987.26 987.26 1,048.72 MRZ

Note: LO (Loop Order), FB (Full Blocking), MAS (MAC Array Shapes).

D. Effect of Hardware Resources

The previous graph shows that the best architecture varies de-

pending on the CNN model. But is this best architecture the same

regardless of hardware setting or will it change? To see this, we make

a small change in the hardware setting, which is to reduce the amount

of FPGA resources to 10%, and do the same exploration again. This

is to simulate a case where 10 similar accelerators share the same

FPGA chip. Thus we reduce the number of DSPs, the size of on-chip

memory, and the off-chip bandwidth by 10 times, but not the clock

speed of the FPGA.

The results are shown in Figure 6. Since every resource type has

been changed by the same ratio, one may expect nearly an identical

trend as in the previous graph. However we see a few important

changes. First the gap between 2D shapes and 3D shapes is much

less, suggesting that 2D architectures may be a good fit for smaller

FPGAs. Second, increasing resources 10 times does not necessarily

increase performance 10 times—often it is less. Third, performance

of some architectures can vary drastically depending on the amount of

resources. For instance, RC, which is one of the lowest performers in

the 100% resource case shows good performance at 10% case. While

others do not easily change due to hardware changes, our hardware

changes are very small. A more extensive study would be needed

to confirm how close the tie is between CNN models and optimal

architectures.

E. Impact of Different Architectural Options

Our framework has three main architectural options, which jointly

determine performance. To see their relative importance on perfor-

mance we do incremental exploration, expanding architectural options

one by one.

Table III summarizes the results. The second column shows the

performance of the ZM architecture with limited 2D exploration for

blocking parameters and a fixed loop order, which is identical to

[3]. From there, we first add loop order exploration, which gives

very small performance improvement of about 3% at most. Next we

add full blocking parameter exploration, which gives essentially no
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TABLE IV
COMPARISON WITH THE PREVIOUS WORK

Features [3] [4] [5] [6] This paper
Exploring MAC array shapes* No (ZM) No (ZM) No (MRC) No (MR, MC) Yes
Exploring blocking parameters Limited (2D) Limited (2D) Limited (3D) Full Full
Exploring loop orders No No No Yes Yes

*Note: The K-loops are not considered for vectorization. Even though some [4], [7] have unrolled K-loops, it is full,
unconditional unrolling and differs from vectorization (i.e., there is no such parameter as TK ).

TABLE V
COMPARING VGG16 RESULTS ON KINTEX

Total latency GOPS Speed-up
Theoretical [4] 123.10 ms 249.31 0%
Measurement [4] 163.42 ms 187.80 —
Our exploration result 115.15 ms 266.53 +6.9%

improvement. Finally we add MAC array shape exploration, which

brings up to 35x performance improvement in one case. The MAC

array shape exploration is a unique feature of our DSE framework

whereas [6] performs loop order and full blocking parameter ex-

ploration only. Our results clearly show that the MAC array shape

exploration is a key ingredient to achieving the highest performance

on an FPGA consistently for all CNN models, which is around

900∼1,000 GOPS. The last column shows the MAC array shape that

is used to achieve the optimal performance. The optimal architecture

varies but M and R do appear consistently for all the CNN models.

F. Comparison with the Case That Uses LUTs

One limitation of our exploration framework is that it does not

use LUTs for implementing MAC ops. This may result in poorer

performance when compared with those architectures [4] that do use

LUTs in addition to DSP blocks for MAC ops. In this section we

provide a quick comparison, where we use the same CNN model

(ConvNet-D [2] with 13 convolutional layers) and the same hardware

settings including the number of DSPs (900), off-chip bandwidth (4.2

GB/s), and clock speed (150 MHz) as in the previous work.

Our exploration result (Table V) shows that our best architecture re-

lying on DSP units for most MAC operations is able to achieve 266.5

GOPS, which is faster by about 6.9% even compared with the their

theoretical speed, 249.3 GOPS. The reason for this surprising result is

in part due to (i) the low DSP utilization of their architecture, which

is only 89.2%, (ii) not considering the internal fragmentation issue

when optimizing architectural parameters, and (iii) our framework’s

extensive optimization including the MAC array shape. Also possible

is that when using LUTs, the difficulty of accurately estimating the

usable MAC count may make parameter optimization more difficult.

V. RELATED WORK

Table IV compares some of the most closely related work of this

paper. The authors of [3] present a CNN architecture for FPGAs

and a parameter optimization methodology based on the well-known

roofline model, which is one method to help balance computation

time and data transfer time. We also employ the same idea though

not using the roofline model itself.

The authors of [4] present an end-to-end design including not just

convolutional layers but also fully-connected layers, in addition to a

quantization method. They also utilize LUTs to generate some more

MACs, which may help achieve higher performance.

While most of the accelerator designs are based on a 2D array of

MACs, [5] proposes a 3D array (MRC), which has a high operating

frequency due to their input-reuse network. We assume the same

architecture and design for the MRC case in our exploration.

One paper [6] discusses blocking parameters and loop orders, and

the exploration thereof in a very general nested loop context. A

CNN is also used as an example, but their exploration is focused on

minimizing data transfer overhead, and not so much on maximizing

the performance of a CNN accelerator.

Our work starts from a very different perspective. We build on

the previous architectures proposed so far, but our concern is how

to help designers find optimal CNN architectures for FPGAs, and

how to assure that a design is sufficiently optimal considering key

architectural options and important hardware resources available. The

key ingredient in optimizing for performance is to explore MAC

array shapes as demonstrated in our experiments, but it necessarily

requires simultaneous exploration of all three architectural options,

which adds greatly to the challenge of the problem—not just from

the computational complexity perspective but also from that of how

to design an exploration framework that can handle all different

architectural configurations in a uniform and algorithmic way.

VI. CONCLUSION

We presented an architecture exploration approach targeting CNN

accelerators on FPGAs. Unlike previous work which is often tied to

a specific architecture, our approach allows for a quick evaluation

of many valid architectures which we find essential in finding the

best architecture that suits the target application. Our exploration

framework is not only extensive but also highly optimizing in terms of

utilizing hardware resources such as DSP resources, on-chip memory,

and off-chip memory bandwidth. We have demonstrated the efficacy

of our framework through experiments using some of the largest CNN

models, which also point out the need for a high-level architecture

exploration approach such as ours to find the best architectures for

CNN models.
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