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Abstract

The main aim of this paper is to develop a fast and efficient local meshless method for solv-
ing shallow water equations in one- and two-dimensional cases. The mentioned equation has
been classified in category of advection equations. The solutions of advection equations have
some shock, thus, especial numerical methods should be employed for example discontinuous
Galerkin and finite volume methods. Here, based on the proper orthogonal decomposition ap-
proach we want to construct a fast meshless method. To this end, we consider shallow water
models and obtain a suitable time-discrete scheme based on the predictor-corrector technique.
Then by applying the proper orthogonal decomposition technique a new set of basis functions
can be built for the solution space in which the size of new solution space is less than the
original problem. Thus, by employing the new bases the CPU time will be reduced. Some
examples have been studied to show the efficiency of the present numerical technique.
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1 Introduction

A wide variety of physical and natural phenomena such as sound, heat, electrostatics, electrody-
namics, fluid flow or elasticity have been described using partial differential equations (PDEs).
We refer the interested reader to [104] for various applications of partial differential equations in
sciences and engineering and also for some approaches in obtaining their solutions.
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The shallow water (SW) equations can be considered as a simplification of the Navier-Stokes
equations [102]. In the shallow water models, the horizontal wave length is much larger than the
depth of the fluid [102]. For this reason, some special numerical methods such as discontinuous
Galerkin, finite volume and adaptive moving mesh methods can be used for solving the advection
problems.

1.1 A brief review on SWs equations

In the current paper, we consider three boundary value problems in water science:

1. The 1D and 2D shallow water equations without friction term:
Trahan and Dawson [101] investigated a second-order, local time stepping procedure within a
Runge-Kutta discontinuous Galerkin (RKDG) framework to solve the shallow water equations.
The dam-break problems in one- and two-dimensional shallow water equations are attractive
problems in numerical analysis and many investigations have been done on these problems.
The public solution for the dam-break problem has been developed by Cozzolino and his
co-workers [31].

Benkhaldoun and his co-workers [2] developed a new stabilized meshless method based on
the radial basis functions for the numerical solution of convection-dominated flow problems.
This class of problems includes viscous Burgers equations and incompressible Navier–Stokes
equations at high Reynolds numbers. A new finite volume method has been proposed in
[3] based on the predictor stage and a corrector stage for the numerical solution of shallow
water equations for either flat or non-flat topography. The main aim of [4] is to propose slope
limiters in meshless radial basis functions for solving nonlinear equations of conservation
laws with flux function that depends on discontinuous coefficients as the method is based
on the local collocation formulation. Authors of [1] presented the similarity solution to the
Riemann problem of the one dimensional shallow water equations (SWE) with a bottom step
discontinuity. Using the class of fractional-step procedures, a simple and accurate projection
finite volume method is developed in [5] for solving shallow water equations in two-space
dimensions. A new class of finite volume method is presented in [6] for solving shallow water
flows in porous media on unstructured triangular grids in which the method consists of two
stages which can be interpreted as a predictor-corrector procedure.

Navas-Montilla and Murillo [82] proposed an arbitrary accurate derivatives Riemann problem
(ADER) type finite volume numerical scheme as an extension of a first-order solver with
source terms. Li and his co-workers [67] proposed a numerical procedure for shallow water
equations with a source term as the equations admit steady state solutions in which the non-
zero flux gradient is exactly balanced by the source term. Xing [106] developed well-balanced
discontinuous Galerkin approaches for the shallow water system. Sun and his co-authors [95]
applied the meshless local RBF differential quadrature (LRBFDQ) technique to simulate the
shallow water equations (SWE).

A well-balanced, spatially arbitrary with high order accurate discontinuous Galerkin scheme
is proposed by Tavelli and Dumbser [100]. Canestrelli and his co-workers [19] studied on finite
volume method for the 2D shallow water equations. Dumbser and Casulli [39] developed a
spatially arbitrary high-order, semi-implicit spectral discontinuous Galerkin (DG) scheme for
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the shallow water equations.

The main aim of the current paper is to develop a combined RBF-FD approach to solve
some shallow water equations. The RBF-FD approach is constructed by combining radial
basis functions concept and finite difference method. In the finite difference technique, the
corresponding weights can be obtained by using local polynomial approximations. Also, radial
basis functions can be chosen instead as basis functions translates of radially symmetric
functions. Thus, combination of radial basis functions with finite difference approach leads
to radial basis function-generated FD formulas. Furthermore, all approximations again local,
but nodes can now be placed freely.

One local meshless method is smoothed particle hydrodynamics (SPH) that is presented in
[48, 76]. The SPH technique is a computational method used for simulating the dynamics
of continuum media, such as solid mechanics and fluid flows. The SPH method is a mesh-
free Lagrangian method where the coordinates move with the fluid, and the resolution of the
method can easily be adjusted with respect to variables such as the density. The SPH method
is based on the dividing the fluid into a set of discrete elements that they are well-known as
“particles”. These particles have a spatial distance over which their properties are “smoothed”
by a kernel function. This means that the physical quantity of any particle can be obtained by
summing the relevant properties of all the particles which lie within the range of the kernel.
Also, the SPH method is employed for the shallow water equation. The interested readers
can find more information on SPH method in [118]

Wei and et. al. [119] applied the SPH method to investigate the impact of a tsunami bore
on simplified bridge piers in this study. This work was motivated by observations of bridge
damage during several recent tsunami events. The main aim of [120, 121] is apply the nu-
merical model of GPUSPH, an implementation of the weakly compressible Smoothed Particle
Hydrodynamics method on graphics processing units, to investigate tsunami forces on bridge
superstructures and tsunami mitigation on bridges by using a service road bridge and an
offshore breakwater. Authors of [122] investigated vorticity generation by short-crested wave
breaking by using the mesh-free Smoothed Particle Hydrodynamics model.

Katta and his co-workers [63] developed a central-upwind finite volume (CUFV) scheme for
solving shallow water model on a nonorthogonal equiangular cubed-sphere grid. High-order
spatial discretization based on weighted essentially non-oscillatory (WENO) scheme is con-
sidered in [63].

Cotter and Thuburn [29] described discretisations of the shallow water equations on the sphere
using the framework of finite element exterior calculus. They presented [29] two formulations
as follows:

• “primal” formulation in which the finite element spaces are defined on a single mesh

• “primal-dual” formulation in which finite element spaces on a dual mesh are used.

Felcman and Kadrnka [43] applied the moving mesh method to the shallow water equations.
An upwind weighted essentially non-oscillatory scheme for the solution of the shallow water
equations on generalized curvilinear coordinate systems is proposed by Gallerano and his co-
workers [49]. Bistrian and Navon [13] proposed a framework for dynamic mode decomposition
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(DMD) of 2D flows, when numerical or experimental data snapshots are captured with large
time steps.

Also, for solving shallow water models that are introduced in the current subsection, we can
mention that Xing and Shu [107] developed a high order finite difference WENO scheme, Xing
et. al [108] developed simple positivity-preserving limiter, valid under suitable CFL condition
based on the discontinuous Galerkin method, Xing and Shu [109] proposed a high-order
accurate finite volume weighted essentially non-oscillatory (WENO) scheme, and Noelle and
et. al [83] presented a new high–order accurate, exactly well–balanced finite volume scheme.

2. The 1D and 2D shallow water equations with friction term:
The studied hydrostatic upwind scheme in [9] is extended for considering 2D simulations
performed over unstructured meshes. Authors of [10] investigated the late-time asymptotic
behavior of solutions to nonlinear hyperbolic systems of conservation laws containing stiff
relaxation terms. They proposed [10] a new finite volume discretization which, in late-time
asymptotics, allows us to recover a discrete version of the same effective asymptotic system.
The main aim of [11] is to present a new scheme to compute the friction source terms in the
shallow-water model. The main aim of [12] is to analyze some ambiguities coming from a class
of sediment transport models in which the models under consideration are governed by the
coupling between the shallow-water and the Exner equations. Authors of [38] considered a
finite volume numerical approximation of weak solutions of the shallow water equations with
varying topography, on unstructured meshes.

3. The 2D shallow water model with sediment concentration:
This model is presented in [50] and [77, 125]. Also, authors of [77] proposed a new proper
orthogonal decomposition finite difference method with error estimate.

1.2 A brief review on RBF and RBF-FD techniques

Meshless methods are constructed based on scattered nodes in the problem domain [75, 17].
Radial basis functions collocation method is known as Kansa’s method [61, 62]. A famous RBF is
MQ function that is introduced by Hardy [54].

The local RBF-FD collocation method is a new technique to solve bad-posed problems. The
RBF-FD idea is developed in [34, 91, 92, 93, 94, 98, 99, 123]. There exist several research works
on RBF-FD technique for example Flyer et. al [45] established the computational efficiency and
accuracy of the RBF-FD method, Fornberg and Lehto [46] developed a filter approach for RBF-FD,
Fornberg and his co-workers [47] developed the RBF-GA algorithm to work effectively for up to a few
hundred node points in 2-D, Bollig et. al [14] proposed some parallelization strategies for the RBF-
FD method, Javed and his co-authors [59] studied a novel concept of adaptive shape parameter
for RBF-FD technique, Gonzalez-Rodriguez et. al [51] developed an algorithm to overcome the
inherent ill-condition in the computation of RBF-FD weights, Sarra [87] proposed a local RBFs
collocation method for system of advection-reaction-diffusion equations with Neumann boundary
condition on irregular domains and Islam and his co-workers [57, 58] presented an improved localized
RBFs collocation method (LRBFCM) for hyperbolic PDEs.

Chan and his co-workers [21] developed a new upwind technique based on the local radial
basis function differential quadrature (LRBF-DQ) method to solve the convection-dominated flow
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problems. Interpolation techniques based on the local radial basis function differential quadrature
(LRBF-DQ) method are proposed in [22] to interpolate the field values with arbitrarily given
scattered data. The main aim of [95] is to apply the meshless local radial-basis-function differential
quadrature (LRBFDQ) method to solve the shallow water equations (SWE). Authors of [124]
developed the local radial basis function (RBF) scheme to simulate 2D and 3D heat transfer and
flow dynamics of generalized Newtonian fluids (GNF).

The shape parameter in the radial basis functions has an important role in stability and con-
vergence of numerical algorithms based on the radial basis functions. Also, several studies have
been done to select an optimal shape parameter [86]. Especially, Bayona and his co-workers [15, 16]
proposed an optimal shape parameter for the local RBF-FD technique. Authors of [15] developed
an efficient algorithm to compute the optimal value of the shape parameter that minimizes the
approximation error. A novel technique to compute the solution of PDEs with the multiquadric
based local RBF finite difference method (RBF-FD) using an optimal variable shape parameter cj
at each node of the computational domain is presented in [16] . Also, we refer the interested reader
to [28, 90] for useful investigations on meshless method of radial basis functions and some related
issues.

The shape functions of moving Kriging interpolation are similar to the moving least squares
approximation. These shape functions rather have properties of the shape functions of moving least
squares approximation. The shape functions of moving Kriging have the δ-Kronecker property. The
interested researchers can find more information for the moving Kriging interpolation technique in
[18, 27, 33, 72, 52, 53, 67, 88, 89, 128, 129, 127]. The shallow water equation is a conservation
law equation thus a global RBFs collocation method with global support is not suitable for solving
this model. In other hand, as is said in [57] to overcome the problems of ill-conditioning and
shape parameter sensitivity of the global RBFs collocation method, the local radial basis functions
collocation method has been used.

1.3 Proper orthogonal decomposition (POD) approach

Proper orthogonal decomposition (POD) method is a principal component analysis, the Karhunen-
Loève transform, or singular value decomposition (SVD), POD (Berkooz et al. [7] 1993; Everson
and Sirovich [40] 1995; Kerschen et al. [64] 2005) are powerful statistical tool to transform a large
set of correlated variables into a small number of variables that are uncorrelated. As a result, a
compressed representation of the original data is obtained. The representation is optimal in the
sense that the mean-squared reconstruction error is minimized.

The POD technique is a powerful approach to reduce the used CPU time which is combined
with several well-known numerical methods for example finite element, (compact) finite difference
and element free Galerkin methods. The POD method produces a new basis that keeps the most
properties of the original data.

The POD approach has been studied by several researchers for example Xiao et. al [110]
developed a novel non-intrusive reduced order model based on a RBF technique combined with
the POD procedure for multiphase flows in porous media, Bistrian and Navon [13] presented an
improved framework for dynamic mode decomposition based on the shallow water equations model
reduction, Cao et. al [20] investigated a four-dimensional variational data assimilation (4DVAR)
technique based on POD scheme to study a reduced gravity wave ocean model, Du and his co-
workers [35, 36] derived a POD-based reduced-order model for the parabolized Navier-Stokes (PNS)
equations, Luo and his co-authors [78] employed the POD algorithm for model reduction of mixed
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finite element method for the nonstationary Navier-Stokes equations with some error estimates, Xiao
et.al [111] developed a new reduced order model based upon POD idea to simulate the Navier-Stokes
equations, a new nonlinear Petrov-Galerkin approach has been combined with POD reduced order
modelling for the Navier-Stokes equations in [112, 113], Xiao and his co-workers [114] proposed two
new non-intrusive reduced order models based upon POD. Finally Zhang and Xiang [126] proposed
a fast element free Galerkin method based on POD bases for solving the transient heat conduction
problems.

Wang et. al. [115] proposed two new closure models for the proper orthogonal decomposi-
tion reduced-order modeling of structurally dominated turbulent flows: the dynamic subgrid-scale
model and the variational multiscale model. Authors of [117] investigated POD/DEIM model order
reduction for the 2D Burgers equation based on the existing high fidelity implicit finite difference
full model and coupled it with a Tikhonov regularization calibration for high Reynolds number.

1.4 The main objectives and organization of the paper

In this paper, we want to find a fast local meshless method based on the decrease computing time
for solving shallow water equations in one- and two-dimensional cases. To reduce the used CPU
time, we combine the proper orthogonal decomposition approach with a local meshless collocation
technique based on the RBF-FD approach. The used algorithm employs an optimal shape parameter
that it is taken from [15]. Also, the structure of this article is as follows:

• In Section 2, we explain the RBF-FD technique.

• In Section 3, we discuss on the conservation property of the numerical technique.

• In Section 4, the proper orthogonal decomposition idea is explained.

• In Section 5, we simulate the shallow water equations using the present method.

• Finally, a brief conclusion for the presented technique is written in Section 6.

2 Two bases in topic of meshless approximations

In the current paper, we introduce two bases to approximate an unknown function.

2.1 The Moving Kriging (MK) interpolation

The (MK) approach similar to moving least squares (MLS) approximation can be developed over
any subdomain Ω1 ⊂ Ω. The shape functions of moving kriging interpolation method unlike the
shape functions of moving least squares approximation have the δ-Kronecker property. Thus using
these shape functions the Dirichlet boundary condition can be applied directly. Also, the used
CPU time for constructing the shape functions moving Kriging interpolation technique is less than
the used CPU time for building the shape functions of moving least squares approximation. This
section has been taken from [52, 130]. Let function uh(x) be the approximate solution of function
u(x) on the problem domain Ω. Over any subdomain Ωx the local approximation is as follows

uh(x) =
m∑
j=1

pj(x)aj + Z(x) = pT (x)a+ Z(x), (2.1)
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where pj(x) for j = 1, 2, . . . ,m are monomial basis function, aj for j = 1, 2, . . . ,m are monomial
coefficient. We consider Z(x) be the realization of a stochastic process with mean zero, variance
σ2, and non-zero covariance. The covariance matrix of Z(x) is as follows [52, 130]

cov {Z(xi), Z(xj)} = σ2R [R(xi,xj)] . (2.2)

In the above relation, R [R(xi,xj)] and R(xi,xj) are the correlation matrix and the correlation
function between any pair of nodes located at xi and xj, respectively. A simple and frequently
choice for selecting the correlation function is the following Gaussian function [52, 130]

R(xi,xj) = exp(−θr2ij), rij = ‖xi − xj‖ , (2.3)

and θ > 0 represents a value of the correlation parameter used to fit the model. Now, implementing
the best linear unbiased (BLUP) [52], Eq. (2.1) can be written as follows [52, 130]

uh(x) = pT (x)η + rT (x)R−1(u−Pη), (2.4)

in which
η =

(
PTR−1P

)−1
PTR−1u. (2.5)

In the following, we define some notations. The vector of the m known functions is as follows

p(x) =
[
p1(x) p2(x) . . . pm(x)

]T
, (2.6)

and matrix of evaluated function values at set of nodes x1, x2, . . . , xn is of the following form [52, 130]

P =

⎡⎢⎢⎢⎣
p1(x1) p2(x1) . . . pm(x1)
p1(x2) p2(x2) . . . pm(x2)

...
...

. . .
...

p1(xn) p2(xn) . . . pm(xn)

⎤⎥⎥⎥⎦
n×m

. (2.7)

The matrix of correlation is as follows

R [R(xi,xj)] =

⎡⎢⎢⎢⎣
1 R(x1,x2) . . . R(x1,xn)

R(x2,x1) 1 . . . R(x2,xn)
...

...
. . .

...
R(xn,x1) R(xn,x2) . . . 1

⎤⎥⎥⎥⎦
n×n

, (2.8)

and also the vector of correlation at set of nodes x1, x2, . . . , xn is of the following form

r(x) =
[
R(x1,x) R(x2,x) . . . R(xn,x)

]T
. (2.9)

The matrices A and B are of the following form

A =
(
PTR−1P

)−1
PTR−1, (2.10)

B = R−1(I−PA), (2.11)
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where I is n× n identity matrix. Now, we write Eq. (2.4) as follows [52, 130]

uh(x) = pT (x)Au+ rT (x)Bu, (2.12)

or

uh(x) =
[
pT (x)A+ rT (x)B

]
u =

n∑
k=1

φk(x)uk = ϕ(x)u, (2.13)

where the shape functions of moving Kriging approach are as:

ϕ(x) =
(
pT (x)A+ rT (x)B

)
j
= [φ1, φ2, . . . , φn]

T . (2.14)

2.2 The radial basis functions (RBFs) technique

In the current section, we explain the local RBF-DQ method thus at first we give some preliminaries
for the radial basis function.

Definition 2.1. [42, 105] A real valued continuous function φ ∈ R
d −→ C is positive definite if for

all sets X = {x1, . . . , xN} ⊂ R
d of distinct points and all vectors λ ∈ R

d

λTφλ =
N∑
i=1

N∑
j=1

λiλjφ(xi − xj) ≥ 0. (2.15)

Also, the function φ is called strictly positive definite on R
d if the quadratic form (2.15) is zero only

for λ = 0.

We interpolate a continuous function f : Rd −→ R on a set X = {x1, . . . , xN} with choosing
the radial basis function for φ : Rd −→ R that is radial in the sense that φ(x) = Ψ(‖x‖), where ‖.‖
is the usual Euclidean norm on R

d as we will explain it in the next section. Now, we assume φ to
be strictly positive definite, then the interpolation function has the following form [42, 105]

I(f(x)) =
N∑
i=1

λiφ(x− xi), (2.16)

where l =

(
d+m− 1
m− 1

)
. The basic problem is to find N + l unknown coefficients λi in which N

interpolation conditions are to the following form [42, 105]

I(f(xi)) = fi, i = 1, . . . , N. (2.17)

It has proved that the interpolation matrix based on a strictly positive definite function is nonsin-
gular [42, 105]. In the following, we mention some strictly positive functions:

1. Gaussian:
φ(r) = exp

(−(εr)2
)
, (2.18)
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2. Linear generalized IMQ:

φ(r) =
2− (εr)2(
1 + (εr)2

)4 . (2.19)

3. Linear Laguerre-Gaussian:

φ(r) = exp
(−(εr)2

) (
2− (εr)2

)
, (2.20)

4. Quadratic Laguerre-Gaussian:

φ(r) = exp
(−(εr)2

)(
3− 3(εr)2 +

1

2
(εr)4

)
. (2.21)

In the current paper, we employ the Gaussian shape function that its interpolation matrix is
non-singular.

2.3 Applying a suitable shape parameter

The accuracy of many schemes for interpolating scattered data with radial basis functions and to
solve partial differential equations using meshfree methods based on radial basis functions depends
on a shape parameter c, of the radial basis function [75, 86]. Thus, in this paper, we use an algorithm
to obtain an optimal shape parameter that has been proposed by Sarra [87]. The used parameters

Algorithm 1 An optimal shape parameter [87]

κ = 0
while κ < κmin, κ > κmax do

Produce interpolation matrix A
[U, S, V ] = svd(A)
κ = σmax

σmin

if κ < κmin then
c = c− cIncrement

else
c = c− c+ Increment

end if
end while

in the above code are as follows

1. A is the interpolation matrix

2. σmax and σmin are largest and lowest singular values of SVD decomposition, respectively.

3. cIncrement =
1
N
in which N is total points in the cosidered domain.

4. κmin = 1e+ 2 and κmax = 1e+ 4.
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Figure 1: The used stencil in one-dimensional case

Figure 2: The used stencil in two-dimensional case

2.4 The RBF-FD procedure

In this section, we explain the local collocation meshless method based on an arbitrary shape
function. As is well-known the local interpolation procedure is as follows [45, 46]

Emf(�x) =
∑
j∈Ii

�βjψ (‖�x− �yj‖), (2.22)

in which

1. �y is set of N centers

2. Ii is set of nodes that are into the stencil of ith node

3. �β is the unknown weights that must be computed.

Also, the unknown weight can be calculated using the following interpolation conditions [45, 46]

Emf(�xj) = f(�xj). (2.23)
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Eq. (2.23) is equal to the following linear system of equations

A�β = f , (2.24)

in which
f =

[
f(�x1), f(�x2), . . . , f(�x|Ii|)

]
, Bjk = ψ

(‖�xj − �xk‖2
)
, j, k ∈ Ii.

A local RBFs operator (including local derivatives or etc) can be obtained as follows [45, 46]

Lf(�x) =
∑
j∈Ii

�βjLψ
(‖�x− �yj‖2

)
. (2.25)

The above relation may be compacted in the following form

Lf(x) = �hT �β, (2.26)

where
(h)i = ψ (‖x− yi‖2) , i ∈ Ii. (2.27)

Eqs. (2.24) and (2.26) yield

Lf(�x)|Ii =
(
�hTB−1

)
f
∣∣∣
Ii
= (�wi) f , (2.28)

in which �wi is the stencil weights at the shape function center i [45, 46].

2.5 One dimensional case

We explain implementing the RBF-FD method on the 1D shallow water equation and for other
models in the current paper there is a similar way. Now, we consider the following model⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂h

∂t
+

∂ (uh)

∂x
= 0,

∂ (uh)

∂t
+

∂ (hu2)

∂x
+

g

2

∂ (h2)

∂x
= −ghBx(x),

(2.29)

in which h = h(x, t) is the water depth, u = u(x, t) is the fluid horizontal velocity, g is the
acceleration due to gravity and B(x) is the bed depth from a fixed reference level, see Figure 3.

Also, Bx(x) =
dB(x)

dx
. According to Eq. (2.28), the approximation solution is

h(x, t)|Ii =
ns∑
j=1

wjhj(t), (2.30)

also, the approximation first-order derivative is

∂h(x, t)

∂x

∣∣∣∣
Ii
=

ns∑
j=1

wx
j hj(t), (2.31)
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in which wx
i is the weighting-coefficient matrix of the first-order derivative in x direction. Similarly,

Figure 3: Shallow water variables

for v component there are the same approximations

uh(x, t)|Ii =
ns∑
j=1

wjuhi(t),
∂uh(x, t)

∂x

∣∣∣∣
Ii
=

ns∑
j=1

wx
j uhj(t). (2.32)

Substituting Eqs. (2.30)-(2.45) in Eq. (2.41) yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dhi(t)

dt
+

#Ii∑
j=1

wx
j (uh)j(t) = 0, i = 1, 2, . . . , N,

d(uh)i(t)

dt
+

#Ii∑
j=1

wx
j (u

2h)j(t) +
g

2

#Ii∑
j=1

wx
j (h

2)j(t) = −ghi(t)Bx(xi), i = 1, 2, . . . , N,

(2.33)

where by collocating the nodes we obtain the following system of ordinary differential equations
(ODEs) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
−→
h (t)

dt
+Dx

−→
uh(t) = 0,

d
−→
uh(t)

dt
+Dx

−−→
u2h(t) +

g

2
Dx

−→
h2(t) = −g

−→
h . ∗ −→Bx,

(2.34)

in which

h(t) =
[
h1(t) h2(t) . . . hN−1(t) hN(t)

]
,
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u(t) =
[
u1(t) u2(t) . . . uN−1(t) uN(t)

]
,

uh(t) = u(t). ∗ h(t),

Bx =
[
Bx(x1) Bx(x2) . . . Bx(xN−1) Bx(xN)

]
,

Also, the structure of matrix Dx will be different based on the number of points in each sub-
domain for example when we consider three points in each sub-domain then Dx will be a tridiagonal
matrix as follows

Dx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wx
1 wx

2 0 0 . . . 0 0
wx

1 wx
2 wx

3 0 . . . 0 0
0 wx

2 wx
3 wx

4 0 . . . 0

0 0
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . 0

0 0 . . . 0 wx
N−3 wx

N−2 wx
N−1

0 . . . . . . 0 0 wx
N−2 wx

N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

or if we have five points in each sub-domain then Dx will be a five-diagonal matrix and the same
way for other cases.

2.6 Hyperviscosity

The differentiation matrix of convective operator is as follows

D = α1
∂

∂x
+ α2

∂

∂y
, (2.35)

in which α1 and α2 are functions of fluid velocity. The convective operator that has been discretized
using the RBF-FD technique, has eigenvalues in the right half-plane and thus the used method is
unstable [45, 46]. As is mentioned in [14, 46] the stabilization of the RBF-FD procedure can be
obtained by applying a hyperviscosity filter to Eq. (2.35). Consider the Gaussian RBFs as

φ(r) = e−(εr)
2

, (2.36)

then the hyperviscosity can be simplified to

Δkφ(r) = ε2kpk(r)φ(r), (2.37)

in which k is the order of the Laplacian and pk(r) are multiples of generalized Laguerre polynomials
that are generated recursively [14, 46].

In the case of parabolic PDEs, hyperviscosity is added as a filter to the right hand side of the
model. For example, the main equation can be changed as follows

∂u

∂t
= −Du+Hu, (2.38)
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in which D is the convective operator and H is the hyperviscosity filter operator. In fact, the
hyperviscosity shifts all the eigenvalues of D to the left half of the complex plane [14, 46]. Also, the
mentioned shift can be controlled by p the order of the Laplacian and a scaling parameter βc as

H = βΔp = βcN
−pΔp. (2.39)

Given a choice of ε, it was found experimentally that β = βcN
−p provides stability and good

accuracy for all values of N considered here. For example, we consider Eq. (2.41) as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂h

∂t
+

∂ (uh)

∂x
+Np

n

∂2h

∂x2
= 0,

∂ (uh)

∂t
+

∂ (hu2)

∂x
+

g

2

∂ (h2)

∂x
= −ghBx(x),

(2.40)

in which Nn is the number of nodes that are scattered in the computational domain and also in the
computational results we consider p = −0.68.

Furthermore, it must be mentioned that to solve the conservation laws problems there is another
approach to overcome the ill-posed problem. This approach is based on the upwinding approach in
meshless method. The interested readers can find more details in [2].

2.7 Two-dimensional case

Implementing the RBF-FD method for the 2D shallow water equations is similar. Thus, we select
one of them and explain the RBF-FD method for that particular model. Now, let the shallow water
equation be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= γ

(
∂2h

∂x2
+

∂2h

∂y2

)
,

∂u

∂t
+

u∂u

∂x
+

v∂u

∂y
− fv = θ

(
∂2u

∂x2
+

∂2u

∂y2

)
− g

∂(h+ wb)

∂x
− cD

u
√
u2 + v2

h
,

∂v

∂t
+

u∂v

∂x
+

v∂v

∂y
+ fu = θ

(
∂2v

∂x2
+

∂2v

∂y2

)
− g

∂(h+ wb)

∂y
− cD

v
√
u2 + v2

h
,

∂φ

∂t
+

u∂φ

∂x
+

v∂φ

∂y
= ε

(
∂2φ

∂x2
+

∂2φ

∂y2

)
+ α

η(φ− φ∗)
h

,

∂hb

∂t
+ gb

(
∂u

∂x
+

∂v

∂y

)
= α

η(φ− φ∗)
ρ

,

(2.41)

in which for the above model, we have [77, 125]:

• γ and θ are two coefficients of viscosity

• (u, v) is the vector of velocity

14



• h = h∗ − hb is the water depth that h∗ is the surface height and hb is the height of the bed

• f is the Coriolis constant

• g is the gravitational constant

• cD is the coefficient of bottom drag

• ε is the diffusion coefficient of sand

• ξ is the falling speed of suspended sediment particles

• φ is the concentration of sediment in water

• φ∗ is the capacity for sediment transport in the bottom bed that is defined as

φ∗ = K

[
(u2 + v2)

3
2

gξh

]m
, (2.42)

• ρ is the density of dry sand

• gb a given empirical function that is defined as

gb =
(
Γ(u2 + v2)

) 3
2wpdq

[
1− vc√

u2 + v2

]
, (2.43)

• vc is the velocity of sediment mass transport

• d is the diameter of sediment

• K,m,Γ, p and q are all empirical constants.

Also, the employed boundary conditions are as follows⎧⎨⎩
h(x, y, t) = h0(x, y, t), u(x, y, t) = u0(x, y, t), hb(x, y, t) = hb0(x, y, t),

v(x, y, t) = v0(x, y, t), φ(x, y, t) = φ0(x, y, t), (x, y, t) ∈ ∂Ω× (0, T ).

According to Eq. (2.28), the approximation first-order derivative is

∂h(x, t)

∂x

∣∣∣∣
Ii

=
ns∑
j=1

wx
j hj(t), (2.44)
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in which wx
j is the weighting-coefficient matrix of the first-order derivative in x direction. Similarly,

for other components there are the same approximations

∂u(x, t)

∂x

∣∣∣∣
Ii

=
ns∑
j=1

wx
j uj(t),

∂v(x, t)

∂x

∣∣∣∣
Ii

=
ns∑
j=1

wx
j vj(t),

∂φ(x, t)

∂x

∣∣∣∣
Ii

=
ns∑
j=1

wx
j φj(t),

∂hb(x, t)

∂x

∣∣∣∣
Ii

=
ns∑
j=1

wx
j hbj(t).

(2.45)

Also, wy
j is the weighting-coefficient matrix of the first-order derivative in y direction

∂u(x, t)

∂y

∣∣∣∣
Ii

=
ns∑
j=1

wy
juj(t),

∂v(x, t)

∂y

∣∣∣∣
Ii

=
ns∑
j=1

wy
j vj(t),

∂φ(x, t)

∂y

∣∣∣∣
Ii

=
ns∑
j=1

wy
jφj(t),

∂hb(x, t)

∂y

∣∣∣∣
Ii

=
ns∑
j=1

wy
jhbj(t),

(2.46)

and wxx
j is the weighting-coefficient matrix of the second-order derivative in x direction

∂2u(x, t)

∂x2

∣∣∣∣
Ii

=
ns∑
j=1

wxx
j uj(t),

∂2v(x, t)

∂x2

∣∣∣∣
Ii

=
ns∑
j=1

wxx
j vj(t),

∂2φ(x, t)

∂x2

∣∣∣∣
Ii

=
ns∑
j=1

wxx
j φj(t),

∂2hb(x, t)

∂x2

∣∣∣∣
Ii

=
ns∑
j=1

wxx
j hbj(t),

(2.47)

and so wyy
j is the weighting-coefficient matrix of the second-order derivative in y direction

∂2u(x, t)

∂y2

∣∣∣∣
Ii

=
ns∑
j=1

wyy
j uj(t),

∂2v(x, t)

∂y2

∣∣∣∣
Ii

=
ns∑
j=1

wyy
j vj(t),

∂2φ(x, t)

∂y2

∣∣∣∣
Ii

=
ns∑
j=1

wyy
j φj(t),

∂2hb(x, t)

∂y2

∣∣∣∣
Ii

=
ns∑
j=1

wyy
j hbj(t).

(2.48)

Thus, Eq. (2.41) can be written as follows

dhi

dt
+ ui

ns∑
j=1

wx
j hj(t) + hi

ns∑
j=1

wx
j uj(t) + hi

ns∑
j=1

wx
j vj(t)

+vi

ns∑
j=1

wx
j hj(t) = γ

(
ns∑
j=1

wxx
j hj(t) +

ns∑
j=1

wyy
j hj(t)

)
,

(2.49)
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dui(t)

dt
+ ui(t)

ns∑
j=1

wx
j uj(t) + vi(t)

ns∑
j=1

wx
j uj(t)− fi(t)vi(t)

= θ

(
ns∑
j=1

wxx
j uj(t) +

ns∑
j=1

wyy
j uj(t)

)
− g

[
ns∑
j=1

wx
j hj(t) +

ns∑
j=1

wx
j hbj(t)

]
− cD

ui(t)
√
u2
i (t) + v2i (t)

hi(t)
,

(2.50)

dvi(t)

dt
+ ui(t)

ns∑
j=1

wx
j vj(t) + vi(t)

ns∑
j=1

wx
j vj(t) + fui(t)

= θ

(
ns∑
j=1

wxx
j vj(t) +

ns∑
j=1

wyy
j vj(t)

)
− g

[
ns∑
j=1

wx
j hj(t) +

ns∑
j=1

wx
j hbj(t)

]
− cD

vi(t)
√
u2
i (t) + v2i (t)

hi(t)
,

(2.51)

dφi(t)

dt
+ui

ns∑
j=1

wx
j φj(t)+vi

ns∑
j=1

wy
jφj(t) = ε

(
ns∑
j=1

wxx
j φj(t) +

ns∑
j=1

wyy
j φj(t)

)
+α

η(φi(t)− φ∗)
hi(t)

, (2.52)

dhbi(t)

dt
+ gb

(
ns∑
j=1

wx
j uj(t) +

ns∑
j=1

wy
j vj(t)

)
= α

η(φi(t)− φ∗)
ρ

, (2.53)

for i = 1, 2, . . . , N . Now, the matrix-vector form of the above equations is

dh(t)

dt
+ u(t)(Dxh(t)) + h(t) (Dxu(t))

+h(t) (Dyv(t)) + v(t) (Dyh(t)) = γ [Dxxh(t) +Dyyh(t)] ,

(2.54)

du(t)

dt
+ u(t) (Dxu(t)) + v(t) (Dyu(t))− fv(t)

= θ [Dxxu(t) +Dyyu(t)]− g [Dxh(t) +Dxhb(t)]− cD
u(t). ∗√u2(t) + v2(t)

h(t)
,

(2.55)

dv(t)

dt
+ u(t) (Dxv(t)) + v(t) (Dyv(t))− fu(t)

= θ [Dxxv(t) +Dyyv(t)]− g [Dxh(t) +Dxhb(t)]− cD
v(t). ∗√u2(t) + v2(t)

h(t)
,

(2.56)

dφ(t)

dt
+ u(t) (Dxφ(t)) + v(t) (Dyφ(t)) = ε [Dxxφ(t) +Dyyφ(t)] + α

η ∗ (φ(t)− φ∗)
h(t)

, (2.57)

dhb(t)

dt
+ gb [Dxu(t) +Dyv(t)] = α

η ∗ (φ(t)− φ∗)
ρ

. (2.58)
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Also, the above relations may be rewritten as

dh(t)

dt
+G1(h,u,v) = γ [Dxxh(t) +Dyyh(t)] ,

du(t)

dt
+G2(h,u,v)− fv(t) = θ [Dxxu(t) +Dyyu(t)]− g [Dxh(t) +Dxhb(t)] ,

dv(t)

dt
+G3(h,u,v)− fu(t) = θ [Dxxv(t) +Dyyv(t)]− g [Dxh(t) +Dxhb(t)] ,

dφ(t)

dt
+G4(h,u,v,φ) = ε [Dxxφ(t) +Dyyφ(t)] ,

dhb(t)

dt
+ gb [Dxu(t) +Dyv(t)] = G5(h, φ), (2.59)

in which

G1(h,u,v) = u(t) (Dxh(t)) + h(t) (Dxu(t)) + h(t) (Dyv(t)) + v(t) (Dyh(t)) ,

G2(h,u,v) = u(t) (Dxu(t)) + v(t) (Dyu(t)) + cD
u(t). ∗√u2(t) + v2(t)

h(t)
,

G3(h,u,v) = u(t) (Dxv(t)) + v(t) (Dyv(t)) + cD
v(t). ∗√u2(t) + v2(t)

h(t)
,

G4(h,u,v,φ) = u(t) (Dxφ(t)) + v(t) (Dyφ(t))− α
η ∗ (φ(t)− φ∗)

h(t)
,

G5(h,φ) = α
η ∗ (φ(t)− φ∗)

ρ
. (2.60)

As is clear system (2.59) is a semi-discrete scheme based on the temporal direction. There are some
numerical approach for solving differentiation equation (2.59) such as finite difference, Runge-Kutta
methods, etc. At first, we apply the implicit Euler technique to discrete the nonlinear system of
equation (2.59) and then the Newton method is employed to solve the algebraic nonlinear system
of equations. For positive integer number Nt, let τ = T

Nt
denote the step size of time variable t. So

we define
tn = nτ , n = 0, 1, 2, ..., Nt.

Now, we define

F1(h
n,un,vn, φ,hn

b ) = hn − hn−1 + dtG1(h
n,un,vn)− dtγ [Dxxh

n +Dyyh
n] ,

F2(h
n,un,vn, φ,hn

b ) = un − un−1 + dtG2(h
n,un,vn)− dtfvn

− dtθ [Dxxu
n +Dyyu

n]− dtg [Dxh
n +Dxh

n
b ] ,
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F3(h
n,un,vn, φ,hn

b ) = vn − vn−1 + dtG3(h
n,un,vn)− dtfun(t)

− dtθ [Dxxv
n +Dyyv

n]− dtg [Dxh
n +Dxhb

n] ,

F4(w
n,un,vn, φ,hn

b ) = φn − φn−1 + dtG4(w
n,un,vn, φn)− dtε [Dxxφ

n +Dyyφ
n] ,

F5(h
n,un,vn, φ,hn

b ) = hn
b − hn−1

b + dtgb [Dxu
n +Dyv

n]− dtG5(h
n, φn), (2.61)

in which

G1(h
n,un,vn) = un (Dxh

n) + hn (Dxu
n) + hn (Dyv

n) + vn (Dyh
n) ,

G2(h
n,un,vn) = un (Dxu

n) + vn (Dyu
n) + cD

un. ∗
√

(un)2 + (vn)2

hn
,

G3(h
n,un,vn) = un (Dxv

n) + vn (Dyv
n) + cD

vn. ∗
√

(un)2 + (vn)2

hn
,

G4(h
n,un,vn) = un (Dxφ

n) + vn (Dyφ
n)− α

η ∗ (φn − φ∗)
hn

,

G5(h
n,φn) = α

η ∗ (φn − φ∗)
ρ

. (2.62)

Now, we can obtain a linear system of algebraic equations based on the Taylor series expansion at
the kth iteration

Jk

⎡⎢⎢⎢⎢⎣
δhn

k

δun
k

δvn
k

δφn
k

δ(hb)
n
k

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
F1

F2

F3

F4

F5

⎤⎥⎥⎥⎥⎦
k

, (2.63)

where

Jk

⎡⎢⎢⎢⎢⎣
F1w F1u F3v F4φ F5wb

F1w F2u F3v F4φ F5wb

F1w F2u F3v F4φ F5wb

F1w F2u F3v F4φ F5wb

F1w F2u F3v F4φ F5wb

⎤⎥⎥⎥⎥⎦ . (2.64)
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By solving Eq. (2.63), we obtain⎡⎢⎢⎢⎢⎣
hn
k+1

un
k+1

vn
k+1

φn
k+1

(hb)
n
k+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
hn
k

un
k

vn
k

φn
k

(hb)
n
k

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
δhn

k

δun
k

δvn
k

δφn
k

δ(hb)
n
k

⎤⎥⎥⎥⎥⎦ . (2.65)

Also, using the following condition the iterative process can be finished∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎣
δhn

k

δun
k

δvn
k

δφn
k

δ(hb)
n
k

⎤⎥⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥∥
≤ tol. (2.66)

3 A conservation property (C-property)

The space derivative discretization of the source term in the shallow water equations leads to
numerical artificial waves [8]. The interested readers, to obtain more details on C-property can
refer to [8]. Here, have followed and have used informations given in [3] to check the C-property.

Let the shallow water equations be as follows

∂z(x, t)

∂t
+

∂F(z(x, t))

∂x
= G(x, z(x, t)), (3.1)

in which

z(x, t) =

[
h(x, t)
uh(x, t)

]
, (3.2)

F(z(x, t)) =

⎡⎣ p(x, t)
p2(x, t)

h(x, t)
+

1

2
gh2(x, t)

⎤⎦ , (3.3)

G(x, z(x, t)) =

[
0

−gh(x, t)Bx(x)

]
. (3.4)

In the above formulations:

• h(x, t) is the total height above the bottom of the channel,

• u(x, t) the fluid velocity,

• B(x) is the depth of the same point but from a fixed reference level.

Theorem 3.1. The proposed numerical scheme has the C-property.
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Proof. Now, a numerical plane is said to satisfy the C-property for Eq. (3.1) if the condition [3](−→
h
)n

+
−→
B(x) = −→c = Constant, un = 0, (3.5)

holds for stationary flows at rest. As is said in [3], the treatment of source terms in (2.50), is
reconstructed such that the condition (3.5) is preserved at the discretized level. According to
conditions (3.5), Eq. (3.1) can be rewritten as follows

∂

∂t

[
h(x, t)

0

]
+

∂

∂x

[
0

1

2
gh2(x, t)

]
=

[
0

gh(x, t)Bx(x)

]
. (3.6)

Also, applying implicit Euler difference method on (2.50) arrives at⎧⎪⎪⎨⎪⎪⎩
(−→
h
)n+1

=
(−→
h
)n

− τDx

(−→
uh
)n

,

(−→
uh
)n+1

=
(−→
uh
)n

− τDx

(−−→
u2h

)n

− τg
2
Dx

(−→
h2
)n

− τg
(−→
h
)n

. ∗ −→Bx.

(3.7)

Now, using condition (3.5) on system of equations (3.7), yields⎧⎪⎪⎨⎪⎪⎩
(−→
h
)n+1

=
(−→
h
)n

,

(−→
uh
)n+1

=
(−→
uh
)n

− τg
2
Dx

(−→
h2
)n

− τg
(−→
h
)n

. ∗ −→Bx.

(3.8)

If we want to have a stationary solution
(−→
h
)n+1

=
(−→
h
)n

the sum of discretized flux gradient and

source term in relation (3.8) should be equal to zero, in other word

−τg

2
Dx

(−→
h2
)n

= τg
(−→
h
)n

. ∗ −→Bx. (3.9)

As is mentioned before, we have

−→
Bx =

d
−→
B(x)

dx
,

thus we can approximate it by the following form

−→
Bx = Dx

−→
B(x). (3.10)

Also from condition (3.5), we have

Dx

(−→
h
)n

= −Dx

−→
B(x). (3.11)
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Substituting Eq. (3.11) in (3.9), gives

τg
(−→
h
)n

. ∗
(
Dx

(−→
h
)n)

=
τg

2
Dx

(−→
h2
)n

= τg
(−→
h
)n

. ∗
(
Dx

(−→
h
)n)

. (3.12)

Thus, the proposed method satisfies the C-property.

Also, we will check the C-property in Test problem 1.

4 Proper orthogonal decomposition method

The POD technique has been studied by many researchers [23, 25, 41, 71, 84, 85, 96, 97, 110] and
also is an active field for new research works. Let Φ = [Φk(x, tk)] ∈ R

nxy×nk be a set of snapshots
that is obtained using the numerical solution at equally distributed time instances tn1 , tn2 , . . . , tnk

in which nk is the number of snapshots. It is possible that the obtained snapshots are linear
dependence thus these are not suitable for a new basis. The POD basis can be derived based on
the following strategies:

• Singular value decomposition (SVD) for Φ = [Φk(x, tk)],

• Eigenvalue decomposition for ΦΦT ∈ R
nxy×nxy ,

• Eigenvalue decomposition for ΦTΦ ∈ R
nxy×nxy .

Since the governing model is system of PDEs, we employ the corresponding POD basis vectors for
them based on the snapshots of the solution for each variable separately. Here we just describe the
applied procedure to build the POD basis for u component and also there is a similar way for other
components. Let nk 
 nxy then by solving the following eigenvalue problem

ΦTΦĥi = λiĥi, i = 1, 2, . . . , nk, (4.1)

we can select an orthogonal basis of eigenvectors{
ĥ1, ĥ2, . . . , ĥm1

}
, (4.2)

corresponding to the m1 largest eigenvalue. Thus POD basis of the component u is as follows

BPOD,i
h =

1√
λi

Φĥi, (4.3)

BPOD
h =

[
BPOD,i

h , i = 1, 2, . . . ,m1

]
∈ R

nxy×m1 . (4.4)

Similarly, we can obtain the optimal POD basis for components u and v i.e. BPOD
u ∈ R

nxy×m2 and
BPOD

v ∈ R
nxy×m3 . As is said in [103], these POD modes provide an optimal representation of the

snapshot matrix, some information is inevitably lost in which we can get the following ratio [103]

I(m) =

(
nk∑
i=1

λi

)−1 m∑
i=1

λi. (4.5)
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According to the above explanations, the approximation of components h, u and v and the POD
bases can be related via the relation:

h(tn) ≈ BPOD
h hPOD(tn), (4.6)

u(tn) ≈ BPOD
u uPOD(tn), (4.7)

v(tn) ≈ BPOD
v vPOD(tn), (4.8)

in which hPOD(tn) ∈ R
m1 , uPOD(tn) ∈ R

m2 and vPOD(tn) ∈ R
m3 . The nonlinear term based on

the POD reduced order model (POD-ROM) is

GPOD
1 (hPOD(tn),u

POD(tn),v
POD(tn))

=
(
BPOD

h

)T︸ ︷︷ ︸
m1×nxy

G1(B
POD
u hPOD(tn), B

POD
v uPOD(tn), B

POD
v vPOD(tn))︸ ︷︷ ︸

nxy×1

.
(4.9)

Also, for other nonlinear terms there are similar relations.

5 Numerical experiments

Here, several test problem are presented to show the accuracy and efficiency of the proposed tech-
nique. We performed our computations using Matlab 7 software on a Pentium IV, 2800 MHz CPU
machine with 2 Gbyte of memory. It should be noted that the use of high number of points causes
good results. Thus, in the numerical results we considered many nodes in proposed scheme. To
show that the POD scheme approximates the full model, we employ the root mean square error
(RMSE) and the correlation coefficient (Corr) to measure the difference between POD and full
model as follows [117]

RMESn =

√√√√√ N∑
i=1

(U
n(full)
i − U

n(POD)
i )

2

N
, (5.1)

Corrn =
E(Un − μU)(U

n
0 −−μUn

0
)

σUnσUn
0

, (5.2)

in which μU and μUn
0
are the given expected value and σUn and σUn

0
are the standard deviations.

In the current paper, we report (m,ns) for all figures in which m is the employed POD modes
and ns is the used nodes into each sub-domain.
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5.1 Test problem 1. (To check the C-property)

The main aim of the current example is to verify that the scheme preserves the exact C-property
over a nonflat bottom. We select the following functions for the bottom topography [107]

B(x) = 5 exp

(
−2

5
(x− 5)2

)
, (5.3)

and discontinuous case [3]

B(x) =

⎧⎨⎩
0.2− 0.05(x− 10)2, 8 ≤ x ≤ 10,

0, o.w.
(5.4)

The initial data is the stationary solution

h+ B = 10, hu = 0. (5.5)

For this example, the steady state should be exactly preserved. We employ the proposed method

Figure 4: The surface level h+B and the bottom B with (m = 10, ns = 21) and bottom topography
(5.3) for the stationary flow over a smooth bump for Test problem 1.

with 400 collocation points at final time T = 0.5 and 10 POD modes. Figures 4 and 5 show the
surface level h + B and the bottom B. Table 1 contains the used CPU time(s) for Test problem
2. In order to illustrate that the exact C-property is preserved up to round-off error, we report L∞
error related to water height h in Table 2 for RBF-FD and LMK methods.
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Figure 5: The surface level h+B and the bottom B with (m = 10, ns = 21) and bottom topography
(5.4) for the stationary flow over a smooth bump for Test problem 1.

Table 1: The used CPU time(s) for Test problem 1

Computational Time

Number of nodes Number of POD bases RBF-FD POD

100 10 40 5.2

200 11 64 7.3

400 14 95 8.4

600 16 134 10.1

800 20 197 13.7

Table 2: Errors obtained for the stationary solution for Test problem 1

bottom topography (5.3) bottom topography (5.4)

Number of nodes RBF-FD LMK RBF-FD LMK

200 4.2501× 10−5 3.2133× 10−4 5.1109× 10−4 6.7789× 10−3

400 6.0013× 10−7 7.4913× 10−5 8.9017× 10−6 3.1189× 10−4

600 1.0191× 10−9 1.6667× 10−7 6.3153× 10−7 5.8901× 10−6

1000 2.4598× 10−11 9.1001× 10−9 9.4530× 10−10 6.8002× 10−8

5.2 Test problem 2 (Hump of water problem):

We consider the one-dimensional shallow water equation as follows [66]⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂h

∂t
+

∂ (uh)

∂x
= 0,

∂ (uh)

∂t
+

∂ (hu2)

∂x
+

g

2

∂ (h2)

∂x
= 0,

(5.6)
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with initial conditions ⎧⎪⎨⎪⎩
h(x, 0) = 1 +

2

5
exp(−5x2),

uh(x, 0) = 0,

(5.7)

and periodic boundary conditions

h(−5, t) = h(5, t), uh(−5, t) = uh(5, t). (5.8)

We solve this example using local collocation methods based on radial basis functions and shape

Figure 6: Graph of approximation solutions with (m = 10, ns = 11) based on the LRBF for Test
problem 2.

functions of moving Kriging interpolation. For showing the validation of the obtained numerical
results based on these two methods, we used the weighted essentially non-oscillatory (WENO)
method [67]. Since Test problem 2 doesn’t have the exact solution, we consider the obtained
numerical results by WENO method [67] as an exact solution and then we compare them with the
numerical schemes obtained in the current paper i.e. RBF-FD and LMK methods and also report
the errors in Table 3 for Test problem 2.

Figure 6 shows the approximation solution using local radial basis functions collocation method
with 350 total number nodes into computational domain and 90 nodes into each stencil and also
we set dt = 10−3 in two final times T = 2 (up figures) and T = 3 (down figures). In the current
example, let the obtained numerical results using the WENO method [67] be as an exact solution
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Figure 7: Graph of approximation solutions with (m = 10, ns = 11) based on the LMK for Test
problem 2.

Table 3: Errors obtained for Test problem 2

T = 2 T = 3

Number of nodes RBF-FD LMK RBF-FD LMK

27 7.0342× 10−3 1.3405× 10−2 1.6194× 10−3 7.7818× 10−3

210 8.2628× 10−4 1.1897× 10−3 1.4485× 10−4 5.0967× 10−4

212 8.2731× 10−5 1.3470× 10−4 1.0541× 10−5 3.2443× 10−5

and the achieved numerical results using LRBFs be the approximation solution. Then, we obtained
the difference between these solutions and plotted an error graph in Figure 6.

Figure 7 presents the approximation solution using local collocation method based on shape
functions of moving Kriging interpolation method with 211 total number nodes and support radius
5 ∗ dx at two final times T = 2 (up figures) and T = 3 (down figures). The error graph in Figure 7
is similar to Figure 6.

Figures 6 and 7 display the evolution of a hump of water. Similar to the acoustics equations
[66], the hump gives rise to two waves, one moving in each direction. As is said in [66], when the
height of the hump was very small compared to the background depth h0 = 1, then these would
propagate with their shape essentially unchanged, at the characteristic speeds [66]. In Figures 6
and 7 the variation in depth is sufficiently large that the nonlinearity plays a clear role. The front
of the wave steepens through a compression wave into a shock, while the back spreads out as a
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rarefaction wave [66].

5.3 Test problem 3 (The shallow water equation with friction term).

We consider the shallow water equation with friction term as follows [11, 37]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂h

∂t
+

∂ (uh)

∂x
= 0,

∂ (uh)

∂t
+

∂ (hu2 + 0.5gh2)

∂x
= −ghBx(x)− n2

√
(uh)2

hγ
(uh) ,

(5.9)

in which

B(x) = sin2(πx),

h(x, 0) = 5 + exp(cos(2πx)),

hu(x, 0) = sin(cos(2πx)).

The current example is devoted to the analysis of the accuracy. To test the ability of the proposed

Figure 8: Graphs of approximation solution with (m = 10, ns = 17) using the LRBFs method for
Test problem 3.

technique, we use the experimentally validated Manning-Chezy formulation [44] for the friction
term [11, 37]

F(U) =

⎛⎜⎝ 0

n2

√
(uh)2

hγ
(uh)

⎞⎟⎠ . (5.10)
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Figure 9: Graphs of approximation solution with (m = 10, ns = 17) using the LRBFs method for
Test problem 3.

As is said in [11], in some special cases, it may be important to ensure that the flow may be arrested
by large enough friction force but not be reversed by them. In the current example, we consider

Table 4: The used CPU time(s) for Test problem 3

Computational Time

Number of nodes Number of POD bases RBF-FD POD

128 12 43 6.7

256 14 78 9.2

512 18 113 11.3

1024 24 265 13.7

2048 30 355 16.5

Table 5: Errors obtained for Test problem 3

T = 0.05 T = 0.15

Number of nodes RBF-FD LMK RBF-FD LMK

10000 7.1961× 10−2 2.3785× 10−1 4.3645× 10−2 8.7839× 10−1

20000 4.5347× 10−2 6.4472× 10−2 5.7038× 10−3 5.8001× 10−2

40000 3.1366× 10−3 1.0249× 10−2 1.3997× 10−3 1.3146× 10−2

γ = 10/3. Figure 8 illustrates the graphs of approximation solution using different values of nodes
i.e. 400 and 200 collocation nodes and also for n = 0.035 using the LRBFs method for Test problem
3. Table 4 shows the used CPU time(s) for Test problem 3. Similar to Test problem 2, we consider
the obtained numerical results by WENO method [67] as an exact solution and then we compare
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them with the numerical schemes in the current paper i.e. RBF-FD and LMK methods and also
report the errors in Table 5 for Test problem 3.

5.4 Test problem 4 (Model of water in the middle of a bathtub or a
smooth surface wave propagation).

We consider the two-dimensional shallow water equation as [39]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
+

∂ (uh)

∂x
+

∂ (vh)

∂x
= 0,

∂ (uh)

∂t
+

∂ (u2h+ 0.5gh2)

∂x
+

∂ (uvh)

∂y
= 0,

∂ (vh)

∂t
+

∂ (v2h+ 0.5gh2)

∂y
+

∂ (uvh)

∂x
= 0,

(5.11)

with the following initial conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(x, y, 0) = 1 + exp

(
−(x2+y2)

0.001

)
,

(uh)(x, y, 0) = 0,

(vh)(x, y, 0) = 0,

and reflective boundary conditions. As is mentioned in [80] in the study of surface wave propagation,
the ice cover is conventionally modeled by a thin elastic plate. The appeared waves are referred
to as flexural gravity ones on the assumption that the particle motion in them is governed by
gravity, particle inertia, and surface tension acting upon water from the deformed ice cover. The
main approximations of this model are the following: the wave’s amplitude is small compared to
its length; the plate thickness is small related to its curvature radius; and the ice elasticity greatly
exceeds its viscosity, relaxation, and plasticity. The model is valid for waves of lengths greater than
100 m and amplitudes less than a few meters [80].

We solved the current example using the present methods. Figure 10 shows a schematic for the
initial condition for this problem. The full model is solved using 30000 collocation points in the
computational region and 90 points in each subdomain and also dt = 10−4. Figure 14 demonstrates
graphs of approximation solution and their contours for component h at different values of final
times for Test problem 4. Figure 15 presents graphs of approximation solution and their contours
with (m = 20, ns = 21) for component h on circular domain at different values of final times for
Test problem 4. Figure 11 demonstrates the singular values of the coefficient matrix of local RBF-
FD scheme and this figure shows the first singular value has the largest magnitude and also the
remainder singular values are decreasing with a fast speed. Also, following descriptions can be found
with more details in [126]. By calculating the singular values, we can see λ10 ≤ 6.7411× 10−10 for
800 collocation node. In other hand, from Eq. (4.5), we have I(1) = 0.99742 and I(7) = 0.999998.
Thus, we can say if λi+1 ≤ 6.7411 × 10−10, i POD bases will be suitable as the number of the
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Figure 10: A schematic for the initial condition for Test problem 4

Figure 11: Distribution of singular value for Test problem 4.

optimal POD basis. Then for Test problem 4, we take 20 POD basis for 800 nodes. Also, RMSE
and Corr errors based on the POD-LRBF-FD methods with 100 POD basis for Test problem 4 are
depicted in Figure 12. Figure 13 presents CPU time of the full system, POD reduced systems and
(left panel) and singular values of the snapshots solutions h, u and v (right panel) for Test problem
4.

5.5 Test problem 5. (Simulation of a dam-break flow)

Removing a vertical barrier yields the dam-break flow. A dam-break flow is an uncontrolled release
of water when a vertical barrier is removed suddenly and it is the simplest available model for
many important phenomena [77]. The dam-break flow can be described for several phenomena for
example as break-out floods, sheet flow events, and the formative stages of lahars or debris flows

31



Figure 12: RMSE and Corr errors based on the POD-LRBF-FD methods with 100 POD basis
for Test problem 4.

Figure 13: CPU time of the full system, POD reduced systems and (left panel) and singular values
of the snapshots solutions h, u and v (right panel) for Test problem 4.

[77]. Thus, in the numerical results we considered many nodes in the computational domain. We
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Figure 14: Graphs of approximation solution and their contours with (m = 20, ns = 21) for
component h on rectangular domain at different values of final times for Test problem 4.
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Figure 15: Graphs of approximation solution and their contours with (m = 20, ns = 21) for
component h on circular domain using LMK technique at different values of final times for Test
problem 4.

consider model (2.41) with the following parameters [77]

γ = 0.001, f = 1.1× 10−4, θ = 7.5× 10−3, α = 0.35,

g = 9.8, cD = 0.01, ε = 0.35, ρ = 1.5× 103, η = 0.01.

Figure 16 presents a schematic for the initial condition for Test problem 5. We solve the current
test problem using the proposed technique. Figure 17 shows CPU time of the full system, POD
reduced systems and (left panel) and singular values of the snapshots solutions w, u, v, φ and wb

(right panel) for Test problem 5. In the current paper, at first, we employ a simple example as
the gate has width 100 m. Figure 18 shows the singular values of the coefficient matrix of local
RBF-FD scheme and this figure shows the first singular value has the largest magnitude and also
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the remainder singular values are decreasing with a fast speed. By calculating the singular values,
we can see λ18 ≤ 7.3746× 10−10 for 800 collocation node. In other hand, from Eq. (4.5), we have
I(1) = 0.99610 and I(7) = 0.99989. Thus, we can say if λi+1 ≤ 7.3746 × 10−10, i POD bases will
be suitable as the number of the optimal POD basis. Then for Test problem 5, we take 30 POD
basis for 800 nodes. Also, RMSE and Corr errors based on the POD-LRBF-FD methods with
100 POD basis for Test problem 5 are depicted in Figure 19. Figure 20 illustrates the graph of
approximation solutions related to components w based on the 30 POD basis for Test problem 5.

Now, for the second case, as is said in [77] an idealized model of the dam-break flow may show
that the barrier at x = 0.5 and 0 ≤ y ≤ 1 divides fluids of different depths 3 m and 1 m, until
time t = 0 when a gate of width 0.5 m i.e. on x = 0.2 and 0.25 ≤ y ≤ 0.75 in the barrier
is removed instantaneously and fluid (depth 3 m) floods into the shallower region (depth 1 m).
Thus, the computational domain for the dam-break flow problem is a square of area 1 × 1 m2,
i.e., Ω = [0, 1] × [0, 1], which holds water depths of 3 m on the sub-domain [0, 0.2] × [0, 1] and 1
m on the sub-domain [0.2, 1] × [0, 1]. Graphs of approximation solutions with their contours with
(m = 30, ns = 31) related to components w for Test problem 5 are presented in Figure 21.

Figure 16: A schematic for the initial condition for Test problem 5.
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Figure 17: CPU time of the full system, POD reduced systems and (left panel) and singular values
of the snapshots solutions w, u, v, φ and wb (right panel) for Test problem 5.

Figure 18: Distribution of singular value for Test problem 5.

5.6 Test problem 6 (Model of water in a bathtub with friction term).

We consider the shallow water equation with friction term as follows [39]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
+

∂ (uh)

∂x
+

∂ (vh)

∂y
= 0,

∂ (uh)

∂t
+

∂ (u2h+ 0.5gh2)

∂x
+

∂ (uvh)

∂y
= −n2

√
(uh)2 + (vh)2

hγ
(uh),

∂ (vh)

∂t
+

∂ (v2h+ 0.5gh2)

∂y
+

∂ (uvh)

∂x
= −n2

√
(uh)2 + (vh)2

hγ
(vh),

(5.12)
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Figure 19: RMSE and Corr errors based on the POD-LRBF-FD methods with 100 POD basis
for Test problem 5.

with the following initial conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(x, y, 0) =

{
1.0, 0 ≤ y ≤ 10, 110 ≤ x ≤ 120,
0.1, o.w.

uh(x, y, 0) = 0,

vh(x, y, 0) = 0,

and reflective boundary conditions. Figure 23 shows the singular values of the coefficient matrix of
local RBF-FD scheme and this figure shows the first singular value has the largest magnitude and
also the remainder singular values are decreasing with a fast speed. By calculating the singular
values, we can see λ20 ≤ 4.3385 × 10−10 for 800 collocation node. In other hand, from Eq. (4.5),
we have I(1) = 0.99042 and I(7) = 0.99998. Thus, we can say if λi+1 ≤ 4.3385 × 10−10, i POD
bases will be suitable as the number of the optimal POD basis. Then for Test problem 6, we take
40 POD basis for 800 nodes. Also, RMSE and Corr errors based on the POD-LRBF-FD methods
with 100 POD basis for Test problem 6 are depicted in Figure 24. Figure 25 displays outputs of a
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Figure 20: Graph of approximation solutions with (m = 30, ns = 31) related to components w for
Test problem 5.
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Figure 21: Graphs of approximation solutions with (m = 30, ns = 31) related to components w for
Test problem 5.
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shallow water equation for modelling of water in a bathtub. We solved the current example using
the present method. In this problem B(x, y) = 0 and a friction term with γ = 10/3 is appeared in
the model. Figure 22 depicts CPU time of the full system, POD reduced systems and (left panel)
and singular values of the snapshots solutions h, u and v (right panel) for Test problem 6.

Figure 22: CPU time of the full system, POD reduced systems and (left panel) and singular values
of the snapshots solutions h, u and v (right panel) for Test problem 6.

6 Conclusion

In many areas of of applied sciences, such as chemistry, physics, fluid mechanics and etc, we have to
solve the advection and advection-diffusion-reaction equations. These equations are very important
and sometimes finding their analytic solutions is so difficult. Thus, applying a useful numerical
method for these equations is a topic of interest for researchers. The shallow water equation is
an important equation in fluid mechanics for simulating the height and velocity of water. In this
paper, we suggest a fast numerical method using the proper orthogonal decomposition approach
for solving the mentioned equations. The local collocation technique is presented to obtain a
numerical algorithm for solving equations which arise in water sciences. The method presented
here is based on the RBF approximation and finite difference approach that produces the RBF-
FD technique. Also, in the current paper, we combined the RBF-FD method with the proper
orthogonal decomposition approach to reduce the CPU time. The technique developed is applied
on six test problems and simulation results confirm that the new procedure is appropriate for finding
the approximate solutions of our models.
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Figure 23: Distribution of singular value for Test problem 6.

Figure 24: RMSE and Corr errors based on the POD-LRBF-FD methods with 100 POD basis
for Test problem 6.
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Figure 25: Graphs of approximation solution and their contours with (m = 40, ns = 31) for
component u using LMK technique at different values of final time for Test problem 6.
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